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Message from the Workshop Organizers

The articulation of mathematical arguments is a fundamental part of scientific reasoning and
communication. Across many disciplines, expressing relations and interdependencies between
quantities is at the centre of scientific argumentation. Nevertheless, despite its importance,
the application of contemporary NLP models for inference over mathematical text remains
under-explored or subject to important limitations. MathNLP represents a forum for discussing
new ideas to advance research on Mathematical Natural Language Processing, welcoming
novel contributions on model architectures, evaluation methods and downstream applications.
MathNLP welcomed contributions of previously unpublished papers which could be either long
(8 pages) or short (4 pages). MathNLP welcomed both archival and non-archival submissions.
Only archival submissions have been included in the proceedings. All submissions have
been peer-reviewed by 2 independent reviewers. A total of 5 papers have been accepted for
presentation at the workshop. MathNLP is particularly interested in (but is not limited to) works
related to the following topics:

• Neural/Neuro-symbolic architectures to support mathematical natural language inference;

• Large Language Models for Mathematics;

• Equational embeddings;

• Autoformalisation and translation from natural language to formal languages (and vice-
versa);

• Linguistic analysis of mathematical discourse and argumentation relations in the context
of mathematical text;

• Probing mathematical understanding of state-of-the-art models;

• Adaptation of NLP tasks for mathematical discourse;

• NLP applied to mathematics education;

• Premise selection over mathematical text;

• Understanding and typing of variables in mathematical text;

• Retrieval of equations/formulas/expressions based on textual queries;

• Retrieval of textual context based on equational queries.

MathNLP is partially funded by the Swiss National Science Foundation (SNSF) project NeuMath
(200021_204617)
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Abstract
The high cost of human annotation labor and the advent of low-cost Large Language Models (LLMs) offer opportu-
nities to accelerate science. This study addresses the critical challenge of disambiguating mathematical identifiers
in Mathematical Language Processing (MLP), a significant step toward the effective interpretation and utilization
of mathematical documents. Unlike traditional annotation methods, which are labor-intensive and prone to incon-
sistencies, our approach leverages the capabilities of LLMs to automate the disambiguation process. We employ
state-of-the-art LLMs, including GPT-3.5 and GPT-4, and open-source alternatives to generate a dictionary for an-
notating mathematical identifiers, linking each identifier to its conceivable descriptions, and then assigning these
definitions to the respective identifier instances based on context. We offer a novel solution to the ambiguity prob-
lem inherent in mathematical expressions by exploiting this capability of LLMs which were unknown until now. Our
extensive evaluation metrics include the CoNLL score for co-reference cluster quality and semantic correctness of
the annotations. We demonstrate the effectiveness of our approach in resolving identifier ambiguities, thereby mak-
ing a substantial contribution to the advancement of MLP. This work paves the way for future research in automating
the interpretation of complex scientific texts, highlighting the potential of LLMs in transforming the landscape of
mathematical documentation analysis, expanding model options, improving annotation coverage, and reducing an-
notation expenses.

1. Introduction
Scientific papers in Science, Technology, Engi-
neering, and Mathematics (STEM) domains often
comprise complex mathematical formulae. The
ambiguity arising from the identical use of iden-
tifiers with varied meanings based on context
can perplex readers. The manual annotation of
these identifiers is a tedious process, necessitat-
ing automation to facilitate co-reference resolution
and formula grounding (Asakura et al., 2020), as
shown in Figure 1.
In this context, we utilize the Math Identifier-
Oriented Grounding Annotation Tool, Mio-
Gatto (Asakura et al., 2021), and enhance it
with automation capabilities. The proposed solu-
tion involves three key stages: pre-processing,
dictionary generation, and association of each
occurrence. (1) Pre-processing converts the
LATEX source into a machine-readable HTML/XML
format, using LATEXML (Ginev et al., 2011). (2)
Dictionary generation leverages large language
models (LLMs) to construct a dictionary with
mathematical identifiers as keys and their po-
tential descriptions as corresponding values. (3)
In the association phase, each occurrence of a
mathematical identifier is linked with its fitting
definition from the generated dictionary. For this,
we take inspiration from the task of MathAlign
(Alexeeva et al., 2020).
We identify critical challenges in the current man-
ual approach and propose automated alternatives
powered by LLMs. Six diverse research questions

seek to gauge the LLMs’ capability to automate
mathematical identifier annotations concerning ef-
ficacy, context understanding, coverage, ground
truth accuracy, efficiency, and potential pitfalls.
The foundational contributions of this work encap-
sulate extensive annotations, performance evalu-
ation, integration with MioGatto, ground truth an-
notation, and CoNLL score (Pradhan et al., 2012)
estimation.

Figure 1: The challenge of disambiguating identi-
fiers within mathematical formulae. A single vari-
able can have multiple roles, each based on dis-
tinct definitions, creating ambiguity.
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Figure 2: Screenshot of MioGatto showing its
functioning where two possible annotations exist
for an identifier. Hovering over the identifier shows
the assigned annotation

Motivation and Problem Manual annotation is
the traditional process of establishing identifier
definitions, but it poses significant constraints
regarding the time consumed, lack of univer-
sal accessibility, and increased financial burdens.
Translating these constraints into a need for effi-
ciency and universal availability has sparked in-
terest in automation as the promising alternative.
Nonetheless, the journey toward full automation
is fraught with challenges from traditional Natural
Language Processing (NLP) techniques. By in-
vesting in LLMs, we aim to harness their under-
standing and generation capabilities to streamline
the annotation process effectively.

Research Questions Our research aims to as-
certain the efficiency and feasibility of LLMs for
automated mathematical identifier annotations in
scientific papers. To guide the investigation, we
pose six main research questions. These ques-
tions cover the effectiveness of LLMs, their abil-
ity to contextually understand mathematical iden-
tifiers, the percentage of a paper they can effec-
tively annotate, their accuracy concerning ground
truth, the impact on annotation time and cost, and
the possible limitations they might present in au-
tomating this task. Answers to these research
questions should offer a thorough understanding
of the potential and drawbacks of LLMs in au-
tomating mathematical identifier annotations.

Contributions Our research innovatively ap-
plies LLMs like GPT-4 to automate the disam-
biguation and annotation of mathematical identi-
fiers, significantly enhancing the comprehension
of scientific texts. We have established a novel

application of LLMs, particularly GPT-4 and its
open-source counterparts, showcasing their capa-
bility to not only generate accurate and context-
specific definitions for mathematical identifiers but
also to do so with a high degree of semantic ac-
curacy. We achieved remarkable semantic accu-
racy and CoNLL scores, demonstrating LLMs’ ef-
fectiveness in complex annotation tasks beyond
their initial training purposes. This work substan-
tially reduces manual annotation efforts and costs,
presenting a novel, efficient pathway for interpret-
ing mathematical documentation. Our findings not
only validate the approach with a diverse dataset
of 40 scientific papers but also set a new bench-
mark for future explorations in Mathematical Lan-
guage Processing and the automation of scientific
text analysis.

2. Related Work
2.1. Formula Grounding and Tools
Our research, aimed at disambiguating mathe-
matical identifiers, is positioned as a task within
the domain of mathematical language process-
ing (Meadows and Freitas, 2023). In particular, we
focus on the automation of formula grounding, pro-
posed by Asakura et al. (2020), using LLMs. This
approach to formula grounding is distinguished
by its consideration of the fact that the meanings
of mathematical tokens are not constant within
a document. Another known task related to for-
mula grounding is the task called description align-
ment. There are several subtle variations of de-
scription alignment (Yoko et al., 2012; Stathopou-
los et al., 2018; Alexeeva et al., 2020), but fun-
damentally, it is a simple task that involves as-
signing text descriptions to mathematical tokens.
Solutions for description alignment have included
rule-based (Alexeeva et al., 2020) and machine
learning-based methods utilizing CRF, SVM (Yoko
et al., 2012), Gauthian Ranking (Schubotz et al.,
2016, 2017), Decision Trees, and BERT (Shan
and Youssef, 2021; Lee and Na, 2022). However,
the task of description alignment and its solutions
typically assumes that the meaning of mathemat-
ical tokens is singular within a document, thereby
failing to detect co-reference relationships among
mathematical tokens. This study proposes a so-
lution to the formula grounding task using LLM,
marking the first instance to elucidate how accu-
rately LLMs can recognize co-reference relation-
ships among mathematical identifiers.
The proponents of the formula grounding task
have introduced MioGatto (Asakura et al., 2021)
as a dedicated annotation tool. Mathemati-
cal grounding involves co-reference analysis tar-
geting mathematical expressions, but it is well-
known that annotation targeting mathematical ex-
pressions and those involving co-reference rela-
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tionships are both costly. Consequently, tools
specialized in creating datasets for co-reference
analysis (Reiter, 2018; Oberle, 2018; Bornstein
et al., 2020) and those for mathematical expres-
sions (Ginev et al., 2015; Scharpf et al., 2019)
have been proposed. MioGatto is designed to ef-
ficiently perform these high-cost annotations, em-
bodying the characteristics of both a tool for co-
reference analysis annotations and one for math-
ematical expressions. This study proposes a
method to automate this costly annotation process
by generating outputs targeted at MioGatto’s in-
puts using LLM.

2.2. The Role of LLMs and Pre-trained
Frameworks

The introduction of pre-trained models like Math-
BERT (Peng et al., 2021) and the evaluation of
GPT-3.5 (He et al., 2023) are notable develop-
ments. While MathBERT is fine-tuned for math-
ematical formula decoding, it does not cater to an-
notating mathematical identifiers, our target area.
Meadows and Freitas (2023) recommended trans-
former models like GPT for formula retrieval. The
emphasis is on quantitative reasoning using infor-
mal mathematical text, advancing the automation
cause. However, our study fundamentally differs
from theirs, as we primarily focus on annotation
automation, not formula retrieval.

2.3. LLM Applications in the MLP Field
Recent studies, including the work by de Paiva
et al. (2023), have explored the potential of LLMs
in extracting mathematical concepts from textual
data. Their research demonstrates the feasibil-
ity of using LLMs to automatically identify and
annotate mathematical terms within a corpus of
mathematical texts. By leveraging the computa-
tional power and linguistic capabilities of LLMs,
researchers can improve the accuracy and effi-
ciency of mathematical text processing, paving
the way for more sophisticated applications in the
field. Lai et al. (2022) and Lee and Na (2022) have
attempted similarly to extract mathematical iden-
tifiers and link to their description using Named
Entity Recognition (NER) and Relation Extraction
(RE).

3. Methodology
This research consists of three stages for anchor-
ing identifiers in mathematical formulae from re-
search papers to their given descriptions: 1) pre-
processing of identifiers, 2) dictionary construc-
tion, and 3) association of individual IDs to their
description instances. LLMs and LATEXML utilities
are deployed for this. The result is accelerated an-
notation of mathematical identifiers.

1) Pre-processing of Identifiers: Figure 3 shows
the results of LATEX to HTML conversion using
LATEXML (Ginev et al., 2011). The format is com-
patible with MioGatto and allows formula ground-
ing.

<p> <span> </span><span class="gd_word"
↪→ id="S2.SS1.p1.2.2.w9">

The</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.2.w10">

language</span><span> </span><math id="S2
↪→ .SS1.p1.2.m2.1" class="ltx_Math"
↪→ alttext="\mathcal{L}" display="
↪→ inline"><semantics id="S2.SS1.p1
↪→ .2.m2.1a"><mi class="
↪→ ltx_font_mathcaligraphic" id="S2.
↪→ SS1.p1.2.m2.1.1" xref="S2.SS1.p1
↪→ .2.m2.1.1.cmml">

L</mi></semantics></math><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w1">

is</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w2">

defined</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w3">

by</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w4">

the</span><span> </span><span class="
↪→ gd_word" id="S2.SS1.p1.2.3.w5">

following</span><span></span><span class=
↪→ "gd_word" id="S2.SS1.p1.2.3.w6">

grammar:</span></p>

Figure 3: HTML format example from “A Logic
of Expertise” (Singleton, 2021) obtained by trans-
forming the LATEX source using LATEXML. This
machine-readable format serves as the basis for
dictionary generation and for showing annotations
in MioGatto.

2) Dictionary Construction: In the second stage,
OpenAI’s GPT, and other open-source LLMs are
utilized to automatically generate a dictionary con-
taining potential descriptions for each identifier.
Since some lengthy papers exceed the context
window of LLMs, the papers are partitioned into
smaller and overlapping chunks. In this second
step, the mcdict.json file is produced (Figure 4a)
after passing each paper chunk through the LLM.
3)Association of IDs to Description Instances: The
last stage is to deploy LLMs to annotate every
instance of identifiers with suitable descriptions
and store them in the anno.json file (Figure 4b).
Quantized1 open-source LLMs like Superhot mod-
els2 (Chen et al., 2023) are used during this stage

1https://medium.com/@developer.yasir.pk/
quantized-large-language-model-e80bdcb81a52

2https://huggingface.co/TheBloke/
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{
"_author": String,
"_mcdict_version": String,
"concepts": {

ID: {
"_surface": {

"text": String,
"unicode_name": String

},
"identifiers": {

"default": [ {
"affixes": List,
"arity": Integer,
"description": String

},
... ]

}
},
...

