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Introduction

Welcome to the 1st Workshop Proceedings on Modular and Open Multilingual NLP (MOOMIN)". The
workshop will take place at EACL 2024 in Malta on March 21st.
The MOOMIN workshop’s aim is to bring together researchers and NLP practitioners interested in mo-
dular approaches to the design of natural language systems. This trend of research is a direct reply to
the challenges and opportunities of monolithic large language models: To keep our field sustainable, we
need models that are reusable, adaptable, and repurposable. We invited paper submissions on various
topics, including Mixture-of-Expert models, modular pre-training of multilingual language and transla-
tion models, techniques that leverage adapters and hypernetworks, modular extensions of existing NLP
models systems, and especially welcome work focusing on low-resource settings.
We have curated the MOOMIN workshop program to encourage discussions that will lead to valuable
insights into the workshop topics. On the day of the workshop, there will be a total of 9 oral presenta-
tions of papers that offer innovative approaches and solutions to the challenges of scalability, language
coverage, efficiency and re-usability of large language models. Of these 9 presentations, 5 correspond to
archival papers published in the workshop proceedings, 1 is a non-archival submission and 3 papers are
coming from this years’ EACL Findings. The overall acceptance rate of archival submissions was 62.5%.
In addition, we also invited two keynote speakers, Edoardo M. Ponti and Angela Fan, whose works have
had remarkable impact in the field of modular NLP.
We are grateful to all authors, reviewers, and participants who contributed to the success of this work-
shop. We would also like to thank the European Research Council and the Research Council of Finland
for their support of the workshop through the FoTran project (grant agreement no. 771113) and the
GreenNLP project, respectively.
The MOOMIN organizers,
Timothee Mickus, Jörg Tiedemann, Ahmet Üstün, Raúl Vázquez & Ivan Vulić

ii



Program Committee

Program Chairs

Timothee Mickus, University of Helsinki
Jörg Tiedemann, University of Helsinki
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Keynote Talk: Efficiency as an Inductive Bias for Language
Learning

Edoardo M. Ponti
University of Edinburgh and University of Cambridge

2024-03-21 09:30:00 – Room: Room 1

Abstract: Efficiency in Natural Language Processing is often hailed as a solution to democratise access
to AI technology and to make it more environmentally sustainable. In this talk, I emphasise an additio-
nal and sometimes neglected advantage of efficiency: namely, providing an inductive bias for language
use and acquisition closer to those in humans, where efficiency trade-offs shape the very structure of
language. I will start by recapitulating the main aspects of efficiency in deep learning, which are partly
interconnected: time, memory, and parameter efficiency. Next, I will explore how efficient designs in
state-of-the-art Large Language Models (a) may also act as inductive biases that improve their perfor-
mance (b). For instance: (1a) Jointly learning to model and segment text allows for merging contiguous
groups of token representations in intermediate layers, which reduces time and memory requirements.
(1b) In addition, it also leads to learning (possibly reusable and hierarchical) abstractions from raw data,
which further increase the model’s predictive abilities; (2a) Learning parameter-efficient modules al-
lows for fine-tuning LLMs with limited memory budgets. (2b) In addition, composing these specialised
modules through appropriate routing also leads to better generalisation. In particular, I will show how
modules can be implemented as highly composable sparse adapters and how routing through modules
can be learned automatically. In conclusion, efficient designs of LLMs yield unexpected benefits, such
as the ability to learn abstractions, adapt fast, and integrate disparate sources of knowledge.

Bio: Edoardo M. Ponti is a Lecturer (Assistant Professor) in Natural Language Processing at the Universi-
ty of Edinburgh, where he is part of the Institute for Language, Cognition, and Computation (ILCC), and
an Affiliated Lecturer at the University of Cambridge. Previously, he was a visiting postdoctoral scholar
at Stanford University and a postdoctoral fellow at Mila and McGill University in Montreal. In 2021, he
obtained a PhD in computational linguistics from the University of Cambridge, St John’s College. His
main research foci are modular deep learning, sample-efficient learning, faithful text generation, compu-
tational typology and multilingual NLP. His research earned him a Google Research Faculty Award and
2 Best Paper Awards at EMNLP 2021 and RepL4NLP 2019. He is a board member and co-founder of
SIGTYP, the ACL special interest group for computational typology, and a scholar of the European Lab
for Learning and Intelligent Systems (ELLIS). He is a (terrible) violinist, football player, and an aspiring
practitioner of heroic viticulture.
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Keynote Talk: No Language Left Behind - Scaling
Human-Centered Machine Translation

Angela Fan
Meta AI Research, FAIR

2024-03-21 16:00:00 – Room: Room 2

Abstract: Driven by the goal of eradicating language barriers on a global scale, machine translation
has solidified itself as a key focus of artificial intelligence research today. However, such efforts have
coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource
languages. What does it take to break the 200 language barrier while ensuring safe, high-quality results,
all while keeping ethical considerations in mind? In this talk, I introduce No Language Left Behind,
an initiative to break language barriers for low-resource languages. In No Language Left Behind, we
took on the low-resource language translation challenge by first contextualizing the need for translation
support through exploratory interviews with native speakers. Then, we created datasets and models ai-
med at narrowing the performance gap between low and high-resource languages. We proposed multiple
architectural and training improvements to counteract overfitting while training on thousands of tasks.
Critically, we evaluated the performance of over 40,000 different translation directions using a human-
translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark
covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement
of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a
universal translation system in an open-source manner.

Bio: Angela is a research scientist at Meta AI Research in New York, focusing on research in text
generation. Currently, Angela works on language modeling and developing the line AI Agents Meta
products. Recent research projects include No Language Left Behind, Universal Speech Translation for
Unwritten Languages, and Llama2.
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Toward the Modular Training of Controlled Paraphrase Adapters

Teemu Vahtola and Mathias Creutz
Department of Digital Humanities

Faculty of Arts
University of Helsinki

Finland
{teemu.vahtola, mathias.creutz}@helsinki.fi

Abstract

Controlled paraphrase generation often focuses
on a specific aspect of paraphrasing, for in-
stance syntactically controlled paraphrase gen-
eration. However, these models face a lim-
itation: they lack modularity. Consequently
adapting them for another aspect, such as lexi-
cal variation, needs full retraining of the model
each time. To enhance the flexibility in train-
ing controlled paraphrase models, our propo-
sition involves incrementally training a modu-
larized system for controlled paraphrase gen-
eration for English. We start by fine-tuning a
pretrained language model to learn the broad
task of paraphrase generation, generally empha-
sizing meaning preservation and surface form
variation. Subsequently, we train a specialized
sub-task adapter with limited sub-task specific
training data. We can then leverage this adapter
in guiding the paraphrase generation process
toward a desired output aligning with the dis-
tinctive features within the sub-task training
data.

