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Abstract
It has been found that Transformer-based language models have the ability to perform basic quantitative reasoning.
In this paper, we propose a method for studying how these models internally represent numerical data, and use our
proposal to analyze the ALBERT family of language models. Specifically, we extract the learned embeddings these
models use to represent tokens that correspond to numbers and ordinals, and subject these embeddings to Principal
Component Analysis (PCA). PCA results reveal that ALBERT models of different sizes, trained and initialized
separately, consistently learn to use the axes of greatest variation to represent the approximate ordering of various
numerical concepts. Numerals and their textual counterparts are represented in separate clusters, but increase
along the same direction in 2D space. Our findings illustrate that language models, trained purely to model text, can
intuit basic mathematical concepts, opening avenues for NLP applications that intersect with quantitative reasoning.

Keywords: Language models; Transformer-based models; Numerical data representation; Word embed-
dings; PCA; Numerals in NLP

1. Introduction

The Transformer architecture introduced by
Vaswani et al. (2017) has led to major advances
in computational linguistics. Transformer-based
models of language like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and ELECTRA (Clark et al., 2020) have ex-
celled in a range of tasks, from machine translation
(Lample et al., 2018; Gu et al., 2018) to question
answering (Yamada et al., 2020) and beyond. Stud-
ies have also evaluated these models’ numerical
reasoning, For example, Saxton et al. (2019) found
a Transformer-based language model to perform
at an E-grade level on a British math exam for
16-year-olds. Kalyan et al. (2021) subsequently
developed benchmarks for mathematical common-
sense reasoning to track the progress of models
in this respect, highlighting the growing interest in
this research area.

Despite demonstrable performance on numeri-
cal tasks, the origin of these abilities in text-trained
models, and the root of their numeracy and quan-
titative understanding, remain obscure. In this
paper, we aim to illuminate this aspect by ana-
lyzing the learned embeddings these models use
to represent lexical tokens internally. We study
how the models have learned to embed numerals
and their written representations, unearthing evi-
dence that various embedding vectors capture the
essence of numerical concepts. Instead of study-
ing whether the embeddings of different numbers
are distributed close together (like one might clus-
ter the embeddings of synonyms; cf. Mikolov et al.
(2013)), we thus consider how their representa-

tions differ, and how the axes of greatest variation
among these concepts relate to the intrinsic order-
ing and numeric value of the different tokens.

Our paper makes two contributions:
1. We propose a novel way to study internal nu-

merical cognition in language models.
2. We use our proposed method to investigate

how ALBERT encodes numerical and ordinal
information, and how this varies across dif-
ferent versions of ALBERT of various sizes,
independently trained.

Using our proposed method, we find:
• Trained ALBERT models consistently use pri-

mary principal component axes to denote or-
dering and spacing of numbers, ordinals, and
magnitude orders.

• The representations are closer together for
higher values, suggesting a logarithmic repre-
sentation of numbers.

• Numerals and their textual counterparts are
represented in separate clusters, but increase
along the same direction in 2D PCA space.

2. Background

In this section, we give a background on numeracy
in language models and highlight previous works
investigating their internal token representations.

Numeracy is critical for complex reasoning in
NLP. Investigations into models’ numerical reason-
ing abilities (Wallace et al., 2019; Jin et al., 2021;
Thawani et al., 2021; Duan et al., 2021; Sakamoto
and Aizawa, 2021) have shown promising enhance-
ments in model numeracy. Further studies (Kim
et al., 2021; Lin et al., 2020; Shah et al., 2023) have
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Figure 1: Visualization of the two first principal components of word embeddings for numbers zero through
twenty and their textual counterparts in two ALBERT models.

explored models’ abilities to extrapolate and their
numerical commonsense knowledge. In conjunc-
tion with these explorations, recent methodologies
(Sundararaman et al., 2022; Saeed and Papotti,
2022; Jiang et al., 2020; Liang et al., 2022) intro-
duce a variety of approaches to improve numerical
representation and processing, showing ongoing
efforts to refine numeracy in language models.

Internally, Transformers use self-attention to cap-
ture dependencies between all pairs of input vec-
tors. The models use a variety of mechanisms
to represent positional information for sequential
input data. One common approach, used already
in Vaswani et al. (2017), is to encode each to-
ken wi as a vector that is the sum of a content-
embedding vector (that depends only on the token
wi) and a position-encoding vector (that depends
only on i, the position in the input sequence). The
position-dependence mechanisms either explicitly
represent the inherent ordering of input symbols,
or, when they do not, have been shown to learn
positional representations that capture both this
ordering and the translation equivariance of text
sequences (Wennberg and Henter, 2021).

