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Abstract
Oracle bone script (OBS) is the earliest writ-
ing system in China, which is of great value in
the improvement of archaeology and Chinese
cultural history. However, there are some prob-
lems such as the lack of labels and the difficulty
to distinguish the glyphs from the background
of OBS, which makes the automatic recogni-
tion of OBS in the real world not achieve the
satisfactory effect. In this paper, we propose a
character recognition method based on an unsu-
pervised domain adaptive network (UFCNet).
Firstly, a convolutional attention fusion module
(CAFM) is designed in the encoder to obtain
more global features through multi-layer fea-
ture fusion. Second, we construct a Fourier
transform (FT) module that focuses on the dif-
ferences between glyphs and backgrounds. Fi-
nally, to further improve the network’s ability to
recognize character edges, we introduce a ker-
nel norm-constrained loss function. Extensive
experiments perform on the Oracle-241 dataset
show that the proposed method is superior to
other adaptive methods. The code will be avail-
able at https://github.com/zhouynan/UFCNet.

1 Introduction

The oracle bone inscriptions (OBIs) mainly refer to
the OBIs of Yinxu, which are carved on tortoises in
the Shang Dynasty. It is the earliest self-contained
writing system in China,which is of great signifi-
cance to the improvement of Chinese cultural his-
tory and the study of the formation and evolution
of Chinese characters (Xie et al., 2020). The oracle
bone character (OBC) image of rubbings is mainly
the original image obtained by experts on the un-
earthed tortoise shell, animal bone, and other text
carriers. As the oracle bones have been buried un-
derground for a long time, they are badly damaged
or contaminated, and there is serious noise (Huang
et al., 2019), which makes it very challenging to
recognize OBCs.
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Early research methods mainly combine graph
theory and topological properties. (Li and Zhou,
1996) proposed an OBIs recognition method based
on graph theory. They abstracted oracle into an
undirected graph composed of only points and
lines, and extracted its topological features. (Li
and Zhou, 1996) introduced the information of the
adjacent points of the endpoint, and improved the
recognition accuracy through the continuous recog-
nition of multi-level feature coding. However, these
methods cannot meet the real-world oracle recog-
nition, which requires a lot of manpower and time.

To help with the excavation of new oracle bones
and the identification of unseen characters, the ad-
vent of deep neural networks has a great impact
on the recognition of oracle bone character (OBC)
images. (Zhang et al., 2019) used CNNs to map
character images into Euclidean space for classifi-
cation by nearest neighbor rules. (Guo et al., 2015)
utilized a low-level representation associated with
Gabor and an intermediate representation associ-
ated with a sparse encoder and combines it with
a CNN-based model. However, training a depth
model requires a large number of labeled samples.
(Wang et al., 2022) proposed an unsupervised struc-
tured Texture separation network (STSN) for Or-
acle identification and a dataset of 241 classes of
Oracle-241 (Wang et al., 2022) for unsupervised
identification. They took handprint characters tran-
scribed by experts with high resolution and clean
backgrounds as source domains. Accordingly, the
original oracle character (scanned image) is taken
as the target domains. They have achieved good
results by finding a domain invariant feature space
to align the distribution between two domains.

In this paper, we propose a network (UFCNet)
combining Fourier transform and convolutional at-
tention for oracle character recognition. The convo-
lution attention fusion module (CAFM) combines
deep and shallow features to obtain more global
information and a better position location of char-
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acters. Additionally, we further design the Fourier
transform (FT) module that converts the image
from the spatial domain to the frequency domain,
aiming to capture the edge details of the glyphs
more efficiently and provide rich functionality for
the CAFM. We utilize the FT module to capture
the high-frequency information of character images
and extract rich edge information. We also intro-
duce a kernel norm-constrained loss function to
improve the network’s discriminative performance
on edges. We conduct extensive experiments on
the Oracle-241 dataset, and the results demonstrate
that our network exhibits better recognition perfor-
mance in the realm of unsupervised adaptation.