The preliminary results on comparing the fine-
tuned and adapted model against various com-
peting systems indicates that the most success-
ful method for mastering both general para-
phrasing skills and task-specific expertise fol-
lows a two-stage approach. This approach in-
volves starting with the initial fine-tuning of
a generic paraphrase model and subsequently
tailoring it for the specific sub-task.

1 Introduction

Paraphrase generation aims to produce sentences
that maintain high semantic similarity with the
source sentence, while deviating enough from it
on surface form. Commonly used sequence-to-
sequence models encounter challenges in generat-
ing diverse paraphrase outputs (Kumar et al., 2019).
As a result, recent research in paraphrase genera-
tion has shifted toward controlled generation meth-
ods. These approaches condition the model on
predefined qualities to produce specific outputs,

aiming to overcome this limitation. Exploring ap-
proaches to controlled text generation has both
theoretical and practical implications. It can in-
fluence the theoretical understanding of automatic
language generation and offer practical applica-
tions across various domains and industries.

Through leveraging controlled text generation,
models can for instance be steered to produce lan-
guage that better follows user preferences (Fan
et al., 2018). With enough surface form variation,
paraphrasing can be useful in question answering
(Dong et al., 2017), data augmentation (Kumar
et al., 2019), and machine translation (Callison-
Burch et al., 2006; Mehdizadeh Seraj et al., 2015),
among other tasks. Even if trained to perform cer-
tain paraphrase transformations, recent controlled
paraphrase generation systems are limited in flexi-
bility. Incorporating an additional control feature
necessitates retraining the entire model. To over-
come this limitation, we make the assumption that
paraphrase generation essentially behaves in a mod-
ular manner. To evaluate our assumption, we pro-
pose the training of a modular system for controlled
paraphrase generation through initial fine-tuning
or broader task adapters (Pfeiffer et al., 2020b)
followed by more specialized sub-task adapters.
Hence, in contrast to standard fine-tuning of all pa-
rameters of a model, we initially train the model to
perform the necessary paraphrasing skills, namely
meaning preservation and surface form variation,
and further refine the model in a modular way to
produce outputs that encompass some desired para-
phrase nuances. We focus on English paraphrasing,
incorporating one specific aspect of paraphrasing,
namely antonym substitution (Bhagat and Hovy,
2013). We select this paraphrase operation due
to the availability of a specialized test suite de-
signed for evaluating paraphrase models on sen-
tence pairs that incorporate antonym substitution
(Vahtola et al., 2022), enabling systematic com-
parison of various experimental setups. However,
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our proposed approach could as well be applied to
other paraphrase phenomena and languages where
paraphrase data is available.

2 Previous Research

Common methods for automatic paraphrase gener-
ation rely on sequence-to-sequence modeling, of-
ten leveraging machine translation (Tiedemann and
Scherrer, 2019; Thompson and Post, 2020; Sun
et al., 2022, inter alia), or monolingual parallel
data (Prakash et al., 2016; Sjöblom et al., 2020).
These models, however, often struggle with gener-
ating sufficient variation (Kumar et al., 2020). As a
result, increased emphasis has been given to gener-
ating controlled paraphrases, specifically targeting
variations across predefined dimensions.

There has been significant research attention di-
rected toward controlled paraphrasing in various
granularity levels, from aiming to produce lexical
variation by providing synonym substitutions (Fu
et al., 2019) to the generation of syntactically con-
trolled paraphrases (Iyyer et al., 2018; Kumar et al.,
2020; Sun et al., 2021). While these approaches are
constrained by concentrating solely on one level
of detail, diverse paraphrasing encompasses mul-
tiple levels of granularity. To acknowledge this
limitation, Huang et al. (2019) use dictionaries to
perform word-level and phrase-level paraphrasing,
obtaining more variation. Vahtola et al. (2023) train
a multilingual NMT model with control tokens re-
lated to various aspects of paraphrasing. It is still
however an open question how the control tokens
interplay. In addition, a critical limitation arises
with these models: they lack modularity, wherein
all control tokens exert simultaneous influence on
the output, making it impossible to selectively de-
activate any subset of control features during the
inference process or flexibly adapt the model to
new features. In contrast, we propose the train-
ing of a modular controlled paraphrase generation
model leveraging adapter transformations (Houlsby
et al., 2019; Pfeiffer et al., 2020b).

In addition to being widely studied for cross-
lingual transfer (e.g., Pfeiffer et al., 2020b) and
NMT (Üstün et al., 2021), modular and param-
eter efficient fine-tuning has been explored in
other sequence-to-sequence tasks. Bapna and Fi-
rat (2019) use a modification of trainable adapter
blocks (Houlsby et al., 2019) to adapt MT outputs
for new languages and domains. Wan et al. (2023)
leverage prefix-tuning for generating syntactically

controlled paraphrases. In contrast to the previous
work on modular fine-tuning, our focus lies in the
modular training paradigm specific to paraphras-
ing. We delve into training specialized sub-task
adapters within this single task. These adapters
are supposed to capture task and sub-task specific
information, and are to be assembled to produce
controlled paraphrasing toward an intended output.

3 Data

We use the English partition of the Opusparcus
paraphrase dataset (Creutz, 2018) for alternately
fine-tuning the full model or training a generic para-
phrase adapter. The training data in Opusparcus
was automatically constructed and organized to
prioritize the most probable paraphrastic sentence
pairs at the beginning, with decreasing likelihood
of being paraphrases as the data progresses. Hence,
we select the first 1 000 000 sentence pairs from the
corpus as training data, denoted as T , comprising
approximately of 95% of true paraphrases (Creutz,
2018), and use the sentence pairs annotated as para-
phrases from the Opusparcus development set for
tuning the models. Moreover, within the training
set T , we extract a specialized subset Tn ⊂ T con-
sisting of 12 870 examples. We use the first 12 000
examples as training data and save the final 870 ex-
amples to serve as a development set for tuning the
specialized systems. This subset exclusively com-
prises instances where an explicit negation token is
present in the target but absent in the source, and
is used for training a dedicated sub-task adapter as
a part of a broader paraphrasing task. We aim to
extract sentences that demonstrate interesting para-
phrastic relationships through the use of negation
or negated antonymy, as opposed to sentences that
negate the intended meaning. We release the task-
specific data in https://github.com/teemuvh/
controlled-paraphrase-adapters.

