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Abstract
Cuneiform is the oldest writing system used for
more than 3,000 years in ancient Mesopotamia.
Cuneiform is written on clay tablets, which are
hard to date because they often lack explicit ref-
erences to time periods and their paleographic
traits are not always reliable as a dating cri-
terion. In this paper, we systematically anal-
yse cuneiform dating problems using machine
learning. We build baseline models for both vi-
sual and textual features and identify two major
issues: confounds and distribution shift. We ap-
ply adversarial regularization and deep domain
adaptation to mitigate these issues. On tablets
from the same museum collections represented
in the training set, we achieve accuracies as
high as 84.42%. However, when test tablets
are taken from held-out collections, models
generalize more poorly. This is only partially
mitigated by robust learning techniques, high-
lighting important challenges for future work.

1 Introduction

Computational paleography (Vidal-Gorène and
Decours-Perez, 2021; Srivatsan et al., 2021) is a
growing interdisciplinary field that uses compu-
tational algorithms to decipher and analyse an-
cient writing systems. We investigate using ma-
chine learning to automate large-scale dating of
cuneiform1, the oldest writing system from around
3,500 BCE. Similar to general chronicle attribution
tasks in paleography, cuneiform dating involves
classifying cuneiform tablets into specific time pe-
riods rather than precise years. For example, Figure
1 shows a tablet comes from Ur III. Different from
other historical languages, such as ancient Greek
(Assael et al., 2022) or ancient Arabic (Adam et al.,
2018), cuneiform tablets are more challenging to
convert into a machine readable format because the
writing system continually evolved over the 3,000
years it was in use.

1Code is available at https://github.com/taineleau/
CuneiML/tree/main/ml4al_2024_dating.
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Figure 1: An overview of the cuneiform dating task.
Tablets from different collection (museum or private
collector) usually in different time period distribution
and there is confound (undeier features to machine learn-
ing models) from different cameras. The transliteration
is usually exhibit bias towards specific time periods.

For many writing systems, historians and pale-
ographers have been able to identify distinguishing
features in textual content and writing style that
allow for inferences about date of origin for indi-
vidual artifacts. For some writing systems, these
processes have even been automated with machine
learning to some extent. For example, Assael et al.
(2022) showed encouraging results using neural
networks trained on ancient Greek text to restore
and date digitized ancient Greek artifacts.

Can we train similar textual models for
cuneiform dating using accompanying manual tran-
scriptions or transliterations? We conduct experi-
ments with a series of light-weight recurrent mod-
els that show this is indeed possible. However,
relying on manual transcriptions for the purpose of
dating is somewhat circular: for Cuneiform, tran-
scription and transliteration is as time-intensive as
manually dating tablets. Further, transliterations
themselves might exhibit bias—for example, an
expert’s approach to transliterating a tablet may al-
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ready be influenced by preconceived notions about
its time period—allowing models to overfit to the
tendencies of individual transliterators.

Thus, we also study whether visual representa-
tions of Cuneiform tablets can be used effectively
for automatic dating. Visual representations skirt
the issues of manually-intensive transcription and
confounds due to transliteration style. Further, vi-
sual representations may even allow models to auto-
matically extract information about the visual style
of writing, which paleographers have found useful
for manual dating. In past work, Bogacz and Mara
(2020) has shown that relatively accurate dating
of cuneiform tablets using 3D scans is possible.
However, currently it is not feasible to produce 3D
scans of over 100,000 remaining tablets, which are
dispersed among museums and private collections
around the world.