Our main contributions are summarized as fol-
lows:

• We deploy CAFM can better extract and fuse
features at different levels, and establish a
global relationship between multi-layer fea-
tures.

• We design the FT module, the OBIs are con-
verted to the frequency domain, which can
extract the edge features, and provide more
effective detail features for the CAFM.

• To validate the effectiveness of our method,
we conduct extensive experiments on the
Oracle-241 dataset and results demonstrate
that UFCNet has better classification accuracy
than the existing state-of-the-art (SOTA) un-
supervised OBIs recognition method STSN.

2 Related work

2.1 Oracle character recognition
The recognition and deciphering of oracle char-
acters is one of the major topics in the study of
oracle bones. With the development of technol-
ogy, many researchers have tried to recognize ora-
cle characters by image processing. For example,
by using non-directed graphs, DNA methods, and
template matching (Lin et al., 2016). The earli-
est studies were (Zhou et al., 1995), (Li and Woo,
2000), (Gu, 2016) which considered oracle fea-
tures as an undirected graph and used its topologi-
cal properties as features for classification. (Li et
al., 2011) proposed an algorithm based on graph
isomorphism. They transformed inscriptions into
labeled graphs and used an adjacency matrix of the
labeled graphs to encode the inscriptions. (Lv et
al., 2010) proposed a Fourier descriptor based on

curvature histogram to identify OBIs. (Guo et al.,
2015) regarded the oracle bone recognition prob-
lem as a sketch recognition task and constructed a
hierarchical representation for it.

In addition, (Liu and Liu, 2017) extracted block
histogram-based features and applied support vec-
tor machines (SVM) to recognize characters. (Gu
et al., 2008) believed that the topological structure
of OBIs was relatively stable, and calculated the
fractal dimension of OBIs according to their frac-
tal characteristics. However, most of these meth-
ods are complex large-scale systems composed of
multi-layer features, so these methods mainly rely
on artificial feature design, which is highly sub-
jective. In particular, they are mostly suitable for
small-scale datasets, not for large-scale dataset de-
sign and evaluation.

In recent years, convolutional neural networks
(CNNs) have made great progress in some com-
puter vision tasks and have been introduced into
the recognition of oracle characters. (Huang et al.,
2019) published a dataset of scanned oracle char-
acters called OBC306 and proposed a CNN-based
evaluation of this dataset as a benchmark, (Guo
et al., 2015) aimed to use a CNN-based learning
(Wang and Deng, 2018) model to represent ora-
cle characters. They generated a dataset named
Oracle-20K and trained and tested it with the pro-
posed CNN. However, they did not discuss the
real images of the OBIs and their features such as
noise, fracture, and non-uniformity. (Zhang et al.,
2019) proposed a deep metric learning-based near-
est neighbor classification for oracle recognition
and trained a DenseNet (Huang et al., 2017) with
triplet state loss to classify manually printed and
scanned dataset in a supervised manner. However,
the difference in distribution between handprint
and scanned characters is not taken into account.

2.2 Unsupervised domain adaptation
Cross-domain tasks are often encountered in com-
puter vision and pattern recognition, there are two
types of data, one with labeled information and the
other without or little labeled information. To dis-
card the target labeled data, unsupervised domain
adaptation (UDA) was proposed in the literature
(Wang and Deng, 2018) to solve the problem of
domain drift between the labeled source domain
and unlabeled target domain.

Popular UDA methods (Long et al., 2015), (Peng
et al., 2019) align distributions by moment match-
ing. For example, maximum mean difference
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Figure 1: The overall structure of the proposed UFCNet includes a shared encoder En for extracting font, which uses
RseNet-18 as the backbone network, and an independent encoder Ep. A generator G, a classifier and discriminators
DF and DI for distinguishing features.

(MMD) (Long et al., 2015), (Chen et al., 2019)
were used to reduce distribution mismatch. With
a labeled source dataset and an unlabeled target
dataset, their main goal is to train the recognition
model on the source domain dataset so that it can
be generalized to the target domain.

