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Abstract
This paper investigates how to combine en-
coders and decoders of different indepen-
dently trained NMT models. Combining en-
coders/decoders is not directly possible since
the intermediate representations of any two in-
dependent NMT models are different and can-
not be combined without modification. To ad-
dress this, firstly, a dimension adapter is added
if the encoder and decoder have different em-
bedding dimensionalities, and secondly, rep-
resentation adapter layers are added to align
the encoder’s representations for the decoder to
process. As a proof of concept, this paper looks
at many-to-Estonian translation and combines
a massively multilingual encoder (NLLB) and
a high-quality language-specific decoder. The
paper successfully demonstrates that the sen-
tence representations of two independent NMT
models can be made compatible without chang-
ing the pre-trained components while keeping
translation quality from deteriorating. Results
show significant improvements in both transla-
tion quality and speed for many-to-one transla-
tion over the baseline multilingual model.

1 Introduction

As the availability of pre-trained models continu-
ously increases, there is a growing need to investi-
gate how to use them efficiently. Previous works
have looked at effectively using pre-trained neu-
ral machine translation (NMT) models by effec-
tive fine-tuning (Bapna and Firat, 2019; Zhu et al.,
2021) as well as using pre-trained language models
in NMT model training (Zhu et al., 2020; Rothe
et al., 2020; Chen et al., 2021; Sun et al., 2021;
Chen et al., 2022).

This paper examines the feasibility of combining
together components (like encoders and decoders)
of independent pre-trained NMT models without
any retraining or fine-tuning. We investigate how
representations of independently trained models
can be made compatible and evaluate the result-
ing translation quality and efficiency. Surprisingly,

our evaluation shows that the resulting combined
model can surpass the original models in transla-
tion quality and speed.

Combining any pre-trained encoder and decoder
poses two problems. Firstly, their representation
spaces will not be compatible, as the models are
trained independently. Secondly, the embedding di-
mension of the representation can also differ across
any two pre-trained models. We propose a method
that solves both issues and allows the encoder and
decoder of any pre-trained NMT models to be com-
bined. Specifically, in our architecture (Figure 1),
we use a small adapter to convert the dimensional-
ity and representation space of the encoder to some-
thing the decoder is trained to process. In order for
the adapter to learn its weights, the whole pipeline
(Encoder A - adapter - Decoder B) is trained in an
end-to-end fashion, except both the encoder and
decoder are frozen. Thus, the only part changing
the weights is the adapter itself while the original
components remain intact.

As a proof of concept, we investigate combin-
ing encoders and decoders of multiple different
pre-trained NMT models, focusing on an output
language-specific scenario. In other words, a highly
multilingual encoder is combined with a monolin-
gual decoder, tuned to high performance on a single

Encoder Decoder
Representation

adapter
Dimension
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Figure 1: The proposed mix-and-match architecture.
Dimension adapter is a component that takes input with
the dimensionality of model A output and outputs with
the dimensionality of model B (for example a linear
transformation). Adapter layers are transformer encoder
layers. Components from models A and B have frozen
parameters.
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language. Since highly multilingual models often
suffer from the capacity bottleneck (Johnson et al.,
2017; Tan et al., 2019; Arivazhagan et al., 2019),
we hypothesize that adding a high-quality language-
specific decoder can improve the translation quality
to the language of the decoder. Furthermore, trans-
lation to one language requires less capacity than
many-to-many scenarios and thus would potentially
require fewer parameters, resulting in faster trans-
lation.

Using NLLB (Team et al., 2022) as the multilin-
gual model and MTee (Tättar et al., 2022) as the
language-specific Estonian model, we demonstrate
significant improvements in translation quality over
the baseline NMT model for many-to-Estonian
translation and show competitive results to pivoting
and fine-tuning. Our method is not only effective
to train compared to traditional fine-tuning but also
provides a reduction in running costs of the trans-
lation model thanks to the number of parameters
being reduced by 40% compared to the baseline
NLLB model.

The main contributions of this work are:

• a novel method for combining pre-trained
NMT models, which improves translation
quality, is effective to train, and reduces the
model’s parameters (Section 3);

• a detailed ablation of the proposed method,
exploring the effect of freezing or unfreez-
ing different involved components, comparing
simpler and more complicated adapter archi-
tectures, and involving more source languages
in training (Section 4);

• an open-source implementation of our pro-
posed method (see subsection 3.5).

