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Abstract

Due to ancient origin, there are many incom-
plete characters in the unearthed Oracle Bone
Inscriptions(OBI), which brings the great chal-
lenges to recognition and research. In recent
years, image inpainting techniques have made
remarkable progress. However, these models
are unable to adapt to the unique font shape
and complex text background of OBI. To meet
these aforementioned challenges, we propose a
two-stage method for restoring damaged OBI
using Generative Adversarial Networks (GAN),
which incorporates a dual discriminator struc-
ture to capture both global and local image in-
formation. In order to accurately restore the
image structure and details, the spatial atten-
tion mechanism and a novel loss function are
proposed. By feeding clear copies of exist-
ing OBI and various types of masks into the
network, it learns to generate content for the
missing regions. Experimental results demon-
strate the effectiveness of our proposed method
in completing OBI compared to several state-
of-the-art techniques.

1 Introduction

Since the earliest discovery of Oracle Bone Inscrip-
tions(OBI), over 5,000 distinct character forms
have been identified, which have significantly ad-
vanced our comprehension of many characters’
meanings. These deciphered OBIs provide invalu-
able historical information crucial for understand-
ing various aspects of ancient Chinese politics, so-
ciety, religion, and more.

Recognizing and interpreting are important top-
ics in the field of OBI research. Due to the lack
of physical objects, the images of rubbings in the
recorded books are the main carriers of research.
However, some OBIs have suffered varying degrees
of residual erosion and damage on their surface, re-
sulting in a large number of incomplete fonts in
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the inscriptions and rubbings seen today. With the
rapid development of image generation technology,
many image restoration problems difficult to solve
in traditional methods have found new research av-
enues. The comprehensive application of artificial
intelligence and other technologies has become a
new research direction in the restoration of OBIs.

Zeng et al. (2019) proposed the Pyramid Context
Encoder Network (PEN). It is based on the U-Net
structure and encodes and decodes contextual se-
mantics to ensure visual and semantic consistency.
Li et al. (2020) developed the Recurrent Feature
Reasoning (RFR) network, featuring a plug-and-
play RFR module and a Knowledge Consistent At-
tention (KCA) module. They infer the hole bound-
aries and capture the distant feature information.
Wu et al. (2021) introduced a two-stage (coarse-to-
fine) model. It combines a Local Binary Pattern
(LBP) Waller et al. (2013) network and incorpo-
rates a new spatial attention mechanism. These
methods have enhanced image processing. How-
ever, they only grasp limited connections between
textures and edges. They fail to fully comprehend
image semantics and complex structures. Addition-
ally, they overlook the interplay between global
and local features. Given the complexities behind
incomplete fonts and unique font features, exist-
ing image restoration models struggle to effectively
complete OBI image inpainting tasks.

To meet these challenges, we propose a two-
stage (coarse-to-fine) font inpainting network. Our
network incorporates a dual discriminator structure
to capture both global and local image information.
Specifically, we employ a global discriminator to
focus on the spatial correlation between damaged
and undamaged regions. The local discriminator
concentrates on the local patch information. To
effectively understand the intrinsic features of the
image, we introduce a novel loss function to accu-
rately restore the structure and details. Through ex-
tensive comparisons, our framework demonstrates
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state-of-the-art performance in OBI image inpaint-
ing tasks.

2 Method

2.1 Network Architecture

The network is a two-stage deep generative model.
Both stages consist of encoder-decoder pipeline
and follow an adversarial model Goodfellow et al.
(2014). The network architecture is shown as Fig-
ure. 1. The damaged image consists of the missing
regions filled with white pixels, represented as Iin.
Lin denotes the LBP Waller et al. (2013) structural
information extracted from the damaged oracle Iin

in the grayscale channel. M represents a binary
mask, where 1 indicates the missing regions and 0
indicates the known regions.