Another common approach to address unsu-
pervised domain adaptation is through adver-
sarial learning strategies (Yaroslav and Victor,
2015),(Eric et al., 2017) where the differences
between domains are minimized by jointly train-
ing a network of recognizers and a network
of domain discriminators. Adversarial learning
(Yaroslav and Victor, 2015), (Long et al., 2018)
were widely used for alignment of source and tar-
get domains. Domain adversarial neural networks
(DANN)(Yaroslav et al., 2016) made it impossible
for domain classifiers to predict the domain labels
of features by the gradient inversion layer (GRL),
making the distribution of features on two domains
similar. Conditional adversarial domain adaptation
(CDAN)(Long et al., 2018) built an adversarial
adaptation model based on the discriminative in-
formation passed in the classifier prediction. In
both methods, a subnetwork called a domain dis-
criminator is used, trained to distinguish between
source and target dataset and to learn depth features
to confuse the discriminator in domain adversarial
training.

If a model is trained directly in the source do-
main and applied to the target domain, the results
are often poor because the feature distributions of
the two may be somewhat different. (Wang et al.,
2022) proposed the use of UDA to transfer knowl-
edge from easily accessible handprint dataset to the

scanned domain. They used a secure distributed
alignment in the feature space associated with the
structure (glyphs), which can mitigate the negative
effects of severe noise and wear and tear. Second,
with the idea of Generative Adversarial Networks
(GANs), they designed a generator and duplex dis-
criminator to realize the exchange of learned tex-
ture (background) information between any pair
of images to transform the image. This approach
successfully transfers the knowledge of handprint
oracle character recognition to the scanned dataset
and improves the recognition performance.

3 Methods

The UFCNet network proposed in this paper is
shown in Figure 1. It adopts the unsupervised idea
of STSN to transfer the knowledge of handprint
oracle character recognition to scanned dataset.
It consists of three encoders, one of which is a
glyph-sharing encoder En for extracting both hand-
print and scanned characters. It is a ResNet-18
pre-trained on the ImageNet dataset as a structural
encoder. The other two are independent encoders
Ep used to extract the background features of hand-
print and scanned characters. Specifically, Ep con-
sists of one convolution unit with a kernel size of
7x7 (convolution, BatchNormalization, and ReLU)
and four convolution units with a kernel size of
3, CAFM and FT. The CAFM can cascade the
high-level and low-level features of handprint and
scanned images to obtain rich global features. The
FT module can capture more edge features of char-
acters by using the advantage of converting the
image to the frequency domain. Alternatively, it in-
cludes a generator G, a feature-level discriminator
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Generator(G)

Input:fn, fp

Deconv(k4n256s2), IN, Relu, ConvBlock(k3n128s1)
Deconv(k4n128s2), IN, Relu, ConvBlock(k3n64s1)
Deconv(k4n64s2), IN, Relu, ConvBlock(k3n32s1)
Deconv(k4n32s2), IN, Relu, ConvBlock(k3n32s1)1x2

Conv(k3n3s1)Tanh
Output: yss/yst/yts/ytt

Table 1: Network architecture of the generator is used
for oracle characters recognition.

DF , two image-level discriminators {DIs, DIt}
and a classifier that is finally used to classify the
recognized scanned characters. For the discrimi-
nators of images and features, the discriminative
network structure uses in this paper is detailed in
Table 1 and Table 2.

3.1 Convolutional attention fusion module

To get rich features, we try to fully mine the global
and local information of the glyph to improve the
dependency extraction of the glyph in the image.
We pass the starting image � 2 RH⇥W⇥3 through
three multi-scale feature maps (i.e., S0

1, S0
2 and S0

3)
generated by serialized convolution blocks at differ-
ent stages. Among these feature maps, S0

1 and S0
2

provide detailed information about the appearance
of oracle characters, while S0

3 provides high-level
features. Specifically, we consider F as a convo-
lutional unit containing 3 ⇥ 3 convolution, batch
normalization (Sergey and Christian, 2015), and
ReLU (Xavier et al., 2015). As shown in Figure 2.
CAFM is divided into three parts.

