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Abstract

Sumerian transliteration is a conventional sys-
tem for representing a scholar’s interpretation
of a tablet in the Latin script. Thanks to vi-
sionary digital Assyriology projects such as
ETCSL, CDLI, and Oracc, a large number of
Sumerian transliterations have been published
online, and these data are well-structured for a
variety of search and analysis tasks. However,
the absence of a comprehensive, accessible
dataset pairing transliterations with a digital
representation of the tablet’s cuneiform glyphs
has prevented the application of modern Natu-
ral Language Processing (NLP) methods to the
task of Sumerian transliteration.

To address this gap, we present SumTablets,
a dataset pairing Unicode representations of
91,606 Sumerian cuneiform tablets (total-
ing 6,970,407 glyphs) with the associated
transliterations published by Oracc. We con-
struct SumTablets by first preprocessing and
standardizing the Oracc transliterations before
mapping each reading back to the Unicode rep-
resentation of the source glyph. Further, we
retain parallel structural information (e.g., sur-
faces, newlines, broken segments) through the
use of special tokens. We release SumTablets
as a Hugging Face Dataset (CC BY 4.0) and
open source data preparation code via GitHub.

Additionally, we leverage SumTablets to im-
plement and evaluate two transliteration base-
lines: (1) weighted sampling from a glyph’s
possible readings, and (2) fine-tuning an
autoregressive language model. Our fine-
tuned language model achieves an average
transliteration character-level F-score (chrF) of
97.55, demonstrating the immediate potential
of transformer-based transliteration models in
allowing experts to rapidly verify generated
transliterations rather than manually transliter-
ating tablets one-by-one.

colesimmons/SumTablets (CC BY 4.0)

colesimmons/SumTablets

Figure 1: An administrative Sumerian cuneiform tablet
from Shuruppak, dated to the Early Dynastic IIIa period
(ca. 2500 BCE). (British Museum, 1896)

1 Introduction

Sumerian is the world’s earliest attested written
language, marking the transition from prehistory
into history as well as reflecting a rich written tradi-
tion spanning three thousand years. These texts are
an invaluable resource in the study of ancient Near
Eastern culture, politics, economics, and more.
During the latter half of the fourth millen-

nium BCE, a sophisticated record-keeping system
emerged in southern Mesopotamia, now known as
proto-cuneiform (Selz, 2020). Over time this sys-
tem evolved1 to handle natural language. By about
2900 BCE this writing system, known as cuneiform,
is concretely recognizable as encoding Sumerian.
Mesopotamian scribes originally devised the

cuneiform script to write Sumerian. This script
was later adapted to encode other languages
throughout the Near East, such as Akkadian. To
form glyphs, scribes would typically compose sty-
lus impressions on a wet clay tablet2. Because

1There continues to be considerable ambiguity and dis-
agreement about the extent to which evolution occurred grad-
ually or was the result of a single inventor. For a more com-
prehensive treatment of the topic, see (Sproat, 2023).

2Although not all texts are clay or in the form of a tablet,
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ID Period Genre Glyphs (Inputs) Transliteration (Targets)

Q001103 Early Royal <SURFACE> <SURFACE>
Dynastic IIIb Inscription 𒀭𒂗𒆤 {d}en-lil2𒈗𒆳𒆳𒊏 lugal kur-kur-ra

𒀊𒁀𒀭𒀭𒌷𒉈𒆤 ab-ba dingir-dingir-re2-ne-ke4𒅗𒂵𒈾𒉌𒋫 inim gi-na-ni-ta
… …

Table 1: A sample paired glyph–transliteration example from SumTablets, dating ca. 2600–2300 BCE.