2 Related Work

To the best of our knowledge, creating new NMT
models by connecting encoders and decoders of
different pre-trained NMT models has not been ex-
plored yet. Similar approaches have been tested in
speech translation (Li et al., 2021; Gállego et al.,
2021). Similarity between independently learned
representations has been explored between linguis-
tic, image representations as well as brain waves
(Søgaard, 2023; Li et al., 2023), however we at-
tempt direct conversion and exploitation of these
representations.

2.1 Pre-trained NMT models

There are many pre-trained NMT models already
openly available for use. OpusMT provides over
1000 NMT models, most of which are bilingual, but
some also multilingual (Tiedemann and Thottingal,
2020). Rothe et al. (2020) published NMT models
which were initialized from BERT and trained on
the NMT task. M2M-100 is a series of NMT mod-
els (varying in size) which were trained on 7.5B
sentence pairs and support translation between 100
languages (Fan et al., 2020). The NLLB-200 NMT
model further improves it and extends support to
200 languages with a training dataset of 18B sen-
tence pairs (Team et al., 2022). Both M2M-100 and
NLLB-200 are strong baselines in NMT research
regarding translation quality. MTee provides an
Estonian-centric (Estonian to/from English, Ger-
man, Russian) NMT model with language-specific
encoders-decoders (Tättar et al., 2022). The most
recent contribution to massively multilingual mod-
els is MADLAD-400 (Kudugunta et al., 2023),
with both decoder-only as well as sequence-to-
sequence models with both the encoder and de-
coder released. Finally, large multilingual language
models like GPT-3 and GPT-4 have demonstrated
an ability to translate (Brown et al., 2020; Bubeck
et al., 2023), however they only demonstrate highly
competitive quality for high-resource languages.

2.2 Multilingual NMT

Recently, there have been numerous advancements
in multilingual NMT. One of the most widely
followed approaches is demonstrated by Johnson
et al. (2017), where they use a single (universal)
model with shared vocabulary for multilingual
NMT, which enables transfer learning and zero-
shot translation. Massively multilingual training
has since been successfully demonstrated (Aha-
roni et al., 2019; Arivazhagan et al., 2019; Zhang
et al., 2020). Additionally, fine-tuning methods
of NMT models have been investigated, including
lightweight fine-tuning methods such as adapters
(Bapna and Firat, 2019; Zhu et al., 2021). In ad-
dition to universal models, there has been success-
ful research into modular multilingual NMT using
language-specific encoders and decoders (Escolano
et al., 2021; Lyu et al., 2020). As an alternative
to supporting all directions in the models, pivot-
ing (translating through a pivot language) has also
been used as a method for achieving higher quality
multilingual translation (Habash and Hu, 2009).
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2.3 Pre-trained Language Models for NMT
With many pre-trained language models (LMs) be-
coming available, making use of them in NMT has
become an important topic.

The first line of works takes the approach of
pre-training an encoder-decoder model for seq2seq
tasks and then fine-tuning the model for MT, for
example, mBART (Liu et al., 2020), and MASS
(Song et al., 2019).

In the second approach, the encoder or the de-
coder can be trained independently and later used
in an NMT model. Zhu et al. (2020) incorporates
input sentence representations into an NMT model.
Rothe et al. (2020) initializes NMT model’s en-
coder and/or decoder weights from pre-trained lan-
guage models. SixT (Chen et al., 2021) used XLM-
R as the pre-trained encoder in combination with a
randomly initialized decoder, trained using 2-stage
training where first the decoder is trained (rest of
the model frozen) and secondly, the rest of the
model is tuned. This was further improved and
expanded in SixT+ (Chen et al., 2022). Sun et al.
(2021) combined a BERT-like encoder and a GPT-
like decoder into a single model by adding extra
layers to both the encoder and decoder.

Ma et al. (2021) uses aspects of both approaches
by initializing an encoder-decoder model from an
encoder-only language model and pre-training on
seq2seq tasks before fine-tuning for MT.

Li et al. (2021) combines a pre-trained audio en-
coder and pre-trained decoder from mBART to cre-
ate a speech translation model through fine-tuning.

3 Approach and Setup

3.1 Methodology
Our approach combines two pre-trained NMT mod-
els using an adapter placed “between” the encoder
and decoder: see Figure 1). The adapter consists of
a dimension adapter and representation adapter.