Other research (e.g., Mikolov et al., 2013; Vylo-
mova et al., 2016; Durrani et al., 2022) has sought
to shed light on information processing in neural
language models by analyzing their learned em-
beddings of different words, concepts, and lexical
tokens. A consistent finding is that synonyms clus-
ter together in latent space, meaning that linguis-
tic similarity is reflected internally in the learned
model. In this work, we apply a similar analysis, but
to concepts that are numerical rather than linguistic.
The key difference between our present study and
prior work on language-model numeracy is that
we look directly at the internal embeddings that
Transformer-based language models have learned
for numerical concepts, and investigate to what
extent differences between these embeddings are
reflective of differences in numerical value between
the mathematical concepts they represent.

3. Experiments

We now describe the method and results of our
study of the word embeddings inside eight different
Transformer-based language models, namely the
ALBERT family (Lan et al., 2020). We choose to
study ALBERT because it is available in four differ-
ent model sizes (starting at “base” and going up
to “xxlarge”), each with checkpoints at two different
points during training (“v1” vs. ”v2”, with v2 having
been trained for longer), allowing for a compari-
son of embeddings in different models and their
evolution. In our analysis, we specifically examine
numerical ranges from zero to twenty and one to
one hundred, not only to cover a broad spectrum
of basic and multi-digit numerals but also because
these numbers are consistently tokenized as single
tokens by the ALBERT models (Lan et al., 2020).
This choice aligns with our objective to study un-
ambiguous, uncontextualized numerical represen-
tations within the model. Many submissions to the
GLUE (Wang et al., 2019) and SuperGLUE (Wang
et al., 2020) leaderboards are descendants of the
ALBERT architecture.

3.1. Analysis Methodology

All the analyses in this paper follow the same un-
derlying recipe:

First, we extract uncontextualized embeddings
for selected tokens (single-token words only).
These word embeddings are prior to position em-
bedding addition or self-attention layer processing.

We then conduct PCA on these embeddings to
identify principal variation axes. This is a linear
dimensionality reduction technique, meaning that
linear structures like a number line are preserved.

Lastly, we plot embeddings along principal com-
ponent axes to assess if they capture mathematical
concept ordering and if distances reflect mathemat-
ical relationships, like proximity of similar numbers.
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Figure 2: The first and second PCA components for all numbers 1 to 100 in two different ALBERT models.

3.2. Numerical vs. Lexical Embedding

We first compare the learned embeddings of the
numbers zero through twenty, juxtaposed with their
word representations (e.g., “7” versus “seven”),
across different ALBERT models. The results of
applying our PCA-based analysis to the resulting
42 different representations is visualized in Figure
1 for the smallest and largest ALBERT models (the
other models yield very similar-looking plots).

A number of observations are immediately ap-
parent in the figure:

1. Numbers and words representing occupy two
distinct, elongated clusters.

2. Within each cluster, there is a direction along
which numerical values generally increase. In
other words, the values are mostly in order,
and we (approximately) recover a number line
in the PCA space for each cluster (numbers
vs. number words).

3. The direction along which the values increase
is the same for both numbers and number
words. It would thus easily be possible, par-
ticularly for the bigger model, to project the
embeddings onto a single axis in PCA space
that approximates the number line.

4. When values exceed ten, numbers begin to
bunch up more.

The fact that the two different kinds of embeddings
can be projected onto something like the number
line strongly suggests a learned ability to link nu-
merical symbols to their word forms, and to their
approximate value and ordering.

We can also make some minor observations
about individual numbers, such as the positions of
the numbers and words for zero being idiosyncratic,
and (more curiously) that numbers and words for
twenty also consistently are out of place.

3.3. Numbers 1 Through 100

Next, we performed the same analysis on integers
0 to 100 (excluding word forms) and charted their

2D PCA distribution for the same two ALBERT
models. The findings, displayed in Figure 2, mirror
those from other models. We observe that:

1. As numbers increase, they approximately
trace out a horseshoe shape in 2D space.

2. Larger numbers gradually compress closer
together, especially for the larger model.

3. Rounded numbers (i.e., those ending in zero)
lie closer to middle of the space. This is more
visible for the smaller model, but true for both.
25, 75, and numbers with many powers of two
are also closer to the middle. 100, with two
zeroes, sticks out particularly much.