}
}

(a) The mcdict.json dictionary file (shortened) contains
a list of all extracted mathematical identifiers (keys) and
their possible descriptions (values).
{
"_anno_version": String,
"_annotator": String,
"mi_anno": {
ID: {
"concept_id": Integer, "sog": List

},
...

}
}

(b) The anno.json annotation file (shortened) holds the
index of all the chosen descriptions for each identifier.

Figure 4: JSON file-structure in MioGatto.

due to their more extensive context window capa-
bilities and well-preserved performance.
Linking between the three primary files (source,
mcdict, and anno) is made possible by the IDs ex-
tracted during the pre-processing phase.

3.1. Pre-processing
The choice to parse the LATEX code directly via
LLMs is primarily due to the semantic richness lay-
ered over mathematical identifiers in LATEX and its
efficient token usage relative to its counterparts
(see Table 1). The LATEX code is also converted to
HTML, creating a web rendering of the given paper
suitable for humans but also machine-readable
and useful as input to MioGatto.

Vicuna-33B-1-3-SuperHOT-8K-GPTQ

Despite potential setbacks due to complexities
in mapping dictionary keys to their rendered in-
stances, using LATEXML in the pre-processing step
emerged as an optimal solution after successfully
isolating the mathematical symbols and finding a
way to render them in a machine-readable form.

3.2. Dictionary Generation
LLMs are constructed as chat models able to out-
put text in many languages, including some pro-
gramming languages. They are also highly ef-
fective in generating a well-structured dictionary
of mathematical identifiers and their possible de-
scriptions using strategical prompting (see Fig-
ure 5). LLMs have certain limitations, notably
the overflow issue—given that the length of most
papers exceeds the model’s context window. A
master dictionary is, therefore, finally produced
only after an iterative process of sub-parts gener-
ation and incorporation from all overlapping paper
chunks.

{'role': 'system',
'content': 'You are a helpful research
assistant tasked with converting long
paragraphs into a Python dictionary.
The goal is to identify and classify
each individual mathematical symbol,
variable, and identifier in the text
marked between "<| |>". The dictionary
should store the identifiers as keys
and their corresponding definitions as
values in an array format.'}

Figure 5: System prompt for dictionary generation
instructing the LLM to convert long paragraphs into
a Python dictionary, emphasizing the need to iden-
tify and classify each mathematical identifier.

3.3. Association of ID to Description
Occurrence

The final stage of associating extracted identifiers
with their descriptions also employs LLMs, like in
the dictionary generation stage. The goal is to en-
sure consistency and accuracy using prompting
again (see Figure 6). Annotated identifiers with the
chosen description act as a contextual reference
for subsequent identifiers within the same context
(see Figure 7).
A potential problem in providing this context could
be the cascading effect of errors if a misannotation
occurs. Such scenarios, although limited, are ac-
counted for by deploying open-source LLMs that
promise equal performance and extended context
windows compared to the proprietary ones.
We conducted experiments with this approach on
40 academic texts using OpenAI’s LLMs and other

4



Encoding Formula Tokens
LATEX x = −b±

√
b2−4ac
2a 24

ASCII Math x = (-b +/- sqrt{b^2 - 4ac})/(2a) 23
XML Too long, see Appendix A.1 387

Encoding Formula Tokens
LATEX

∮
C
~B ◦ d~l = µ0

(
Ienc + ε0

d
dt
∫
S
~E ◦ n̂ da

)
84

ASCII Math oint_C (B . dl)=mu_0*(I_{enc} +
eps_0 * d/dt * int_S (E . n_{hat}) da)

42

XML Too long, see Appendix A.2 929

Table 1: Token usages of three different types of encoding (LATEX, ASCII Math, and XML). Quadratic
Equation and Ampere’s Circuit Law are used as examples.

{
'role': 'system',
'content': 'You are a professional
annotator API. Your job is to select
a fitting annotation from a dictionary
for a mathematical identifier.'

}

Figure 6: System prompt for associating the iden-
tifiers to their descriptions, instructing the LLM to
pick a suitable definition.

selected open-source models. One noteworthy
consideration was the stochastic nature of LLMs,
which necessitated the occasional repetition of ex-
periments to obtain reliable results. The open-
source models were computationally demanding
despite being quantized, requiring up to 80GB of
VRAM. We opted for cloud-based GPUs due to
their affordability and user-friendly setup. The ex-
periments with the open-source LLMs were con-
ducted on pods (runpods.io) with configurations as
follows:

• Vicuna-33b3: 1x NVidia L40 (48GB VRAM),
250GB RAM, 32vCPU at $0.69/h

• StableBeluga24: 1x NVidia A100 SXM (80GB
VRAM), 251GB RAM, 16vCPU at $1.84/h

Our evaluation of the models’ performance was
conducted using two primary metrics: the CoNLL
Score for assessing the quality of co-reference
resolution and a measure of semantic accuracy to
evaluate the meaningfulness of the assigned def-
initions.

3https://huggingface.co/TheBloke/
Vicuna-33B-1-3-SuperHOT-8K-GPTQ

4https://huggingface.co/TheBloke/
StableBeluga2-70B-GPTQ

3.4. Reproducibility
The code can be found in Chapter 10. Use the
docker command docker run -p 4100:4100 -d
ghcr.io/mathnlp-2024/miogatto:latest pyth
on -m server PAPER_ID to launchMioGatto with
the annotations produced by a given LLM. The pa-
per IDs can be found in the ./data folder of the
repository.

4. Results
In this section, we present the results of our study
on automating mathematical identifier annotations
in scientific papers using LLMs. We evaluate the
effectiveness of LLMs in understanding and gen-
erating descriptions for mathematical identifiers,
their ability to annotate a significant portion of a
paper, the accuracy of their annotations compared
to ground truth, and the time and cost efficiency of
the annotation process.

4.1. CoNLL Score of LLMs
We first evaluated the effectiveness of LLMs in
generating descriptions for mathematical identi-
fiers. The CoNLL metric was used to measure
the quality of the co-reference clusters. The re-
sults showed that GPT-4 outperformed other mod-
els with a CoNLL score of 80.15, while other mod-
els, such as GPT-3.5-turbo and GPT-3.5-turbo-
16k, had lower scores (78.51 and 79.28, respec-
tively). Due to open-source LLMs’ relatively slow
speed (i.e., high run-time costs), we selected a
subset of 7 of the original 40 papers. We carefully
chose the papers to cover a range of attributes, in-
cluding high/low CoNLL scores, high/low seman-
tic accuracy, and short/long papers. In the smaller
dataset, GPT-4 had a CoNLL score of 87.92, while
StableBeluga2, an open-source LLM, had a score
of 84.55, and vicuna-33b had a score of 72.44.

4.2. Coverage of Annotation
We also examined the coverage of annotation,
which refers to the proportion of the paper that
LLMs could successfully annotate. GPT-4 demon-
strated the highest coverage, with 92.87% of the

5



{
"role": "user",
"content": "Given the following possible annotations: \n ```json\n"
+ definitions + "\n```

Select the index for the most fitting description for the
identifier <| " + match_variable + " |> from the following text."
+ possible_affixes +
"\n Only return the value of the index and nothing else.
Do not add any explanation otherwise the API breaks.
The identifier has been marked with <||>.
The text is as follows: ```txt\n" + context + "\n```"

}

(a) User Prompt
definitions = [{'index': 0,

'identifier': 'S',
'description': 'Soundness operator'},
{'index': 1,
'identifier': 'S^',
'description': 'Dual operator of S'}]

match_variable = "S"
possible_affixes = "^"
context = "→, ↔ and truth values (⊤, ⊥) are introduced as abbreviations. We denote

↪→ by E (Dual operator of E [^])^, <|S|>^, and A^ the dual operators corresponding
↪→ to E,"

(b) User Prompt’s Variables

Figure 7: Main prompt for associating the identifiers to their descriptions instructing the LLM to select the
suitable definition index within the given context.

paper annotated, while GPT-3.5 had the least cov-
erage at 90.57%. On the smaller dataset, GPT-4
had a coverage of 96.35%, StableBeluga2 a cov-
erage of 93.17%, GPT-3.5 88.93%, and vicuna-
33b a coverage of 66.18%.

4.3. Semantic Accuracy
Semantic accuracy measures the correctness of
the annotations generated by LLMs. GPT-4 again
outperformed other models with a weighted av-
erage semantic accuracy score of 95.70%, while
other models showed lower scores, such as
GPT-3.5-turbo with 84.69% accuracy. Stable-
Beluga2 outperformed GPT-3.5 with an accuracy
of 90.91%, and vicuna-33b had an accuracy of
61.58%.

4.4. Variance of Results
To account for the stochastic nature of LLMs, we
conducted multiple runs of the annotation experi-
ment on a reference paper. The results showed
that GPT-3.5 had the lowest variance in CoNLL
scores with a standard deviation of 1.17, indicat-
ing its stability and consistency compared to other
models. GPT-3.5-turbo-16k had the highest vari-
ance with a standard deviation of 2.16,

4.5. Time and Cost Efficiency
The time and cost efficiency of the annotation pro-
cess were analyzed. GPT-3.5-turbo emerged as
the most time-efficient model, with an average an-
notation time of 2 minutes and 45 seconds per pa-
per. However, GPT-4 had the highest cost due to
its elevated token costs. The relative cost per an-
notation and time per annotation for each model
were also calculated to provide a standardized
comparison as shown in Figure 8 and 9.

5. Discussion
The results of our study demonstrate the signifi-
cant potential of LLMs in automating mathemati-
cal identifier annotations in scientific papers. GPT-
4, with its high CoNLL scores, comprehensive
coverage of annotation, and excellent semantic
accuracy, emerged as the most effective model.
GPT-3.5-turbo showed the best time and cost effi-
ciency among the models analyzed. Open-source
LLMs, such as StableBeluga2, also demonstrated
promising performance, sometimes even beat-
ing that of the GPT-3.5 model despite its smaller
model sizes.
Open-source LLMs also have the added advan-
tage of privacy and not having to pay for token us-
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Figure 8: Scatter plots of the Total Time Taken
for all five LLMs. GPT-4, despite its high costs,
emerged as the most impressive model due to its
superior performance, while GPT-3.5 turned out to
be the most cost-effective and fastest model to op-
erate.

Figure 9: Total Cost (USD) vs. Semantic Accuracy
for all five LLMs. GPT-4, despite its high costs,
emerged as the most impressive model due to its
superior performance, while GPT-3.5 turned out to
be the most cost-effective and fastest model to op-
erate.

age to OpenAI. The only cost is for their hardware
and energy usage.
OpenAI’s GPT models are general-purpose chat
models. Their capabilities of solving nontrivial
chat problems, such as formula grounding, are im-
pressive. However, they are not very efficient at
this particular purpose. Instruct models are better
suited for such intricate purposes. The instruct na-

ture of StableBeluga2, as opposed to the general-
purpose chat model design of GPT, likely con-
tributed to its performance in formula grounding.
While our results are promising, there are some
limitations to be considered. The quality of the
annotations generated by LLMs depends on the
training data they were exposed to, and they may
exhibit limitations when applied to domains or top-
ics not well-represented in their training data. Ad-
ditionally, the time and cost efficiency of the an-
notation process can vary depending on individual
circumstances, such as hardware capabilities and
token pricing.
In conclusion, LLMs have the potential to sig-
nificantly improve the efficiency and accuracy of
mathematical identifier annotations in scientific pa-
pers. Future research could focus on fine-tuning
and optimizing LLMs for specific domains or de-
veloping novel techniques to further improve the
automation process.

6. Conclusion
The focus of this research was to streamline the
task of grounding mathematical formulae in scien-
tific papers by automating the annotation of math-
ematical identifiers. This was achieved by lever-
aging LLMs such as GPT-3.5 and GPT-4 from
OpenAI, along with open-source alternatives. Us-
ing the MioGatto Annotation Tool, we presented a
technique to auto-generate a dictionary of math-
ematical identifiers and their associated descrip-
tions and contextually map each identifier instance
to its appropriate definition.
The evaluation metrics used in this study included
the CoNLL Score for co-reference clusters’ qual-
ity and semantic accuracy to measure the cor-
rectness of the annotations. Furthermore, the re-
search examined the models for annotation cov-
erage, annotation time, costs, and score varia-
tions due to LLMs’ stochastic nature. Among
the models investigated, GPT-4 excelled in its
co-reference resolution ability and semantic ac-
curacy, while GPT-3.5 was cost-effective and
demonstrated the quickest performance. Open-
source LLMs showed promising potential, with
StableBeluga2 nearly matching the GPT models,
and despite Vicuna-33 B’s lower performance, it
demonstrated that open-source LLMs could make
meaningful contributions to this field.
The outcome of our study points towards the po-
tential benefits of using proprietary and open-
source LLMs for automating the annotation of
mathematical identifiers, thus enhancing the ef-
ficiency of co-reference resolution and formula
grounding. At the same time, the results highlight
some challenges in this field, including the unpre-
dictable nature of LLMs, the contextual complexity
of mathematical identifiers, and the absence of a
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universally accepted measure of semantic accu-
racy.
While the contributions of this research critically
impact the mathematical language processing do-
main, future research based on the foundation of
our work can further refine the methods, explore
the use of different LLMs, and develop more so-
phisticated measures for semantic accuracy.