The dimension adapter is a linear transforma-
tion (feed-forward layer) with input dimensionality
equal to the encoder embedding dimension and the
output dimensionality to the decoder embedding di-
mension. We place the dimension adapter directly
after the pre-trained encoder.

Representation adapter layers are implemented
as randomly initialized transformer layers. They
have the same embedding dimension as the decoder.
We do not modify the decoder by adding extra lay-
ers or other parameters; thus it is kept lightweight,
leading to fast translation using beam search since

encoder embeddings are calculated once for a sen-
tence, but the decoder is used repeatedly.

Training: when training the model, the adapter
learns with the rest of the components in an end-to-
end fashion. Training examples are passed through
the whole pipeline (encoder, then adapter, then
decoder), however both the encoder and decoder
remain frozen. Thus the only weights that are al-
lowed to change are the parts of the adapter.

We also perform reverse-ablation and compare
our original approach of freezing all but the adapter
to less efficient alternatives of also letting the de-
coder tune itself during training, randomly initializ-
ing the decoder as well as tuning the whole model.
A combination of the originally proposed approach
(tuning only the adapter) and then continuing train-
ing the adapter and an unfrozed pre-initialized de-
coder will be referred to as the 2-stage approach.

3.2 Translation models

We rely on NLLB-1B-distilled as the pre-trained
model for encoders in our experiments (referred
to in the further text as NLLB-1B or NLLB); Sec-
tion 4.3.3 also includes a comparison to NLLB-
600M-distilled as the base model. For the decoder,
we use the Estonian decoder from MTee (Tättar
et al., 2022) – a modular model with language-
specific encoders and decoders (encoders/decoders
follow transformer base architecture (Vaswani
et al., 2017)).

The pre-trained NLLB-1B encoder has 24 lay-
ers with an embedding dimension of 1024 and a
feed-forward dimension of 8192. In the main ex-
periments, we add a linear dimension adapter that
transforms the embedding dimension from 1024
to 512 and 4 representation adapter layers with
the same embedding and feed-forward dimension
as the decoder (512 and 2048 respectively) to the
encoder.

3.3 Dataset

We use English-Estonian (22M, sentence pairs),
German-Estonian (12.5M sentence pairs), French-
Estonian (11.7M sentence pairs), and Polish-
Estonian (7M sentence pairs) directions from CC-
Matrix (Schwenk et al., 2019). In Ablation Sec-
tion 4.3.3 we use Europarl (Tiedemann, 2012).

We use SentencePiece (SP) (Kudo and Richard-
son, 2018) models from the respective pre-trained
NMT models for segmenting the data. For example
when we use NLLB encoder and MTee decoder,
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we use NLLB SP model for processing the source
and MTee SP model for processing the target.

The models are evaluated using FLORES-200
(Team et al., 2022) devtest as the test set and dev as
the validation set. The same directions the model is
trained on are used for validation. The best check-
point, according to the validation loss, is used for
test set evaluation. Test set evaluation is carried out
on all 201 many-to-Estonian directions. We con-
firmed that the test set was not present in the train-
ing data of MTee and also trust that since FLORES-
200 was the main test set of NLLB (Team et al.,
2022), it would be properly cleaned from their train-
ing dataset.

3.4 Evaluation

For evaluation we mainly rely on chrF++1

(Popović, 2017), but also report chrF2 (Popović,
2015) for comparison with previous research. We
use the sacreBLEU (Post, 2018) implementation.

Although BLEU (Papineni et al., 2002) is a
widely adopted metric, several evaluation cam-
paigns (Barrault et al., 2021; Koehn et al., 2022)
have shown its weaker correlation with human
judgements of translation quality compared to
chrF/chrF++ and neural metrics like COMET (Rei
et al., 2020). However, we still include BLEU
scores for comparison in Appendix A. Addition-
ally, we provide COMET scores (Rei et al., 2020)
for a selection of languages in Appendix B.

For the main experiments, we conduct 5 random
restarts for each model and report the mean score
with a confidence interval (p = 0.01, t-distribution).
We also report the Win Rate with Significance
(WRS) – the percentage of language pairs where
the model outperforms the baseline (NLLB-1B)
with significance p = 0.01. The significance is
tested using a one-sample one-tailed t-test for ex-
periments with 5 seeds. Additionally, we report
WRS based on a single seed with significance cal-
culated with paired bootstrap resampling (PBR)
(Koehn, 2004).