cuneiform writing was impressed or inscribed
on durable materials, texts have survived to the
present in tremendous quantity (Finkel and Tay-
lor, 2015). Uncovered during archaeological ex-
cavations of ancient cities beginning in the nine-
teenth century CE, these tablets had to be subse-
quently deciphered. Deciphering Sumerian, a lan-
guage isolate, proved particularly challenging, and
some periods and genres are still not completely
understood.
Sumerian cuneiform glyphs are frequently poly-

valent; that is, they have many possible readings
(of no necessary semantic or phonetic relation) de-
pending on the context. For instance,𒅗 can be
read as ka “mouth,” dug4 “to speak,” kiri3 “nose,”
zuh “to steal,” the syllable ka, and more. When
reading a tablet, an Assyriologist must often con-
sider various possibilities for each glyph to achieve
a set of consistent readings. They represent their in-
terpretation through the process of transliteration.
Transliteration is a modern, conventional sys-

tem for representing Sumerian in the Latin al-
phabet. Conventions were established at various
points in the modern, 150-year history of Sume-
rian decipherment and do not necessarily reflect
the current understanding of Sumerian phonology
or morphology. In transliterations, homophones
are distinguished via subscripts; for instance, e and
e2 are homophonic—but semantically unrelated—
readings of different glyphs. Additionally, hy-
phens are used to join nominal/verbal roots with
affixes (Michalowski, 2004).
In 1996, the Electronic Text Corpus of Sumerian

Literature (ETCSL) (Black et al., 2016) project be-
gan publishing transliterations online. This project
became archival in 2006, soon followed by other
projects such as the Cuneiform Digital Library
Initiative (CDLI) (CDLI contributors, 2024) and
the Open Richly Annotated Cuneiform Corpus
(Oracc) (ORACC contributors, 2024). Thanks to

we follow Assyriological convention by referring to texts
generically as tablets.

these and other projects, a large number of translit-
erations have been published online and their data
made available for use with open licenses. Our
work would not be possible without the decades of
dedicated efforts by contributors to these projects.
Because Assyriologists are reading from either

the physical text or an image, no digital repre-
sentation of the original text’s glyphs is typically
recorded. Today, most cuneiform glyphs have
been added to Unicode3. However, easily accessi-
ble4, standardized datasets of paired Sumerian Uni-
code glyphs and transliterations remain limited,
barring the development of transliteration models.
In this paper, we present the first large-scale, eas-

ily accessible dataset of 91,606 Sumerian tablets
as glyph–transliteration pairs, containing a total of
6,970,407 glyphs. We additionally include IDs5,
period, and genre metadata for each tablet to be
used for results analysis.
Our dataset, SumTablets, is derived from a col-

lection of publicly available Sumerian language
resources, primarily the Electronic Pennsylvania
Sumerian Dictionary (ePSD2) (Tinney et al., 2024)
and the Oracc Sign List (OSL) (Veldhuis et al.,
2024). These projects aggregate and index translit-
eration data from across Oracc, which shares data
with CDLI and includes data from other current
and former projects6.
Because of how they are formatted and because

they do not include parallel Unicode glyph tablet
representations, however, the data on Oracc are
not immediately suited for glyph-to-transliteration
tasks. We preprocess these data to clean and stan-
dardize them, converting structure-related anno-

3All online Sumerian data aggregation and collaboration
was limited to ASCII for more than a decade: The first
cuneiform was added to Unicode in 2006.

4We define easily accessible as being easily utilized pro-
grammatically and requiring no or minimal Assyriological ex-
pertise to contribute to development of models based on these
datasets.

5IDs are consistent with those in Oracc and CDLI.
6ePSD2 credits

193

https://oracc.museum.upenn.edu/epsd2/credits/index.html


tations into special tokens. Then, since a given
reading maps back to only one glyph, we utilize
Unicode–reading dictionaries provided by ePSD2
and OSL to convert each reading back into its
source glyph.
We upload our dataset to Hugging Face (Hug-

gingFace Inc., 2024), the largest and most widely
utilized library for sharing datasets for machine
learning tasks. We intend to use Hugging Face’s
git-based version control to provide experiment re-
producibility over time, with versions containing
snapshots of the continuously updated Oracc data.
Our dataset, SumTablets, builds on previous

open-source projects by:

1. being the largest dataset of parallel glyph–
transliteration examples.

2. standardizing the data available in Oracc,
optimizing formatting for the transliteration
task while maintaining the morphosyntactic
fidelity of the texts.