Therefore, instead we explore the use 2D pho-
tographs from CDLI (CDLI contributors, 2024)
to address the dating problem—a task that as far
as we are aware has not been previously studied.
Our experiments using convolutional neural models
trained on 2D images demonstrate a new problem
however: the different imaging setups used by dif-
ferent collections presents a confound that leads
to poor generalization (shown in Figure 3). We
find that the gap between performance on tablets
from collections that were attested in training data
versus those that were not is extremely large. Thus,
we also evaluate to what extent robust learning
methods that attempt to address out-of-distribution
(OOD) generalization can mitigate this issue. We
find that while these methods do help, they do not
increase generalization to the point where accurate
dating of tablets from unseen collections can be
performed reliably. Thus, our empirical study high-
lights this important challenge as an area for future
research. We summarize our primary contributions
below:

1. We identify and analyze several challenging is-
sues in cuneiform dating related to confounds,
distribution shift, and domain generalization.
These challenges are likely also present in the
classification of other ancient artifacts with
text.

2. We study a range of modeling approaches in-
cluding simple methods like Naive Bayes, as
well as neural methods for both images and
text features. We demonstrate strong perfor-
mance when using data splits that reduce dis-

tribution shift and OOD effects, but poor per-
formance across museum collections.

3. We applied multiple robust learning tech-
niques to mitigate distribution shift and the
effect of confounds. While our results demon-
strate improvements from these techniques,
overall OOD generalization performance is
still prohibitive for broader use.

In the following sections, we first formulate the
problem and then describe the data collection splits
we created to address our core research questions.

2 Problem Formulation

Technically, the dating task can be formulated as ei-
ther a classification or a regression problem. How-
ever, after careful examination, we concluded that
treating inferred dates as continuous variables (us-
ing regression) does not make sense in this domain
because the annotation standard used for manual
dating (the source of supervision for learning and
evaluation) includes date categories with overlap-
ping time intervals (see Figure 5). Instead, we
represent each time period as a categorical class
ID and treat dating as a multi-class classification
problem.

Next, we layout the core research questions we
attempt to answer in this empirical study. To ad-
dress each, we will carefully design data splits that
contain three separate test sets, each measuring a
specific aspect of OOD generalization, along with
a train and validation set.

RQ1: What models, configurations, and
features—either visual or textual—are most
effective for automatically dating cuneiform
tablets?

RQ2: How much of a problem do OOD effects
pose for generalization in this domain? For exam-
ple, do models overfit to specific features present in
individual museum collections? How well do mod-
els generalize to tablets from previously unseen
museum collections?

RQ3: How well do existing robust learning
techniques address the issue of distribution
shift and OOD generalization in the context of
cuneiform tablet dating?

In later sections, we will specify the datasets
we use, which specific input representations
we compare, and which modeling approaches
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Figure 2: The normalized count density (by collection) of tablets from different time periods across museum
collections. Darker colors indicate higher densities, highlighting that tablets from certain collections often belong to
the same time period. This supports the hypothesis of distribution shifts between training and testing datasets. For a
high-resolution version, see Appendix Figure 8.
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Figure 3: An overview one of the dating tasks using
major-face cutouts of photographs to predict time pe-
riods. We held out several museums for the out-of-
distribution (OOD) setting (e.g., the Cairo Museum),
while the ID Testing set contains tablets from the same
museums as the training set.

we evaluate. We will also carefully design test
splits to answer specific questions about OOD
generalization. Next, we describe and define some
of the potential OOD effects in this domain and
distribution shifts we seek to analyze.

Generally speaking, distribution shift occurs
whenever the underlying distribution that gener-
ated the training data diverges from the distribution
that will generate future test instances. Distribu-
tion shift poses a substantial challenge for learning
systems: patterns that hold true on the training
data may not generalize to the test set, leading to
poor generalization performance. In the domain
of cuneiform data the are two important types of
distribution shift.

First, cuneiform datasets tend to exhibit substan-
tial label shift due to how tablets are distributed
across museum collections. We depict the distri-
bution of tablet dates in museum collections in the
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Figure 4: Visualization of label shift for the
collection shift train/test split setting.

CuneiML dataset (Chen et al., 2023) (which we use
in experiments) in Table 2. Most museums contain
tablets from a small range of time periods. Thus, if
train and test setups for validating computational
approaches are selected based on i.i.d. sampling
from this dataset, the test performance may not
accurately reflect expected performance on tablets
from new, unseen museum collections. In Figure 4
we visualize actual label distribution shift in a i.i.d.
train/test split.