3.5 Implementation and training

We use Fairseq (Ott et al., 2019) for implement-
ing training. Additionally, we made our specific
implementation of training and models public3.

1sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:2|space:no|version:2.3.1

2sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.3.1

3https://anonymous.4open.science/r/mix-and-match-nmt

For the main experiments, all models are trained
for a total of 100k updates. If 2-stage training is
used, the first stage is trained for 50k updates and
the second stage for 50k updates. The learning rate
used is 0.0005 for the first stage and 0.0001 for the
second stage. We use Adam optimizer (Kingma
and Ba, 2015). An inverse square root learning rate
scheduler with 4000 warm-up steps is used for all
experiments. We use dropout and attention dropout
of 0.1. Models are trained with mixed precision
(fp16). All translations are acquired using beam
search with beam size 4.

The models were trained on 8 GPUs for the main
experiments. The batch size was 4096 tokens per
GPU. The training was performed on the LUMI
supercomputer4, utilizing 4 AMD Instinct MI250X
128GB HBM2e (each acting as 2 GPUs).

4 Results

4.1 Main Results

The main results are reported in Table 1. NLLB-
1B-distilled is used as a baseline. Additionally, re-
sults of the largest publicly available NLLB model
(NLLB-MoE) with 54.5B parameters reported by
Team et al. (2022) are used for comparison. The
table lists average chrF++ scores over all many-
to-Estonian translation directions and all official
EU languages5. The EU language averages are
reported to highlight the translation quality for lan-
guages more closely related to Estonian and also
more frequently translated from. We analyze the
quantitative results of pivoting, fine-tuning, and our
mixing and matching approach of combining the
encoder and the decoder of different pre-trained
models.

4.1.1 Pivoting

NLLB-1B English pivoting for many-to-Estonian
translation results in an average 1.2 chrF++ point
improvement across all directions, significantly out-
performing the baseline NLLB-1B model on 84.6%
of directions (see (3) in Table 1). When NLLB-1B
is used to translate to English and MTee is used for
English-to-Estonian translation (see (4) in Table 1),
the translation quality is improved by 3.2 chrF++

4https://www.lumi-supercomputer.eu/
5Bulgarian, Croatian, Czech, Danish, Dutch, English, Es-

tonian, Finnish, French, German, Greek, Hungarian, Irish,
Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Ro-
manian, Slovak, Slovenian, Spanish, and Swedish
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Model Parameters Train. average chrF++ ↑ WRS (%) ↑
train total eff. time full EU t-test PBR

(1) NLLB-1B - 1.37B 1.37B - 40.2 46.7 - -
(2) NLLB-MoE† - 54.5B 54.5B - 43.0 49.6 - 99.5

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B - 1.37B 2.74B - 41.4 47.5 - 84.6
(4) en2et: MTee - 1.42B 1.42B - 43.4 50.2 - 100.0

Fine-tune NLLB-1B
(5) - 1.37B 1.37B 1.37B 22.3 42.5 ± 0.1 50.1 ± 0.3 91.0 86.6
(6) freeze enc 604M 1.37B 1.37B 15.0 43.0 ± 0.1 50.3 ± 0.2 98.0 98.5

Ours: NLLB-1B enc +
(7) rand dec 51M 817M 817M 4.4 42.6 ± 0.3 50.2 ± 0.3 93.5 97.5
(8) MTee dec 13M 817M 817M 3.9 42.5 ± 0.1 50.4 ± 0.1 92.0 89.1
(9) MTee dec, 2-stage 51M 817M 817M 4.1 43.1 ± 0.1 50.9 ± 0.1 93.0 96.5

Table 1: Many-to-Estonian translation average chrF++ scores. Additionally model training, total and effective
parameters and training time (hours) is reported. Effective parameter count represents the number of parameters
used during translation. For experiments involving model training, the average of 5 random seeds is reported with
confidence intervals (p = 0.01). Average chrF++ is reported for all directions and official EU languages separately.
WRS (Win Rate with significance, p = 0.01) reports what percentage of directions outperform the baseline with
both significance based on t-test on 5 seeds and significance based on paired bootstrap resampling t-test (PBR). † -
Scores reported by (Team et al., 2022).

points on average compared to the baseline (1), sig-
nificantly outperforming it on all directions. These
results demonstrate that pivoting can enhance trans-
lation quality without additional training. How-
ever, pivoting requires passing through two models,
which increases the time required for translation
and reduces long-term cost efficiency.