Firstly, for the high-level feature S0
3, we use an

upsampling operation to make the highest-level fea-
ture maps S0

3 and S0
2 have the same size. In this

paper, we use the convolutional operation units F1
and F2 with kernel size 3 ⇥ 3 to provide the re-
quired information for the network and filter out
the unnecessary background texture noise, get the
results S31 and S32, multiply S31 with S0

2, this can
establish a global relationship between multi-layer
features. And input the results obtained from the
multiplication into the channel and spatial attention
model (CSAM) to get C1. CSAM utilizes chan-
nel and spatial weighting on these basic features
to better focus on interdependence between some
features on channels and space to improve the sen-
sitivity of the model to channels as well as spatial
features. Denote the current process as Eq.1.

Discriminator(DI ) Discriminator(DF )

Conv(k6n64s2), IN, Relu(0.2) Linear(1024), Relu
Conv(k6n128s2), IN, Relu(0.2) Dropout(0.5)
Conv(k6n256s2), IN, Relu(0.2) Linear(1024), Relu
Conv(k6n256s2), IN, Relu(0.2) Dropout(0.5)

Linear(1) Linear(1), Sigmoid
Output: Real/Fake Output: Source/Target

Table 2: The discriminator is used for the network ar-
chitecture Identify.

8
>>><
>>>:

S31 = F1 [U (S0
3)]

S32 = F2 [U (S0
3)]

S22 = F4 [U (S0
2)]

C1 = CSM (S31 ⇥ S0
2)

(1)

Secondly, for the features S0
2 and S0

1 in the lower
two layers, we also use the same way of processing
the higher-level features by performing convolu-
tional upsampling operations on S0

2 and S0
3 respec-

tively to reach the same size as S0
1. By multiplying

the three features, we can build global features be-
tween multiple layers of features. The details of the
low-level features are added to the high level after
using convolutional attention to CSM to obtain C2.
This process is denoted as Eq.2.

C2 = CSM
�
F3

⇥
U
�
S0

3

�⇤
⇥ S0

1

 
(2)

Finally, we pass the feature through CSM and
smoothly concatenate the resulting C1 with S32,
and the feature is mapped to two convolutional
units (F5 and F6). Due to the potential loss of
crucial detail information during the convolution
process, and considering that C2 has already ac-
quired rich local features following the CSM, we
opt to integrate the output of the convolution unit
with C2. This fusion strategy effectively harnesses
some of the original structural information, enhanc-
ing the overall feature representation. Finally, we
input the connected feature maps into F for dimen-
sionality reduction to get the result T1, which is
also the output of CAFM.

3.2 Fourier transform module
The discrete Fourier transform plays an important
role in image processing and pattern recognition
as an effective computational tool. Several studies
(Justin et al., 2016) , (Leon A et al., 2015) have
shown that higher feature layers are beneficial in
maintaining structural information, while lower fea-
ture layers help to maintain what is associated with
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Figure 2: An architecture that passes shallow features
into deep features and merges them.

texture. However, in the scanned dataset, it is dif-
ficult to distinguish the edge outline of the font
because of the similarity between the characters
and the background, which makes it difficult to
identify the oracle characters accurately. Studies
have shown that Fourier transform method can ob-
tain high-frequency information of the object (the
edge of the object). At the same time, compared
with the spatial domain filtering with large number
of cores, frequency domain filtering has obvious
advantages. Therefore, we further consider to trans-
fer the image recognition of text to the frequency
domain for more detailed feature extraction.

In particular, high-pass filtering can make high-
frequency components unimpeded, allowing only
high-frequency features to be transmitted, and sup-
pressing low frequencies. The high frequencies in
the frequency domain correspond to the Outlines
(edges) of the objects in the image. Therefore, FT
combines with Gaussian filter is used to extract
rich edge information of the oracle bone text image
in the frequency domain, so that background pix-
els and text pixels can be effectively distinguished.
The FT module is structured as shown in Figure 3.