Second, the input representations from individ-
ual museum collections may have properties that
make the collection itself identifiable. For instance,
as shown in Figures 1 and 3, the scanning method-
ologies used by separate museums leave artifacts
like different amounts of color saturation and blur-
ring. Similarly, it is possible that different translit-
eration styles may also be identifiable. Because
individual collections are biased towards specific
date ranges, the confounds mentioned above may
cause covariate shift—a type of distribution shift
where the distribution on the input variables and the
relationship between input and output vary between
train and test. For example, a model may learn to
identify the collection based on properties of the
scanning hardware in order to determine date. This
may work on training data, but will not generalize
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Figure 5: Time period overlapping visualization. The
x-axis is years for BCE. Two time period classes can
be parallel in time, for example, Middle Babylonian is
almost completely overlaps in time with Middle Assyr-
ian.

to new collections. Thus, one of our primary goals
is to measure the effects of label and covariate shift
for cuneiform dating and to evaluate to what extent
robust learning methods may address these issues.

3 Data

We obtain 38,937 tablet images with translitera-
tions from CDLI (CDLI contributors, 2024), using
prepossessing from CuneiML (Chen et al., 2023).
An example is shown in Figure 6. Besides transliter-
ation and 2D images, we use several other attributes
from the metadata entries, including provenience,
collection, and genre, which we use in later exper-
iments for both simple baselines and as additional
supervision to mitigate distribution shift.

Figure 6: Left: Cuneiform Tablet images with six face
photographs. Right: Example of transliteration in ATF
format and the tokenization in cuneiform glyph. We use
a special token <S> to separate the word in cuneiform.

Split % Count Note
all 100% 38,937 -
train 80% 30,626 -

test 1 5% 2,065 OOD , p(y) shift

valid 5% 2,116 OOD , p(y) shift

test 2 5% 2,065 ID , p(y) shift

test 3 5% 2,065 ID

Table 1: Dataset split statistics. OOD stands for Out-of-
distribution compared to training set, and ID stands for
in distribution compared to training set.

3.1 Data split

Inspired by Koh et al. (2021), we identify two kinds
of distribution shift and would like to create splits
that disentangle the issues and better answer the
research questions. As we can see in Figure 2, most
museum collections only own tablets from one or
two time periods and most time periods are col-
lected by a specific museum. To better study the
distribution shift across collections, we split the
data with regard to the collection id, i.e. tablets
from the same collection only present in one split.
This split we call OOD test split (test 1). We use
p(y) shift to denote a split where the label distri-

bution p(y) is significantly different from that of
the training set. We describe briefly how we split
the data (Table 1) below.

1. Step 1: Getting an OOD and p(y) shift set
S1 from the full data. We sampled about 10%
from the full dataset using the following rules:
(i) We sample by collections, meaning tablets
from an entire collection are either included or
excluded. (ii) For a given time period, we do
not select collections that constitute more than
30% of the data for that time period, ensuring
that we do not remove most of the tablets
for certain time periods from the training set.
We named the remaining 90% of full data S2.
Figure 4 shows the shift of p(Y ).

2. Step 2: Getting valid and test 1 set. we
evenly split S1 We obtained from step 1 and
we now have valid and test 1 set.

3. Step 3: Getting test 2. We sampled 5% of
the data from the subset S2 against the label
distribution of test 1. Therefore, test 2 has the
same sub-population shift from the training
set as test 1, but consists of in-domain (ID)
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data instead of OOD data. We named the
remaining 85% of the full data S3.

4. Step 4: Getting test 3 and train set. We
randomly sampled 5% of the data from S3 to
constitute test 3, and the remaining 80% is the
final training set.

Therefore, we have three testing splits setup as
shown in Table 1.