3. vastly facilitating the use of this data in ma-
chine learning projects, simplifying access
via the common Hugging Face Datasets li-
brary.

Using our dataset, we develop and compare two
baseline transliteration approaches. The first is a
weighted dictionary mapping; for each glyph we
sample one of the glyph’s possible readings ac-
cording to its frequency. The second is a lan-
guage model that we fine-tune for the glyph-to-
transliteration task. As far as we are aware, we
are the first to develop an automatic Sumerian
transliteration model. Evaluated on a held-out
test set, the dictionary-lookup approach obtains a
character-level F-score (chrF) (Popović, 2015) of
61.22, while the fine-tuned model achieves a chrF
score of 97.54.
Our goals in releasing this dataset are to fa-

cilitate the development of transliteration mod-
els and to demonstrate the potential of adapting
large pretrained multilingual models for the task.
We envision web-based tooling built on top of
neural transliteration models helping Assyriolo-
gists to generate transliterations more quickly—
allowing them to rapidly validate model outputs
rather transliterating each tablet from scratch—
and target review of potential errors in existing
transliterations. Additionally, transliteration mod-
els serve as an essential step in eventually devel-
oping a complete Sumerian translation pipeline.

Finally, as a language isolate, Sumerian poses a
unique syntactic challenge for cross-lingual mod-
els, and opens new avenues of research into the
transfer of language understanding.

2 Related Work

To the best of our knowledge, our work repre-
sents the first to formulate Sumerian translitera-
tion as an NLP task and to develop a translit-
eration model. However, prior works have uti-
lized NLP techniques for other tasks in parsing
and analyzing Sumerian cuneiform. The Machine
Translation and Automated Analysis of Cuneiform
Languages (MTAAC) project (Pagé-Perron et al.,
2017) sought to develop a pipeline for Sumerian
annotation, translation, and information extrac-
tion, working primarily with Ur III transliterations.
Chiarcos et al. expanded this data to include the
Electronic Text Corpus of Sumerian Royal Inscrip-
tions (ETCSRI) (Zólyomi et al., 2019). Bansal
et al. then used MTAAC data in conjunction with
CDLI and ETCSL data to train models for part-
of-speech (POS) tagging, named entity recognition
(NER), and translation, aiming primarily to build
generalizable cross-lingual methods for perform-
ing these tasks on low-resource languages. The
COMPASS (Veldhuis, 2024) also explores using
cuneiform data for research tasks, such as recon-
structing social graphs. Perhaps most similar to
our work, Gordin et al. develop a neural network
to automatically transliterate Akkadian from Uni-
code cuneiform glyphs.
Others have built datasets also representing

tablets’ glyphs in Unicode. Jauhiainen et al. uti-
lized Oracc dataset to build a dataset of 13,662
tablets for the task of language and dialect iden-
tification. More recently, Chen et al. used CDLI
data to create CuneiML, a dataset of 38,947 tablets
with photos, Unicode glyphs, transliterations, and
metadata, also designed primarily for classifica-
tion tasks. Both of these datasets include both
Sumerian and Akkadian texts, whereas our dataset
only includes monolingual Sumerian texts. Fur-
thermore, our dataset is larger, designed specifi-
cally for the transliteration task, and is easily ac-
cessible through Hugging Face.
Outside of NLP, an exciting area of research

is using computer vision methods to identify
cuneiform signs from images (Dencker et al.,
2020). Efforts in visual classification and tran-
scription of cuneiform are enabled by projects that
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have open-sourced high-quality 2D and 3D images
of tablets (Dahl et al., 2019; Mara and Homburg,
2023). And beyond cuneiform, Assael et al. used
deep learning methods to restore fragmented an-
cient texts in ancient Greek.