It is worth noting that the global feature is ob-
tained by aggregation at the bottom of the encoder.
We transform global feature to a single-line grey-
scale image, performed a two-dimensional discrete
FT, and obtained a frequency domain map.

After the discrete FT, it is transmitted to the
center of the spectrum graph to obtain the low-
frequency information. The number of frequencies
of an image in the frequency domain corresponds
to the number of pixels of that image in the time
domain, indicating that the image has the same
number of dimensions in the time and frequency
domains. For an input grey-scale image of size

Figure 3: The structure of fourier transform module.

H1 ⇥ W1, the two-dimensional DFT is expressed
as Eq.3.

F (k, l) =
1

H1W1

H1�1X

c=0

W1�1X

d=0

f (c, d) e
�j 2⇡

H1
kc

e
�j 2⇡

W1
ld

(3)

The discrete function is for the spatial domain
image. We use a combination of Gaussian filter
and Fourier transform to extract rich edge infor-
mation in the frequency domain. Notably, we set
the radius of the circular filter to 0.5, which can
prevent the loss of details after image reconstruc-
tion. Where F (0, 0) shows the lowest frequency
and F (H1 � 1, W1 � 1) is the highest frequency.
Then, the high-frequency portion is processed us-
ing the Fourier inverse transform to obtain high-
frequency images to explicitly model the depen-
dencies between channels. It can be written as
Eq.4.

f (c, d) =
1

H1W1

H1�1X

k=0

W1�1X

l=0

F (k, l) e
j 2⇡

H1
kc

e
j 2⇡

W1
ld (4)

3.3 Loss function

To generate more realistic OBCs, the following
perceptual loss (lpre) (Wang et al., 2022) and re-
construction loss (lrec) (Wang et al., 2022) are in-
troduced in this paper to impose constraints on the
structural similarity and texture similarity during
image reconstruction. The first part, perceptual
loss, constraints yst to be similar to yt in texture;
it also requires yst to be similar to ys in structure.
A similar constraint is imposed on the transformed
image yts. The second part of the reconstruction
loss ensures that the reconstructed images yss and
ytt should be the same as the original input images
ys and yt. In addition, we apply the mean square
loss (MSE) and the cross entropy loss function
CrossEntorpyLoss.

In particular, we also propose a key loss function
lbcem, which is a loss function based on BCELoss.
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Specifically, we introduce the nuclear norm con-
straint BNM (Leon A et al., 2015) to improve the
edge discrimination ability of the network. In the
case of insufficient labels, the performance of the
network on the decision boundary will be degraded.
To improve discriminability, we introduce nuclear
norm maximization to improve target prediction
ability. Experiments show that when the weighting
factor is 0.5, BNM enables the network to obtain
the optimal result for the discrimination of the tar-
get domain edge that lacks labels. So the total loss
of our lbcem is Eq.5.

lbcem = lbce � lBNM (5)

Thus, the overall loss in this paper is Eq.6.

lloss = lmse + lce + lpre + lrec + lbcem (6)

4 Experiment

4.1 Datasets
In this section, we use the Oracle dataset of Oracle-
241 for character recognition, using our network to
transfer knowledge from the handprint data to the
scanned data. Oracle-241 contains 78,565 hand-
print and scanned characters in 241 categories. The
handprint samples used for training and the unla-
beled scan samples are 10861 and 50168, respec-
tively. The dataset use for testing contains 3730
handprint data and 13806 scan data. As shown in
Table 3.

4.2 Implementation details
The proposed method uses Pytorch as a frame-
work and runs on a single NVIDIA GeForce GTX
3090Ti 24G GPU. We perform 150,000 iterations
on data with a batch size of 16. For preprocessing,
we randomly crop and flip the training samples,
setting the weight decay and initial learning rate
to 5e-4 and 2.5e-4, respectively. This paper fol-
lows standard protocols for unsupervised domain
adaptation, e.g. (Yaroslav et al., 2016), (Long et al.,
2018). Train with all marked source characters and
all unmarked target characters. To quantitatively
evaluate the recognition performance of UFCNet
on handprint and scan datasets, classification accu-
racy is used as the evaluation metric in this paper,
and the calculation method is as follows Eq.7.