4 Methods

We describe the baseline models we used in experi-
ments and also several training strategies, adversar-
ial regularization and , to mitigate the distribution
shift issues.

4.1 Baseline models

1. Naive Bayes. We use discrete categorical fea-
tures, including genre, collection, provenance,
and size, to predict the time period as a cate-
gorical prediction problem. Note that when
there is only one feature, the performance in-
dicates a correlation between the feature and
the predicted class.

2. Char-LSTMs. We use a character-level
two-layer bi-directional LSTMs to process
cuneiform transliterations and sign tokens for
dating ancient texts. The model has a hidden
size of 128 and an embedding size of 256. We
train for 200 epochs using the ADAMW opti-
mizer with a learning rate of 5e-4 and a weight
decay of 1e-3.

3. ResNet. Our study utilizes the ResNet (He
et al., 2016) architecture, specifically ResNet-
50 and ResNet-101. We apply these models
to classify images of cuneiform inscriptions,
leveraging their powerful feature extraction
capabilities. The models are trained using a
cross-entropy loss function, with adjustments
made to the final layer to suit our specific class
labels. The training regimen includes a batch
size of 16, 30 epochs, ADAM with a learning
rate of 3e-5, and no weight decay.

4.2 Baseline Objective

For all the neural models, we use cross entropy
(CE) loss to train the models.

L = CE(y(t), p(t))

4.3 Advanced Algorithms

To address the aforementioned issues, we explore
several different robust training algorithms in this
paper.

Adversarial Regularization. We use other at-
tributes such as provenience and genre, to optimize
a min-max objective. We attach a new branch of
MLP to calculate the p(adv).
L = CE(y(t), p(t)) + KLD(y(const), p(adv))

where CE is cross entropy loss and KLD is the
KL Divergence loss.

Correlation Alignment for Deep Domain Adap-
tation (CORAL). CORAL (Sun and Saenko,
2016) measures the divergence of means and co-
variance between batches of feature representations.
The goal of CORAL is to match the feature distri-
butions from different domains.

Invariant risk minimization (IRM). IRM (Ar-
jovsky et al., 2019) penalizes feature distributions
that result in different optimal linear classifiers
across different domains. where where Φ is the
entire invariant predictor, w = 1.0 is a fixed classi-
fier, and the gradient norm penalty is the measure
of the classifier at each environment.

5 Experiments and Results

5.1 Input Features

We have four different input features for training,
describing as below.

1. Raw image. The raw images downloaded
from CDLI. Each image usually contains pho-
tographs of six faces for each tablet.

2. Major-face image. The major-face cutout of
the raw images, which are usually the front
faces of the tablets.

3. Raw transliteration. We use the post-
processed version from CuneiML, which re-
moves formatting string such as line numbers,
broken markers and etc.

4. Cuneiform sign (glyph) token. We tokenize
cuneiform glyph at a character-level, with a
vocabulary size of 764. See Figure 6 for an
example. We keep the space between words
and line break.
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Features Model test 1 OOD p(y) shift test 2 ID p(y) shift test 3 ID

F1 Acc. F1 Acc. F1 Acc.

- random 2.92 7.80 2.91 7.12 2.96 6.30
- majority 6.56 74.29 6.56 74.29 6.02 72.93

provenience NBayes 39.48 83.63 51.09 79.95 61.15 89.20
genre NBayes 15.31 72.88 19.77 75.11 22.72 80.63

provenience & genre NBayes 37.94 83.49 56.98 83.24 62.72 91.91

museum (collection) NBayes 6.56 74.29 13.92 75.16 21.78 77.85

transliteration char-LSTM 16.14 10.72 26.52 10.87 84.42 95.73
sign token char-LSTM 16.59 11.45 24.25 11.89 78.13 95.39

raw image ResNet-50 28.46 82.03 64.33 93.51 78.73 94.26
+ OOD mitigate 29.42 83.24 47.46 92.13 48.63 88.17

major cutout ResNet-50 34.82 87.36 68.69 94.74 80.60 95.19
+ OOD mitigate 41.06 88.37 49.55 91.62 54.78 88.03

Table 2: Main result table for cuneiform dating. Macro F1 and Accuracy (Acc.) are reported. Macro F1 denotes the
average F1 score calculated across all classes. Best F1 scores for each subgroup are in bold face and the second best
ones are underlined. Colored background highlight the best overall model for each setting.