4.1.2 Fine-tuning
We experimented with two different fine-tuning
strategies: full fine-tuning (5) and fine-tuning only
the decoder of the baseline NLLB model with the
encoder frozen (6). We found that both approaches
lead to significant improvements over the baseline:
2.3 and 2.8 chrF++ points, respectively. Moreover,
fine-tuning exhibited superior performance com-
pared to the baseline across more language pairs,
as confirmed by the t-test WRS scores: 98.0% for
the frozen encoder method vs. 91.0% for full fine-
tuning.

4.1.3 Mixing and Matching
When NLLB encoder and MTee decoder are com-
bined with adapter layers, by only training the
adapter (13M parameters) and freezing the pre-
trained components, the resulting model (NLLB
enc + MTee dec model (8)) significantly outper-
forms the baseline on 92.0% of the directions ac-
cording to the t-test (89.1% according to PBR),
with an average improvement of 2.3 chrF++ points.
The 2-stage training approach (9) – training the

adapter first (13M parameters), followed by train-
ing the adapter with the decoder (51M parameters)
– achieved the best results. This method (9) outper-
forms the baseline by 2.9 chrF++ points on average
across all directions and achieves similar average
chrF++ scores to the 54B parameter NLLB model.
It is only slightly behind the best-performing piv-
oting model in terms of average chrF++ scores.
Additionally, we observed that the 2-stage train-
ing approach significantly outperforms the baseline
on 93% of the language pairs according to the t-
test (96.5% according to the PBR). However, the
fine-tuning method with a frozen encoder showed
significant improvements over the baseline in 5%
more directions than our approach.

We also evaluated a decoder that was randomly
initialized with the same architecture and vocabu-
lary as MTee (7), and trained in a single stage with
a frozen encoder, only training the adapter and de-
coder. It outperformed the baseline by 2.4 chrF++
points on average. This method performs similarly
to the initialized model with no decoder training.
Although it is still slightly outperformed by the
2-stage model with the pre-initialized decoder in
terms of the average chrF++ score, it can be useful
when a high-quality pre-trained decoder model is
unavailable.

Average BLEU scores are presented in Ap-
pendix A Table 6, since they support the same
conclusions as the chrF++ scores.
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Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 52.6 48.5 46.6 40.2 45.8
NLLB-MoE† 56.1 51.8 49.5 43.8 49.1
MTee 56.9 52.2 49.9 - -

Pivot, m2en: NLLB-1B
en2et NLLB-1B 52.6 48.7 47.2 42.4 46.8
en2et: MTee 56.9 52.4 49.8 45.5 49.5

Fine-tune NLLB-1B
- 56.6 ± 0.3 52.3 ± 0.5 50.1 ± 0.2 44.5 ± 0.2 48.8 ± 0.2
freeze enc 56.2 ± 0.4 52.3 ± 0.3 50.1 ± 0.2 44.6 ± 0.2 48.8 ± 0.2

Ours: NLLB-1B enc +
rand dec 56.1 ± 0.4 52.0 ± 0.5 49.8 ± 0.5 44.1 ± 0.3 48.6 ± 0.3
MTee dec 56.7 ± 0.5 52.4 ± 0.4 49.9 ± 0.3 43.5 ± 0.3 48.6 ± 0.2
MTee dec 2-stage 57.3 ± 0.3 52.8 ± 0.2 50.4 ± 0.3 44.6 ± 0.4 49.1 ± 0.3

Table 2: Many-to-Estonian translation chrF++ scores for selected directions. Confidence intervals are based on 5
random seeds. † - Scores reported by Team et al. (2022). Language abbreviations following Team et al. (2022).

For EU languages, NLLB-enc+MTee-dec, 2-
stage (9) achieves the highest average chrF++ score
and outperforms the baseline by 4.2 chrF++ points.
This shows that our method achieves the best result
for more closely related languages, whereas the
pivoting approach of combining two models was
better for more distant languages. A possible expla-
nation could be the training data being composed
of EU languages. Furthermore, the pre-trained de-
coder was also trained with two EU languages and
Russian as input, which could contribute to the
high performance on translating EU languages.

