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Abstract

Controlled paraphrase generation often focuses
on a specific aspect of paraphrasing, for in-
stance syntactically controlled paraphrase gen-
eration. However, these models face a lim-
itation: they lack modularity. Consequently
adapting them for another aspect, such as lexi-
cal variation, needs full retraining of the model
each time. To enhance the flexibility in train-
ing controlled paraphrase models, our propo-
sition involves incrementally training a modu-
larized system for controlled paraphrase gen-
eration for English. We start by fine-tuning a
pretrained language model to learn the broad
task of paraphrase generation, generally empha-
sizing meaning preservation and surface form
variation. Subsequently, we train a specialized
sub-task adapter with limited sub-task specific
training data. We can then leverage this adapter
in guiding the paraphrase generation process
toward a desired output aligning with the dis-
tinctive features within the sub-task training
data.

The preliminary results on comparing the fine-
tuned and adapted model against various com-
peting systems indicates that the most success-
ful method for mastering both general para-
phrasing skills and task-specific expertise fol-
lows a two-stage approach. This approach in-
volves starting with the initial fine-tuning of
a generic paraphrase model and subsequently
tailoring it for the specific sub-task.

1 Introduction

Paraphrase generation aims to produce sentences
that maintain high semantic similarity with the
source sentence, while deviating enough from it
on surface form. Commonly used sequence-to-
sequence models encounter challenges in generat-
ing diverse paraphrase outputs (Kumar et al., 2019).
As a result, recent research in paraphrase genera-
tion has shifted toward controlled generation meth-
ods. These approaches condition the model on
predefined qualities to produce specific outputs,

aiming to overcome this limitation. Exploring ap-
proaches to controlled text generation has both
theoretical and practical implications. It can in-
fluence the theoretical understanding of automatic
language generation and offer practical applica-
tions across various domains and industries.

Through leveraging controlled text generation,
models can for instance be steered to produce lan-
guage that better follows user preferences (Fan
et al., 2018). With enough surface form variation,
paraphrasing can be useful in question answering
(Dong et al., 2017), data augmentation (Kumar
et al., 2019), and machine translation (Callison-
Burch et al., 2006; Mehdizadeh Seraj et al., 2015),
among other tasks. Even if trained to perform cer-
tain paraphrase transformations, recent controlled
paraphrase generation systems are limited in flexi-
bility. Incorporating an additional control feature
necessitates retraining the entire model. To over-
come this limitation, we make the assumption that
paraphrase generation essentially behaves in a mod-
ular manner. To evaluate our assumption, we pro-
pose the training of a modular system for controlled
paraphrase generation through initial fine-tuning
or broader task adapters (Pfeiffer et al., 2020b)
followed by more specialized sub-task adapters.
Hence, in contrast to standard fine-tuning of all pa-
rameters of a model, we initially train the model to
perform the necessary paraphrasing skills, namely
meaning preservation and surface form variation,
and further refine the model in a modular way to
produce outputs that encompass some desired para-
phrase nuances. We focus on English paraphrasing,
incorporating one specific aspect of paraphrasing,
namely antonym substitution (Bhagat and Hovy,
2013). We select this paraphrase operation due
to the availability of a specialized test suite de-
signed for evaluating paraphrase models on sen-
tence pairs that incorporate antonym substitution
(Vahtola et al., 2022), enabling systematic com-
parison of various experimental setups. However,
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our proposed approach could as well be applied to
other paraphrase phenomena and languages where
paraphrase data is available.

2 Previous Research

Common methods for automatic paraphrase gener-
ation rely on sequence-to-sequence modeling, of-
ten leveraging machine translation (Tiedemann and
Scherrer, 2019; Thompson and Post, 2020; Sun
et al., 2022, inter alia), or monolingual parallel
data (Prakash et al., 2016; Sjöblom et al., 2020).
These models, however, often struggle with gener-
ating sufficient variation (Kumar et al., 2020). As a
result, increased emphasis has been given to gener-
ating controlled paraphrases, specifically targeting
variations across predefined dimensions.

There has been significant research attention di-
rected toward controlled paraphrasing in various
granularity levels, from aiming to produce lexical
variation by providing synonym substitutions (Fu
et al., 2019) to the generation of syntactically con-
trolled paraphrases (Iyyer et al., 2018; Kumar et al.,
2020; Sun et al., 2021). While these approaches are
constrained by concentrating solely on one level
of detail, diverse paraphrasing encompasses mul-
tiple levels of granularity. To acknowledge this
limitation, Huang et al. (2019) use dictionaries to
perform word-level and phrase-level paraphrasing,
obtaining more variation. Vahtola et al. (2023) train
a multilingual NMT model with control tokens re-
lated to various aspects of paraphrasing. It is still
however an open question how the control tokens
interplay. In addition, a critical limitation arises
with these models: they lack modularity, wherein
all control tokens exert simultaneous influence on
the output, making it impossible to selectively de-
activate any subset of control features during the
inference process or flexibly adapt the model to
new features. In contrast, we propose the train-
ing of a modular controlled paraphrase generation
model leveraging adapter transformations (Houlsby
et al., 2019; Pfeiffer et al., 2020b).