The bounding boxes for major-face images and
the Cuneiform sign (glyph) tokens are obtained
from Chen et al. (2023)2.

5.2 Metrics
As the label distribution p(y) imbalance exists and
there is a distribution shift, we primarily use the
F1 score and accuracy to evaluate our methods.
Specifically, we use Macro F1 and accuracy3 as our
major evaluation metrics.

Macro F1 score computes the F1 score indepen-
dently for each class and then takes the average,
thus treating all classes equally regardless of their
frequency. This dual approach allows us to address
both the overall accuracy and the individual class
performance, ensuring a thorough evaluation in the
face of skewed class distributions and shifts.

5.3 Results and Analysis
The main results for two split settings are shown
in Table 2 and several key observation are summa-
rized as follows.

1. Random and Majority Baseline Models.
These models provide basic benchmarks with
the majority model performing based on the
most frequent class, note that the majority
class contains more than 70% of the models,
which accounts for the big discrepency be-
tween macro F1 and accuracy. The low F1

2https://github.com/taineleau/CuneiML
3For single-label classification, Micro F1 is equal to accu-

racy

scores, indicating poor performance across all
classes evenly.

2. Neural models perform the best across all
settings. Both visual and textual neural mod-
els work fairly good in ID setting (test 3),
showing that both textual and visual features
provide sufficient information to date tablets.

3. Raw images contain confounded undesired
features: collection. When using a ResNet-
50 model, features extracted from the raw im-
ages outperformed those obtained from front
face cutouts on ID split (test 3). However, this
performance was reversed on an OOD split
(test 1). This reversal clearly indicates that
raw images include collections as a confound-
ing factor.

4. Textual features are not effective for dating
when label shift exists. From test 3 to test
2, only the label distribution changes, while
the data remains in-domain. However, textual
models experience a dramatic drop in perfor-
mance by 57.9%, revealing that textual fea-
tures are not robust to label imbalance issues.
In contrast, image models are not affected as
significantly.

5. Textual models are not robust to OOD shift;
visual models are better but still have room
for improvement. Textual models exhibit
nearly a 50% relative decrease in macro F1

for the OOD setting (test 1) compared to vi-
sual models. With the application of OOD
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mitigating algorithms (see section 6.3 for de-
tails), visual models improve from 34.82% to
41.06%, achieving the best F1 score on test 1.
This aligns with our earlier concerns that tex-
tual features do not capture any writing style
of the tablet, making it difficult to determine
the time period under OOD shift conditions.

6 Further Analysis

6.1 Zooming in on Textual Models
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Figure 7: Analysis on best context length for textual
features using char-LSTM on three test split.

As shown in Figure 7, we conducted extensive
experiments on the number of lines per example fed
into the models. As mentioned earlier, we use ma-
jority vote by default to ensemble predictions when
we divide a full document. The performance of the
glyph token features (sign token) increases as the
number of lines in an example increases, while the
transliteration features typically achieve the best
performance with only one or two lines. This obser-
vation aligns with our understanding that transliter-
ation already encodes some contextual knowledge,
as signs are transliterated into Latin depending on
the context. In contrast, for sign token features,
the machine learning model requires more lines to
discern the underlying information effectively.

6.2 Mitigating Label Imbalance Issues

Table 3 presents the results of label imbalance meth-
ods using char-LSTM on transliteration and glyph
token features, with loss reweighing (LR) and up-
sampling (US). While both methods show varied
effects on the performance metrics, loss reweighing
generally improves F1 scores and accuracy across
the test sets, particularly for transliteration features,
achieving a F1 86.06% on test 3.