In Table 2, we present the chrF++ scores for
translations from a selection of languages to Es-
tonian, serving as an example. It also shows the
comparison with the MTee model for the languages
supported by the pre-trained MTee model. The
mix-and-match models (ours) perform similarly to
the MTee model, with the 2-stage model outper-
forming MTee slightly. It can also be seen that
for Chinese and Arabic, our approach is outper-
formed by pivoting with NLLB and MTee. This
further suggests that our method produces better
translation quality for closer related languages. We
also provide COMET scores for these directions
in Appendix B, which support mostly the same
conclusions, except for NLLB-MoE scores, which
rank the highest among the models.

4.1.4 Efficiency

The mix-and-match method (NLLB-1B enc. +
MTee dec.) reduces the number of parameters by
40% compared to the baseline model and the de-
fault fine-tuning approach. Even though we add
13M trainable parameters to the encoder (adapter

layers), we use a significantly smaller decoder than
NLLB-1B, leading to fewer trained and total param-
eters. This makes the training time of our method
(4.1 hours for NLLB-enc+MTee-dec, 2-stage) 5.4
times faster than the full fine-tuning (22.3 hours).
Furthermore, the inference with NLLB-enc+MTee-
dec is approximately 6.5 times faster than with
NLLB-1B. This demonstrates that our approach
offers an efficient and cost-effective alternative to
fine-tuning and pivoting that delivers comparable
or better translation quality, with the added benefit
of faster training (compared to fine-tuning), fewer
parameters, and faster inference.

4.2 Ukrainian-Estonian Translation

Model chrF ↑
NLLB-1B 50.9
NLLB-MoE† 54.0

NLLB-MTee EN pivot 54.5

NLLB-enc+MTee-dec 54.6 ± 0.2
NLLB-enc+MTee-dec, 2-stage 55.0 ± 0.1

Bergmanis and Pinnis (2022) 53.5

Table 3: Ukrainian (Cyrillic) to Estonian (Latin) trans-
lation chrF scores on FLORES-101 devtest. NLLB-1B
model was used for all experiments, except for NLLB-
MoE (54B). † - calculated from translations reported by
(Team et al., 2022).

We demonstrate that without needing Ukrainian-
Estonian data, we can rapidly create a model with
competitive translation quality. We compare scores
of our best model with work by Bergmanis and
Pinnis (2022) and report chrF to be compatible with
their evaluation. We can see that our best model
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(NLLB-enc+MTee-dec, 2-stage) outperforms their
Ukrainian to Estonian model by 1.5 chrF points
(see Table 3). It also outperforms the NLLB-1B
baseline by 4.1 chrF points and achieves a slightly
higher score than NLLB-MoE and pivoting with
NLLB-1B and MTee.

4.3 Ablation

4.3.1 Effect of multi-stage training

We look at additional training strategies in addition
to training adapter or adapter and decoder. It can
be seen in Table 4 that training only the adapter
and decoder yields the best results both in single-
stage and multi-stage training strategies. Strategies
involving encoder training take longer to train due
to more trained parameters and do not yield any
visible benefit. We can hypothesize that it is be-
cause the encoder is already trained for the domain
of the test set. We can see that the 2-stage training,
which trains the adapter in the first stage and the
adapter and decoder in the second stage, produces
the best scoring model and is also the second fastest
behind the single-stage model, which trains only
the adapter. While encoder training did not yield
improvements for the current pre-trained models,
training and test datasets, it might yield different
results if these elements differ. For example, when
pre-trained models are trained for a domain differ-
ent from the training and test datasets, fine-tuning
the encoder might be necessary.

Training setup Trained Time chrF++
dec. init. stage params (hrs) avg

single
random A+D 51M 4.3 42.8
MTee A+D 51M 4.4 42.9
MTee A 13M 3.8 42.4

I II
random A+D E+A+D 817M 5.5 42.7
MTee A A+D 51M 4.0 43.2
MTee A E+A 779M 7.5 42.1
MTee A E+A+D 817M 7.2 42.8

Table 4: Comparison of training strategies. chrF++
scores as calculated on FLORES200 devtest. All models
listed have 817M total parameters. Trained parameters
are based on the last stage and models follow the NLLB-
1B+MTee mix-and-match model structure. The stage
column describes which parameters are trained. A - dim.
adapter and adapter layers, D - decoder, E - encoder. The
results are based on a single seed.
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Figure 2: Average test chrF++ score for NLLB+MTee
models for first 10,000 training updates (evaluated every
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Figure 3: Average test chrF++ score for NLLB+MTee
models for three dataset sizes: 500k sentence pairs per
direction (2M in total), 1M per direction (4M in total)
and the whole dataset (53M in total) trained for 100k
updates. For MTee Dec model only dimensional adapter
and adapter layers are trained, while the decoder and
encoder remain frozen.