7. Future Work
Even though this study achieved high accuracy
and coverage, there is room for further improve-
ment. More sophisticated measures of seman-
tic accuracy could be developed, and better an-
notation accuracy and coverage should both be
achievable well below humans’ price/performance
ratio. Better methods to enhance the correctness
of annotations should also be looked into. Intro-
ducing feedback mechanisms into the annotation
process would allow continuous improvements in
the annotation quality.
Our future work will explore creating a cost-
effective solution for formula grounding by com-
bining dictionary generation via open-source LLMs
and better auto-association through machine
learning models.

8. Optional Supplementary
Materials: Appendices, Software

and Data
We provide a link to an anonymous GitHub Repos-
itory but do not expect the reviewers to check it. It
is, however, possible, and other researchers might
want to do so (ArXiv, etc). See Section 10.
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A. XML Encoding Example
This section shows the complicated formatting of
XML which renders it as an unsuitable type for in-
put to LLMs.

A.1. Quadratic Equation

The XML encoding of x = −b±
√
b2−4ac
2a is as fol-

lows:

<math display="block"
style="display:block math;">

<mrow>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo>-</mo>
<mi>b</mi>
<mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>

</msup>
<mo>-</mo>
<mn>4</mn>
<mi>a</mi>
<mi>c</mi>

</mrow>
</msqrt>

</mrow>
<mrow>
<mn>2</mn>
<mi>a</mi>

</mrow>
</mfrac>

</mrow>
</math>
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A.2. Ampere’s Circuit Law
The XML encoding of

∮
C

~B.d~̀ = µ0(Ienc +

ε0
d
dt

∫
S
~E.n̂ da) is as follows:

<math>
<mrow>

<msub>
<mo movablelimits="false">�</mo>
<mi>C</mi>

</msub>
<mover>
<mi>B</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>�</mo>

</mrow>
<mrow>

<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mover>
<mi>l</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>=</mo>

</mrow>
<mrow>

<msub>
<mi>�</mi>
<mn>0</mn>

</msub>
<mrow>
<mo fence="true" form="prefix">(</mo>
<msub>

<mi>I</mi>
<mtext>enc</mtext>

</msub>
<mo>+</mo>
<msub>
<mi> � </mi>
<mn>0</mn>

</msub>
<mfrac>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mrow>
<mrow>

<mi mathvariant="normal">d</mi>
</mrow>
<mi>t</mi>

</mrow>
</mfrac>
<msub>

<mo movablelimits="false">�</mo>
<mi>S</mi>

</msub>
<mover>
<mi>E</mi>
<mo stretchy="false"
style="transform:scale(0.75)
translate(10%, 30%);">→</mo>

</mover>
<mo>�</mo>
<mover>
<mi>n</mi>
<mo stretchy="false"
style="math-style:normal;
math-depth:0;">^</mo>

</mover>
<mspace width="0.2778em"></mspace>
<mrow>
<mi mathvariant="normal">d</mi>

</mrow>
<mi>a</mi>
<mo fence="true" form="postfix">)</mo>

</mrow>
</mrow>

</math>
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Abstract
This study introduces an innovative method for analyzing emotions in texts, drawing inspiration from the principles of
fluid dynamics, particularly the Navier-Stokes equations. It applies this framework to analyze Shakespeare’s tragedies
“Hamlet” and “Romeo and Juliet”, treating emotional expressions as entities akin to fluids. By mapping linguistic
characteristics onto fluid dynamics components, this approach provides a dynamic perspective on how emotions are
expressed and evolve in narrative texts. The results, when compared with conventional sentiment analysis methods,
reveal a more detailed and subtle grasp of the emotional arcs within these works. This interdisciplinary strategy not
only enriches emotion analysis in computational linguistics but also paves the way for potential integrations with
machine learning in NLP.
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1. Introduction

Traditional sentiment and emotion analysis often
rely on discrete classification and polarity scoring.
However, these methods may not fully encapsu-
late the dynamic and evolving nature of language.
In particular, recent developments have leveraged
sophisticated machine learning models, including
deep learning and neural networks, to enhance the
accuracy of sentiment and emotion classification.
Despite these advancements, there are notable
limitations in the discrete classification and polar-
ity scoring approach. As highlighted by (Pereira
et al., 2022), such approaches struggle with under-
standing context and cultural nuances. Sentiments
can be highly context-dependent, and what is con-
sidered positive in one culture may be negative
in another. Moreover, language is dynamic and
constantly evolving, with new slang, idioms, and
expressions emerging regularly. Discrete classifica-
tion systems can quickly become outdated, failing
to capture these evolving nuances.

This paper aims to bridge the gap in existing re-
search by utilizing a method inspired by the Navier-
Stokes equations to forge a more complex examina-
tion of emotion dynamics in textual analysis. Under-
lying this proposal is the claim that fluid dynamics
principles - such as velocity, density, and pressure
- can be metaphorically adopted to shed light on
the evolution of emotions in the context of narrative
texts. This approach is designed to uncover those
subtle shifts in emotional tides that might elude tra-
ditional emotion analysis techniques. The rest of
the paper includes a presentation of the theoret-
ical foundations and practical application, with a

focus on the analysis of some of Shakespeare’s
tragedies, such as ’The Tragedy of Hamlet’ and
’The Tragedy of Romeo and Juliet’.

Related Works

The exploration of emotion analysis in NLP through
the application of the principles of fluid dynamics,
in particular the Navier-Stokes equations, is an in-
terdisciplinary research effort. Since, to the best of
our knowledge, no other such attempt exists, this
literature review lays the foundation for understand-
ing both domains, emphasizing the potential of their
integration.

If we look at the field of NLP, emotion and senti-
ment analysis have emerged as a significant area,
focusing broadly on the computational process of
identifying and categorizing emotions in text span-
ning from social media (Drus and Khalid, 2019;
Rodríguez-Ibánez et al., 2023) to classic texts
(Picca and Richard, 2023; Pavlopoulos et al., 2022;
Picca and Pavlopoulos, 2024). Numerous stud-
ies have employed machine learning techniques
for sentiment classification, with early efforts lead-
ing the way in this approach (Pang et al., 2002).
Researchers have also explored the use of recur-
sive deep models, such as those highlighted by
(Socher et al., 2013), to enhance the depth of sen-
timent analysis at the sentence level. More recent
comprehensive reviews suggest a trend towards
multimodal sentiment analysis, which combines
methods from single modes into more elaborate
frameworks. These trends point to an evolving land-
scape in sentiment analysis, now including various
modalities and integrating advanced technologies
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like GPT algorithms (Lu et al., 2023). Moreover,
Emotion Recognition in Conversations (ERC) has
evolved rapidly, integrating advances from various
disciplines. Pereira et al. (Pereira et al., 2022)
surveyed text-based ERC, focusing on challenges
such as conversational context modeling and emo-
tion shifts in multiparty interactions. The paper
shows that, in the field of sentiment analysis, accu-
rately capturing the dynamic nature of sentiments
in narratives remains a challenge. Traditional meth-
ods often treat sentiments within texts as unchang-
ing, overlooking their evolving characteristics (Liu,
2012).

On a different note, the field of fluid dynamics
extensively uses the Navier-Stokes equations to
simulate the behavior of fluids under various forces.
These equations are crucial for understanding fluid
motion and have been applied across diverse dis-
ciplines, including meteorology and biomedical en-
gineering (Acheson, 1990). Their ability to accu-
rately describe complex fluid behaviors, such as
turbulence and flow patterns, is well-recognized
(Tennekes and Lumley, 1972). Recent develop-
ments in fluid dynamics have expanded the scope
of Navier-Stokes theory to higher-rate conditions,
enhancing our comprehension of fluid behaviors
under different flow scenarios (Pahlani et al., 2023).

The idea of adapting these equations to ana-
lyze emotional flow in textual content is a novel
approach. While direct empirical studies in this
specific area are relatively scarce, the conceptual
similarities are notable. For instance, just as exter-
nal factors influence fluid motion in fluid dynamics,
external variables may similarly affect the flow of
emotions in text. This perspective aligns with re-
search exploring how cultural and contextual ele-
ments influence emotion formation and expression.

2. Conceptual Mapping

The initial phase of the experiment involves estab-
lishing a conceptual parallel between the elements
of fluid dynamics and linguistic properties in text.
The key elements and their linguistic analogs are:

1. Velocity (u⃗): This could represent the “speed”
at which emotion is propagating through the
text. For example, a rapid shift from positive to
negative sentiment could be considered a high
“velocity”. It represents how the current state
of emotion (e) influences its rate of change (or
flow). A rapid change in emotion in the text
could lead to a significant value in this term,
analogous to high velocity in fluid dynamics.

2. Time (t): This remains as the position of a sen-
tence or word in the text, serving as a temporal
marker. Time is represented by the position of
words in the text.

3. Density (ρ): This could represent the “density”
of specific emotions in a given section of text. A
paragraph filled with positive words would have
a high “density” of positive emotion. In our
context, the “density” of sentiment is computed
by summing the absolute values of sentiment
scores as provided by the SenticNet lexicon
(Cambria et al., 2022).

4. Pressure (p): This could be analogous to the
intensity of an emotion. Stronger words (“love,”
“hate”) exert more “pressure” than weaker ones
(“like,” “dislike”). In this context, the “pressure”
exerted by specific words in the text is based
on the sum of their sentiment scores if the
target word is present in a user-generated list.

5. Viscosity (ν): This could represent the resis-
tance to the flow of emotion, perhaps due to
the complexity or ambiguity of the text. In this
context, the “viscosity” is evaluated by the stan-
dard deviation of sentiment scores as provided
by the SenticNet lexicon, indicating resistance
in emotional flow.

6. External Force (g⃗): This could be external
factors like cultural context or the influence of
preceding text segments. For our experiment,
this measures the “external force” based on
the polarity value of the text as provided by the
SenticNet lexicon.

The Navier-Stokes-inspired equation is then mod-
ified to align with these linguistic properties. The
modified equation for sentiment flow (e⃗) in the text
is:

∂e⃗

∂t
+(e⃗·∇)e⃗ = − 1

ρsent
∇psent+νsent∇2e⃗+g⃗context (1)

Where ρsent, psent, and νsent represent the density,
pressure, and viscosity of sentiment, respectively,
and g⃗context is the external contextual force.

2.1. Operationalization of Sentiment
Analysis Variables

This section delineates the operationalization of
variables for analyzing sentiment dynamics in texts,
as implemented for this experiment.

Density(ρ): The function computes the “density”
of emotions in a segment of text by summing the ab-
solute values of sentiment scores. This approach
quantifies the overall emotional “weight” or intensity
in a section of text without regard to the sentiment’s
polarity (positive or negative). The density is higher
when there are strong emotional words, regardless
of whether they convey positive or negative senti-
ments. So for example, in analyzing a paragraph
filled with intensely emotional words (both positive
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and negative), the density calculation aggregates
these sentiment scores to reflect a high “density”
of emotional content.

Pressure(p): This “pressure” is determined by
checking for the presence of predefined keywords
that are expected to have a strong emotional im-
pact (e.g., “love,” “hate”) and summing up their sen-
timent scores. The presence of these keywords
in the text increases the “pressure” of the senti-
ment, analogous to how stronger words exert more
influence on the emotional tone of the text. For
example, a sentence that includes the word “hate”
(assuming “hate” is part of the keywords list), and if
the sentiment score associated with “hate” is high,
the sentiment pressure for that sentence increases,
reflecting the intensity of the emotion conveyed.

Viscosity(ν): “Viscosity”, in this context, rep-
resents the variability or dispersion of sentiment
scores, which could be interpreted as the text’s
resistance to a uniform emotional flow. High vis-
cosity indicates a wide range of sentiment scores,
suggesting complexity or ambiguity in the text’s
emotional content. For example, in our context, in
a narrative with a mix of high and low sentiment
scores—indicating fluctuating emotions—the vis-
cosity measurement will be high, indicating a "re-
sistant" emotional flow, possibly due to complex or
ambiguous emotional expressions.