As Sumerian is a low-resource language, it is
infeasible to train a transformer-based language
model on Sumerian from scratch rather than adapt-
ing cross-lingual representations in existing mod-
els. Fortunately, the recent success of large cross-
lingual NLP models such as mBERT (Devlin
et al., 2019), XLM-R (Conneau et al., 2020), m-
T5 (Liu et al., 2020), and BLOOM (BigScience
Workshop et al., 2023) have steadily raised the
bar for zero- and few-shot cross-lingual perfor-
mance on benchmarks such as XTREME (Hu et al.,
2020) and MEGA (Ahuja et al., 2023). Recently,
benchmarks to measure a model’s ability to per-
form NLP tasks in extremely low-resource and
orthographically-diverse languages have emerged,
such as IndicXNLI (Aggarwal et al., 2022) for low-
resource Indian languages, and Sukhareva et al.
who develop a POS tagging benchmark for Hittite,
another cuneiform language. SumTablets marks
the first benchmark for Sumerian neural machine
transliteration.

3 Creating SumTablets

SumTablets is built upon the metadata and translit-
erations provided by ePSD2 via JSON files7.
These transliterations were created or manually
typed by scholars working in different projects
around the world over decades of evolving knowl-
edge of Sumerian vocabulary and grammar; they
also contain extensive (but not useful for our pur-
poses) embedded ASCII annotation. We begin by
preprocessing the transliterations to normalize con-
ventions, remove annotations, and convert format-
ting information into special tokens. Then, we use
dictionaries built from ePSD2 and OSL resources
to map each reading back to a Unicode represen-
tation of its source glyph. The result is a set of
Unicode glyph–transliteration pairs with parallel
formatting, allowing language models to most ef-
fectively learn the relationships between the two
representations.

7https://oracc.museum.upenn.edu/epsd2/json

3.1 Initial Data Cleaning
We first parse and type-check the ePSD2 JSON
data using custom Pydantic8 classes. The translit-
erations are structured in a recursive format called
cdl (for the three node types: chunk, delimiter, and
lemma) at the document level, which we navigate
in order to reconstruct the transliteration as a single
string with embedded formatting information.
We then remove annotations embedded in the

transliterations. Many of these represent the edi-
tor’s interpretation beyond what is visible on the
tablet; for instance, text enclosed in square brack-
ets represents the editor’s belief of what was origi-
nally in a now-missing segment. While this infor-
mation is academically useful, it can inject an un-
desirable bias when training transliteration models.
Our goal is to best represent only what is on the
tablet. We remove text enclosed in square brack-
ets (broken) and single angle brackets (graphemes
must be supplied for the sense but are not present),
replacing the former with a ... special token to in-
dicate breakage. For text enclosed in upper square
brackets (partially visible) and double angle brack-
ets (graphemes are present but most be excised for
the sense), we remove the notation but retain the
text. These examples are a few of many conven-
tions are used in the provided transliterations. For
each type, we either remove the notation but re-
tain the text, remove the notation and the text, or
replace the notation and text with a special token
(described in subsection 3.3).
The Oracc data are supplied with metadata that

varies depending on the project in which a tablet
was digitized. After performing an inner join on
all of the data, we found the period and genre
to be the most salient, universally-supplied meta-
data; because we provide the original Oracc IDs,
removed fields can easily be reintegrated.

3.2 Mapping transliterations to glpyhs
For each of the transliterations, we generate the as-
sociated glyphs in three steps:

1. First, we split each transliteration by spaces
to get a list of words, which we then split fur-
ther into individual glyph readings (i.e., mor-
phemes).

2. Next, for each reading, we look up the corre-
sponding glyph name. Each glyph in Sume-
rian has a conventional name that is an up-

8https://docs.pydantic.dev/latest/
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percase version of one of its readings; for in-
stance, the glyph𒅗 is referred to as KA.
Like most glyphs, it can be read a number of
different ways (e.g., ka, dug4, inim). Impor-
tantly, these readings are readings only of KA
and can be mapped back to it. If we cannot
ascertain the glyph name, we replace the read-
ing with <UNK>. Sign names are often used in
place of a reading (to say that the reading is
uncertain), in which case we replace the read-
ing with <UNK> but will still use the corre-
sponding Unicode. The first row of Table 2
shows the proportion of readings that we are
able to map to glyph names.

