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Abstract

Creating neural text encoders for written Swiss
German is challenging due to a dearth of train-
ing data combined with dialectal variation. In
this paper, we build on several existing multilin-
gual encoders and adapt them to Swiss German
using continued pre-training. Evaluation on
three diverse downstream tasks shows that sim-
ply adding a Swiss German adapter to a modu-
lar encoder achieves 97.5% of fully monolithic
adaptation performance. We further find that
for the task of retrieving Swiss German sen-
tences given Standard German queries, adapt-
ing a character-level model is more effective
than the other adaptation strategies. We release
our code and the models trained for our experi-
ments.1

1 Introduction

When applying natural language processing (NLP)
techniques to languages with dialectal variation,
two typical challenges are a lack of public train-
ing data as well as varying spelling conventions.
In the case of Swiss German, which is spoken by
around 5 million people and is often used for infor-
mal written communication in Switzerland, these
factors make it more challenging to train a BERT-
like text encoder for written text.

In this paper, we adapt pre-trained multilingual
encoders to Swiss German using continued pre-
training on a modest amount of Swiss German
training data. We evaluate the approaches on
part-of-speech (POS) tagging with zero-shot cross-
lingual transfer from Standard German (Aepli
and Sennrich, 2022), as well as dialect identifi-
cation (Zampieri et al., 2019) and cross-lingual
sentence retrieval based on a parallel Standard
German–Swiss German test set (Aepli et al., 2023).

We find that depending on the multilingual en-
coder, continued pre-training leads to an average

1https://github.com/ZurichNLP/
swiss-german-text-encoders

Monolithic Modular

Su
bw

or
ds

XLM-R →
Swiss German XLM-R

X-MOD/SwissBERT →
Swiss German adapter

C
ha

ra
ct

er
s

CANINE →
Swiss German CANINE

X-MOD/SwissBERT →
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character-level adapter

Table 1: Overview of the encoder models we release.

improvement of 10%–45% in average accuracy
across the three downstream tasks. We then fo-
cus on comparing monolithic adaptation, where
all the parameters of the encoder are updated dur-
ing continued pre-training, to modular adaptation
with language-specific modular components (lan-
guage adapters; Pfeiffer et al., 2022). Even though
modular adaptation only updates a fraction of the
parameters, it is competitive to monolithic adap-
tation. Given these findings, we propose to ex-
tend the SwissBERT model (Vamvas et al., 2023),
which was trained on Standard German and other
languages, with a Swiss German adapter (Table 1).

We further hypothesize that the architecture of
CANINE (Clark et al., 2022), a tokenization-free
model that operates on characters, might be better
suited to the highly variable spelling of Swiss Ger-
man. Indeed, a CANINE model adapted to Swiss
German excels on the retrieval tasks, while POS
tagging works better with subwords.

Finally, we aim to combine the best of both
worlds by integrating character-level down- and
upsampling modules into a subword-based model
and training a character-level adapter for Swiss
German. However, this jointly modular and
tokenization-free strategy underperforms the indi-
vidual approaches. We hope that our findings can
inform the development of modular approaches for
other languages with dialectal variation.
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2 Adaptation Scenario

Our goal is to train an encoder model for Swiss
German (language code gsw) with limited training
data. Since Standard German (language code de)
is a closely related language, we focus on transfer
learning from Standard German to Swiss German.
We rely on pre-trained multilingual models that
have already been trained on Standard German,
and adapt them to Swiss German using continued
pre-training.

Swiss German adaptation data For training on
Swiss German, we use the SwissCrawl corpus (Lin-
der et al., 2020), which contains 11M tokens of
Swiss German text extracted from the web. The
text in SwissCrawl exhibits some normalizations
that eventual input text will not have, e.g., isolation
of individual sentences, normalization of punctua-
tion and emoji removal. To diversify the training
data, we extend the pre-training dataset with a cus-
tom collection of 382k Swiss German tweets. In
total, we use 18M tokens for pre-training on Swiss
German. Both datasets were automatically mined
and may contain some text in other languages.