External Force(g⃗): This function treats the po-
larity value as a direct representation of external
influences on the text’s emotional tone. The polar-
ity could encompass various external factors like
cultural context or influences from preceding text
segments that affect the overall sentiment direction.
For example, in this context, in a text where the
overall polarity is positive, the external contextual
force is represented by this positive value, suggest-
ing that external influences (e.g., narrative context,
cultural nuances) are pushing the emotional tone
in a positive direction.

It is important to stress that the use of fluid dy-
namics concepts—such as velocity, pressure, and
external forces—serves as a metaphorical frame-
work to understand the dynamics of emotions in
text. It’s crucial to recognize that these variables
can take on diverse meanings, extending beyond
their initial definitions. For instance, the concept
of “external forces” (g⃗) is not limited to the general
sentiment of a sentence. It could encompass, if
appropriately measured and measurable, a variety
of elements outside the immediate context of the
text, such as cultural nuances, historical references,
or even the prevailing social or political climate in
which the text was written or is being read.

Furthermore, these variables could be dynamic,
changing with the reader’s perspective or the
broader societal context. For example, a novel’s
emotional “velocity” or “pressure” could be inter-

preted differently by readers from varying cultural
backgrounds, or it might shift over time as societal
norms and values evolve.

This flexibility in defining and interpreting these
variables opens up a vast array of possibilities for
deep and contextually rich sentiment analysis, al-
lowing for a more comprehensive understanding of
emotional dynamics in text that goes beyond mere
word-level sentiment scoring.

3. Methodology and Results

To test the validity of such a novel approach, we
analyzed a dataset based on three well-known
Shakespeare’s tragedies, such as “The Tragedy
of Hamlet” and “The Tragedy of Juliet and Romeo”.
Our methodology incorporated a multidimensional
approach, leveraging both fluid dynamics-inspired
modeling and the advanced capabilities of the Sen-
ticNet lexicon (Cambria et al., 2022). Moreover,
in the construction of the analytical framework for
this paper, the study leveraged the comprehensive
literary resources available at SparkNotes1. Such
a platform provided essential interpretive guidance
and served as a reference point for the contextual-
ization of our emotional analysis.

3.1. SenticNet: A Tool for Sentiment
Analysis and Opinion Mining

SenticNet is an advanced semantic and affective
resource for sentiment analysis and opinion min-
ing that leverages both artificial intelligence and
semantic web techniques to better understand the
nuances of natural language. Developed by Cam-
bria et al. (Cambria et al., 2022), SenticNet com-
bines common-sense reasoning tools and deep
learning models to extract the polarity of texts, pro-
viding a more nuanced interpretation of emotions,
sentiments, and opinions expressed in language.

SenticNet relies on The Hourglass of Emotions
(Susanto et al., 2020) model which is an affective
computing model that conceptualizes a multidimen-
sional representation of human emotions. This
model captures the complexity and interconnectiv-
ity of emotional states. At its core, the model posits
that emotions can be classified along four primary
axes or dimensions, each representing a different
aspect of human affective experience (see Figure
1).

These dimensions are:

• Introspection: This axis gauges the positive or
negative valence of emotions, representing a
spectrum from ecstasy to grief.

1https://www.sparknotes.com/about/
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Figure 1: SenticNet Hourglass (taken from (Su-
santo et al., 2020))

• Temper: This dimension measures the level of
engagement or disinterest, ranging from bliss
to rage.

• Sensitivity: This axis reflects the degree of con-
trol or susceptibility in emotional responses,
spanning from enthusiasm to terror.

• Attitude: This dimension accounts for the cog-
nitive and motivational aspects of emotions,
extending from empowerment to loathing.

SenticNet’s utilization in our study is precisely mo-
tivated by its capability to transcend simple word-
level analysis, enabling the capture of semantic
and affective information associated with natural
language concepts rather than merely focusing on
keywords or isolated phrases. This feature renders
SenticNet particularly suitable for time series anal-
ysis in research contexts that necessitate a deep
interpretation of text context and emotional tone.

3.2. Data processing

We collected dialogues from texts2 and prepro-
cessed them using BookNLP (Bamman et al.,
2014). Successively, using the SenticNet frame-
work, each word in the dialogues was tagged for
emotional categorizations and polarity scores. We
initiated the analysis by identifying the most signif-
icant emotional dimension for each entity in the
dataset as discussed in Section 3.1. This was
achieved by computing the average values across
all dimensions for each entity, and subsequently

2we downloaded the Sheakspeare’s work from the
digital library http://gutenberg.org

pinpointing the dimension with the highest average,
as represented mathematically:

max_avg_dim = argmax(avg_values)

A comparative analysis was conducted between
the results from our fluid dynamics model and tra-
ditional sentiment analysis methods consisting of
a time series plotting of the computing of the aver-
age values across all SenticNet macro dimensions
(Sensitivity, Attitude, Temper, Introspection) (Su-
santo et al., 2020) for each character of the novel
using pure SenticNet scores to calculate the dimen-
sion with the highest average, as we did for the fluid
dynamics model.

The first approach, inspired by fluid dynamics,
was particularly effective in uncovering the ATTI-
TUDE dimension, frequently emerging as a dom-
inant factor in the simulations. This dimension
served as a lens through which we could observe
the continuum of emotional shifts pivotal to the un-
folding drama in Shakespeare’s works.

The second approach, relying exclusively on the
SenticNet framework, is a critical component of our
analysis. By utilizing SenticNet scores, we tagged
the text to extract and analyze the time-series rep-
resentation of the emotional lexicon, with a specific
focus on the INTROSPECTION dimension since it
emerged as the highest average value across all
dimensions for each character of the novel.

This dimension was instrumental in highlighting
the reflective and internal aspects of the charac-
ters’ emotional experiences. It allowed us to delve
into the frequency and intensity of introspective lan-
guage within the texts, thereby revealing the promi-
nence of self-reflection and the depth of internal
emotional states characteristic of Shakespearean
protagonists.

The combination of these approaches – the fluid
dynamics-inspired modeling and the application of
SenticNet – enabled a comprehensive and multi-
faceted analysis. While the fluid dynamics model
illuminated the broader emotional trajectory across
the narrative, SenticNet provided a detailed insight
into the subtler aspects of emotional expression,
particularly introspection. This dual approach not
only validated the feasibility of our unique methodol-
ogy but also enriched our understanding of the com-
plex emotional tapestry woven into Shakespeare’s
tragedies.

3.3. Discussion of Results
In our sentiment analysis, we focus on ATTITUDE
and INTROSPECTION because they often yield the
highest scores in the texts we examine as provided
by the argmax formula discussed in Section 3.2.
This indicates that these dimensions are most rep-
resentative of the emotional content and dynamics
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present in the text. By highlighting these dimen-
sions, we can provide a more accurate and in-depth
analysis of the emotional arcs and character devel-
opment, which is particularly valuable in the study
of literature, where characters’ inner worlds and
attitudes are often central to the narrative.

ATTITUDE, as defined in psychological terms
and shown in Figure 1, refers to how a character
in Shakespeare’s plays evaluates and reacts to dif-
ferent elements like events, other characters, or
their internal conflicts. It’s a combination of their
beliefs, emotional responses, and behaviors toward
these elements. A character’s attitude isn’t fixed;
it evolves based on their experiences, social con-
text, and can change with different situations or
moods (Bohner and Wanke, 2002). Within Shake-
speare’s texts, this translates to a character’s eval-
uative stance towards the unfolding events, other
characters, or internal conflicts.

When the fluid simulations identify ATTITUDE as
the predominant dimension, it signifies that these
evaluative stances—comprising cognitive, affective,
and behavioral components—are the most salient
features in influencing the play’s narrative trajectory.
These attitudes manifest through the characters’
decisions and actions, reflecting the persistent yet
context-dependent nature of their dispositions. The
“distant reading” (Moretti, 2013) facilitated by this di-
mension enables us to view the broader emotional
influences that drive the dramatic events, offering
insights into how characters organize complex in-
formation and how their evaluations guide their be-
haviors.

Conversely, INTROSPECTION, as revealed
through purely SenticNet time series analysis and
shown in Figure 1, delves into the characters’ self-
reflective processes, mapping the psychological
landscape where they contemplate their thoughts,
feelings, and place within the larger narrative. This
dimension captures the characters’ internal dia-
logues, as they navigate through and make sense
of their experiences, fulfilling expressive functions,
affirming personal values, maintaining social iden-
tity, and regulating emotions.

The constant occurrence of INTROSPECTION
in SenticNet’s analysis emphasizes the capacity
for self-reflection that characterizes Shakespeare’s
characters, offering a window into their inner world.
This approach highlights the intimate and psycho-
logical spaces in which characters struggle with
their attitudes, which are complex constructs ac-
quired and modified through life experiences and
socialization.

By applying computational techniques to mea-
sure ATTITUDE and INTROSPECTION, we shed
light on the multifaceted ways in which Shake-
speare’s characters experience and express their
emotions. ATTITUDE encapsulates evaluative

Figure 2: Emotional trajectory in ’Hamlet’. The left
graph depicts the nuanced flow of emotional senti-
ment in ’Hamlet’ through a fluid dynamics-inspired
model. The right graph, utilizing data from Sentic-
Net, quantifies the frequency of introspective mo-
ments.

stances that are both persistent and contextually
adaptive, while INTROSPECTION provides a struc-
tural schema to organize and reflect upon these
attitudes.

This approach allows us to not only identify the
presence of emotions but also to understand their
evolution throughout the text. In fact, by compar-
ing the findings from SenticNet with those from our
method, we aim to demonstrate the enhancements
our methodology brings to the field. While Sentic-
Net provides a robust baseline by identifying the
dominant emotional dimensions within a text, our
method seeks to map these findings onto a tempo-
ral framework, thereby offering a dynamic vision of
emotional trajectories.

This comparison is likely to illustrate the added
value of our approach, which potentially uncovers
the finer gradations and fluctuations of sentiment
that may remain underrepresented in a static anal-
ysis. Consequently, our methodology could reveal
an improvement over the use of SenticNet alone,
offering a more granular and temporally sensitive
understanding of emotional expressions in texts.

The tragedy of Hamlet, Prince of Denmark In
Figure 2, we have two graphs that offer a deep dive
into the emotional structure of the play.

The graph on the left shows the flow of emotion
ATTITUDE across the play using a fluid dynamics-
inspired approach, with the line averaging at -0.11.
This suggests a generally negative undercurrent
to the play’s emotional tone, correlating with the
narrative’s progression into darker themes such as
betrayal, revenge, and existential crisis.

The upward trajectory towards the end might
indicate a momentary shift in emotional intensity,
possibly reflecting Hamlet’s resolve to avenge his
father’s death or his acceptance of the tragic in-
evitability of his circumstances. The fluid model
captures the complexities of Hamlet’s psychological
state and the nuanced changes in the play’s emo-
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tional atmosphere. It doesn’t just map individual
emotional incidents, as it is done by the SenticNet
mapping (see right-side of Figure 2), but reflects an
ongoing and accumulated emotional path, which is
characteristic of the exploration of themes such as
madness, indecision, and tragedy.

On the right, the INTROSPECTION graph
sourced from SenticNet data illustrates the fre-
quency of introspective sentiment within the play,
with an average value of 0.54. This high average
underscores the introspective nature of “Hamlet”,
as the title character is known for his soliloquies
that explore profound philosophical questions. The
spikes in the graph could represent Hamlet’s solil-
oquies or other reflective moments within the play.
While this graph captures the frequency and vari-
ability of introspective moments, it lacks the narra-
tive context that the left graph provides, showing
the moments of reflection as isolated peaks rather
than as part of a continuum.

Comparing the two, the left graph offers a more
holistic view of the emotional trajectory in “Hamlet”.
It encapsulates the build-up of tension and the psy-
chological depth that defines the play. The right
graph, although informative about the frequency of
introspective moments, does not convey the emo-
tional journey or the cumulative effect of the narra-
tive. The left graph’s approach to emotional flow
allows us to visualize the overarching emotional
descent that is central to the tragedy of Hamlet,
which the right graph’s momentary peaks cannot
fully express.

In essence, the left graph’s representation seems
to offer a more integrated and comprehensive un-
derstanding of the emotional fabric of “Hamlet”,
aligning with Shakespeare’s intent to create a com-
plex portrait of a character caught in a web of exis-
tential quandaries and moral dilemmas. It captures
not just the emotional states themselves, but how
these states flow and interact throughout the nar-
rative, providing a dynamic view of the emotional
landscape that is as turbulent and layered as the
play itself.

The tragedy of Juliet and Romeo In Figure 3,
we have a vertical arrangement of graphs repre-
senting the emotional progression of the characters
Romeo and Juliet.