3. Finally, we convert each glyph name to the
Unicode representation of that glyph name;
for instance, we convert BU to𒁍. For the
rare glyphs that are not represented in Uni-
code, we replace both the glyph and associ-
ated reading with <UNK> tokens. The bottom
row of Table 2 shows the proportion of glyphs
names that we able to map to Unicode.

To map from transliteration to glyph name and
from glyph name to Unicode, we leverage ePSD2
and OSL.

Preprocessing Step Success Rate

Readings→ Glyph Name 6,724,498 (99.93%)
Glyph Name→ Unicode 6,638,081 (99.96%)

Table 2: Preprocessing steps with associated amount of
maintained glyphs in constructing SumTablets.

3.3 Extra-semantic tokens
In addition to the aforementioned preprocessing
steps, we add the following special tokens to main-
tain structural information about each tablet in cor-
responding locations in the glyph and translitera-
tion examples:

• <SURFACE> – The start of a surface. For a
tablet, this may be the start of the obverse or
reverse side. For other types of artifacts (like
statues), the number of surfaces and their re-
lationship to each other depends on the form.

• \n – A line break. These are important to re-
tain because it is extremely rare that a word-
form runs over to a subsequent line.

• ... – Breakage. Ellipses on their own line
indicate an indeterminate number of missing

lines, while ellipses on a line with text in-
dicate an indeterminate number of missing
glyphs.

• <RULING> – A horizontal line drawn by the
scribe to separate sections of the tablet.

• <COLUMN> – The start of a new column of
text. Not all tablets are formatted in columns.

• <BLANK_SPACE> – The scribe left some
amount of blank space before continuing on.

3.4 Metadata

As part of the dataset, we include additional meta-
data associated with each tablet: the time period
each tablet dates from and the semantic genre of
each tablet (e.g. administrative, legal). In total, we
define 10 unique time periods and 14 genres (see
Table 3).

Period Train Val Test

Ur III 71,116 3,951 3,951
Old Akkadian 4,766 265 265
Early Dynastic IIIb 3,467 192 192
Old Babylonian 1,374 73 73
Lagash II 788 44 44
Early Dynastic IIIa 755 42 42
Early Dynastic I-II 77 4 4
Unknown 68 4 4
Neo-Assyrian 20 1 1
Neo-Babylonian 14 1 1
Middle Babylonian 7 0 0

Total 82,452 4,577 4,577

Genre Train Val Test

Administrative 77,193 4,259 4,291
Royal Inscription 2,611 151 146
Literary 1,000 63 62
Letter 718 48 33
Legal 544 35 36
Unknown 269 14 7
Lexical 69 0 0
Liturgy 40 4 1
Math/Science 8 3 1

Total 82,452 4,577 4,577

Table 3: Composition of tablets by period and genre in
SumTablets.
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3.5 Data Partitions
For the purposes of developing automatic translit-
eration approaches, we split our corpus into train,
validation, and test partitions using a 90%/5%/5%
split. As an artifact both of what was produced as
well as what sites have been excavated, there is a
considerable imbalance in the number of examples
between historical periods and genres. To ensure
that we are training, validating, and testing evenly
on how the language was used over time, we strat-
ify the splits by period—Table 3 shows the number
of examples in each by split. Because the genres
of texts produced correlates strongly with period,
stratifying by period results in a nearly equal split
of genres, also shown in Table 3. Importantly, we
removed the lexical texts before splitting, and then
added them back to the train set after.9

4 Evaluating Transliteration
Performance

The scale and standardization of SumTablets en-
ables new methods to be applied to the task
of Sumerian transliteration. In this section, we
leverage our dataset to develop and compare two
transliteration approaches: a straight-forward ‘dic-
tionary baseline’ and a ‘neural baseline’. First, we
define the transliteration task.