Standard German data To promote transfer
from Standard German to Swiss German later on,
we include an equal part of Standard German data
in the continued pre-training data. We use a sample
of news articles retrieved from the Swissdox@LiRI
database, comparable to the data the SwissBERT
model has been trained on (Vamvas et al., 2023).

3 Monolithic Approaches

We evaluate a subword-based model and a
character-based model, with and without continued
pre-training on Swiss German. We call these mod-
els monolithic (non-modular), because the entire
model is updated during continued pre-training.

3.1 XLM-R

We train XLM-R (Conneau et al., 2020) with
masked language modeling (MLM). XLM-R was
pre-trained on 100 languages, which include Stan-
dard German but not Swiss German.

3.2 CANINE

The CANINE model (Clark et al., 2022) was pre-
trained on 104 languages, again including Stan-
dard German but excluding Swiss German. Un-
like XLM-R, CANINE directly encodes character

sequences and does not require a tokenizer at in-
ference time. This is achieved by extending the
standard transformer architecture with character
down- and upsampling modules.

The downsampling module combines a single-
layer blockwise transformer with strided convolu-
tion, which reduces the sequence length by a factor
of r = 4, where r is a hyperparameter. As a con-
sequence, the standard transformer does not see
every character individually, but only sees down-
sampled positions. The upsampling module, which
is needed for token-level tasks, mirrors the down-
sampling procedure and restores the original se-
quence length. We refer to Clark et al. (2022) for a
detailed description of the architecture.

Clark et al. (2022) describe two alternative ap-
proaches for pre-training: CANINE-S, which uses
a tokenizer to determine masked tokens and is sim-
ilar to standard MLM, and CANINE-C, which is an
autoregressive character loss. In our experiments,
we use CANINE-S with the SwissBERT subword
tokenizer to perform continued pre-training.

4 Modular Approaches

4.1 SwissBERT

We base our adapter experiments on
SwissBERT (Vamvas et al., 2023), a variant
of X-MOD (Pfeiffer et al., 2022) that includes
language adapters for Standard German, French,
Italian and Romansh. Compared to the original
X-MOD model, which was trained with language
adapters for 81 languages, SwissBERT has a
custom SentencePiece vocabulary and word
embeddings optimized for Switzerland-related text,
and we assume that this is beneficial for continued
pre-training on Swiss German.

4.2 Subword-level Adapter for SwissBERT

We add a Swiss German adapter to SwissBERT
and freeze the parameters of the model except for
the adapter modules during continued pre-training.
We initialize the Swiss German adapter with the
weights of the Standard German adapter and pre-
train it on the Swiss German part of our dataset.
During fine-tuning on downstream tasks, we freeze
the adapters and update the remainder of the model.

For this approach, we only use the Swiss Ger-
man part of our pre-training corpus for continued
pre-training, and not Standard German, since the
modular architecture is expected to allow for cross-
lingual transfer without continued pre-training
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POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

XLM-R:
– without continued pre-training 52.6±1.8 47.2±15.1 60.6 75.7 56.0
– with continued pre-training 86.9±0.3 62.1±0.8 91.1 96.0 80.9

CANINE:
– without continued pre-training 46.7±1.3 59.0±0.6 92.8 94.8 66.5
– with continued pre-training 60.9±1.4 60.8±0.4 96.4 96.9 72.8

SwissBERT:
– DE adapter without continued pre-training 64.8±2.0 61.3±0.5 66.1 82.2 66.7
– subword-level GSW adapter 83.2±0.3 62.0±0.4 82.9 92.4 77.6
– character-level GSW adapter 41.5±0.9 51.9±1.3 35.6 42.6 44.2

Table 2: Comparison of different models on three downstream tasks: part-of-speech (POS) tagging accuracy,
German dialect identification (GDI) F1-score, and cross-lingual sentence retrieval accuracy. For the supervised
tasks, we report the average and standard deviation across 5 fine-tuning runs. Underlined results indicate the best
performance for a task.

on the source language. Table A4 provides an
overview of the languages used for each approach.