For Romeo, the graph on the left presents the
emotional sentiment throughout the play, showing
a significant fluctuation that peaks and dips, with
an overall average attitude of 0.21. This represents
a slightly positive emotional baseline for Romeo.
The initial upward trend could mirror Romeo’s es-
calating joy as he falls in love with Juliet. This is
followed by a series of sharp downturns, likely re-
flecting the tumultuous events he faces, such as
the banishment after Tybalt’s death and the tragic

Figure 3: Emotional trajectory in ’Romeo and Juliet’.
The left graph depicts the nuanced flow of emo-
tional sentiment in ’Romeo and Juliet’ through a
fluid dynamics-inspired model. The right graph, uti-
lizing data from SenticNet, quantifies the frequency
of introspective moments.

news of Juliet’s death.
The corresponding graph on the right, derived

from SenticNet data, shows a high frequency of in-
trospective moments, with an average of 0.53. The
numerous peaks suggest that Romeo’s character is
marked by frequent introspective reflection, which
could correlate with the many soliloquies and emo-
tional dialogues where he contemplates his love for
Juliet and his misfortunes.

The contrast between the fluid-dynamic repre-
sentation of Romeo’s emotional pat and the Sen-
ticNet graph is quite stark. The left graph suggests
a more complex and less binary emotional land-
scape, offering insight into the nuanced progression
of Romeo’s feelings as the narrative unfolds.

Turning to Juliet, the left graph depicts her emo-
tional sentiment throughout the play with less volatil-
ity than Romeo’s, starting at a lower point but grad-
ually increasing over time, despite a few dips. The
average attitude is slightly negative at -0.01, which
could reflect the constant pressures and challenges
Juliet faces, including her family’s expectations and
the conflict with the Montagues.

The right graph shows Juliet’s introspection lev-
els, similar to Romeo’s, with high frequency and in-
tensity, averaging at 0.55. This underscores Juliet’s
reflective nature and the depth of her inner life as
she grapples with her feelings for Romeo, and the
dire circumstances that unfold.

In the case of both Romeo and Juliet, the left
graphs provide a narrative of emotional develop-
ment that is more aligned with the structure and
thematic elements of the play. While the SenticNet
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graphs capture the presence of introspective and
emotional language, the fluid dynamics-inspired
graphs encapsulate the broader emotional arcs
of the characters, effectively mapping the Shake-
spearean tragedy’s dramatic and emotional rhythm.

3.4. Qualitative vs. Quantitative
evaluation

The novel approach proposed in this paper involves
a qualitative rather than quantitative evaluation of
sentiment dynamics in textual narratives. This
choice is driven by several compelling reasons,
grounded in both the nature of our methodology
and the characteristics of the subject texts.

Firstly, our approach conceptualizes emotions in
the text as fluid-like entities. This fluid dynamics-
inspired model inherently demands a qualitative as-
sessment, as it aims to capture the subtle, nuanced
shifts in emotional tides over time. A quantitative
analysis, while valuable in its right, might not fully
encapsulate these intricate dynamics.

Secondly, the richness and complexity of Shake-
speare’s tragedies warrant a qualitative approach.
These narratives are characterized by layered emo-
tional landscapes, where emotions are influenced
by a multitude of factors, including character de-
velopment, plot progression, and thematic ele-
ments. A purely quantitative evaluation might over-
look these crucial aspects, thereby diminishing the
depth and accuracy of the analysis.

4. Conclusions

This paper presented a novel approach to sen-
timent analysis in textual narratives, specifically
through the application of modified Navier-Stokes
equations, a fundamental concept in fluid dynam-
ics. By conceptualizing sentiments and emotions
in the text as fluid-like entities, this study aimed to
capture the dynamic, evolving nature of emotional
expression and propagation in narrative texts. The
methodology involved mapping linguistic properties
to elements of fluid dynamics, such as velocity, den-
sity, and pressure, and modifying the Navier-Stokes
equations to align with these properties.

Our experimentation focused on analyzing the
sentiment flow in three of Shakespeare’s tragedies:
“Hamlet” and “Romeo and Juliet”. The results
demonstrated that this fluid dynamics-inspired ap-
proach provides a more nuanced understanding
of the emotional trajectory within these texts, as
compared to traditional sentiment analysis meth-
ods. The application of these modified equations
allowed for the visualization of sentiment dynamics,
illustrating how emotions ebb and flow throughout
the narrative.

The comparative analysis between the fluid
dynamics-based model and the SenticNet frame-
work revealed distinct insights. While the SenticNet
approach provided valuable data on the frequency
of introspective moments, the fluid dynamics model
offered a broader perspective on the emotional jour-
ney throughout the plays. This comprehensive view
highlighted not only individual emotional incidents
but also the accumulative emotional progression
characteristic of Shakespearean drama.

The findings suggest that this interdisciplinary
approach holds significant promise for advancing
emotional analysis in computational linguistics. By
integrating principles from fluid dynamics, we can
depict the complex emotional landscape of narra-
tive texts more holistically and dynamically. This
methodology has the potential to enhance our un-
derstanding of sentiment flow in a variety of textual
forms, from classical literature to contemporary dig-
ital narratives.

Future work could extend this methodology to dif-
ferent genres and types of texts, further exploring
the applicability and scalability of this approach.
The potential integration of this model with ad-
vanced machine learning techniques also presents
a promising direction for expanding the capabilities
and applications of sentiment analysis in NLP.
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Abstract
The advent of Large Language Models (LLMs) based on the Transformer architecture has led to remarkable
advancements in various domains, including reasoning tasks. However, accurately assessing the performance
of Large Language Models, particularly in the reasoning domain, remains a challenge. In this paper, we
propose the Semantically Rich Variable Substitution Method (SemRiVas) as an enhancement to existing
symbolic methodologies for evaluating LLMs on Mathematical Word Problems (MWPs). Unlike previous ap-
proaches that utilize generic symbols for variable substitution, SemRiVas employs descriptive variable names,
aiming to improve the problem-solving abilities of LLMs. Our method aims to eliminate the need for LLMs
to possess programming proficiency and perform arithmetic operations, to be universally applicable. Our
experimental results demonstrate the superior accuracy of SemRiVas compared to prior symbolic methods,
particularly in resolving longer and more complex MWP questions. However, LLMs’ performance with SemRiVas and
symbolic methods that utilize one-character variables still falls short compared to notable techniques like CoT and PaL.

Keywords: Math Word Problems, Large Language Models

1. Introduction

The Transformer architecture (Vaswani et al., 2023)
has facilitated the development of Large Language
Models (LLMs) capable of achieving exceptional
performance. Models like PaLM 540B (Chowdhery
et al., 2023) and GPT-4 (Achiam et al., 2023), with
billions of parameters, have undergone training on
vast amounts of textual data using the Transformer
architecture. These models exhibit outstanding
capabilities across various domains, including rea-
soning, coding, common sense, translation, and
planning, often reaching or surpassing human-level
performance (Achiam et al., 2023). The remarkable
performance of these models has sparked signif-
icant interest among researchers, leading to the
creation of numerous LLMs such as Llama (Tou-
vron et al., 2023) and Phi (Li et al., 2023).

The proliferation of models has motivated re-
searchers to devise various methodologies for as-
sessing model performance and to curate datasets
for evaluating these methodologies. Typically, re-
searchers evaluate the responses of LLMs against
questions in datasets, assessing the accuracy of
these responses compared to ground truth answers
(Mialon et al., 2023; Cobbe et al., 2021).

One domain where such evaluations are con-
ducted is reasoning. In this domain, models are
tasked with detecting and executing various oper-
ations based on provided text. Achieving satisfac-
tory results in the reasoning domain has proven
challenging for LLMs, with many models exhibit-
ing notably low accuracy rates in this area (Cobbe
et al., 2021).

To measure accuracy in the reasoning domain,
many researchers use Mathematical Word Prob-
lems (MWP) (Li et al., 2023; Chowdhery et al.,
2023). These MWPs present mathematical chal-
lenges using everyday language and numerical
data. Successfully solving the problems demands
models to possess a strong proficiency in Natu-
ral Language Understanding (NLU), as they must
identify both the problem scenario and the route to
the solution beforehand. This dual requirement of
comprehending the context and deducing the prob-
lem’s intent closely aligns with human reasoning
capabilities, making MWPs a suitable evaluation
method in the reasoning domain.

Various datasets and methods are employed by
researchers to gauge skills using MWPs. Examples
of widely used datasets in the literature include
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), and SVAMP (Patel et al., 2021).

In addition to datasets, various methods have
been developed to assist Large Language Models
(LLMs) in accurately answering questions, partic-
ularly for Mathematical Word Problems (MWPs).
Predominant among these are Chain-of-Thought
Prompting (CoT) (Wei et al., 2023) and Program
Aided Language Models (PaL) (Gao et al., 2023).
CoT employs an intuitive methodology, guiding AI
models through progressive problem-solving steps,
while PaL necessitates models to generate program
code for solution computation.

These two methods have been observed to sig-
nificantly increase the accuracy rates of responses
to questions in datasets used for measuring reason-
ing in LLMs. However, both approaches have spe-
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Question
Dan plants 3 rose bushes. Each rose bush
has 25 roses. Each rose has 8 thorns. How
many thorns are there total?
Answer
Dan plants 3 rose bushes. Each rose bush
has 25 roses. Each rose has 8 thorns. So
3 x 25 x 8 = 300. The answer is 300.

Figure 1: Examples of Errors Made by Large Lan-
guage Models in Arithmetic (Wei et al., 2023)

cific problems. In the CoT approach, LLMs are ex-
pected to perform arithmetic operations. However,
LLMs are not models highly-competent in perform-
ing arithmetic operations (Nogueira et al., 2021;
Lu et al., 2023; Frieder et al., 2023; Stolfo et al.,
2023; Meadows et al., 2023). The primary func-
tion of LLMs in solving MWPs should be to deter-
mine which operations to perform among numbers
based on the given scenario. As shown in Figure
1, models correctly define operations, but inaccura-
cies in performing operations have been observed,
leading to decreased accuracy rates. Therefore,
measurements made with these approaches only
partially reflect reality. The PaL method is not ef-
fected by errors that can occur due to arithmetic
operations, since a third party code interpreter runs
the calculations, however it is limited for models
that are proficient in using programming languages.
Therefore, PaL is limited in terms of the LLMs it can
be applied to.

New methods have emerged to address these
challenges, leveraging symbolic variables to del-
egate arithmetic computations to an external cal-
culator (He-Yueya et al., 2023). Additionally, these
methodologies does not require any programming
proficiency. One particular method, replaced vari-
ables in a question with “w,x,y,z” variables, and
then asked LLM to solve the question using self-
prompting strategies (Gaur and Saunshi, 2023).
We refer to this kinds of approaches in our paper
as "One-Character Substitution Method", as they
exchange numbers with one-character variables.

This strategy effectively tackles issues related to
arithmetic errors and programming expertise lim-
itations. In our study, we investigate the poten-
tial refinement of this technique by replacing these
generic placeholders with semantically rich coun-
terparts. Instead of employing generic symbols,
we advocate for descriptive variable names such
as "number-of-books-James-has" as exemplified in
Figure 2. We hypothesize that this modification will
aid LLMs in problem-solving tasks, as managing
numerous one-character variables, especially in
contexts involving multiple numerical values, poses
a significant challenge even for humans.

We introduce the Semantically Rich Variable Sub-
stitution Method (SemRiVas) as an improvement of
prior work that leverages symbolic variables to aid
LLMs in solving MWPs. Our research contributes
to the literature in the following ways:

1. Our approach eliminates the need for LLMs to
possess programming proficiency and perform
arithmetic operations, making it universally ap-
plicable as an evaluation method.

2. We commit to releasing all code and datasets
associated with our method, facilitating its
adoption for evaluating LLM performance on
MWPs.

3. Our method demonstrates superior accu-
racy compared to previously employed One-
Character Substitution Methods.

2. Background

2.1. Large Language Models
Large Language Models(LLMs) are advanced nat-
ural language processing systems that utilize differ-
ent machine learning techniques to comprehend
and generate text in human language. With the
development of Transformer architecture (Vaswani
et al., 2023), massive models with billions of param-
eters have been proposed. Some of the notable ex-
amples include ChatGPT (OpenAI, 2022) , Phi1.5
(Li et al., 2023), and Llama2-7B (Touvron et al.,
2023). These models demonstrated remarkable
performances in several natural language process-
ing tasks, including machine translation, common
sense reasoning, summarizing, planning, reason-
ing, and coding.

2.2. Math Word Problems
Math Word Problems (MWPs) are mathematical
problem-solving scenarios within a contextualized
linguistic framework. Solving these problems ne-
cessitates the translation of the verbal description
into mathematical expressions (Meadows and Fre-
itas, 2023), such as equations or inequalities, which
requires analytical thinking and reasoning skills.
Recent works have prevalently utilized math word
problems to evaluate LLM’s reasoning capabilities
(Li et al., 2023; Chowdhery et al., 2023).