4.1 The Transliteration Task
We model transliteration as a sequence-to-
sequence conversion task, where the input
sequence is defined as glyphs and the output as
a sequence of alpha-numeric characters, hyphens
and white spaces. Table 1 illustrates example pairs
of input (glyphs) and output (transliterations). As
we model it, the transliteration task is more akin to
a translation task, where each input sequence can
be mapped to a large space of output sequences,
rather than a token classification task. Given
our framing of the transliteration task, we use
character-level chrF score as the evaluation metric,
defined as:

chrF = (1 + β)2
chrP · chrR

β2 · chrP + chrR
(1)

where chrP and chrR stand in for character-
level precision and recall scores. Throughout our

9Lexical texts are lists of words that were used in scribal
training. We believe that it does not make sense to evaluate
against them, but leave it up to the user to decide whether they
provide productive noise during training.

analysis, we set β = 2, and use a character n-
gram order of 6, as proposed by Popović. We com-
pute the chrF score over the transliterated tokens
for each tablet individually and then average these
scores together over the dataset.

4.2 Dictionary Baseline
As part of previous transliteration efforts, Sume-
rian language experts have hand-crafted dictionar-
ies that map a glyph to all possible readings of
that glyph. We cross-analyze our dataset with the
ePSD2 and OSL Sumerian dictionaries and find
that the average number of different readings for
a glyph, weighted by glyph frequency, is 22.17.
The availability of these dictionaries yields

a simple automatic Sumerian transliteration ap-
proach: for each glyph in the test set, sample
over its possible readings in proportion to their fre-
quency10. This baseline results in an average chrF
score of 61.22.

4.3 Neural Baseline
We explore whether the cross-lingual abilities
of existing multilingual language models can be
leveraged to solve the Sumerian transliteration
task. Although Sumerian is a language isolate,
it shares grammatical features with other modern
languages: like Basque, it has ergative–absolutive
alignment; like Turkish and Japanese, it is aggluti-
native; and like Korean, it is SOV (Michalowski,
2004). Therefore, the key to our approach is to
leverage XLM-R (Conneau et al., 2020), a trans-
former language model pre-trained on over 100
languages.

𒈗  𒆳     𒆳    𒊏Input

Embeddings

 Transliteration Encoder

 <s>     lugal     kur  

Embeddings
Glyph Translitera5on 

 Transliteration Decoder

lugal kur -Output

Figure 2: Illustration of the neural baseline model ar-
chitecture. Inputs are read in as glyph tokens, while
outputs are transliteration tokens.

The lack of tokenization support for Sumerian
presents a first challenge in applying the XLM-R
model to transliterating Sumerian. To deal with

10We recorded occurrence counts in the process of con-
structing the dataset.
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Period Genre

Category Dictionary Neural Category Dictionary Neural

Ur III 62.89 98.46 Administrative 63.15 98.14
Old Akkadian 64.52 94.03 Royal Inscription 54.58 95.15
Early Dynastic IIIb 62.51 97.08 Literary 37.73 90.67
Old Babylonian 37.70 90.38 Letter 47.43 90.99
Lagash II 58.55 93.97 Legal 56.19 96.14
Early Dynastic IIIa 67.85 95.02 Unknown 69.84 97.58
Early Dynastic I-II 73.72 96.82 Liturgy 55.92 77.68
Unknown 64.98 89.87 Math/Science 62.00 95.12
Neo-Assyrian 40.83 89.79
Neo-Babylonian 42.47 97.81

Overall 61.22 97.54 61.22 97.54

Table 4: Results by period and genre. Average chrF scores of transliterations generated in the dictionary baseline
compared against those generated in the neural baseline.