In addition to being widely studied for cross-
lingual transfer (e.g., Pfeiffer et al., 2020b) and
NMT (Üstün et al., 2021), modular and param-
eter efficient fine-tuning has been explored in
other sequence-to-sequence tasks. Bapna and Fi-
rat (2019) use a modification of trainable adapter
blocks (Houlsby et al., 2019) to adapt MT outputs
for new languages and domains. Wan et al. (2023)
leverage prefix-tuning for generating syntactically

controlled paraphrases. In contrast to the previous
work on modular fine-tuning, our focus lies in the
modular training paradigm specific to paraphras-
ing. We delve into training specialized sub-task
adapters within this single task. These adapters
are supposed to capture task and sub-task specific
information, and are to be assembled to produce
controlled paraphrasing toward an intended output.

3 Data

We use the English partition of the Opusparcus
paraphrase dataset (Creutz, 2018) for alternately
fine-tuning the full model or training a generic para-
phrase adapter. The training data in Opusparcus
was automatically constructed and organized to
prioritize the most probable paraphrastic sentence
pairs at the beginning, with decreasing likelihood
of being paraphrases as the data progresses. Hence,
we select the first 1 000 000 sentence pairs from the
corpus as training data, denoted as T , comprising
approximately of 95% of true paraphrases (Creutz,
2018), and use the sentence pairs annotated as para-
phrases from the Opusparcus development set for
tuning the models. Moreover, within the training
set T , we extract a specialized subset Tn ⊂ T con-
sisting of 12 870 examples. We use the first 12 000
examples as training data and save the final 870 ex-
amples to serve as a development set for tuning the
specialized systems. This subset exclusively com-
prises instances where an explicit negation token is
present in the target but absent in the source, and
is used for training a dedicated sub-task adapter as
a part of a broader paraphrasing task. We aim to
extract sentences that demonstrate interesting para-
phrastic relationships through the use of negation
or negated antonymy, as opposed to sentences that
negate the intended meaning. We release the task-
specific data in https://github.com/teemuvh/
controlled-paraphrase-adapters.

4 Experiments

Our objective is to incrementally train and assem-
ble a modular system for controlled paraphrase
generation. We undertake training and assessment
across several models. To start, we establish a base-
line by fine-tuning flan-t5-base1 (Chung et al.,
2022) using a set of 1 000 000 paraphrase pairs (T )
sourced from the English partition of the Opuspar-
cus training set. Furthermore, we fine-tune a sepa-

1The prefix we use for training and evaluating the models
is: paraphrase this sentence:.
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Original Candidates
You’re not fat. You’re not thin., You’re fat., You’re thin.
It’s not fair. It’s not unfair., It’s fair., It’s unfair.
This is not a good idea. This is not a bad idea., This is a good idea., This is a bad idea.
It is not safe. It is not dangerous., It is safe., It is dangerous.

Table 1: Examples from the SemAntoNeg test suite. The true paraphrase to the input sentence is highlighted.

rate system using only a subset of the training data
(Tn) that comprises of examples incorporating para-
phrasing through negation and negated antonymy,
extracted from the complete training set. We also
perform a two-stage fine-tuning, starting with fine-
tuning the base model with T , and sequentially
fine-tuning with Tn.

In all adapter experiments, we leverage the
adapter-transformers library (Pfeiffer et al., 2020a).
We optimize modular fine-tuning by utilizing the
bottleneck adapter (Houlsby et al., 2019) config-
uration proposed in Pfeiffer et al. (2020b) in con-
junction with the base model. We then proceed
to train two task adapters: one using the entire
training dataset (T ) for a broad paraphrasing task,
and another using a subset (Tn) of the data for a
specific controlled paraphrasing sub-task. Finally,
we explore incremental adapter training by enhanc-
ing the base model with the paraphrase adapter.
We then freeze the weights of the base model and
the paraphrase adapter and proceed to train an ad-
ditional sub-task adapter. This adapter not only
benefits from the paraphrase adapter’s information
but also focuses on learning more specific para-
phrasing transformations incorporating negation
and antonym substitution. We train each system on
a single GPU for 3 epochs with a batch size of 128,
and 5e-5 learning rate.