4 Experiments

Our objective is to incrementally train and assem-
ble a modular system for controlled paraphrase
generation. We undertake training and assessment
across several models. To start, we establish a base-
line by fine-tuning flan-t5-base1 (Chung et al.,
2022) using a set of 1 000 000 paraphrase pairs (T )
sourced from the English partition of the Opuspar-
cus training set. Furthermore, we fine-tune a sepa-

1The prefix we use for training and evaluating the models
is: paraphrase this sentence:.
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Original Candidates
You’re not fat. You’re not thin., You’re fat., You’re thin.
It’s not fair. It’s not unfair., It’s fair., It’s unfair.
This is not a good idea. This is not a bad idea., This is a good idea., This is a bad idea.
It is not safe. It is not dangerous., It is safe., It is dangerous.

Table 1: Examples from the SemAntoNeg test suite. The true paraphrase to the input sentence is highlighted.

rate system using only a subset of the training data
(Tn) that comprises of examples incorporating para-
phrasing through negation and negated antonymy,
extracted from the complete training set. We also
perform a two-stage fine-tuning, starting with fine-
tuning the base model with T , and sequentially
fine-tuning with Tn.

In all adapter experiments, we leverage the
adapter-transformers library (Pfeiffer et al., 2020a).
We optimize modular fine-tuning by utilizing the
bottleneck adapter (Houlsby et al., 2019) config-
uration proposed in Pfeiffer et al. (2020b) in con-
junction with the base model. We then proceed
to train two task adapters: one using the entire
training dataset (T ) for a broad paraphrasing task,
and another using a subset (Tn) of the data for a
specific controlled paraphrasing sub-task. Finally,
we explore incremental adapter training by enhanc-
ing the base model with the paraphrase adapter.
We then freeze the weights of the base model and
the paraphrase adapter and proceed to train an ad-
ditional sub-task adapter. This adapter not only
benefits from the paraphrase adapter’s information
but also focuses on learning more specific para-
phrasing transformations incorporating negation
and antonym substitution. We train each system on
a single GPU for 3 epochs with a batch size of 128,
and 5e-5 learning rate.

We evaluate the models on a dedicated test suite
designed for paraphrase detection within sequences
incorporating negated antonyms (Vahtola et al.,
2022). The test suite is intended to be used to eval-
uate models on a difficult paraphrase detection task
involving sequences with high lexical overlap. Ex-
amples of the data are provided in Table 1. To make
the test suite suitable for evaluating sequence-to-
sequence models, we extract each source sentence
and its true paraphrase, i.e., the third candidate
as highlighted in the examples in Table 1, from
the test suite. By treating these extracted pairs
as source-target sequences, we reframe the task
as a sequence-to-sequence challenge. A success-
ful model hence performs antonym substitution

to produce a paraphrase of the original sentence.
Controlled paraphrasing aims to replicate a specific
output sentence while incorporating predefined con-
trol features. Therefore, we decide to evaluate the
models using BLEU (Papineni et al., 2002) with
respect to the references and to the inputs. We use
sacreBLEU (Post, 2018) for calculating the BLEU
scores.

5 Results

Table 2 presents the results. The base model eval-
uation (denoted as base in Table 2), conducted
without any fine-tuning or adaptation, establishes a
baseline BLEU score of 25.07. Fine-tuning (para-
ft) or training an adapter (para-adapt) solely with
the 1 000 000 examples (T from now on) yields
suboptimal results (14–17 BLEU) on the negated
antonym test data. However, this outcome is ex-
pected, as the model is not explicitly trained to han-
dle paraphrases with negation or negated antonyms.
While the BLEU score may be lower for the para-
phrase models, it doesn’t necessarily imply inferi-
ority in their ability to paraphrase. As indicated by
the high BLEU score with respect to the source sen-
tence (S-BLEU in Table 2), the base model without
fine-tuning or adapter training has a high tendency
to copy the input sentence, consequently yielding
relatively high BLEU score in this task owing to
the extensive lexical overlap found within the test
data examples. The dedicated paraphrase models
aim to introduce more alternations to the inputs,
resulting in lower BLEU scores despite potentially
producing true paraphrases.

Fully fine-tuning the model with the filtered sub-
set (Tn) of the training data (neg-ft), thus highlight-
ing paraphrasing through negation and antonymy,
consistently produces higher BLEU scores on the
task compared to both the base model and mod-
els trained solely on T . Adapter training on top
of the base model using Tn (neg-adapt) results
in even higher BLEU scores. Parameter effi-
cient fine-tuning has been shown to be effective
in low-resource scenarios (e.g., Karimi Mahabadi
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Model BLEU S-BLEU
base 25.07 95.23
para-ft 14.21 30.73
para-adapt 17.15 47.71
neg-ft 30.24 49.15
neg-adapt 32.79 57.92
para-ft+neg-ft 23.40 24.83
para-adapt+neg-adapt 26.06 36.45
para-ft+neg-adapt 34.00 66.45

Table 2: Results of the different models on the SemAn-
toNeg challenge set framed as a sequence-to-sequence
task. Here, BLEU scores measure the alignment with
reference sentences, whereas S-BLEU assesses align-
ment with the input itself.

et al., 2021), which might explain why the adapter
method achieves higher BLEU scores compared
to full fine-tuning when trained specifically for the
given paraphrasing sub-task.

Initiating training by fine-tuning a generic para-
phrase model, followed by further fine-tuning with
the specific sub-task data yields a subpar model
(para-ft+neg-ft). Similarly, training an extensive
paraphrase adapter before introducing a specialized
sub-task adapter (para-adapt+neg-adapt) results in
a model which barely surpasses the base model’s
performance when evaluated against the reference
using BLEU. Comparing the outputs to the input
sentences however shows that the incrementally
adapted model achieves similar BLEU scores as
the base model by trying to produce variation rather
than simply duplicating the input sentence, as in-
dicated by the lower S-BLEU score of the adapted
model.