this, we retrain the default SentencePiece tokenizer
(Kudo and Richardson, 2018) used by the XLM-
R model twice: once to build a ‘glyph tokenizer’
that is trained only on the Sumerian glyphs in
SumTablets, and once to build a ‘transliteration
tokenizer’ that is trained only on the correspond-
ing Sumerian transliterations in SumTablets. The
‘glyph tokenizer’ has a vocab size of 632 glyph to-
kens and is used by the encoder model to gener-
ate ‘glyph embeddings’ from a string of Unicode-
encoded glyphs. The ‘transliteration tokenizer’
has a vocab size of 1024 transliteration tokens and
is used by the decoder model to output transliter-
ations. The vocabularies of both the glyph and
transliteration tokenizers include eleven special to-
kens, including the extra-semantic special tokens
discussed in section 3.3.
We structure our transliteration model as a

sequence-to-sequence (encoder-decoder) model.
We initialize both the encoder and decoder sepa-
rately with the pre-trained weights of an XLM-R
model.
We train the model in three stages: First, we

independently fine-tune the pretrained encoder
model on the Unicode cuneiform glyphs using
a masked language modeling task (MLM). This
step yields a model with effective internal rep-
resentations for the glyphs. Then, we integrate
the decoder, training the full encoder-decoder
model to take glyph sequences as input and auto-
regressively predict target transliterations token-
by-token. To stabilize the auto-regressive training
of the joint encoder-decodermodel, we decompose

this process two stages. We first freeze the en-
coder weights (only training the decoder) for one-
third of the time that we train the joint encoder-
decoder model. For the rest of training, we un-
freeze the encoder weights and allow both the en-
coder and decoder to receive gradient updates. Fig-
ure 2 showcases the encoder–decoder model archi-
tecture. An added benefit of using both an encoder
and a decoder is that the encoder can function in-
dependently from the decoder to predict missing or
unknown glyphs, as illustrated in Figure 3.
Both the encoder and decoder are initialized

with the pre-trained weights of a 279 million pa-
rameter XLM-R model 11. We initially fine-tune
the encoder on the MLM task for 50 epochs, with
sequences lengths of 64 tokens, a learning rate of
5e-05, batch size of 2,048, and 200 warmup steps.
We set the MLM masking probability to 0.10 and
use the same 80-10-10masking procedure as in De-
vlin et al.. Next, the encoder-decoder with frozen
encoder weights is trained with a learning rate of
1e-04 for 2 epochs. Finally, we unfreeze the en-
coder weights and train the full encoder–decoder
model with a learning rate of 5e-05 for a further
4 epochs. For both encoder–decoder learning pro-
cedures, we set the train batch size to 128 and
the number of warmup steps to 100. All train-
ing used the AdamW optimizer (Loshchilov and
Hutter, 2019) and was run on a single A100 SXM
80GB. For transliteration generation, we use beam
search decoding with a beam size of 5.

11For a full description of the XLM-R model, refer to:
https://huggingface.co/FacebookAI/xlm-roberta-base
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Throughout our experiments, we set the max-
imum sequence length to 128. For tablets
with more than 128 glyphs, we divide both
the pre-tokenized glyphs and transliterations by
newlines—these divisions align due to how we de-
sign SumTablets to preserve tablet structures. We
then tokenize chunks of N lines, with N decreas-
ing in size progressively from 16 down to 1, until
the resulting chunk contains slightly less than 128
tokens. This segmentation ensures that all resul-
tant chunks contain a maximum amount of tokens
within the valid sequence length.
After processing the data into chunks of se-

quence length 128, we find that the dataset
comprises 178,208 administrative examples and
23,282 non-administrative examples. To address
the imbalance, we up-sample non-administrative
examples by a factor of 5 for the initial two epochs
of training and then reduce the up-sampling factor
to 3 for the remaining epochs.

𒈗  𒆳   <unk>   𒊏Input

Embeddings

 Transliteration Encoder

Glyph

𒆳 𒊏𒂗 𒁍
Prob. Distribu8on

Figure 3: The encoder model can produce a probabil-
ity distribution over possible glyphs that can replace an
<UNK> token. This is because the encoder is trained us-
ing an MLM objective.

Our encoder-decoder model achieves an aver-
age character-level chrF score of 97.54 on unseen
test data, setting, to the best of our knowledge,
a new state-of-the-art benchmark performance on
the transliteration task. We report results for both
baselines and across all time periods and genres in
Table 4. Our work demonstrates the capability of
large multilingual models to model and transliter-
ate Sumerian, despite the highly fragmented nature
of these extant texts and the language being both
low-resource and an isolate.