We evaluate the models on a dedicated test suite
designed for paraphrase detection within sequences
incorporating negated antonyms (Vahtola et al.,
2022). The test suite is intended to be used to eval-
uate models on a difficult paraphrase detection task
involving sequences with high lexical overlap. Ex-
amples of the data are provided in Table 1. To make
the test suite suitable for evaluating sequence-to-
sequence models, we extract each source sentence
and its true paraphrase, i.e., the third candidate
as highlighted in the examples in Table 1, from
the test suite. By treating these extracted pairs
as source-target sequences, we reframe the task
as a sequence-to-sequence challenge. A success-
ful model hence performs antonym substitution

to produce a paraphrase of the original sentence.
Controlled paraphrasing aims to replicate a specific
output sentence while incorporating predefined con-
trol features. Therefore, we decide to evaluate the
models using BLEU (Papineni et al., 2002) with
respect to the references and to the inputs. We use
sacreBLEU (Post, 2018) for calculating the BLEU
scores.

5 Results

Table 2 presents the results. The base model eval-
uation (denoted as base in Table 2), conducted
without any fine-tuning or adaptation, establishes a
baseline BLEU score of 25.07. Fine-tuning (para-
ft) or training an adapter (para-adapt) solely with
the 1 000 000 examples (T from now on) yields
suboptimal results (14–17 BLEU) on the negated
antonym test data. However, this outcome is ex-
pected, as the model is not explicitly trained to han-
dle paraphrases with negation or negated antonyms.
While the BLEU score may be lower for the para-
phrase models, it doesn’t necessarily imply inferi-
ority in their ability to paraphrase. As indicated by
the high BLEU score with respect to the source sen-
tence (S-BLEU in Table 2), the base model without
fine-tuning or adapter training has a high tendency
to copy the input sentence, consequently yielding
relatively high BLEU score in this task owing to
the extensive lexical overlap found within the test
data examples. The dedicated paraphrase models
aim to introduce more alternations to the inputs,
resulting in lower BLEU scores despite potentially
producing true paraphrases.

Fully fine-tuning the model with the filtered sub-
set (Tn) of the training data (neg-ft), thus highlight-
ing paraphrasing through negation and antonymy,
consistently produces higher BLEU scores on the
task compared to both the base model and mod-
els trained solely on T . Adapter training on top
of the base model using Tn (neg-adapt) results
in even higher BLEU scores. Parameter effi-
cient fine-tuning has been shown to be effective
in low-resource scenarios (e.g., Karimi Mahabadi
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Model BLEU S-BLEU
base 25.07 95.23
para-ft 14.21 30.73
para-adapt 17.15 47.71
neg-ft 30.24 49.15
neg-adapt 32.79 57.92
para-ft+neg-ft 23.40 24.83
para-adapt+neg-adapt 26.06 36.45
para-ft+neg-adapt 34.00 66.45

Table 2: Results of the different models on the SemAn-
toNeg challenge set framed as a sequence-to-sequence
task. Here, BLEU scores measure the alignment with
reference sentences, whereas S-BLEU assesses align-
ment with the input itself.

et al., 2021), which might explain why the adapter
method achieves higher BLEU scores compared
to full fine-tuning when trained specifically for the
given paraphrasing sub-task.

Initiating training by fine-tuning a generic para-
phrase model, followed by further fine-tuning with
the specific sub-task data yields a subpar model
(para-ft+neg-ft). Similarly, training an extensive
paraphrase adapter before introducing a specialized
sub-task adapter (para-adapt+neg-adapt) results in
a model which barely surpasses the base model’s
performance when evaluated against the reference
using BLEU. Comparing the outputs to the input
sentences however shows that the incrementally
adapted model achieves similar BLEU scores as
the base model by trying to produce variation rather
than simply duplicating the input sentence, as in-
dicated by the lower S-BLEU score of the adapted
model.

The best BLEU scores are obtained by fully fine-
tuning the base model leveraging all 1 000 000 para-
phrase examples and training a specialized sub-
task adapter on top of the refined model (para-
ft+neg-adapt). We hypothesize that the initial fine-
tuning steers the model toward generating outputs
that highly resemble the input, reflected in a rela-
tively high S-BLEU. Subsequent adapter training
on a smaller scale then refines the model’s profi-
ciency in paraphrase operations involving negation
and negated antonyms, as indicated by the highest
BLEU.