2.3. Chain of Thought Prompting
Chain of Thought Prompting (CoT) (Wei et al., 2023)
is a strategy that aims to decompose a problem into
several intermediary operations to reduce the prob-
lem’s complexity, resulting in better performances.
Specifically, when employing CoT, we prompt the
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SemRiVas
Question
James has number-of-books-James-
has books. If he buys number-
of-books-James-buys books, how
many books he has?
Answer
James will have number-of-books-
James-has + number-of-books-
James-buys books.

One-Character Substitution
Question
James has w books. If he
buys 2x books, how many
books he has?
Answer
James will have w + 2x books.

Figure 2: Comparison of Methods

LLM with instructions such as "Let’s think step
by step," directing the LLM to follow a divide-and-
conquer approach. Researchers have shown that
this intuitive and easy-to-implement approach ex-
hibits remarkable accuracies when tested with math
word problems.

2.4. Program-Aided Language Models

When solving math word problems, LLMs have
been shown to encounter difficulties in performing
arithmetic. With Program-Aided Language Models
(PaL)(Gao et al., 2023), researchers aimed to uti-
lize LLMs’ coding abilities to address math word
problems indirectly. Instead of directly providing the
answer, the approach involves making the model
generate a Python code that would, in turn, pro-
duce the correct result. In this method, once the
Python code is generated, it is given to a third-party
Python interpreter to execute the operations. By
employing this strategy, they aimed to minimize the
errors stemming from LLMs’ inability to perform sim-
ple math. They demonstrated that PaL achieved
high accuracies in their tests with LLMs capable of
coding.

2.5. Solving Math Word Problem’s
Symbolically

Symbolic methods (Ferreira et al., 2022) represent
quantities and relationships using symbols or vari-
ables, allowing for systematic manipulation and
solution. Symbolic methods make sense because
they reduce the likelihood of arithmetic errors and
enable the application of mathematical reasoning
and algorithms to complex scenarios.

The most notable work concerning our domain
in this research has used (w, x, y, z) (Gaur and
Saunshi, 2023) variables to substitute numerical
values in the SVAMP (Patel et al., 2021) Dataset,
then tested LLM’s ability on this new augmented
dataset. We will cover more about that method in
the Baselines subsection.

3. Methods

In this study, we introduce SemRiVas: Semantically
Rich Variable Substitution method. The SemRiVas
method primarily aims to replace numbers in Math
Word Problems (MWPs) with self-explanatory vari-
ables. This substitution facilitates differentiation be-
tween variables, particularly in lengthy questions,
and delegates calculations to a third-party calcu-
lator to reduce arithmetic errors. We utilize the
few-shot prompting technique for consistent and
accurate responses.

3.1. Semantically Rich Symbolic
Variables

Using symbolic variables instead of numerical val-
ues can enhance model performance in solving
MWPs. Models often commit arithmetic errors
while maintaining correct reasoning, as illustrated
in Figure 1. Employing a simple third-party cal-
culator can rectify these errors efficiently. Hence,
substituting variables in questions and later solving
them appears logical to improve accuracy. Previ-
ous methods have utilized one-character variables
such as [w, x, y, z], [p, q, r, s], however, we posit
that one-character variables might confuse models,
especially when there are many of them (Gaur and
Saunshi, 2023).

Instead of replacing numbers with one-character
variables, we advocate substituting variables that
describe the number’s purpose. For instance, as
depicted in Figure 2, we replace numbers with vari-
ables like "number-of-books-James-has." We hy-
pothesize that in a question with multiple numbers,
it would be challenging to track one-character vari-
ables and recall each variable’s significance. Con-
versely, using self-explanatory variables could aid
model comprehension.

3.2. Few-Shot Prompting
Few-Shot Prompting is a strategy where question-
answer pairs are compiled in the desired format
of model responses. Subsequently, the model is
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prompted with these question-answer examples,
followed by the original query. This approach
guides the model to adhere to specified structural
properties and provides concrete examples. It is
particularly valuable for evaluation, facilitating the
generation of extractable and quantifiable exam-
ples.

We have opted for 8-shot prompting in all our
evaluations. These prompts were drawn from GSM-
8K (Cobbe et al., 2021) and customized for each
method addressed in this study. All prompts will
be made available as open-source resources to
facilitate the adoption of our method.

4. Results and Discussion

4.1. Baselines
In this study, we opted for the GSM8K bench-
mark (Cobbe et al., 2021) for evaluations, given
its widespread use in the literature. The GSM8K
dataset consists of high/middle-school level Math-
ematical Word Problems (MWP) of high quality.
Another reason for selecting GSM8K was to exam-
ine the impacts of variable-substitution methods
on both short and long-context questions. Previ-
ous studies utilized the SVAMP (Patel et al., 2021)
dataset, which is constrained to a maximum of 4
numbers, whereas GSM-8K encompasses num-
bers ranging up to 8.

We chose GPT-3.5, specifically "gpt-3.5-turbo,"
as our base LLM due to its strong coding skills,
enabling accurate PaL (Gao et al., 2023) calcu-
lation and prompt-following abilities for smoother
processes.

To evaluate our method against previous ap-
proaches, we assessed PaL, CoT, and a One-
Character Substitution Method similar to prior work
that utilized [w,x,y,z].

4.2. Evaluation Strategy
We evaluated all four methods on 200 randomly
selected QA pairs from GSM-8K. (Due to financial
constraints, only 200 were selected). The process
of number replacement to generate the dataset for
the SemRiVas method was initially assisted by an
LLM and later supervised by humans to address
any errors. We used a simple Python program to
generate the dataset for the One-Character Substi-
tution method, as it didn’t require specific variable
names for each number.

The models were prompted with similar prompts
differing only in response format, not in questions.

For the PaL method, we offloaded the generated
responses into a python interpreter for evaluation.
For the One-Character Substitution, and SemRiVas
method, we simply exchanged variables with the
original numbers, and evaluated from there using

a simple python calculator. CoT didn’t require any
additional steps to evaluate, we simply took the
final answer it wrote.

We maintained consistent hyperparameters for
all methods: temperature parameter at 0.7 and Top-
P parameter at 1. We observed in a smaller subset
of data that these parameter values have proven
to be highly robust compared to higher or lower
settings.

Table 1: Accuracy Rates of Each Method (8-Shot)
PaL CoT SemRiVas One-Character S.
48% 84% 44% 34.5%

4.3. Results

According to our research results (Table 1), the
GPT-3.5 model prompted with the SemRiVas
method achieved a 44% success rate across 200
questions. PaL achieved 48% accuracy, CoT
achieved 84%, and the One-Character Variable
Substitution method achieved 34.5%.

We have also analyzed the success rates of Sem-
RiVas and the One-Character variable method on
the 50 longest/shortest questions to see whether
our hypothesis that using semantically rich vari-
ables enhances performance in long-context set-
tings. We found that SemRiVas was 38% more
successful than the One-Character Variable Sub-
stitution method on the longest questions, while
it was marginally less successful (7%) than the
one-character variable substitution method on the
shortest questions.

4.4. Discussion

Our method, designed to measure LLMs’ logi-
cal and reasoning abilities, achieved higher accu-
racy than the one-character variable substitution
method, demonstrating the effectiveness of seman-
tically rich variables. This increase in accuracy
underscores the effectiveness of our approach for
solving MWPs symbolically using large language
models.

However, we can see that LLMs seem to be strug-
gling to solve MWPs using symbolic variables, as
both symbolic methods didn’t surpass the accuracy
rate of CoT or PaL.

That said, due to budget and manpower limita-
tions, our experiments were confined to the GPT-
3.5 model and a smaller subset of the GSM-8K
(Cobbe et al., 2021) benchmark. Further testing on
the entire GSM-8K dataset and with different mod-
els could provide a clearer picture of our approach’s
success rate.
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5. Conclusion

In conclusion, our research introduces the Semanti-
cally Rich Variable Substitution Method (SemRiVas)
as a novel approach to evaluate Large Language
Models (LLMs) on Mathematical Word Problems
(MWPs). By utilizing descriptive variable names
instead of generic symbols, SemRiVas aims to im-
prove LLMs’ problem-solving abilities, particularly
in long-context settings. Our experimental results
demonstrate the superior accuracy of SemRiVas
compared to previous symbolic methods, highlight-
ing its effectiveness in enhancing LLM reasoning
capabilities. However, our findings also suggest
that LLMs still face challenges when solving MWPs
using symbolic variables, as they did not surpass
the accuracy rates achieved by methods such as
CoT or PaL. Further research is needed to under-
stand and address these challenges comprehen-
sively.
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Abstract
In this paper, we investigate and introduce a novel Llama-2 based model, fine-tuned with an original dataset
designed to mirror real-world mathematical challenges. The dataset was collected through a question-answering
platform, incorporating solutions generated by both rule-based solver and question answering, to cover a broad
spectrum of mathematical concepts and problem-solving techniques. Experimental results demonstrate significant
performance improvements when the models are fine-tuned with our dataset. The results suggest that the integration
of contextually rich and diverse problem sets into the training substantially enhances the problem-solving capability of
language models across various mathematical domains. This study showcases the critical role of curated educational
content in advancing AI research.

Keywords: Mathematical problem solving, Data-driven, Large language model

1. Introduction

In the field of machine learning, the ability to solve
complex mathematical problems is often used as
a measure of a model’s reasoning abilities, under-
standing of natural language, and its capacity to
engage in abstract thinking. From the basic arith-
metic operations to more complex numerical chal-
lenges, the capacity of machine learning models to
navigate and resolve mathematical problems lays
the groundwork for advanced applications in fields
such as data analysis, and education. This signif-
icance is due to the fundamental nature of math-
ematics as a form of structured problem-solving.
The endeavor to enhance machine learning mod-
els’ capability in mathematical problem-solving is
driven by the dual goals of improving their analytical
capabilities and enabling them to handle real-world
tasks that require precise numerical computations.
This pursuit involves not only refining the models’
ability to understand and analyze numerical data
but also their capability to interpret contextual infor-
mation and properly apply mathematical concepts
in varied scenarios.

On the other hand, the advent of large language
models (LLMs) has marked a significant milestone
in demonstrating the potential of data-driven ap-
proaches. Numerous LLMs, such as GPT (OpenAI
et al., 2024), Gemini (Team et al., 2023), Llama-2
(Touvron et al., 2023; Rozière et al., 2024) and
Orca-2 (Mitra et al., 2023), have demonstrated
an ability to understand and generate human-like
text. They have achieved exceptional performance
across a variety of tasks, including mathematical
problem-solving. This capability arises from their
extensive training on diverse datasets, and sophisti-
cated training algorithms to process and learn from
the data. The remarkable performance of these

models has shown that with sufficiently many data,
it is possible to achieve levels of understanding and
interpreting capabilities that closely mimic human
cognitive processes.

Moreover, the scalability of large language mod-
els shows that their performance often improves
with the addition of more data. This phenomenon is
referred to as “scaling laws” (Johnson et al., 2018;
Kaplan et al., 2020; Fernandes et al., 2023; Isik
et al., 2024). This suggests that the limits of these
models’ capabilities are continually expanding, as
more data becomes available for training.

Similar approaches have been attempted in the
field of mathematical problem-solving. Llemma-2
(Azerbayev et al., 2023), part of the Llama-2 (Tou-
vron et al., 2023) series, have been trained on a
mixture of publicly available data, and achieved re-
markable performances in various mathematical
tasks (Hendrycks et al., 2021b; Cobbe et al., 2021a;
Lewkowycz et al., 2022; Hendrycks et al., 2021a).
Their performance enhancement implies that the
current transformer-based (Vaswani et al., 2023)
LLMs can learn mathematical induction from the
large corpus of data.

Another research stream of data-driven training
is to utilize several existing LLMs to synthesize new
datasets (Yu et al., 2023; Toshniwal et al., 2024;
Yue et al., 2023) or to teach other models (Burns
et al., 2023; Luo et al., 2023). Their primary aim
is to curate a variety of math problems with rich
step-by-step solutions, enabling a LLM to effec-
tively learn the logic underlying the progression of
mathematical steps.

In this work, we introduce a new model based
on Llama-2, trained using our dataset. Drawing
inspiration from previous research, we have col-
lected a novel dataset for math problem-solving.
Our dataset collection methodology ensures that it
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mirrors the distribution of mathematical challenges
encountered in the real world. This model demon-
strates consistent performance improvements on
math problem-solving tasks. To benchmark its per-
formance, we conducted evaluations of our trained
models against the MATH and GSM8k datasets
(Hendrycks et al., 2021b; Cobbe et al., 2021b). Fur-
ther analysis of our dataset’s composition reveals
that the observed performance improvements align
with its distribution. The alignment of our dataset’s
distribution with the performance improvements
suggests that performance could be further en-
hanced by expanding our data. This implies that
as we enrich our dataset with a broader range of
problems, the model’s ability to tackle diverse math-
ematical tasks is likely to improve. It highlights the
importance of a comprehensive dataset for optimiz-
ing performance in math problem-solving tasks.