The best BLEU scores are obtained by fully fine-
tuning the base model leveraging all 1 000 000 para-
phrase examples and training a specialized sub-
task adapter on top of the refined model (para-
ft+neg-adapt). We hypothesize that the initial fine-
tuning steers the model toward generating outputs
that highly resemble the input, reflected in a rela-
tively high S-BLEU. Subsequent adapter training
on a smaller scale then refines the model’s profi-
ciency in paraphrase operations involving negation
and negated antonyms, as indicated by the highest
BLEU.

The relationship between the obtained BLEU
and S-BLEU is presented in Figure 1. A robust
paraphrase model would typically demonstrate a
balance between a higher BLEU score and a lower
S-BLEU score, positioning itself toward the lower

base

para-ft

para-adapt neg-ft

neg-adapt

para-ft+neg-ft

para-adapt+ 
neg-adapt
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neg-adapt
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Figure 1: The BLEU and S-BLEU values of the methods
shown graphically. The best performing models are
assumed to show far to the right, reflecting a high BLEU
with respect to the reference, and at around 25 % S-
BLEU, which is the BLEU value of the reference with
respect to the source. That is, an oracle model that
would produce the desired reference sentences would
obtain BLEU = 100 % and S-BLEU = 24.90 %.

right corner of the diagram. This would indicate ro-
bustness by demonstrating a substantial lexical sim-
ilarity between the input and the reference, while
having a lesser alignment with the input itself. In
our task, an oracle model producing the exact refer-
ence sentence would obtain 100 BLEU and 24.90
S-BLEU.

To summarize the results, the base model along
with the models subjected to plain fine-tuning or
adaptation with the more generic paraphrase data
exhibit poor performance, highlighted by the base
model’s high S-BLEU, and the low BLEU scores
achieved by the fine-tuned or adapted models. In-
corporating specialized training for the intended
paraphrasing task, either through fine-tuning or
adaptation, is essential for success in the task. How-
ever, the results obtained with the models specif-
ically trained for paraphrasing through negation
or negated antonymy remain somewhat inconclu-
sive. Further analysis is necessary to determine
the optimal training configuration for assembling
general paraphrasing capabilities with specialized
sub-task capabilities. Additionally, we hypothesize
that parameter-efficient fine-tuning is better suited
in scenarios involving limited data. However, the
limited training data is also more task-specific, so
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it is still too early to draw general conclusions.

6 Conclusions

We propose the training of a modular paraphrase
generation model that is built incrementally. This
model starts by fine-tuning on a robust pretrained
language model to learn the general requirements
of paraphrase generation, namely meaning preser-
vation and surface form variation. Subsequently,
we train a specialized sub-task adapter with a lim-
ited number of sub-task specific training data to
guide the paraphrase generation process toward a
desired output. We compare the model involving
fine-tuning followed by sub-task adaptation to sev-
eral counterparts, including a base model without
further training, as well as differently fine-tuned or
adapted systems.

When assessing on a dedicated test set involving
paraphrasing with negation or negated antonyms,
we find that the most effective approach for learn-
ing both general paraphrasing abilities and sub-task
specific expertise is achieved by fully fine-tuning a
model for paraphrasing and then tailoring it to the
specific sub-task through modular updates.

In future work, we wish to delve deeper into
modularity for controlled paraphrasing. We intend
to expand the model’s capabilities by incrementally
training it to encompass additional paraphrasing
nuances, such as syntactic or lexical variation. Fur-
thermore, we would like to assess how varying the
size and task-specificity of the training data impacts
the results. Finally, we would like to extend our
approach to a multilingual setup.
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020a. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 46–54.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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Abstract
Soft Prompt Tuning (SPT) is a parameter-
efficient method for adapting pre-trained lan-
guage models (PLMs) to specific tasks by in-
serting learnable embeddings, or soft prompts,
at the input layer of the PLM, without modi-
fying its parameters. This paper investigates
the potential of SPT for cross-lingual trans-
fer. Unlike previous studies on SPT for cross-
lingual transfer that often fine-tune both the
soft prompt and the model parameters, we ad-
here to the original intent of SPT by keeping
the model parameters frozen and only training
the soft prompt. This does not only reduce the
computational cost and storage overhead of full-
model fine-tuning, but we also demonstrate that
this very parameter efficiency intrinsic to SPT
can enhance cross-lingual transfer performance
to linguistically distant languages. Moreover,
we explore how different factors related to the
prompt, such as the length or its reparameteriza-
tion, affect cross-lingual transfer performance.

1 Introduction

Fine-tuning pre-trained language models (PLMs)
on task-specific labeled data requires large amounts
of computational resources and may cause catas-
trophic forgetting of the pre-trained knowledge
(Goodfellow et al., 2015). In multilingual settings,
this may lead to poor cross-lingual transfer perfor-
mance (Vu et al., 2022).

To address these challenges, Lester et al. (2021)
introduced Soft Prompt Tuning (SPT), a method
that inserts learnable embeddings, or soft prompts,
at the PLM’s input layer. The PLM then makes pre-
dictions using the output of its pre-trained language
modeling head. The key advantage of SPT lies in
its ability to leverage the pre-existing knowledge
within PLMs while reducing the reliance on exten-
sive task-specific fine-tuning. SPT has been shown
to achieve remarkable results in various monolin-
gual downstream tasks, especially in few-shot set-
tings.

Motivated by this success, some recent works
have also explored the use of SPT for cross-lingual
transfer, where the goal is to leverage a multilingual
language model (MLLM) to transfer knowledge
from a high-resource to a low-resource language.
However, these works have not fully exploited the
potential of SPT. Some have appended a newly ini-
tialized classifier to the model (Tu et al., 2022; Park
et al., 2023), hindering the suitability of SPT for
few-shot learning. Others have fine-tuned the entire
model along with the prompt (Zhao and Schütze,
2021; Huang et al., 2022), which reduces the com-
putational efficiency of SPT.

This is especially problematic given the growing
size of state-of-the-art language models. There-
fore, we explore the impact on SPT’s cross-lingual
transfer performance when adhering to the original
methodology of Lester et al. (2021), which involves
fine-tuning only the soft prompt while keeping all
model parameters frozen. Specifically, this paper
contributes to the field of cross-lingual SPT by:

• Investigating the impact of model freezing on
the cross-lingual transfer performance of few-
shot SPT.

• Demonstrating that by freezing the model,
SPT achieves enhanced cross-lingual transfer,
especially to languages linguistically distant
from the source language.