4.3.2 Effect of the pre-trained decoder

Since we saw that using a pre-trained decoder had
a result close to using a randomly initialized de-
coder, we investigated further how fast the models
converge and how the results would compare using
less training data.

From Figure 2, we can see that surprisingly for
the first 2500 updates the model with a pre-trained
encoder and decoder, which trains only the adapter
converges the slowest, even being behind the ran-
domly initialized decoder. However, when the de-
coder is not frozen, we can see that it converges
faster than with an uninitialized decoder.

For the dataset size, we can see on Figure 3 that
the model with pre-trained encoder and decoder
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models is less affected by the dataset size, com-
pared to the model that only uses a pre-trained
encoder.

4.3.3 Effect of adapter structure and the
number of languages

Model chrF++↑
NLLB-600M baseline 36.6

NLLB-600M + MTee
adapter config DA type src langs

(1) DA MLP 2 35.7 ± 0.2
(2) DA linear 2 34.6 ± 0.3

(3) DA + AL MLP 2 35.7 ± 2.3
(4) DA + AL linear 2 38.2 ± 0.3

(5) DA + 2 AL MLP 2 38.0 ± 1.9
(6) DA + 2 AL linear 2 38.7 ± 0.3

(7) 2 AL + DA linear 2 38.3 ± 0.9
(8) AL + DA + AL linear 2 38.5 ± 0.2

(9) DA + 2 AL linear 4 38.9 ± 0.1
(10) DA + 2 AL linear 6 38.9 ± 0.1

(11) DA + 3 AL linear 4 39.0 ± 0.1
(12) DA + 4 AL linear 4 39.1 ± 0.1
(13) DA + 5 AL linear 4 39.0 ± 0.2

Table 5: Many-to-Estonian translation average chrF++
scores of ablation models trained on Europarl evaluated
on FLORES200 devtest. DA - dimension adapter, AL
- adapter layer, DA + n AL means dimension adapter
followed by n adapter layers. Training set source lan-
guages used are EN, DE, FR, PL, LV, FI, added in the
same order when number of languages is increased.

Experiments in this section are performed on the
Europarl dataset with results reported in Table 5.
The models are trained for 20 epochs on 1 GPU.

It can be seen that using only a dimension
adapter without any added layers does not yield
as good results and adding layers significantly in-
creases the chrF++ score (see experiments 1–6 in
Table 5). Additionally, we see that using the MLP
dimension adapter instead of linear yields better
results when only using the dimension adapter, but
when adding layers it is less stable, resulting in
higher variance in average chrF++ scores and lower
scores in general.

We can also see that changing the position of the
dimension adapter in relation to the adapter layers
(to the middle or to the end) does not result in any
benefit (see experiments 7 – 9 vs 6).

Using 4 languages results in slightly higher
scores than 2 languages (experiments 8 vs 9), how-
ever, there is no significant difference when using
6 languages compared to 4 (experiments 9 vs 10).

The increase in chrF++ scores could also be caused
by the larger dataset and not require different lan-
guages to be achieved.

Using 4 layers yields the best result, although
the difference in chrF++ scores is small and might
not be significant when compared to other numbers
of layers (see experiments 11 – 13).

5 Conclusion

We have demonstrated that different pre-trained
models can be successfully combined even if they
have different architectures that wouldn’t be di-
rectly compatible. With our method, the pre-trained
models can remain unchanged while the added di-
mension adapter and adapter layers align the em-
beddings. However, in our experiments, the best
results were obtained by continuing decoder train-
ing after initial adapter training. This might dif-
fer in other scenarios depending on the dataset,
pre-trained models, and desired translation domain.
Our method allowed for a 40% reduction in pa-
rameters, efficient training, fast translation, and in-
creased translation quality compared to the original
models. With this in mind, we can think of pre-
trained translation model encoders and decoders as
modules that can be combined depending on the
desired outcome.

6 Future Works

Our focus is on many-to-one translation. However,
it should also be investigated how the mix-and-
match approach could be used in one-to-many or
many-to-many (or many-to-few) scenarios. The
proposed method should also be investigated for
other more specific domains and other languages
apart from Estonian. Additionally, it should be in-
vestigated how other parameter-efficient methods
compare to this approach and how they could be in-
corporated into this method. Further comparisons
with pre-trained language models and a combina-
tion of using LM and NMT models need exploring
as well. Finally, this approach of making sequence
representations compatible is not limited to NMT
and could be applied to other tasks and modalities.