The relationship between the obtained BLEU
and S-BLEU is presented in Figure 1. A robust
paraphrase model would typically demonstrate a
balance between a higher BLEU score and a lower
S-BLEU score, positioning itself toward the lower
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Figure 1: The BLEU and S-BLEU values of the methods
shown graphically. The best performing models are
assumed to show far to the right, reflecting a high BLEU
with respect to the reference, and at around 25 % S-
BLEU, which is the BLEU value of the reference with
respect to the source. That is, an oracle model that
would produce the desired reference sentences would
obtain BLEU = 100 % and S-BLEU = 24.90 %.

right corner of the diagram. This would indicate ro-
bustness by demonstrating a substantial lexical sim-
ilarity between the input and the reference, while
having a lesser alignment with the input itself. In
our task, an oracle model producing the exact refer-
ence sentence would obtain 100 BLEU and 24.90
S-BLEU.

To summarize the results, the base model along
with the models subjected to plain fine-tuning or
adaptation with the more generic paraphrase data
exhibit poor performance, highlighted by the base
model’s high S-BLEU, and the low BLEU scores
achieved by the fine-tuned or adapted models. In-
corporating specialized training for the intended
paraphrasing task, either through fine-tuning or
adaptation, is essential for success in the task. How-
ever, the results obtained with the models specif-
ically trained for paraphrasing through negation
or negated antonymy remain somewhat inconclu-
sive. Further analysis is necessary to determine
the optimal training configuration for assembling
general paraphrasing capabilities with specialized
sub-task capabilities. Additionally, we hypothesize
that parameter-efficient fine-tuning is better suited
in scenarios involving limited data. However, the
limited training data is also more task-specific, so
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it is still too early to draw general conclusions.

6 Conclusions

We propose the training of a modular paraphrase
generation model that is built incrementally. This
model starts by fine-tuning on a robust pretrained
language model to learn the general requirements
of paraphrase generation, namely meaning preser-
vation and surface form variation. Subsequently,
we train a specialized sub-task adapter with a lim-
ited number of sub-task specific training data to
guide the paraphrase generation process toward a
desired output. We compare the model involving
fine-tuning followed by sub-task adaptation to sev-
eral counterparts, including a base model without
further training, as well as differently fine-tuned or
adapted systems.

When assessing on a dedicated test set involving
paraphrasing with negation or negated antonyms,
we find that the most effective approach for learn-
ing both general paraphrasing abilities and sub-task
specific expertise is achieved by fully fine-tuning a
model for paraphrasing and then tailoring it to the
specific sub-task through modular updates.

In future work, we wish to delve deeper into
modularity for controlled paraphrasing. We intend
to expand the model’s capabilities by incrementally
training it to encompass additional paraphrasing
nuances, such as syntactic or lexical variation. Fur-
thermore, we would like to assess how varying the
size and task-specificity of the training data impacts
the results. Finally, we would like to extend our
approach to a multilingual setup.
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gratitude to Ivan Vulić for engaging in insightful
discussions and providing valuable feedback dur-
ing the conceptualization of this work.

References
Ankur Bapna and Orhan Firat. 2019. Simple, scal-

able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–

1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Rahul Bhagat and Eduard Hovy. 2013. Squibs: What is
a paraphrase? Computational Linguistics, 39(3):463–
472.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine translation
using paraphrases. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Main
Conference, pages 17–24, New York City, USA. As-
sociation for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Mathias Creutz. 2018. Open subtitles paraphrase corpus
for six languages. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question an-
swering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 875–886, Copenhagen, Denmark. Association
for Computational Linguistics.

Angela Fan, David Grangier, and Michael Auli. 2018.
Controllable abstractive summarization. In Proceed-
ings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 45–54, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Yao Fu, Yansong Feng, and John P Cunningham. 2019.
Paraphrase generation with latent bag of words. Ad-
vances in Neural Information Processing Systems,
32.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Shaohan Huang, Yu Wu, Furu Wei, and Zhongzhi Luan.
2019. Dictionary-guided editing networks for para-
phrase generation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6546–6553.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

5

https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.18653/v1/D19-1165
https://doi.org/10.1162/COLI_a_00166
https://doi.org/10.1162/COLI_a_00166
https://aclanthology.org/N06-1003
https://aclanthology.org/N06-1003
https://aclanthology.org/L18-1218
https://aclanthology.org/L18-1218
https://doi.org/10.18653/v1/D17-1091
https://doi.org/10.18653/v1/D17-1091
https://doi.org/10.18653/v1/W18-2706
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170


Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha Talukdar. 2020. Syntax-guided controlled
generation of paraphrases. Transactions of the Asso-
ciation for Computational Linguistics, 8:329–345.

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha Talukdar. 2019. Submodular
optimization-based diverse paraphrasing and its ef-
fectiveness in data augmentation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3609–3619, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ramtin Mehdizadeh Seraj, Maryam Siahbani, and
Anoop Sarkar. 2015. Improving statistical machine
translation with a multilingual paraphrase database.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1379–1390, Lisbon, Portugal. Association for Com-
putational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
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