• Exploring further non-linguistic factors that
influence the cross-lingual transfer perfor-
mance of SPT, in particular prompt length
and prompt reparameterization.

In this study, we conduct experiments on a topic
classification dataset in 52 different languages and
using 4 different models in few-shot settings. We
believe that our findings can improve the existing
methods that aim to enhance cross-lingual SPT, par-
ticularly in the context of current state-of-the-art
models with billions of parameters where parame-
ter efficiency is crucial.
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2 Related Work

Lester et al. (2021) proposed SPT, a method to
leverage a PLM’s pre-trained language modeling
head without appending a new classifier. SPT relies
on a soft prompt, which is a set of learnable embed-
dings that are concatenated with the input sequence,
and keeps all other model parameters frozen. Since
then, several recent works have explored the use of
soft prompts for MLLMs. Zhao and Schütze (2021)
first show that SPT outperforms fine-tuning in few-
shot scenarios for cross-lingual transfer. Huang
et al. (2022) introduce a method to train a language-
agnostic soft prompt. However, unlike our study,
none of these works on cross-lingual SPT employ
model parameter freezing, leading to a reduced
efficiency in their methods. In contrast, Tu et al.
(2022) and Park et al. (2023) perform model freez-
ing and, in corroboration with Zhao and Schütze
(2021), also show that SPT outperforms fine-tuning
for cross-lingual transfer. However, they append a
newly initialized classification head to the model
instead of using the PLM’s pre-trained language
modeling head, which diverges from the original
idea of SPT. This setup is unsuitable for few-shot
learning, requiring experiments to be conducted in
full-data settings. In addition, prior studies often
focus on smaller ranges of languages, which im-
pedes making conclusive observations about SPT’s
cross-lingual tendencies across different languages
and language families.

3 Experimental Setup

Besides adhering to the original setup of SPT, en-
abling parameter-efficient and data-efficient train-
ing, our study also sets itself apart in its objec-
tives from the existing literature. Rather than
simply demonstrating superior cross-lingual trans-
fer performance of SPT over fine-tuning, our re-
search aims to show that the minimal impact on the
MLLM’s representation space not only generally
enhances transfer performance but is particularly
effective for linguistically distant languages.

We provide more specific details on our experi-
mental setup in Appendix A.

3.1 Soft Prompt

Following Lester et al. (2021), we append a soft
prompt to the input sequence which is passed
through an autoregressive language model, gen-
erating the logits for the next token in the input
sequence. Each class is linked to a token from the

model’s vocabulary, enabling us to map the token
with the highest logit to the predicted class. Such a
mapping is referred to as the verbalizer (Figure 1).

loveI to play golf P1 P2 Pn
. . .

sports
politics
science

Token logitsClasses

Sports
Politics
Science Ve

rb
al
ize

r

Figure 1: A simplified illustration of SPT (Lester et al.,
2021). P1, . . . , Pn denote the soft prompt tokens, with
each token corresponding to a trainable embedding. Es-
sentially, for a model with an embedding dimension d,
a soft prompt of length n forms a d× n matrix.

3.2 Implementation Details

Models With the recent advancement and popu-
larity of autoregressive language models for various
tasks, our research is conducted using two types
of MLLMs based on this architecture: XGLM
(Lin et al., 2022) and BLOOM (Scao et al., 2022).
For both models we use 2 different sizes: XGLM-
564M and XGLM-1.7B for XGLM, and BLOOM-
560M and BLOOM-1.1B for BLOOM.

Data In our study, we use SIB-200 (Adelani
et al., 2023), a topic classification dataset contain-
ing seven distinct topics and covering a diverse
range of 200 languages and dialects. We chose
this dataset for its broader, more diverse language
range compared to prior studies on cross-lingual
SPT, covering almost all languages our models sup-
port, enabling more comprehensive observations.

Technical Details We compare two different set-
tings: tuning the soft prompt with model freezing
(w/ MF) and without model freezing (w/o MF). We
perform few-shot fine-tuning only using English
samples. The final cross-lingual transfer perfor-
mance is then evaluated on the test sets of all lan-
guages supported by the respective model (30 for
XGLM, 38 for BLOOM), using accuracy as the
metric. We repeat each experiment 4 times with
different random seeds and report the mean.

4 Results

We provide the full results across all models
and languages in Appendix D. The results reveal
that model freezing not only boosts cross-lingual
transfer performance (Figure 2) but additionally
is a step towards closing the transfer gap between
linguistically distant and similar languages. This
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DATA SYN GEO INV GEN PHON FEA

BLOOM-560M
w/o MF 0,6781 0,6457 0,2294 0,3779 0,5081 0,4343 0,4221

w/ MF 0,6080 0,5742 0,2034 0,2629 0,3676 0,4482 0,3165

BLOOM-1.1B
w/o MF 0,6788 0,6403 0,1693 0,4605 0,5679 0,5272 -0,4685

w/ MF 0,4856 0,4177 0,0290 0,2930 0,3711 0,4283 0,3002

XGLM-564M
w/o MF 0,2672 0,6767 0,4694 0,4016 0,3203 0,4756 0,5949

w/ MF 0,2453 0,6574 0,2551 0,3410 0,2201 0,3285 0,5185

XGLM-1.7B
w/o MF 0,2636 0,6722 0,2566 0,3623 0,2924 0,3213 0,5315

w/ MF 0,2560 0,6694 0,2949 0,3155 0,2786 0,2779 0,4922

Table 1: Pearson correlation between (8-shot) cross-lingual transfer performance and 6 different linguistic similarity
metrics, namely syntactic (SYN), geographic (GEO), inventory (INV), genetic (GEN), phonological (PHON) and
featural (FEA) distance, as well as the language-specific pre-training corpus size (DATA).

Figure 2: Average cross-lingual transfer performance of
SPT with and without model freezing (MF) for different
models across all languages supported by the respective
model.

can be seen in Table 1, which shows that the corre-
lation strength between transfer performance and
language similarity between source and target lan-
guages, measured using 6 different similarity met-
rics1 (Littell et al., 2017), decreases when freezing
model parameters. This suggests that the parameter
efficiency of SPT mitigates the bias of cross-lingual
transfer towards linguistically similar languages.
In other words, by fine-tuning fewer parameters,
cross-lingual transfer, especially to linguistically
distant languages, is enhanced. This improvement
over full-model fine-tuning may be attributed to
the reduced impact on the MLLM’s representation
space during fine-tuning (Philippy et al., 2023).