4.3 Character-level Adapter for SwissBERT

Previous work has found that learning a custom
subword segmentation and embeddings that are
adapted to the vocabulary of the target language
can improve performance (Wang et al., 2019; Pfeif-
fer et al., 2021; Vamvas et al., 2023). However, this
limits the degree of modularity, and we thus investi-
gate a tokenization-free approach as an alternative.
In this experiment, we discard SwissBERT’s sub-
word embeddings when training the Swiss German
adapter, and instead add the downsampling and
upsampling modules of the CANINE architecture.2

Adding these modules results in exactly the same
architecture as CANINE, except that we opt for byte
embeddings instead of character hash embeddings.
CANINE uses a hash embedding method that can
map any Unicode code point to a fixed-size embed-
ding. Since Standard German and Swiss German
are mainly written in Latin script and there are lim-
ited training data, we forgo the hash embedding
and learn UTF-8 byte embeddings instead.

Using the CANINE-S objective, we first pre-train
the character modules on Standard German pre-
training data. We then continue pre-training the
adapters and the joint character modules on both
languages, while freezing the rest of the model.
During fine-tuning, we freeze the adapters and train

2We term this approach GLOBI (Granular Localization of
Bidirectional Encoders).

the remainder, analogous to the subword-level ex-
periment.

5 Evaluation

5.1 Part-of-Speech Tagging (POS)

Following Aepli and Sennrich (2022), we evaluate
our models on POS tagging with zero-shot cross-
lingual transfer from Standard German. To train
the models, we use the German HDT Universal De-
pendencies Treebank (Borges Völker et al., 2019)
and test on a dataset introduced by Hollenstein
and Aepli (2014). We report accuracy across the
54 STTS tags (Schiller et al., 1999).3 We rely on
the provided word segmentation and label the first
token (subword/character/byte) of each word.

5.2 German Dialect Identification (GDI)

The GDI task (Zampieri et al., 2019) is based
on transcripts of the ArchiMob corpus of spo-
ken Swiss German (Samardžić et al., 2016). This
dataset contains four dialects, namely, Bern, Basel,
Lucerne, and Zurich regions, constituting four dis-
tinct classes. We report the weighted F1-score.

5.3 Sentence Retrieval

For evaluating cross-lingual sentence retrieval,
we use human translations of the English
newstest2019 source dataset (Barrault et al.,
2019) into different languages. Translations into

3We mask the APPRART gold tag, which is not included in
the training tag set, when calculating accuracy.
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POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

SwissBERT subword-level GSW adapter:
– only updating the adapter weights 83.2±0.3 62.0±0.4 82.9 92.4 77.6 (97.5%)

– also updating the word embeddings 83.9±0.1 62.1±0.3 86.0 93.7 78.6 (98.7%)

– updating all the weights 85.7±0.3 63.1±0.3 86.6 93.4 79.6 (100%)

Table 3: Effect of modularity on continued pre-training: Only updating the adapter weights during continued pre-
training achieves 97.5% of the accuracy of a monolithic baseline where we update all the parameters of SwissBERT.

Standard German are provided by NTREX-128 (Fe-
dermann et al., 2022); translations into Swiss Ger-
man are provided by Aepli et al. (2023) for two
regions, Bern (gsw-be) and Zurich (gsw-zh).

For both Swiss German test sets, we report the
top-1 accuracy of retrieving the correct transla-
tion among all 1,997 translations, given the Stan-
dard German equivalent. Note that 100% accu-
racy is not attainable, since newstest2019 has a
small number of duplicate or near-duplicate sen-
tences. Following an evaluation approach used
for SwissBERT (Vamvas et al., 2023), we perform
unsupervised retrieval with the BERTScore met-
ric (Zhang et al., 2020). We average the hidden
states across all encoder layers. In the case of the
CANINE-style models, we use only the transformer
layers that represent the downsampled positions.

6 Experimental Setup

Continued pre-training We combine Swiss Ger-
man and Standard German training data with a 1:1
ratio. The resulting bilingual dataset contains 37M
tokens in total, and we set aside 5% for valida-
tion (Table A6). We set the learning rate to 1e-4
and select the best checkpoint based on the val-
idation loss out of 10 epochs; otherwise we use
the default settings of Hugging Face transformer’s
MLM example script. We train the models on a
Nvidia V100 GPU with 32GB of memory and ad-
just the batch size dynamically to fit the available
memory. With the subword-based models, we set
the sequence length to 512. With the CANINE-style
models, we use the default downsampling rate of
r = 4 and a sequence length of r × 512 = 2048
tokens (characters or bytes).