In the first stage, the generator G1 includes seven
feature extraction blocks and feature restoration
modules. Each feature extraction block consists of
LeakyReLU Xu et al. (2015), a convolutional layer,
and InstanceNorm2d Ulyanov et al. (2016). The
decoder generates the content of the missing region
through seven feature restoration modules, which
consist of ReLU Nair and Hinton (2010), trans-
posed convolution, and InstanceNorm2d Ulyanov
et al. (2016). Finally, G1 and D1 generate the com-
pleted LBP structural information Lout and Lo.

In the second stage, an additional spatial atten-
tion layer is added to the fifth layer of the encoder.
This layer builds the correlations not only within
the known region but also among the missing re-
gions.

Due to a single discriminator judging the image
authenticity solely from a global perspective and
being unable to handle the details, artifacts and
structural inconsistencies may arise in the restora-
tion results. The dual discriminator, on the other
hand, judges the image from both global and lo-
cal perspectives. They compete with each other to
learn more effective weights.

2.2 Dual Discriminator

The structure of Dual PatchGAN Isola et al. (2017)
Discriminator (DP) is as shown in Figure. 2. The
left branch is a global discriminator that focuses
on the spatial correlation between damaged and
undamaged regions. Its input consists of an image
and a mask, and output is a 3D feature. Each CSL
block consists of a 5⇥5 convolution, SpectralNorm
Miyato et al. (2018) and LeakyReLU with ↵= 0.2.
In the first two CSL blocks, the number of convo-

lutional output channels is 64 and 128, while in
the others it is 256. The right branch is a local
discriminator with five 4⇥4 convolutions, which
focuses on the local patch. The first four layers use
the LeakyReLU with ↵= 0.2, the Sigmoid for the
last layer and the BatchNorm2d for normalization
in the middle three layers. The local discriminator
can be formulated as:

⌧adv2 = min
G2

max
D2

EIg

⇥
log D2(Ig)

⇤

+EIin [log (1 � D2 (G2 (Iin , M)))]
(1)

Our objective function for the global discrimina-
tor can be formulated as:

⌧adv3 = �EIin⇠PIin
(Iin) [D3 (G2 (Iin ))] (2)

⌧D3 = EIg⇠Pdata(Ig) [ReLU (1 � D3 (Ig))]

+EIin⇠PIin
(Iin) [ReLU (1 + D3 (G2 (Iin )))]

(3)
where G2 represents the second stage generator,
D2 and D3 represent the right and left branches of
the dual discriminator, respectively.

2.3 Multi-level Fusion Loss Function
We reduce the difference between the original im-
age and the inpainting image by using a multi-level
fusion loss function(MLFLF) to enhance the stabil-
ity of training.

The reconstruction loss is defined as:

Lr = kLo � Lgk2 (4)

Lo = Lin � (1 � M) + Lout � M (5)

The adversarial loss Yan et al. (2018) is defined
as:

⌧adv1 = min
G1

max
D1

ELg

⇥
log D1(Lg)

⇤

+ELin [log (1 � D1 (G1 (Lin , M)))]
(6)

The pixel-level reconstruction loss is responsible
for directly comparing each pixel of the generated
image with the target image:

Lvalid

=
1

Sum(1 � M)
k(Lout � Lg) � (1 � M)k1

(7)

Lhole =
1

Sum(M)
k(Lout � Lg) � Mk1 (8)
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Figure 1: The network architecture of our proposed method.

Figure 2: Proposed DP to introduce efficient local and
global consistencies.

The Total Variation (TV) Liu et al. (2018) loss
reduces noise and discontinuities, resulting in a
smoother and more continuous appearance:

Ltv = kLo(i, j + 1) � Lo(i, j)k1 +

kLo(i + 1, j) � Lo(i, j)k1

(9)

The multi-scale loss compares the differences
between ground truth images and mapping results

of different scales:

⌧m =
X

h2d

k�h (Io) � �h (Ig)k2 (10)

Io = Iin � (1 � M) + Iout � M (11)

We apply the perceptual loss Johnson et al.
(2016) and style loss Gatys et al. (2016) defined on
the VGG-16 Simonyan and Zisserman (2014) (pre-
trained on ImageNet Deng et al. (2009)) to enhance
the recovery of structural and textual information.