Figure 3 also shows that, despite the limited
number of tunable parameters when freezing all
model parameters, additional training samples fur-
ther boost cross-lingual transfer performance.

Parameter efficiency Besides better cross-
lingual transfer performance, model freezing dur-

1See Appendix B for more details.

Figure 3: Average cross-lingual transfer performance
of SPT with model freezing for different number of
training samples per class.

ing SPT also provides parameter efficiency as fine-
tuning is restricted to a number of soft prompt to-
kens, resulting in only a few thousand parameters
in total. This is less than 0.01% of the parameters
fine-tuned in previous studies (Zhao and Schütze,
2021; Huang et al., 2022).

For illustration, the storage requirement for a
copy of the XGLM-1.7B model is approximately
3.2 GB, whereas a prompt needs less than 100KB.
With respect to training duration, our observations
indicate that the time required for training only the
soft prompt is less than half compared to when
training all model parameters. This benefit be-
comes even more pronounced when considering
the increasing sizes of state-of-the-art models.

5 Impact of Prompt Length and
Reparameterization

5.1 Prompt Length
Using the same configuration as described in Sec-
tion 3.2, we compare the transfer performance
of prompts with different lengths under the 8-
shot setting. We consider prompt lengths in
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{1, 2, 5, 10, 20, 30} and report the results for all
4 models. Figure 4 shows that if a soft prompt
is too long, cross-lingual transfer performance
degrades.

Figure 4: Average cross-lingual transfer performance,
measured as accuracy, across different prompt lengths
for different models.

5.2 Reparameterization

Direct fine-tuning of soft prompt embeddings may
lead to unstable training and potentially reduces
performance. To address this issue, previous works
have proposed reparameterizing prompt embed-
dings using different architectures, such as an
LSTM (Liu et al., 2021) or MLP (Li and Liang,
2021), which are fine-tuned along with the prompt
embeddings. Liu et al. (2022) argue that reparame-
terization can also have negative effects depending
on the task or dataset.

Motivated by this observation, we investigate the
effect of reparameterization on cross-lingual trans-
fer performance. We adopt the approach proposed
by Razdaibiedina et al. (2023), which uses an MLP
with a residual connection and a "bottleneck" layer
for reparameterization. We provide further details
on this method in Appendix C.

Our analysis reveals that BLOOM is signifi-
cantly more affected by reparameterization than
XGLM (Figure 5 in Appendix C). For both mod-
els, the impact of reparameterization differs
across languages — being detrimental for some
and advantageous for others. Notably, for BLOOM,
Atlantic-Congo languages such as Yoruba, Twi,
Kinyarwanda, Akan, Fon and Swahili experience
the most significant performance decline due to
reparameterization, with drops between 24% to
31%. Conversely, Indo-Aryan languages like Urdu,
Hindi, Bengali, and Nepali, along with Dravid-
ian languages like Malayalam and Tamil see the
most significant improvements, with gains of up to

29%. For XGLM, the outcomes are more balanced.
Nonetheless, we observe that the languages that
benefit most from reparameterization either use
Latin script, such as Haitian, German, and Turk-
ish, or are Dravidian languages such as Telugu and
Tamil.

Hence, we recommend that in cross-lingual set-
tings, the decision to use or abstain from reparame-
terization should not be made uniformly. Instead,
it should be tailored based on the specific target
languages or language families in consideration.

6 Discussion

Previous works on SPT for cross-lingual transfer
in few-shot settings suffers from two major draw-
backs: 1) fine-tuning all model parameters along
with the prompt reduces the computational effi-
ciency of SPT; 2) a bias towards target languages
that are linguistically closer to the source language.
Our study tackles these issues by showing that by
simply keeping model parameters frozen during
SPT, we can make progress in addressing both
these challenges.

Through our experiments, which covered a wider
and more diverse range of languages than prior
work on cross-lingual SPT, we observed intriguing
effects of non-linguistic variables (such as model
freezing, prompt length, and reparameterization)
on the transfer performance for individual lan-
guages. Additionally, our results reveal language-
specific differences that invite further inquiry into
the possibility of tailoring prompts to the target
language (e.g., applying prompt reparameteriza-
tion or not depending on the linguistic distance
between the target language family and the source
language) rather than using a single prompt for
universal transfer across languages. We believe
that our findings will benefit future work on cross-
lingual SPT and potentially improve the existing
techniques (Huang et al., 2022), becoming more
valuable as we adopt larger state-of-the-art models
with billion- and trillion-scale parameters (Lester
et al., 2021).

7 Conclusion

The objective of our study was to examine the im-
pact of model freezing on the cross-lingual trans-
fer performance of SPT. Our results demonstrate
that SPT, a method that adjusts less than 0.01%
of parameters compared to full-model fine-tuning,
achieves comparable or superior performance for
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most target languages, particularly for those that
are linguistically more distant. Furthermore, we
found that shorter prompts enhance SPT’s cross-
lingual transfer performance, and that some target
language families benefit from reparameterization
while others are adversely affected by it.

Limitations

Our approach enhances transfer performance for
several languages, especially those that are linguis-
tically more distant. However, we also notice that
it lowers the performance for some languages that
are linguistically more similar. This limitation mo-
tivates us to pursue future research that aims to
achieve balanced performance across languages

Another limitation of our approach is the insta-
bility of few-shot fine-tuning, which compromises
the robustness of our method’s evaluation. To miti-
gate this issue, we ran all experiments four times
with different random seeds and reported the mean
and variance of the results. However, we acknowl-
edge that more research is needed to address the
challenges of few-shot fine-tuning.

Ethics Statement

In this paper, we aim to improve the performance of
MLLMs on low-resource languages, which often
suffer from a lack of data and attention in NLP
research. We believe that this is an important and
ethical goal, as it enables NLP advances to benefit
a broader range of language communities.

In addition, this paper aims to promote param-
eter efficiency, which is a crucial factor for reduc-
ing the computational and environmental costs of
training and fine-tuning state-of-the-art language
models. We believe that this aspect will enhance
the accessibility and affordability of these models
for researchers and practitioners who face compu-
tational constraints.
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classify each sample into one of the 7 poten-
tial categories: science/technology, travel,
politics, sports, health, entertainment, and
geography.

A.2 Models

We provide additional information about the mod-
els used in our study in Table 2.