The most important conclusion is that the ability to
use embeddings to order numbers by size persists
into larger numbers, though the spacing gets more
compressed as the numerical values increase.

3.4. Representing Orders of Magnitude

Having looked at numbers up to 100, we also stud-
ied the embeddings of words for different orders of
magnitude. Specifically, we performed PCA on the
embedding representations of the words “hundred,”
“thousand,” “million,” “billion,” and “trillion.” Figure 3
shows these words’ positions on the first principal
axis across eight ALBERT models. We see that:

1. The words always respect the expected order-
ing based on their numerical value.

2. The separation between “hundred” and “thou-
sand” is consistently the shortest, typically by
some margin. This evokes comparisons to the
logarithmic axis at the bottom of the figure.

There is a close call between “hundred” and “thou-
sand” for the xlarge model, but the separation in-
creases with longer training (model v1 vs. v2).

3.5. Words for Ordinals

As our last experiment, we visualize the repre-
sentation of words for ordinals rather than nu-
merals. Specifically, we apply the same PCA-
based method to the embeddings of the terms
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Figure 3: Orders-of-magnitude word embeddings
visualized along the first PCA axis across eight
ALBERT configurations. Axes have been affinely
transformed so that the first and last embeddings
line up vertically. The last row shows the concepts
arranged on a logarithmic axis for comparison.
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Figure 4: Visualization of ordinal term embeddings
along the first PCA axis across eight ALBERT con-
figurations. The axes have been affinely trans-
formed so that the first and last embeddings line
up vertically. The last row shows the concepts ar-
ranged on a logarithmic axis for comparison.

“first” through “tenth” and visualize the first princi-
pal axis for all eight ALBERT models, like in the
previous section. The results are shown in Figure
4, from which we make the following observations:

1. Ordinals consistently appear in the correct or-
der along the principal axis of variation up until
and including “seventh”.

2. The distance between ordinals gradually de-
creases as the numbers increase, with the last
three ordinals generally being close together
and often out of order.

Embeddings do not become obviously better with
longer training, especially as they already mostly
appear in the correct order for the v1 models.

4. Discussion

Reviewing all four analyses, it’s evident that AL-
BERT models’ internal representation of various
numbers and numerical concepts in the embedding

layer directly reflects their numerical value. The
representations are closer to a logarithmic than
a linear scale. These trends are very consistent
across models of different sizes and trained for
different amounts of time.

While the fact that Transformer-based language
models can support simple mathematical reason-
ing has indicated some level of numeracy within
the model, we can now open the black box and see
that numerical knowledge evident within the basic
vector representations inside the model. It is not
at all obvious that reasonable representations of
numerical concepts would arise in these models,
given that they are pre-trained exclusively on text to
optimize standard language-modeling objectives,
with no direct mathematical training.

The observation that larger numbers cluster
closer, hinting at logarithmic scaling, and the
unique behavior of round numbers in Figure 2, may
stem from their occurrence frequency in data, align-
ing with Benford’s law (Benford, 1938). This law
suggests that smaller leading digits are more com-
mon in real-world numerical data, yielding a near
uniform distribution of digits on a logarithmic scale.

A notable limitation of our study is its focus on
single-token numbers, which excludes decimals
and larger numerical values from our analysis.

5. Conclusion

We have introduced a novel approach to ana-
lyzing the quality of numerical representations
in language models. This offers insights into
model numeracy, which matters for developing
improved numerical-understanding capabilities for
Transformer-based language models.

We use our method to investigate how ALBERT,
an important Transformer-based language model
architecture, represents different numerical and
ordinal inputs. Our results demonstrate a clear
concept of numerical ordering within the vector
representations inside the model. Representations
of larger numbers fall closer together, suggestive
of models using logarithmic axis representations
internally. The findings are very robust, in that they
appear essentially unchanged across eight differ-
ent models that differ in size and training duration.

Going beyond numerical order, future work
should seek to quantify to what extent learned in-
ternal structures reflect interval and ratio scales, as
well as to what extent factors like model architec-
ture and term frequency in the corpus contribute
to (or otherwise influence) these structures. An-
other goal is to extend the analysis to multi-token
numbers and mathematical operators, and con-
nect with emerging understanding of how models
then perform stepwise mathematical processing
in latent space (Lee et al., 2019; Valentino et al.,
2023).
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