Features test 1 test 2 test 3

F1 Acc. F1 Acc. F1 Acc.

trans. 15.77 10.53 26.52 10.87 74.89 92.62
+ LR 16.54 11.45 24.98 11.89 86.06 85.33
+ US 12.63 9.89 25.32 10.63 81.75 94.61

glyph 15.00 8.82 19.14 9.52 67.56 92.08
+ LR 17.63 12.04 18.63 12.52 74.08 94.85
+ US 15.57 10.92 19.17 12.38 73.22 94.66

Table 3: Result for label Imbalance methods using char-
LSTM on transliteraion and glyph token features. LR:
loss reweighing, US: up sampling. The models trained
with num_of_line=1.

6.3 Distribution shift and Confounds

Adversarial Regularization. Table 4 show re-
sults using adversarial regularization. Macro F1

does not change as much as the accuracy. We also
found that adversarial training requires very care-
ful hyper-parameter tuning; otherwise, the model
may completely underfit due to the noisy gradients
provided by the adversarial branch.

Input adv. feat Macro F1 Acc.

raw none 25.73 58.34
raw collection 25.44 62.12

cutout none 29.09 64.91
cutout collection 30.39 68.64

Table 4: Adversarial study on image features. ResNet-
50 is used for all experiments in this table. We run each
experiments five time and report the mean F1 scores.
Note that the result is trained on a slightly different split
than the main table.

OOD mitigation. Table 5 shows results using
OOD methods. Among the OOD mitigating algo-
rithms, CORAL consistently improves the perfor-
mance across all test sets for both raw and cutout
features. Notably, CORAL achieves the best F1

scores of 29.42% and 40.46% on test 1 for raw
and cutout features, respectively. The other algo-
rithms, IRM and groupDRO, generally show a de-
cline in performance, with groupDRO performing
the worst, especially for the cutout features. Over-
all, the results indicate that while textual models
struggle with domain shifts, visual models, par-
ticularly those enhanced with cutout features and
CORAL, demonstrate a more robust performance,
albeit with room for further improvement.
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Features test 1 test 2 test 3

F1 Acc. F1 Acc. F1 Acc.

raw 28.46 82.03 64.33 93.51 78.73 94.26
+ IRM 26.97 85.28 47.28 90.91 48.63 88.17

+ CORAL 29.42 83.24 47.46 92.13 46.94 90.08
+ groupDRO 24.02 77.97 35.18 87.69 56.54 89.54

cutout 34.82 87.36 68.69 94.74 80.60 95.19
+ IRM 28.31 87.46 43.42 91.11 44.34 88.81

+ CORAL 40.46 89.39 52.51 93.05 48.61 90.92
+ groupDRO 27.94 80.77 50.47 86.82 60.50 86.99

Table 5: OOD setting results trained on images features
using ResNet-50.

Num of
Examples

ResNet-50 char-LSTM

F1 Acc. F1 Acc.

Full 85.34 94.40 53.19 85.89
10,000 67.18 90.86 49.46 84.73

5,000 59.17 89.99 32.93 82.24
1,000 40.89 82.39 17.28 75.09

500 28.03 77.77 7.44 70.62
100 13.21 55.49 5.66 65.67

Table 6: Ablation study on different number of training
data, on test 3 using ResNet-50 and BERT. Note that
this table is running on a slightly different data split
from the main table.

6.4 Cuneiform Dating at Scale

It is not possible to make an apple-to-apple compar-
ison on 2D and 3D scans features because most of
the HeiCuBeDa dataset (Bogacz and Mara, 2020)
does not accompany with a 2D photo. The paper
reported a weighted F1 of 83% (which is roughly
comparable to accuracy in our case). We conduct a
set of experiments by varying the number of train-
ing examples, as shown in Table 6. Both models
show a clear trend of improved performance with
increased training data.