Model Layers Para-
meters

Hidden
size

Vocab
size

BLOOM-
560M

24

560M 1.024

250.880
BLOOM-

1.1B 1.1B 1.536

XGLM-
564M 564M 1.024

256.008
XGLM-

1.7B 1.7B 2.048

Table 2: Technical details of the models used in our
study.

A.3 Technical Details

Batch
size

Learning
rate

Prompt
length

w/
MF

XGLM
564M

8 0.1

10
XGLM

1.7B
BLOOM
560M

5

BLOOM
1.1B

10

w/o
MF

XGLM
564M

8

5e-6 10
XGLM

1.7B
BLOOM
560M

1e-6
5

BLOOM
1.1B

10

Table 3: Hyperparameters used in all of our experi-
ments.

We conducted all of our experiments using the
Transformers library (Wolf et al., 2020). In a k-shot
setting, we fine-tune on k samples per class from
the English train set and use k

4 samples per class
for validation. We train all models and prompts
for 20 epochs and select the best checkpoint on the

development set. The different hyperparameters
used in our experiments are provided in Table 3.

A.4 Soft Prompt

We follow the approach of Lester et al. (2021) and
freeze all model parameters and only fine-tune the
soft prompt.

In order to map the tokens predicted by the
model to the respective class, we define a verbalizer
F : T → C, where T = {t1, . . . , tK} is a subset
of the model’s vocabulary V and C = {1, . . . ,K}
are the respective classes.

We append a prompt p = {p1, . . . , pm} to
an input sequence x = {x1, . . . , xn} and pass
{x1, . . . , xn, p1, . . . , pm} through the autoregres-
sive language model which outputs the logits for
the next token in the input sequence {l1, . . . , l|V |}.

The predicted token is then F (argmaxi∈T li)

A.5 Computing Resources

We conduct all our experiments on 4 A100 40GB
GPUs, using 4 different random seeds, in parallel.
All experiments could be run in a few hours.

B Language Distance Metrics

We consider six types of lang2vec2 (Littell et al.,
2017) distances:

• Syntactic Distance (SYN) captures the simi-
larity of syntactic structures across languages.
It is computed as the cosine distance be-
tween syntax feature vectors, which are de-
rived from the World Atlas of Language Struc-
tures3 (WALS) (Dryer and Haspelmath, 2013),
Syntactic Structures of World Languages4

(SSWL) (Collins and Kayne, 2011) and Eth-
nologue5 (Lewis et al., 2015).

• Geographic Distance (GEO) reflects the spa-
tial proximity of languages. It is calculated as
the shortest distance between two languages
on the surface of the earth’s sphere (i.e., ortho-
dromic distance).

• Inventory Distance (INV) measures the dif-
ference in sound inventories across languages.
It is computed as the cosine distance between
inventory feature vectors, which are obtained

2https://github.com/antonisa/lang2vec
3https://wals.info
4http://sswl.railsplayground.net/
5https://www.ethnologue.com/
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from the PHOIBLE6 database (Moran et al.,
2019).

• Genetic Distance (GEN) indicates the histori-
cal relatedness of languages. It is based on the
Glottolog7 (Hammarström et al., 2015) tree of
language families and is obtained by comput-
ing the distance between two languages in the
tree.

• Phonological Distance (PHON) captures the
similarity of sound patterns across languages.
It is computed as the cosine distance be-
tween phonological feature vectors, which are
sourced from WALS and Ethnologue.

• Featural Distance (FEA) is the cosine dis-
tance between feature vectors from a combi-
nation of the 5 above-listed linguistic features.

The values for each distance type range from 0
to 1, where 0 indicates the minimum distance and
1 indicates the maximum distance.

C Prompt Reparameterization

We follow the residual reparameterization method
of Razdaibiedina et al. (2023) to examine the
impact of soft prompt reparameterization. This
method employs a multi-layer perceptron (MLP)
architecture for the reparameterization network,
which consists of a down-projection layer and
an up-projection layer with parameter Wdown ∈
Rd×m and Wup ∈ Rm×d respectively, where d de-
notes the model embedding size and m denotes the
hidden representation dimension between both lay-
ers (bottleneck size). A ReLU layer is applied to the
hidden representation, and a normalization layer
is applied to the output of the up-projection layer
before summing it with the initial input embedding
via a residual connection. We fine-tune the soft
prompt and its reparameterization network with a
bottleneck size of 500 for BLOOM-560M and 200
for XGLM-564M and report the impact of repa-
rameterization across all target languages in Figure
5. Except for the reparameterization, we adopt
the same implementation settings as described in
Section 3.

D Full Results

The full results discussed in Section 4 are provided
in Table 4.

6https://phoible.org/
7https://glottolog.org

Figure 5: Impact of reparameterization (expressed in %)
on the cross-lingual transfer performance of BLOOM-
560M and XGLM-564M for different target languages.
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BLOOM-560M BLOOM-1.1B XGLM-564M XGLM-1.7B
Language w/o MF w/ MF w/o MF w/ MF w/o MF w/ MF w/o MF w/ MF

Akan 22,189,67 34,806,33 19,366,52 35,050,85 - - - -
Arabic 55,513,56 70,221,62 42,0311,9 63,483,50 57,603,34 71,691,89 74,751,67 78,685,49

Assamese 27,457,99 37,014,85 29,419,66 53,064,92 - - - -
Bambara 16,673,63 26,968,74 17,035,94 29,173,68 - - - -
Basque 43,5012,5 61,891,90 38,737,69 63,9713,0 67,401,30 71,322,70 71,083,07 72,436,64

Bengali 56,624,48 60,782,41 46,6912,2 71,812,90 68,143,51 71,454,24 71,573,05 76,235,22

Bulgarian - - - - 72,795,13 77,332,45 78,922,40 81,374,33

Burmese - - - - 63,606,06 71,203,38 72,673,03 73,417,79

Catalan 63,4813,1 72,302,28 48,777,93 73,774,03 68,507,52 76,353,03 77,334,01 79,044,13

Chi Shona 19,984,79 24,882,67 17,895,69 31,003,95 - - - -
Chi Tumbuka 20,344,54 27,702,55 18,144,95 33,704,62 - - - -

Chinese 60,5411,1 73,656,47 47,3013,9 72,433,36 59,938,33 79,041,85 77,945,08 81,744,28

English 75,005,87 74,632,09 69,362,67 75,122,90 78,681,67 79,902,62 80,882,94 82,845,41