Iper =
X

i

k i (Io) � i (Ig)k1 (12)

Istyle =
X

i

k�i (Io) � �i (Ig)k1 (13)

where  i is the feature map of i � th layer in
ImageNet-pretrained VGG-16 network, �i(·) =
 i(·) i(·)T is from (Buades et al., 2005).

3 Experiments

3.1 Dateset
We select 2000 OBI images for training and 100 for
testing from the oracle bone images produced by
the Key Laboratory of Oracle Information Process-
ing of the Ministry of Education in Henan Province.
To better validate the results of the experiment, we
use the masks to simulate the broken regions of
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(b) Input(a) GT (f) Ours(e) LBPLSA(d) RFR(c) PEN

Figure 3: Comparison of qualitative results between the proposed method and other approaches on the irregular
mask. Our proposed method generates more effective structural and texture information.

OBIs. These masks are divided into irregular and
regular types. The irregular masks are obtained
from the NVIDIA dataset Liu et al. (2018), while
the regular masks are square masks of fixed size
(25% of the total image pixels) placed in the center
of the image.

3.2 Qualitative Comparisons

In this section, we conduct the experimental com-
parisons with other image restoration models.

For the restoration of OBI with irregular masks,
the visualization results are shown in Figure. 3.
The input image (b) shows the damaged OBI im-
ages. (c) demonstrates the results of using the PEN
network Zeng et al. (2019) with a mode collapse.
(d) using the RFR network Li et al. (2020) fails to
accomplish the complementation task effectively.
Note in particular the comparison between (e) the
LBPLSA network Quan et al. (2022) and (f) our
network. Our network evidently produces more re-
alistic completion results from the smoother strokes
in the first row of Figure. 3. And fewer or no ar-
tifacts appear at the end of the strokes in the rest
of the lines. In contrast, the LBPLSA network
exhibits severe artifacting and discontinuities in

strokes. It fails to adequately complete the objec-
tives. The presence of artifacts indicates that the
network did not accurately understand the miss-
ing content in the image. As a result, it fills in
unrealistic textures and structures.

We also explore the classic center mask comple-
tion scenario in image inpainting. Given that most
of the OBI content lies in the center, it is challeng-
ing for the network to infer the main content of
the characters from just one stroke at the boundary.
The generated results are depicted in Figure. 4. We
can see that the generated results of the PEN net-
work (c) collapse again and the RFR network (d)
fails to meet the target requirement. Focus on the
comparison between LBPLSA (e) and our method
(f) again, LBPLSA generates the images with more
artifacts and doesn’t effectively learn the semantic
information of the OBIs. For instance, in the sec-
ond row of Figure. 4, the strokes generated by the
LBPLSA are opposite to the ground truth. More ar-
tifacts are present in rows 5 and 6. Under the same
experimental configuration, our network achieves
results that are closer to the ground truth.
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(b) Input (c) PEN (e) LBPLSA (f) Ours(d) RFR(a) GT

Figure 4: Comparison of qualitative results between the proposed method and other approaches on the rectangle
mask. Our proposed method generates more effective structural and texture information.

method PEN RFR LBPLSA LG Ours
PSNR+ Irregular 8.67 14.67 25.67 27.01 29.61

rectangle 9.08 14.30 26.73 22.46 33.27
SSIM+ Irregular 0.6337 0.8507 0.9719 0.9781 0.9826

rectangle 0.7800 0.8397 0.9497 0.9449 0.9623
L1- Irregular 0.1628 0.0567 0.0091 0.0066 0.0058

rectangle 0.1425 0.0598 0.0162 0.0197 0.0143

Table 1: Comparison between the proposed method and state-of-the-art methods on the oracle dataset (+ indicates
higher is better, - indicates lower is better).

3.3 Quantitative Comparisons

In terms of evaluation metrics, we follow the struc-
tural similarity index (SSIM) Wang et al. (2004)
and peak signal-to-noise ratio (PSNR) as outlined
in references Ren et al. (2019). The evaluation
results are presented in Table 1.