2. Dataset Construction

To construct a dataset of math problems with ex-
planatory solutions, we have utilized our question
answering platform, 1QANDA. Our platform serves
as a math question-and-answer app, designed to
bridge the gap between students facing mathemat-
ical challenges and teachers equipped to provide
solutions. The interactive environment allows stu-
dents to pose math problems, to which the plat-
form’s network of qualified teachers responds with
detailed answers, explanations, and step-by-step
guidance. Since the math problems are originated
from the users who pose a question to the plat-
form, the distribution of the problems in our dataset
reflects the diverse mathematical challenges en-
countered by students. To secure the broader di-
versity in solutions, we have collected two distinct
types of solutions offered by the platform: question
answering and rule-based math solver.

2.1. Rule-based Math Solver
Similar to the Sympy (Meurer et al., 2017), a python
library for symbolic mathematics, the platform pro-
vides a solution to a mathematical problem ex-
pressed through symbolic expressions. By adopt-
ing a rule-based approach, the solver ensures a
high degree of accuracy and reliability, offering so-
lutions that mimic the methodical process a human
may use. Moreover, it offers step-by-step solutions
to the given problems, thereby enabling a deeper
understanding of the problem-solving process. By
leveraging the platform, we have obtained detailed
solutions, which demonstrate the procedural steps
involved in resolving complex mathematical expres-
sions.

1https://mathpresso.com/en

Problem :
Solve the equation x+ 3

x+ 2
− x

x− 2
=

5x

x2 − 4
Solution :

If a(x)
b(x) = c(x) is valid, it is

{
a(x) = b(x)c(x)

b(x) ̸= 0


5x =

(
x2 − 4

)(x+ 3

x+ 2
− x

x− 2

)

x2 − 4 ̸= 0

Simplify the expression{
5x = −x− 6

x2 − 4 ̸= 0

Solve a solution to x{
x = −1

x2 − 4 ̸= 0

Substitute x = −1{
x = −1

(−1)
2 − 4 ̸= 0

Therefore, x = −1

(a)

Problem :
Given two sets X = {−1, 0, 1} and Y =
{−2,−1, 0, 1, 2}, there exists a function f from
X to Y . For every element x in X, when xf(x)
is a constant function, what is the value of
f(1) + f(−1)?
Solution :
Given xf(x) is a constant function, we have
xf(x) = c. When x = 0, we have 0 · f(0) = 0.
Therefore, c = 0. Hence, for all x, we have
xf(x) = 0, which implies f(x) = 0. Therefore,
f(1) + f(−1) = 0 + 0 = 0.

(b)

Figure 1: Data points sampled from our dataset.
Given math problems, their solutions are collected
from either (a) rule-based math solver and (b) ques-
tion answering. Rule-base solver provides detailed
step-by-step solutions, while the other covers more
complex problems

The enriched datasets offer a substantial ad-
vantage in training LLMs. The detailed solutions
are inherently superior for training purposes since
they encompass an extensive range of information
about mathematical concepts and the procedures
involved in problem-solving (Lightman et al., 2023;
Wang et al., 2024). Such an approach ensures the
models not to estimate the mathematical reasoning
but to replicate the logical deductions required to
solve complex problems. Consequently, these en-
riched training datasets are instrumental in enhanc-
ing the capability of LLMs to solve mathematical
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Training
Procedure Prealg. Algebra Intermediate

Algebra
Number
Theory

Counting &
Probability Geometry Precalculus

Level 1
Llama + M 59.3 64.4 50.0 40.0 38.5 31.6 42.1
Llama + Q + M 73.3 79.3 63.5 43.3 69.2 55.3 61.4
Llemma + M 80.2 85.2 69.2 63.3 61.5 57.9 49.1
Llemma + Q + M 81.4 87.4 75.0 56.7 64.1 57.9 64.9

Level 2
Llama + M 48.0 49.3 17.2 21.7 25.7 30.5 15.0
Llama + Q + M 64.4 74.6 35.9 39.1 37.6 47.6 28.3
Llemma + M 63.3 67.7 25.0 22.8 34.7 39.0 29.2
Llemma + Q + M 70.1 73.1 38.3 37.0 40.6 45.1 35.4

Level 3
Llama + M 35.3 34.5 7.7 14.8 13.0 14.7 2.4
Llama + Q + M 53.6 55.9 14.9 24.6 29.0 25.5 10.2
Llemma + M 50.5 54.8 12.3 24.6 32.0 29.4 17.3
Llemma + Q + M 52.7 69.0 21.0 24.6 36.0 39.2 21.3

Level 4
Llama + M 26.7 17.3 7.3 9.2 7.2 10.4 3.5
Llama + Q + M 41.4 49.8 8.9 11.3 13.5 13.6 6.1
Llemma + M 38.2 34.3 7.7 17.6 13.5 15.2 6.1
Llemma + Q + M 46.1 48.1 12.9 17.6 16.2 24.0 7.0

Level 5
Llama + M 9.3 8.8 1.4 5.8 1.6 1.5 0.0
Llama + Q + M 17.6 21.2 2.1 5.2 5.7 1.5 1.5
Llemma + M 19.7 20.9 2.9 5.2 4.9 3.0 4.4
Llemma + Q + M 21.8 30.6 3.6 5.2 8.1 3.8 3.0

Overall
Llama + M 32.6 29.7 9.4 13.3 13.5 14.0 8.8
Llama + Q + M 47.1 51.3 15.1 19.1 24.5 21.9 16.3
Llemma + M 46.5 46.8 13.2 19.1 23.6 22.3 17.6
Llemma + Q + M 50.8 56.9 18.9 21.1 27.4 28.0 21.3

Table 1: Model performance across different mathematical domains. Models trained with our dataset
show better performance in most of the mathematical domains. In the training procedure, (+Q) denotes
fine-tuning with our dataset collected through QANDA, and (+M) denotes fine-tuning with Metamath
dataset

problems.
Figure 1 (a) describes an exemplar data instance.

In each step of the solution, the solver provides
a brief explanation of the related concept before
proceeding with the actual calculation.

2.2. Question Answering

Once a user pose a math problem, the platform
searches from the database and curate several
problem-solution pairs that match the query ques-
tion. The database is constructed to aid students
in understanding mathematical concepts. It makes
the obtained problem and solution to be intrinsically
educationally effective; the solutions are structured
and detailed. These educational characteristics,

such as providing step-by-step explanations and
highlighting the underlying mathematical principles,
benefit the training procedure of LLMs as well.

Figure 1 (b) describes an exemplar data instance
collected through question answering. Comparing
to data collected through rule-based math solver,
data pairs gathered through question-answering
mechanisms reveals a notable difference in the
complexity. The problems accumulated through
question answering tend to require more complex
procedures to solve. It is trivial since we can easily
compose a math problem with multiple expressions.
This complexity demands a deeper understanding
of mathematical concepts and longer deduction pro-
cess. In other words, the dataset collection through
question answering not only diversifies the range
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of problems in the dataset but also enriches it with
challenges that necessitates advanced problem-
solving strategies.

3. Experiments

3.1. Model Training
We fine-tuned Llama-2 7B (Touvron et al., 2023)
and Llemma-2 (Azerbayev et al., 2023) 7B with our
dataset. Each data instance is presented in the
following prompt:

Problem:{math problem}
Solution:{ground truth solution}

To computationally evaluate performance in math
problem solving, it is crucial for the model to gen-
erate an answer that is parsable. Unfortunately,
as illustrated in Figure 1, achieving this is funda-
mentally challenging within our dataset, given that
the solutions were not created in a fully controlled
environment. To address this issue, we further
fine-tuned our trained model using the Metamath
dataset (Yu et al., 2023), enabling the model to
learn the generation of well-formatted outputs. For
a fair comparison, both the Llama-2 and Llemma-
2 models were also trained using the Metamath
dataset, utilizing the prompt described earlier.

3.2. Evaluation
To verify the effectiveness of our dataset, we
evaluated the performance of MATH datasets
(Hendrycks et al., 2021b). MATH is a challeng-
ing dataset designed to evaluate the mathematical
problem-solving capabilities of machine learning
models. It covers a wide array of domains, includ-
ing prealgebrea, algebra, number theory, counting,
probability, geometry, intermediate algebra, and
precalculus.

Table 1 shows the performance of our approach.
We break down the dataset into domains and levels
to examine detailed characteristics and trends. In
the training procedure, +Q denotes fine-tuning with
our dataset collected through QANDA, and +M de-
notes fine-tuning with Metamath dataset. Note that
every model undergoes fine-tuning with Metamath
dataset in the end. The table distinctly demon-
strates that the fine-tuning with our dataset (+Q)
significantly improves the original performance, in-
dicating a considerable improvement.

Here, it is noteworthy to focus on the difference
between Llama+O and Llemma model. Llemma is
initialized with CodeLlama (Rozière et al., 2024),
and trained with dataset named Proof-Pile-2 (Azer-
bayev et al., 2023). The dataset is composed of
code (Kocetkov et al., 2022), mathematical content
from web (Paster et al., 2023), and scientific papers

Figure 2: Domain composition of our dataset

(Computer, 2023). Our dataset, on the other hand,
is fully composed of mathematical problems and
their solutions.

3.3. Composition of Our Dataset
Interesting trends emerge in Algebra and Precalcu-
lus. In Algebra, the Llama+Q+M model consistently
outperforms the Llemma+M model across all diffi-
culty levels, except for the easiest set (Level 1). In
contrast, within Precalculus, the Llemma+M model
consistently outperforms Llama+Q+M, again with
the exception of the easiest set. This suggests that
the Llemma model has a stronger grasp of con-
cepts in calculus, whereas the Llama+Q model is
more adept at handling algebraic problems. Since
the major difference between the two models is
their training data, it is reasonable to consider that
the trends implies the compositional difference be-
tween Proof-Pile-2 and our datasets. Although not
as pronounced as in the case of Precalculus, Ta-
ble 1 also exhibits similar trends within the Geome-
try and Number Theory domains.

To explore the relationship between dataset com-
position and model performance, we categorized
the instances in our dataset based on the domains
present in the MATH dataset. Figure 2 illustrates
our dataset’s composition, reflecting the aforemen-
tioned trends. The majority of our dataset is clas-
sified under Algebra, Prealgebra, or Intermediate
Algebra, whereas less than 10% of the samples
falling into the Precalculus category. Additionally,
Figure 2 shows that Geometry and Number Theory
are the lesser-represented domains in our dataset.
This distribution aligns with the observed perfor-
mance trends.

The optimistic outlook based on this trend is that
we could enhance performance in domains beyond
algebra simply by collecting more data. However,
this approach may potentially compromise alge-
bra’s performance.

3.4. Overall Performance
While our investigation primarily concentrated on
how the composition of our dataset affects the per-
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Models GSM8k MATH

MAmmoTH 53.6 31.5
Metamath 66.5 19.8
Llemma + M 69.2 30.0
Mistral + M 77.7 28.2
ToRA 68.8 40.1
Llama + Q + M 66.2 31.4
Llemma + Q + M 71.0 36.1

Table 2: Overall performance of various models

formance improvements within their correspond-
ing domain, we also validated our methodology
by assessing overall performance. For this exper-
iment, we incorporated the GSM8k(Cobbe et al.,
2021b) dataset. The GSM8k dataset consists of
grade school math problems that require two to
eight steps to solve, involving elementary-level cal-
culations through basic arithmetic operations. For
each model, we fixed their size as 7B.

Table 2 presents a comparison of the overall per-
formance between our method and other models.
It is important to note that the Metamath model is
identical to Llama+M in Table 1. For both datasets,
our model (Llemma+Q+M) achieves the second-
highest performance. Our model notably excels in
the MATH dataset over other models, with the ex-
ception of ToRA (Gou et al., 2024). Given that ToRA
employs a tool-augmented, multi-step method, our
findings highlight the efficacy of our data-driven
approach.

4. Conclusion

This study has highlighted the potential of data-
driven approaches to mimic and augment human
cognitive processes in structured problem domains.
By training a novel Llama-2 based model with a spe-
cially curated dataset reflective of real-world math-
ematical challenges, we have demonstrated signifi-
cant advancements in the model’s ability to tackle
complex numerical tasks across a variety of math-
ematical domains. Our dataset, constructed from
a unique blend of rule-based solutions and human-
generated answers via a question-answering plat-
form, has proven to be beneficial in achieving these
improvements. The performance of our model, es-
pecially when compared against the MATH dataset,
validates the efficacy of our dataset in enhancing
the analytical capabilities of LLMs. The findings
from this research suggest that the integration of
more diverse and complex datasets would result in
better performing models in mathematical domains.
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Abstract
It has been found that Transformer-based language models have the ability to perform basic quantitative reasoning.
In this paper, we propose a method for studying how these models internally represent numerical data, and use our
proposal to analyze the ALBERT family of language models. Specifically, we extract the learned embeddings these
models use to represent tokens that correspond to numbers and ordinals, and subject these embeddings to Principal
Component Analysis (PCA). PCA results reveal that ALBERT models of different sizes, trained and initialized
separately, consistently learn to use the axes of greatest variation to represent the approximate ordering of various
numerical concepts. Numerals and their textual counterparts are represented in separate clusters, but increase
along the same direction in 2D space. Our findings illustrate that language models, trained purely to model text, can
intuit basic mathematical concepts, opening avenues for NLP applications that intersect with quantitative reasoning.