ACC =
TP + FN

TP + TN + FP + FN
(7)

Where TP and TN represent the number of pixels
and background texture pixels of correctly identi-
fied oracle font structure, respectively. Similarly,

Figure 4: Eight images are misclassified with the
"single-source" model, but our model classified them
correctly.

Train Test

handprint 10861 3730
Scan 50168 13806

Table 3: Statistics from the ORACLE-241 dataset.

FP represents a background pixel incorrectly iden-
tified as an oracle glyph structure, while FN rep-
resents an oracle glyph structure pixel incorrectly
predicted as a background pixel.

4.3 Comparative experiment

To demonstrate the effectiveness of our network,
we compare the UFCNet with some of the meth-
ods used to identify (Huang et al., 2019). Since
they only use handprint samples to train the net-
work model, the model trained on the source do-
main has no adaptation, they are referred to as "
single-source " models in this paper. In addition,
we compare with other SOTA adaptive methods for
image classification, such as CDAN, DANN, BSP
(Chen et al., 2019), and GVB (Cui et al., 2020). All
of these data are used with ResNet-18 as the back-
bone and experimented in the same environment to
make a fair comparison.

Method Accuracy (%)

Handprint Scan

ResNet 94.9 2.9

CDAN 86.5 37.8
DANN 88.7 31.4

BSP 91.7 33.7
GVB 87.8 36.8
STSN 92.2 44.9
Ours 94.7 56.5

Table 4: Source and target Accuracy (MEAN %) on
ORACLE-241 dataset is statistically compared with var-
ious state-of-the-art (SOTA) methods. The best numbers
are represented in bold.
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Figure 5: The example samples which are misclassified by UFCNet. For each set of characters, the left, middle,
and right images represent the scan sample, model prediction, and ground-truth (GT), respectively. (a) represents
characters that look similar, (b) denotes characters that contain heavy noise, and (c) is heavily polluted or occlusion
characters.

We can see from the results in Table 4. Firstly,
training on handprint dataset and testing on the
same domain, the model trained and tested only on
the source domain model can obtain higher accu-
racy. When directly apply to scanned dataset, the
model’s performance undergoes a marked degrada-
tion. Figure 4 shows some example images that are
misclassified by the "single-source" model but cor-
rectly classified by our model. From these results,
we can find that the "single-source" model has dif-
ficulty in identifying scanned images with severe
noise and contaminated wear, while our model can
successfully identify them. Our method in this pa-
per transfers the knowledge from handprint dataset
to scanned dataset by unsupervised domain trans-
fer, and better results can be obtained on scanned
dataset.

Secondly, we note that although the existing un-
supervised domain adaptation methods can use do-
main invariant features to improve the performance
of the target domain, this phenomenon illustrates
the importance of mitigating domain transfer. How-
ever, if this method does not consider the texture
feature information contained in the source domain
and the target domain, it is still difficult to align
the entire source domain and the target domain.
In addition, the characteristics of having two do-
mains meanwhile will also have a certain degree
of negative impact on alignment, thus affecting the
performance of the two domains. GVB uses a fully
connected bridge to model domain-specific parts.
Compared with the single domain method, the suc-
cess rate of GVB for scanning sample recognition
is 36.8%. However, the simple structure of the
bridge makes it difficult to capture the characteris-
tics of different fields very well.

