@inproceedings{konstantinidou-etal-2024-exploring,
title = "Exploring intertextuality across the {H}omeric poems through language models",
author = "Konstantinidou, Maria and
Pavlopoulos, John and
Barker, Elton",
editor = "Pavlopoulos, John and
Sommerschield, Thea and
Assael, Yannis and
Gordin, Shai and
Cho, Kyunghyun and
Passarotti, Marco and
Sprugnoli, Rachele and
Liu, Yudong and
Li, Bin and
Anderson, Adam",
booktitle = "Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)",
month = aug,
year = "2024",
address = "Hybrid in Bangkok, Thailand and online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.ml4al-1.25",
doi = "10.18653/v1/2024.ml4al-1.25",
pages = "260--268",
abstract = "Past research has modelled statistically the language of the Homeric poems, assessing the degree of surprisal for each verse through diverse metrics and resulting to the HoLM resource. In this study we utilise the HoLM resource to explore cross poem affinity at the verse level, looking at Iliadic verses and passages that are less surprising to the Odyssean model than to the Iliadic one and vice-versa. Using the same tool, we investigate verses that evoke greater surprise when assessed by a local model trained solely on their source book, compared to a global model trained on the entire source poem. Investigating deeper on the distribution of such verses across the Homeric poems we employ machine learning text classification to further analyse quantitatively cross-poem affinity in selected books.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="konstantinidou-etal-2024-exploring">
<titleInfo>
<title>Exploring intertextuality across the Homeric poems through language models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Konstantinidou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Pavlopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elton</namePart>
<namePart type="family">Barker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Pavlopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thea</namePart>
<namePart type="family">Sommerschield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yannis</namePart>
<namePart type="family">Assael</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shai</namePart>
<namePart type="family">Gordin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Passarotti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachele</namePart>
<namePart type="family">Sprugnoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yudong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Anderson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hybrid in Bangkok, Thailand and online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Past research has modelled statistically the language of the Homeric poems, assessing the degree of surprisal for each verse through diverse metrics and resulting to the HoLM resource. In this study we utilise the HoLM resource to explore cross poem affinity at the verse level, looking at Iliadic verses and passages that are less surprising to the Odyssean model than to the Iliadic one and vice-versa. Using the same tool, we investigate verses that evoke greater surprise when assessed by a local model trained solely on their source book, compared to a global model trained on the entire source poem. Investigating deeper on the distribution of such verses across the Homeric poems we employ machine learning text classification to further analyse quantitatively cross-poem affinity in selected books.</abstract>
<identifier type="citekey">konstantinidou-etal-2024-exploring</identifier>
<identifier type="doi">10.18653/v1/2024.ml4al-1.25</identifier>
<location>
<url>https://aclanthology.org/2024.ml4al-1.25</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>260</start>
<end>268</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring intertextuality across the Homeric poems through language models
%A Konstantinidou, Maria
%A Pavlopoulos, John
%A Barker, Elton
%Y Pavlopoulos, John
%Y Sommerschield, Thea
%Y Assael, Yannis
%Y Gordin, Shai
%Y Cho, Kyunghyun
%Y Passarotti, Marco
%Y Sprugnoli, Rachele
%Y Liu, Yudong
%Y Li, Bin
%Y Anderson, Adam
%S Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Hybrid in Bangkok, Thailand and online
%F konstantinidou-etal-2024-exploring
%X Past research has modelled statistically the language of the Homeric poems, assessing the degree of surprisal for each verse through diverse metrics and resulting to the HoLM resource. In this study we utilise the HoLM resource to explore cross poem affinity at the verse level, looking at Iliadic verses and passages that are less surprising to the Odyssean model than to the Iliadic one and vice-versa. Using the same tool, we investigate verses that evoke greater surprise when assessed by a local model trained solely on their source book, compared to a global model trained on the entire source poem. Investigating deeper on the distribution of such verses across the Homeric poems we employ machine learning text classification to further analyse quantitatively cross-poem affinity in selected books.
%R 10.18653/v1/2024.ml4al-1.25
%U https://aclanthology.org/2024.ml4al-1.25
%U https://doi.org/10.18653/v1/2024.ml4al-1.25
%P 260-268
Markdown (Informal)
[Exploring intertextuality across the Homeric poems through language models](https://aclanthology.org/2024.ml4al-1.25) (Konstantinidou et al., ML4AL-WS 2024)
ACL