Fine-tuning For the downstream tasks that in-
volve fine-tuning (POS and GDI), we fine-tune the
model with a learning rate of 2e-5 and a batch size
of 16. We train for 10 epochs and select the best
checkpoint based on the validation accuracy. We

report average and standard deviation across 5 fine-
tuning runs with different random seeds.

7 Results

Table 2 presents a comparison of the different mod-
els on the three downstream tasks. Continued pre-
training is highly beneficial for written Swiss Ger-
man, confirming previous work (Muller et al., 2021;
Aepli and Sennrich, 2022; Aepli et al., 2023). This
finding extends to the CANINE model, for which
language-adaptive pre-training has not been tested
before, to our knowledge.

The adapted CANINE shows state-of-the-art per-
formance on the retrieval tasks. A simple ChrF
baseline (Popović, 2015) achieves only 90.9% and
93.0% accuracy on the two retrieval tasks, and both
the original and the adapted CANINE clearly sur-
pass this baseline. However, the CANINE model
has low accuracy on POS tagging, reflecting pre-
vious findings for named entity recognition (Clark
et al., 2022). Future work could explore alternative
strategies for token-level classification tasks.

While the monolithic XLM-R model performs
best overall, we consider adding a subword-based
Swiss German adapter to SwissBERT a competi-
tive alternative, with the number of trainable pa-
rameters reduced by 95% (see Table A1 for a com-
parison of the model sizes). Table 3 confirms that
restricting the continued pre-training to the adapter
weights conserves most of the accuracy, compared
to updating all the parameters of SwissBERT.

Finally, a character-level adapter, where char-
acter up- and downsampling modules are added
to the model specifically for Swiss German, per-
forms better than random but clearly worse than
the standard approaches. This indicates that while
the transformer layers of a subword-based model
bear some similarity to the downsampled positions
in the CANINE architecture, continued pre-training
cannot completely bridge the gap between the two
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architectures. Future work could pre-train a mod-
ular character-level model from scratch to further
improve adaptability to new languages and dialects,
while taking into account more recent findings re-
garding the optimal design of character-level mod-
ules for text encoding (Tay et al., 2022; Cao, 2023).

8 Conclusion

We compared strategies for adapting multilingual
encoders to Swiss German. We found that the
monolithic approach of continued pre-training
XLM-R is a strong baseline. Adding a Swiss Ger-
man adapter to SwissBERT, a model with a mod-
ular architecture, is a viable alternative. Finally,
adapting CANINE on Swiss German works well for
cross-lingual retrieval. The four Swiss German en-
coder models we trained for our experiments will
be made available to the research community.

Limitations

Differences between the pre-trained models make
a fair comparison more difficult. The encoder mod-
els we compare have originally been pre-trained
with different data and hyperparameters (but never
on Swiss German). They also differ in their num-
ber of parameters and vocabulary sizes, as detailed
in Table A1. Furthermore, we use a single, stan-
dard set of hyperparameters for pre-training and
for evaluation, respectively. Optimizing these hy-
perparameters for each model individually could
lead to further improvements.

Finally, the evaluation results show that it is
challenging to perform GDI classification purely
based on written text, as previously discussed
by Zampieri et al. (2017). In interpreting the re-
sults, we focus mainly on the other two tasks, but
still report results for GDI to provide a complete
picture.
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A List of Encoder Models

Model Total parameters Trained Vocabulary size URLs (original→adapted)

XLM-R 278M 278M 250,002 →
CANINE 132M† 132M - →
SwissBERT
– subword-level adaptation 139M‡ 8M 50,262 →
– character-level adaptation 123M‡ 38M‡ 261 →

Table A1: The main encoders trained in this work. † Figure does not include the CANINE-S output embeddings,
which can be discarded after pre-training. ‡ Figure includes two adapters (Swiss German and Standard German).