Finally, DANN does not consider the relation-
ship between samples and labels, but only directly
connects samples and labels to form a higher-
dimensional vector. This approach will hurt distin-
guishing the source domain and the target domain.
Compared with DANN, CDAN has improved the
scanned dataset by 6.4%. CDAN introduces sample
weighting in the discriminator for both the source
and target domains. As the classifier converges,
the weight assigned to source domain samples will
gradually approach unity, leading to equal weight-
ing for source samples. Although BSP applies the
singular value decomposition method to obtain the
maximum k singular values of the source and target
eigenmatrices, respectively. The BSP is utilized as
the regularization term in these maximum k singu-
lar values. Nevertheless, due to the discrepancies
between domains, the eigenvectors might not re-
ceive equal contributions from the source and target
domains, potentially leading to distortions.

In particular, for the classical adaptive models
CDAN and DANN, benefiting from the joint adap-
tation of STSN, pick-up entanglement and transfor-
mation and freedom from contamination by back-
ground textures during the adaptive process, our
network model’s improvements on top of them are
more advantageous for the recognition and classifi-
cation of scanned dataset. Inspired by the Fourier
transform, detailed features of the character struc-
ture are extracted from a frequency domain per-
spective, especially the edge part of high frequency.
In addition, a convolutional attention module is in-
troduced to extract more comprehensive features at
the encoder

However, due to the existence of some similar
characters, the model classification fails. For ex-
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Method Accuracy (%)

Handprint Scan

Baseline 92.2 44.9

Baseline+CAFM 93.2 50.7
Baseline+CAFM+FT 94.6 54.6
Baseline+CAFM+FT+bcem 94.7 56.5

Table 5: Statistical comparison of ablation experiments
of two key components in UFCNet. CAFM stands for
convolution attention fusion module. FT stands for
Fourier transform module.

ample, the characteristics of prediction and ground-
truth (GT) categories differ only in a few details.
Secondly, as shown in Figure 5, severe noise, se-
vere image degradation, even for humans, there are
certain challenges.

4.4 Ablation experiments

To verify the experimental effectiveness of each
block in our network, we conduct ablation exper-
iments on UFCNet. The baseline network is a
U-shaped codec structure where the private en-
coder consists of one convolution unit with a kernel
size of 7x7 (convolution, BatchNormalization, and
ReLU) and four convolution units with a kernel
size of 3. After each convolution, the input feature
is downsampled twice, the size of the feature map
is reduced, and then it is re-amplified through the
upsampling operation, which is used to transfer in-
formation between the encoder and the decoder, so
as to retain more detailed information. Then the av-
erage pooling operation is performed to reduce the
noise effect of irrelevant features. We add a convo-
lutional attention module and a Fourier transform
module to this and tested the baseline+CAFM and
baseline+FT and loss function on dataset Oracle-
241, respectively. All the ablation experiments are
performed in the same computational environment.
The test results are shown in Table 5.

Effectiveness of CAFM: Compared to the base
network, the performance optimization of adding
CAFM, especially in the classification accuracy
of the scanned dataset, increased by 5.8%. This
further indicates that adding the CAFM module to
the base network can capture more global feature
information, helping to locate the location of the
object.

Effectiveness of FT: The addition of the FT mod-
ule to the base network shows the superiority of our
FT module by Table 5, especially the recognition

accuracy for scanned dataset increases by 6.8%. In
particular, the FT module can obtain more edge
information when extracting high frequencies from
images

Effectiveness of the loss function: We use the
improved lbcem function, and the results in Table
5 shows that our loss function can improve the
discriminative property of the network for edges
and can better extract the detailed features of oracle
characters.

5 Conclusion

In this paper, we propose a new network UFCNet
for the recognition of oracle character images. Dif-
ferent from the recognition method of OBCs based
on CNNs, we use the Fourier transform to transfer
the recognition of oracle character images from the
image domain to the frequency domain and extract
rich edge information. At the same time, we use the
convolutional attention fusion module to fuse shal-
low features with deep features in multiple layers,
which makes up for the important detailed features
lost in the sampling process of the CNN. A large
number of experiments show that our UFCNet has
better recognition accuracy compared with SOTA
methods. However, due to the serious incomplete-
ness and blurring of OBCs, our network still needs
to be further improved in recognition.
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