4.4 Analysis

We derive several key takeaways from our results.

The genre of the texts impacts transliteration
performance. The difference in transliteration
performance across genres that we observe in Ta-
ble 4 is intuitive given the nature of the underlying

data. Because the training data is dominated by ad-
ministrative examples, it is natural that that would
be the best performing category. These texts also
tend to be relatively formulaic. Liturgical, letter,
and literary texts, on the other hand, have a dif-
ferent style, form, and vocabulary from the rest of
the corpus. These genres (liturgical in particular)
are also some of the most challenging for experts.
Genre also affects performance insofar as for most
genres there are so few examples on which to train
or evaluate.

Inconsistent transliteration conventionsmud-
dle performance. Some of the different readings
for a glyph stem not from a tangible semantic dif-
ference but from phonetic or aesthetic disagree-
ment. For instance, “saŋ” and “sag” represent the
same thing, but Assyriologists have a preference
in how they represent the nasal ‘g.’ A lack of stan-
dardization on matters like this fragments the pat-
terns in which models observe a reading occurring.

It is difficult to predict phonemes in names.
Manual error analysis showed that some errors oc-
curred when selecting a reading that serves as part
of a name (playing a phonetic role). Our neural
baseline model would often predict a valid read-
ing for a glyph, but a different one than in the true
transliteration. Future work will incorporate ex-
pert evaluation to determine whether these predic-
tions are any more or less plausible than those in
the original transliteration.

5 Limitations

We note that our work has some limitations, both
in terms of the SumTablets dataset and the translit-
eration model.

5.1 Dataset Limitations

Administrative documents have an outsized repre-
sentation in the train, validation, and test data. This
dataset imbalance is a natural by-product of the cat-
egory of documents produced by Mesopotamian
peoples and is an unavoidable consequence of
working with Sumerian texts. Although we chose
to oversample non-administrative tablets in the
train set by a factor of 5 during training of our
model, we leave the choice of how to best handle
this imbalance to the consumer.
While the set of Unicode cuneiform glyphs is

largely complete, there are still glyphs that are
not represented in this set, particularly some com-
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plex compound glyphs. We currently convert
these glyphs and their corresponding readings into
<UNK> tokens, but future work could incorporate
unique identifiers for these glyphs as a placeholder
until they are added to the Unicode standard.
Finally, there is considerable orthographic vari-

ation in glyphs over time, and representing these
in Unicode flattens these (potentially meaningful)
variations into a single, universal representation.

5.2 Model Limitations

In this paper, we train an XLM-R model on
SumTablets as a fully supervised neural baseline
for Sumerian glyph transliteration. We give our
model access to the entire training set to explore
the limit of a pre-trained cross-lingual model to
perform this novel task. Our work, however, does
not study the zero- and few-shot abilities of cross-
lingual models, which is typically of more inter-
est when evaluating a model’s cross-lingual abili-
ties. Nor do we study the performance of a model
trained from scratch on our dataset. We encour-
age future work to use SumTablets as a few- and
zero-shot cross-lingual benchmark task to evaluate
how a multilingual model’s language understand-
ing transfers to the Sumerian language.
Moreover, we recognize that the dictionary base-

line that we implement is very simple, and that a
better point of comparison would be an N-gram
model.

6 Conclusion

We introduce SumTablets, the first collection
of paired glyph-transliterations extracted from
91,606 Sumerian tablets. Our dataset provides
a resource for experts and non-experts alike to
contribute to the development of transliteration
models. We define the transliteration task, eval-
uation method, and establish a baseline perfor-
mance so that future results may be compared. We
also demonstrate that—despite Sumerian’s status
as a low-resource language and language isolate—
large pretrained multilingual language models can
be adapted to perform the sequence-to-sequence
task of transliterating a sequence of Unicode
cuneiform glyphs with remarkable accuracy.
With such an abundance of extant texts and so

few specialists capable of reading them, we believe
transliterationmodels will enable Assyriologists to
spent less time on tedious, from-scratch transliter-
ation and more time on research and translation.
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