7 Related work

7.1 Automated classification for ancient
languages

Sommerschield et al. (2023) provides a detailed
overview of ancient languages processing using
machine learning. Resler et al. (2021) classified
artifact images using CNNs and nearest neighbors.
Assael et al. (2022) train a BE to restore ancient
Greek. There have been work on dating documents
in various ancient languages, like Arabic, Korean
and Chinese oracles bones among others (Sommer-

schield et al., 2023)

7.2 Cuneiform studies

There have been important efforts in cuneiform
sign recognition, language identification (Bernier-
Colborne et al., 2019), and machine translation for
Akkadian have been explored (Gutherz et al., 2023).
Bogacz and Mara (2020) use high resolution 3D
scans to classify time periods, and more recently
Yugay et al. (2024) have explored the dating of first
millennium Assyrian and Babylonian documents,
using stylistic criteria and CNN. As mentioned ear-
lier, it is non-trivial to tokenize the transliteration.
Gordin et al. (2020) uses HMM and neural models
to automatically transliterate Unicode cuneiform
signs. On the contrary, in our paper, we reverse this
process by converting the transliteration back to
Unicode cuneiform signs to reduce transliteration
bias.

7.3 Distribution shift

Historical data always suffers from noise and there-
fore it is hard to have good generalization on held
out data. Specially for cuneiform, the systematic
distribution shift is the most salient one. The sys-
tematic distribution shift is a special cases in do-
main adaptation, and therefore can be mitigated
by general domain adaptation methods (Koh et al.,
2021)). Ahmed et al. (2020) analyses group invari-
ant predictions, where dominant simpler correla-
tions with the target variable. Zare and Nguyen
(2022) studied similar scenario in medical diag-
nosis, which has a shift on several attributes such
as sex, age and race. They use invariant risk min-
imization (IRM) (Arjovsky et al., 2019) to learn
invariant features. Another branch of methods is
adversarial regularization, which uses adversarial
training (Gokhale et al., 2021) to improve the gen-
eralization ability. Li et al. (2018) uses Maximum
Mean Discrepancy (MMD) to align loss in different
class.

8 Conclusion

In this paper, we explore end-to-end cuneiform
dating at scale using machine learning. We have
identified three major challenges—label imbalance,
distribution shift, and circular reasoning—that are
prevalent in cuneiform dating. These issues and
solutions explored in our paper are broadly applica-
ble to the classification of other ancient artifacts as
well. We hope our initial analysis will inspire the
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community to further adopt machine learning for
addressing problems in ancient language process-
ing.
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A Appendix

A.1 Tokenization

There are 7, 000 glyphs across different time pe-
riods. We use Chen et al. (2023) tokenization of
text.

1. word boundary. Empty space is manually
inserted between word. We by default keep
the space by inserting.

2. Logogram. A tilde sign before a sign indicate
it is a logogram. By default we differentiate
whether a sign is syllable or logogram.

3. Intrusions. (...) indicates unknown num-
ber of signs is missing.

4. Modifier. In ATF, at-sign precedes a sign or
group. For example, @c means curved.

5. Compound. |GA2 ∼ a×EN|, means: “the
a-allograph of the sign GA2 containing sign
EN”.

6. Breakage. Hash tag is used to mark breakage.

B Details

B.1 OOD Experiments Details

1. Raw

(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.

(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed 0.

(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 1.

2. Front

(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.

(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed 2.

(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 2.

B.2 Hyperparameters and ablation study

We provide further analysis and conduct a com-
prehensive ablation study in the following section,
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exploring the effects of hyperparameters, input fea-
ture selection, and the number of training examples
on our model’s performance.

As shown in Table ??, larger model or larger
resolution of input can boost model performance.

C Visualization of tablets counts

A full resolution with number annotated heatmap
for the time periods preserved in each museum
collection is shown in Figure 8.
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Visualization Of Time Periods Preserved In Each Museum Collection

Figure 8: Visualization of the time periods preserved in each museum collection.
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