Compared with other methods, the scores of each
indicator in our model have been improved. The
DP structure can effectively capture both the global
and local image information. Additionally, the
loss function component introduced MLFLF opti-
mizes semantic plausibility and structural consis-
tency. The integration of DP structure and MLFLF
component produces the images with reduced pixel-
level differences and leads to significant improve-
ments across SSIM, PSNR, and L1 distance met-
rics, which indicates the high accuracy and effec-

tiveness in image inpainting tasks.

3.4 Ablation Studies

The ablation studies are conducted under mask
rates ranging from 20% to 30%. We evaluate the
effectiveness of our proposed method by contrast-
ing three different experimental settings, including
the LBPLSA method, the SN method only with
DP component and the complete method. The gen-
erated results are depicted in Figure. 5. Part (a)
represents the ground truth OBIs. The input im-
ages with various degrees of damage are generated
by masks, shown in (b). The completion results of
LBPLSA (c), SN (d), and ours (e) are sequentially
displayed.

Compared with the LBPLSA method, the SN
method shows some improvement with the intro-
duction of the DP structure. The incorporation
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(b) Input (c) LBPLSA (d) SN (e) DP+MLFLF(a) GT

Figure 5: Qualitative results comparison of ablation study.

method NO DP DP+MLFLF
PSNR+ Irregular 25.67 28.66 29.61

rectangle 26.73 26.88 33.27
SSIM+ Irregular 0.9719 0.9798 0.9826

rectangle 0.9497 0.9566 0.9623
L1- Irregular 0.0091 0.0068 0.0058

rectangle 0.0162 0.0159 0.0143

Table 2: Quantitative results of ablation study on oracle dataset. (+ indicates higher is better, - indicates lower is
better).

of the DP structure enables the model to better
capture both global and local image information,
which improves the restoration results to a certain
extent. However, the SN method lacks the further
optimization from the MLFLF component. It still
has certain limitations and fails to fully exploit the
intrinsic features of the images.

Furthermore, our complete method achieves fur-
ther improvements across all metrics within the
experimental scope. By leveraging the dual advan-
tages of DP and MLFLF, our method can more
accurately restore the structure and details of the
images. This makes the restoration results closer
to the original images. Compared to the methods
only with DP, the addition of the MLFLF compo-

nent further enhances the clarity and quality of the
restored images. This leads to better performance
across metrics, such as SSIM, PSNR, and L1 dis-
tance, as demonstrated in the ablation study metrics
presented in Table 2.

Through the ablation studies, we validate the
crucial roles of DP and MLFLF in image restora-
tion tasks. The DP structure enhances the model’s
understanding of images, while the MLFLF mod-
ule further optimizes detail and texture restoration.
This showcases significant advantages across all
metrics. These experimental results validate our
method’s effectiveness. They emphasize the impor-
tance of leveraging the dual advantages of DP and
MLFLF in image inpainting tasks.
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4 Conclusion

We propose the two-stage (coarse-to-fine) network
for efficient OBI image inpainting. This new frame-
work consists of an enhanced LBP network and in-
tegrated DP and MLFLF components. Specifically,
we design a novel dual discriminator network. The
first stage LBP learning network adopts a U-Net ar-
chitecture, aimed at accurately predicting structural
information in missing regions. This guides the
second image inpainting network in better filling
missing pixels. In the second stage image gener-
ation network, we employ dual discriminators to
complete the masked regions. Compared to sev-
eral state-of-the-art methods, experimental results
demonstrate the effectiveness of DP and MLFLF
components in the proposed method in completing
OBI image inpainting tasks.

In the future, we plan to further develop our net-
work to achieve more powerful functions, such as
increasing the speed, realizing editing functions,
and improving the efficiency of paleographers. Our
goal is to solve the problem of more complex noise
or higher mask coverage. We believe that our
two-stage (coarse-to-fine) generation model can
be extended to very high-resolution coloring ap-
plications by improving the first-stage generation
results.
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