B Ablation Study: Custom Subword Vocabulary

POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

XLM-R:
– XLM-R vocabulary 86.9±0.3 62.1±0.8 91.1 96.0 80.9
– custom GSW vocabulary 60.3±0.4 60.0±0.6 64.2 79.9 64.1

SwissBERT subword-level GSW adapter†:
– SwissBERT vocabulary 83.9±0.1 62.1±0.3 86.0 93.7 78.6
– custom GSW vocabulary 23.7±2.3 56.9±0.6 65.6 77.3 50.7

CANINE:
– CANINE-S with SwissBERT vocabulary 60.9±1.4 60.8±0.4 96.4 96.9 72.8
– CANINE-S with custom GSW vocabulary 57.8±1.2 62.1±0.6 95.6 96.3 71.9

SwissBERT character-level GSW adapter:
– CANINE-S with SwissBERT vocabulary 41.5±0.9 51.9±1.3 35.6 42.6 44.2
– CANINE-S with custom GSW vocabulary 40.6±1.2 11.0±1.9 28.7 38.4 28.4

Table A2: In an ablation experiment, we create a custom subword vocabulary for our continued pre-training dataset
using SentencePiece (Kudo and Richardson, 2018). For the subword-based models, we train a new embedding
matrix while initializing it with lexically overlapping embeddings from the original model. Using the custom
vocabulary for Swiss German decreases performance on all downstream tasks, probably due to the limited amount
of training data. For the character-based models, we use the CANINE-S objective with the custom vocabulary.
Surprisingly, the custom vocabulary decreases performance, possibly because it is less similar to the subword
vocabulary originally used by Clark et al. (2022) to train CANINE-S. † In this experiment, we update the embedding
weights of SwissBERT to enable a fair comparison.

Vocabulary Vocabulary Size Compression Ratio

XLM-R vocabulary 250,002 3.36
SwissBERT vocabulary 50,262 3.37
Custom GSW vocabulary 50,262 4.17

Table A3: Comparison of the SentencePiece vocabularies involved in the above ablation study. We report the
compression ratio as the number of characters per subword token in a tokenized sample of our continued pre-training
dataset.
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C Model Training Details

Approach Languages trained Training samples per second

XLM-R continued pre-training GSW + DE 88.9
CANINE continued pre-training GSW + DE 149.6
SwissBERT character-level adapter GSW + DE 127.1

SwissBERT subword-level adapter:
– only updating the adapter weights GSW 215.3
– also updating the word embeddings GSW 202.4
– updating all the weights GSW 225.9

Table A4: Empirical training speed in terms of training samples per second. Note that training speed is only
comparable for models trained on the same languages, since the DE samples are longer than the GSW samples.

D Pre-training Datasets

Dataset Language Time Range Examples Tokens URL

SwissCrawl (Linder et al., 2020) GSW until 2019 563,037 10,961,075
Swiss German Tweets GSW 2007–2018 381,654 7,259,477 -
Swissdox Sample DE 2021 409,572 351,643,710

Table A5: Details of the datasets from which we source data for continued pre-training.

Split Examples (news articles / tweets / sentences) Tokens

Training GSW 897,477 17,308,288
Training DE 20,140 17,459,689
Validation GSW 47,214 912,264
Validation DE 1,082 905,476

Table A6: Training and validation splits used for continued pre-training.

E Evaluation Datasets

Dataset Examples Tokens Citation URL

POS DE (train) 75,617 13,655,973 Borges Völker et al. (2019)
POS DE (validation) 18,434 324,848 Borges Völker et al. (2019)
POS GSW (test) 7,320 113,565 Hollenstein and Aepli (2014)

GDI (train) 14,279 112,707 Zampieri et al. (2019) -
GDI (validation) 4,530 33,579 Zampieri et al. (2019) -
GDI (test) 4,743 42,699 Zampieri et al. (2019) -

Retrieval DE 1,997 50,833 Federmann et al. (2022)
Retrieval GSW-BE 1,997 53,119 Aepli et al. (2023)
Retrieval GSW-ZH 1,997 54,501 Aepli et al. (2023)

Table A7: Dataset statistics for the downstream tasks.
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