7 Acknowledgements

This work was partially supported by the Estonian
Research Council grant PRG2006 as well as the
National Programme of Estonian Language Tech-
nology grant EKTB67. All computations were

51



performed on the LUMI Supercomputer through
the University of Tartu’s HPC center.

8 Limitations

One potential limiting factor of the proposed ap-
proach is the evaluation process. To ensure accurate
and fair evaluation of the models, it is necessary
to possess knowledge of the data on which the
model was trained to avoid issues with leaky test
data. The evaluation of our results relied primarily
on automatic metrics, and we mainly utilized the
FLORES-200 devtest due to the limited availability
of test sets for Estonian and non-English languages.
Additionally, we were unable to confirm that other
available test sets were not part of the original mod-
els’ training data, so we could not use them for a
fair evaluation.

Moreover, the applicability of the mix-and-
match method is dependent on the availability of
pre-trained models in the target language. For in-
stance, while Estonian models were readily avail-
able, other languages may not have such models,
rendering the proposed method inapplicable. How-
ever, as an alternative, we proposed training the
decoder from scratch and demonstrated its compet-
itive performance.

It should also be noted that the translation qual-
ity results for Estonian cannot be generalized to all
other languages. For example, English already ex-
hibits high translation quality in most multilingual
pre-trained NMT models, hence our method may
not significantly improve performance as it would
for Estonian. However, this limitation does not
detract from other positive aspects of our method,
including reduced parameter count and efficient
training.

Ethics Statement

From an environmental standpoint, our method re-
duces the training time, giving a significant one-
time reduction. Since our scenario also created a
smaller model with faster translation, it reduces
long-term computation costs.

From the social standpoint, the resulting models
might still be suffering from the same kind of biases
as the original models and this aspect is yet to be
evaluated. However, with our methods, we can
make the use of pre-trained models accessible to
more people in terms of computational costs.
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A BLEU Scores

Average BLEU scores are presented in Table 6

B COMET Scores for Selected Directions

COMET scores of selected directions are displayed
in Table 7.
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Model average BLEU ↑
full EU

(1) NLLB-1B 12.8 16.9
(2) NLLB-MoE† 15.5 20.1

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B 13.5 17.3
(4) en2et: MTee 15.7 20.4

Fine-tune NLLB-1B
(5) - 15.4 ± 0.1 20.8 ± 0.2
(6) freeze enc 15.5 ± 0.1 20.8 ± 0.1

Ours: NLLB-1B enc +
(7) rand dec 14.5 ± 0.1 19.8 ± 0.1
(8) MTee dec 15.1 ± 0.1 20.6 ± 0.2
(9) MTee dec, 2-stage 15.6 ± 0.1 21.3 ± 0.1

Table 6: Many-to-Estonian translation average BLEU scores. For experiments involving model training, the average
of 5 random seeds are reported with confidence intervals (p = 0.01). † - Scores reported by (Team et al., 2022).

Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 0.8967 0.8805 0.8700 0.8435 0.8492
NLLB-MoE† 0.9144 0.9031 0.8904 0.8826 0.8781
MTee 0.8916 0.8908 0.8819 - -

Pivot, m2en NLLB-1B
en2et NLLB-1B 0.8967 0.8808 0.8705 0.8673 0.8583
en2et MTee 0.8916 0.8899 0.8782 0.8788 0.8615

Fine-tune NLLB-1B
- 0.8954 0.8878 0.8825 0.8775 0.8631
freeze enc 0.8974 0.8912 0.8812 0.8772 0.8552

Ours: NLLB-1B enc +
rand dec 0.9001 0.8902 0.8793 0.8688 0.8561
MTee dec 0.9049 0.8953 0.8831 0.8659 0.8586
MTee dec 2-stage 0.9060 0.8929 0.8857 0.8724 0.8607

Table 7: Many-to-Estonian translation COMET scores for selected directions. Underlined results indicate a
significant gain over the baseline NLLB-1B with p = 0.01 according to Paired Bootstrap Resampling t-test. † -
Scores calculated from translations reported by Team et al. (2022). Language abbreviations are following Team
et al. (2022).
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