Keywords: Language models; Transformer-based models; Numerical data representation; Word embed-
dings; PCA; Numerals in NLP

1. Introduction

The Transformer architecture introduced by
Vaswani et al. (2017) has led to major advances
in computational linguistics. Transformer-based
models of language like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and ELECTRA (Clark et al., 2020) have ex-
celled in a range of tasks, from machine translation
(Lample et al., 2018; Gu et al., 2018) to question
answering (Yamada et al., 2020) and beyond. Stud-
ies have also evaluated these models’ numerical
reasoning, For example, Saxton et al. (2019) found
a Transformer-based language model to perform
at an E-grade level on a British math exam for
16-year-olds. Kalyan et al. (2021) subsequently
developed benchmarks for mathematical common-
sense reasoning to track the progress of models
in this respect, highlighting the growing interest in
this research area.

Despite demonstrable performance on numeri-
cal tasks, the origin of these abilities in text-trained
models, and the root of their numeracy and quan-
titative understanding, remain obscure. In this
paper, we aim to illuminate this aspect by ana-
lyzing the learned embeddings these models use
to represent lexical tokens internally. We study
how the models have learned to embed numerals
and their written representations, unearthing evi-
dence that various embedding vectors capture the
essence of numerical concepts. Instead of study-
ing whether the embeddings of different numbers
are distributed close together (like one might clus-
ter the embeddings of synonyms; cf. Mikolov et al.
(2013)), we thus consider how their representa-

tions differ, and how the axes of greatest variation
among these concepts relate to the intrinsic order-
ing and numeric value of the different tokens.

Our paper makes two contributions:
1. We propose a novel way to study internal nu-

merical cognition in language models.
2. We use our proposed method to investigate

how ALBERT encodes numerical and ordinal
information, and how this varies across dif-
ferent versions of ALBERT of various sizes,
independently trained.

Using our proposed method, we find:
• Trained ALBERT models consistently use pri-

mary principal component axes to denote or-
dering and spacing of numbers, ordinals, and
magnitude orders.

• The representations are closer together for
higher values, suggesting a logarithmic repre-
sentation of numbers.

• Numerals and their textual counterparts are
represented in separate clusters, but increase
along the same direction in 2D PCA space.

2. Background

In this section, we give a background on numeracy
in language models and highlight previous works
investigating their internal token representations.

Numeracy is critical for complex reasoning in
NLP. Investigations into models’ numerical reason-
ing abilities (Wallace et al., 2019; Jin et al., 2021;
Thawani et al., 2021; Duan et al., 2021; Sakamoto
and Aizawa, 2021) have shown promising enhance-
ments in model numeracy. Further studies (Kim
et al., 2021; Lin et al., 2020; Shah et al., 2023) have
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Figure 1: Visualization of the two first principal components of word embeddings for numbers zero through
twenty and their textual counterparts in two ALBERT models.

explored models’ abilities to extrapolate and their
numerical commonsense knowledge. In conjunc-
tion with these explorations, recent methodologies
(Sundararaman et al., 2022; Saeed and Papotti,
2022; Jiang et al., 2020; Liang et al., 2022) intro-
duce a variety of approaches to improve numerical
representation and processing, showing ongoing
efforts to refine numeracy in language models.

Internally, Transformers use self-attention to cap-
ture dependencies between all pairs of input vec-
tors. The models use a variety of mechanisms
to represent positional information for sequential
input data. One common approach, used already
in Vaswani et al. (2017), is to encode each to-
ken wi as a vector that is the sum of a content-
embedding vector (that depends only on the token
wi) and a position-encoding vector (that depends
only on i, the position in the input sequence). The
position-dependence mechanisms either explicitly
represent the inherent ordering of input symbols,
or, when they do not, have been shown to learn
positional representations that capture both this
ordering and the translation equivariance of text
sequences (Wennberg and Henter, 2021).

Other research (e.g., Mikolov et al., 2013; Vylo-
mova et al., 2016; Durrani et al., 2022) has sought
to shed light on information processing in neural
language models by analyzing their learned em-
beddings of different words, concepts, and lexical
tokens. A consistent finding is that synonyms clus-
ter together in latent space, meaning that linguis-
tic similarity is reflected internally in the learned
model. In this work, we apply a similar analysis, but
to concepts that are numerical rather than linguistic.
The key difference between our present study and
prior work on language-model numeracy is that
we look directly at the internal embeddings that
Transformer-based language models have learned
for numerical concepts, and investigate to what
extent differences between these embeddings are
reflective of differences in numerical value between
the mathematical concepts they represent.

3. Experiments

We now describe the method and results of our
study of the word embeddings inside eight different
Transformer-based language models, namely the
ALBERT family (Lan et al., 2020). We choose to
study ALBERT because it is available in four differ-
ent model sizes (starting at “base” and going up
to “xxlarge”), each with checkpoints at two different
points during training (“v1” vs. ”v2”, with v2 having
been trained for longer), allowing for a compari-
son of embeddings in different models and their
evolution. In our analysis, we specifically examine
numerical ranges from zero to twenty and one to
one hundred, not only to cover a broad spectrum
of basic and multi-digit numerals but also because
these numbers are consistently tokenized as single
tokens by the ALBERT models (Lan et al., 2020).
This choice aligns with our objective to study un-
ambiguous, uncontextualized numerical represen-
tations within the model. Many submissions to the
GLUE (Wang et al., 2019) and SuperGLUE (Wang
et al., 2020) leaderboards are descendants of the
ALBERT architecture.

3.1. Analysis Methodology

All the analyses in this paper follow the same un-
derlying recipe:

First, we extract uncontextualized embeddings
for selected tokens (single-token words only).
These word embeddings are prior to position em-
bedding addition or self-attention layer processing.

We then conduct PCA on these embeddings to
identify principal variation axes. This is a linear
dimensionality reduction technique, meaning that
linear structures like a number line are preserved.

Lastly, we plot embeddings along principal com-
ponent axes to assess if they capture mathematical
concept ordering and if distances reflect mathemat-
ical relationships, like proximity of similar numbers.
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Figure 2: The first and second PCA components for all numbers 1 to 100 in two different ALBERT models.

3.2. Numerical vs. Lexical Embedding

We first compare the learned embeddings of the
numbers zero through twenty, juxtaposed with their
word representations (e.g., “7” versus “seven”),
across different ALBERT models. The results of
applying our PCA-based analysis to the resulting
42 different representations is visualized in Figure
1 for the smallest and largest ALBERT models (the
other models yield very similar-looking plots).

A number of observations are immediately ap-
parent in the figure:

1. Numbers and words representing occupy two
distinct, elongated clusters.

2. Within each cluster, there is a direction along
which numerical values generally increase. In
other words, the values are mostly in order,
and we (approximately) recover a number line
in the PCA space for each cluster (numbers
vs. number words).

3. The direction along which the values increase
is the same for both numbers and number
words. It would thus easily be possible, par-
ticularly for the bigger model, to project the
embeddings onto a single axis in PCA space
that approximates the number line.

4. When values exceed ten, numbers begin to
bunch up more.

The fact that the two different kinds of embeddings
can be projected onto something like the number
line strongly suggests a learned ability to link nu-
merical symbols to their word forms, and to their
approximate value and ordering.

We can also make some minor observations
about individual numbers, such as the positions of
the numbers and words for zero being idiosyncratic,
and (more curiously) that numbers and words for
twenty also consistently are out of place.

3.3. Numbers 1 Through 100

Next, we performed the same analysis on integers
0 to 100 (excluding word forms) and charted their

2D PCA distribution for the same two ALBERT
models. The findings, displayed in Figure 2, mirror
those from other models. We observe that:

1. As numbers increase, they approximately
trace out a horseshoe shape in 2D space.

2. Larger numbers gradually compress closer
together, especially for the larger model.

3. Rounded numbers (i.e., those ending in zero)
lie closer to middle of the space. This is more
visible for the smaller model, but true for both.
25, 75, and numbers with many powers of two
are also closer to the middle. 100, with two
zeroes, sticks out particularly much.

The most important conclusion is that the ability to
use embeddings to order numbers by size persists
into larger numbers, though the spacing gets more
compressed as the numerical values increase.

3.4. Representing Orders of Magnitude

Having looked at numbers up to 100, we also stud-
ied the embeddings of words for different orders of
magnitude. Specifically, we performed PCA on the
embedding representations of the words “hundred,”
“thousand,” “million,” “billion,” and “trillion.” Figure 3
shows these words’ positions on the first principal
axis across eight ALBERT models. We see that:

1. The words always respect the expected order-
ing based on their numerical value.

2. The separation between “hundred” and “thou-
sand” is consistently the shortest, typically by
some margin. This evokes comparisons to the
logarithmic axis at the bottom of the figure.

There is a close call between “hundred” and “thou-
sand” for the xlarge model, but the separation in-
creases with longer training (model v1 vs. v2).

3.5. Words for Ordinals

As our last experiment, we visualize the repre-
sentation of words for ordinals rather than nu-
merals. Specifically, we apply the same PCA-
based method to the embeddings of the terms
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Figure 3: Orders-of-magnitude word embeddings
visualized along the first PCA axis across eight
ALBERT configurations. Axes have been affinely
transformed so that the first and last embeddings
line up vertically. The last row shows the concepts
arranged on a logarithmic axis for comparison.
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Figure 4: Visualization of ordinal term embeddings
along the first PCA axis across eight ALBERT con-
figurations. The axes have been affinely trans-
formed so that the first and last embeddings line
up vertically. The last row shows the concepts ar-
ranged on a logarithmic axis for comparison.

“first” through “tenth” and visualize the first princi-
pal axis for all eight ALBERT models, like in the
previous section. The results are shown in Figure
4, from which we make the following observations:

1. Ordinals consistently appear in the correct or-
der along the principal axis of variation up until
and including “seventh”.

2. The distance between ordinals gradually de-
creases as the numbers increase, with the last
three ordinals generally being close together
and often out of order.

Embeddings do not become obviously better with
longer training, especially as they already mostly
appear in the correct order for the v1 models.

4. Discussion

Reviewing all four analyses, it’s evident that AL-
BERT models’ internal representation of various
numbers and numerical concepts in the embedding

layer directly reflects their numerical value. The
representations are closer to a logarithmic than
a linear scale. These trends are very consistent
across models of different sizes and trained for
different amounts of time.

While the fact that Transformer-based language
models can support simple mathematical reason-
ing has indicated some level of numeracy within
the model, we can now open the black box and see
that numerical knowledge evident within the basic
vector representations inside the model. It is not
at all obvious that reasonable representations of
numerical concepts would arise in these models,
given that they are pre-trained exclusively on text to
optimize standard language-modeling objectives,
with no direct mathematical training.

The observation that larger numbers cluster
closer, hinting at logarithmic scaling, and the
unique behavior of round numbers in Figure 2, may
stem from their occurrence frequency in data, align-
ing with Benford’s law (Benford, 1938). This law
suggests that smaller leading digits are more com-
mon in real-world numerical data, yielding a near
uniform distribution of digits on a logarithmic scale.

A notable limitation of our study is its focus on
single-token numbers, which excludes decimals
and larger numerical values from our analysis.

5. Conclusion

We have introduced a novel approach to ana-
lyzing the quality of numerical representations
in language models. This offers insights into
model numeracy, which matters for developing
improved numerical-understanding capabilities for
Transformer-based language models.

We use our method to investigate how ALBERT,
an important Transformer-based language model
architecture, represents different numerical and
ordinal inputs. Our results demonstrate a clear
concept of numerical ordering within the vector
representations inside the model. Representations
of larger numbers fall closer together, suggestive
of models using logarithmic axis representations
internally. The findings are very robust, in that they
appear essentially unchanged across eight differ-
ent models that differ in size and training duration.

Going beyond numerical order, future work
should seek to quantify to what extent learned in-
ternal structures reflect interval and ratio scales, as
well as to what extent factors like model architec-
ture and term frequency in the corpus contribute
to (or otherwise influence) these structures. An-
other goal is to extend the analysis to multi-token
numbers and mathematical operators, and con-
nect with emerging understanding of how models
then perform stepwise mathematical processing
in latent space (Lee et al., 2019; Valentino et al.,
2023).
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