Estonian - - - - 72,303,24 75,863,13 76,351,76 81,135,78

Finnish - - - - 76,721,81 79,901,44 79,781,76 82,355,92

Fon 19,3610,0 25,497,88 13,973,98 26,845,51 - - - -
French 69,616,52 73,161,89 57,236,29 72,925,51 71,944,26 79,292,98 79,045,48 79,902,80

German - - - - 71,577,19 76,234,67 81,625,04 81,625,79

Greek (modern) - - - - 73,903,47 78,192,93 80,272,70 82,975,11

Gujarati 41,797,92 37,019,35 27,087,85 54,2910,3 - - - -
Haitian - - - - 65,441,30 68,872,55 74,391,72 74,756,70

Hindi 42,524,28 45,594,47 50,1210,0 64,952,85 74,143,28 75,372,41 75,742,95 78,194,88

Igbo 18,501,57 23,776,42 15,204,85 27,704,57 - - - -
Indonesian 49,262,55 66,911,86 49,1411,9 68,753,38 73,901,29 77,572,45 77,212,48 79,905,34

Isi Zulu 19,246,01 21,692,72 15,695,98 29,662,48 - - - -
Italian - - - - 73,414,82 74,751,52 78,434,95 80,025,52

Japanese - - - - 54,295,98 76,843,89 80,641,47 77,944,65

Kannada 22,308,24 25,008,46 22,923,85 55,767,93 - - - -
Kikuyu 28,198,36 35,052,42 19,494,44 33,703,81 - - - -

Kinyarwanda 19,003,21 25,746,26 15,693,80 30,394,33 - - - -
Korean - - - - 73,771,67 74,262,28 74,754,46 77,455,41

Lingala 23,903,85 28,194,74 21,698,43 36,153,29 - - - -
Malayalam 23,5311,1 21,947,56 30,399,95 59,934,17 - - - -

Marathi 34,6811,1 28,315,83 29,786,21 60,054,41 - - - -
Nepali 30,156,99 42,036,95 36,7613,3 67,036,25 - - - -

Northern Sotho 20,596,62 28,800,47 18,384,09 33,822,40 - - - -
Odia 34,807,64 31,376,62 25,005,25 47,069,22 - - - -

Portuguese 66,675,02 75,373,19 53,195,69 73,772,17 74,261,90 79,531,09 80,151,98 82,483,95

Quechua - - - - 35,668,69 39,712,23 49,884,84 51,596,37

Russian - - - - 76,963,23 77,211,98 78,193,43 80,274,30

Spanish 63,368,94 72,670,47 46,699,79 73,655,11 71,450,74 76,472,30 77,333,63 79,784,84

Swahili 35,057,95 49,886,02 25,126,22 49,757,40 61,408,61 69,002,84 73,772,45 72,797,91

Tamil 44,859,58 50,744,09 34,4413,1 67,404,71 68,755,68 70,592,12 73,901,01 75,867,91

Telugu 24,513,94 31,006,71 26,961,20 66,057,13 62,753,33 68,265,15 74,143,76 76,236,46

Thai - - - - 67,776,42 76,351,16 79,531,72 77,335,02

Turkish - - - - 73,162,84 76,963,18 74,634,30 79,175,89

Twi 23,419,5 35,296,64 18,756,83 36,523,32 - - - -
Urdu 42,286,67 44,618,95 31,748,12 48,419,35 54,908,37 70,102,86 70,103,12 75,255,69

Vietnamese 46,0819,4 68,147,21 43,877,49 64,583,76 70,713,06 76,963,18 78,313,63 79,907,30

Wolof 25,497,88 34,934,17 21,819,77 41,424,64 - - - -
Xhosa 21,947,35 28,551,23 15,325,51 32,236,14 - - - -
Yoruba 13,361,62 21,949,49 16,302,28 33,214,76 - - - -

Table 4: Cross-lingual transfer results, reported as accuracy, along with standard deviation across 4 runs, after 8-shot
soft prompt tuning (SPT) in English, with and without model freezing (MF).
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Abstract

Creating neural text encoders for written Swiss
German is challenging due to a dearth of train-
ing data combined with dialectal variation. In
this paper, we build on several existing multilin-
gual encoders and adapt them to Swiss German
using continued pre-training. Evaluation on
three diverse downstream tasks shows that sim-
ply adding a Swiss German adapter to a modu-
lar encoder achieves 97.5% of fully monolithic
adaptation performance. We further find that
for the task of retrieving Swiss German sen-
tences given Standard German queries, adapt-
ing a character-level model is more effective
than the other adaptation strategies. We release
our code and the models trained for our experi-
ments.1

1 Introduction

When applying natural language processing (NLP)
techniques to languages with dialectal variation,
two typical challenges are a lack of public train-
ing data as well as varying spelling conventions.
In the case of Swiss German, which is spoken by
around 5 million people and is often used for infor-
mal written communication in Switzerland, these
factors make it more challenging to train a BERT-
like text encoder for written text.

In this paper, we adapt pre-trained multilingual
encoders to Swiss German using continued pre-
training on a modest amount of Swiss German
training data. We evaluate the approaches on
part-of-speech (POS) tagging with zero-shot cross-
lingual transfer from Standard German (Aepli
and Sennrich, 2022), as well as dialect identifi-
cation (Zampieri et al., 2019) and cross-lingual
sentence retrieval based on a parallel Standard
German–Swiss German test set (Aepli et al., 2023).

We find that depending on the multilingual en-
coder, continued pre-training leads to an average

1https://github.com/ZurichNLP/
swiss-german-text-encoders

Monolithic Modular

Su
bw

or
ds

XLM-R →
Swiss German XLM-R

X-MOD/SwissBERT →
Swiss German adapter

C
ha

ra
ct

er
s

CANINE →
Swiss German CANINE

X-MOD/SwissBERT →
Swiss German

character-level adapter

Table 1: Overview of the encoder models we release.

improvement of 10%–45% in average accuracy
across the three downstream tasks. We then fo-
cus on comparing monolithic adaptation, where
all the parameters of the encoder are updated dur-
ing continued pre-training, to modular adaptation
with language-specific modular components (lan-
guage adapters; Pfeiffer et al., 2022). Even though
modular adaptation only updates a fraction of the
parameters, it is competitive to monolithic adap-
tation. Given these findings, we propose to ex-
tend the SwissBERT model (Vamvas et al., 2023),
which was trained on Standard German and other
languages, with a Swiss German adapter (Table 1).

We further hypothesize that the architecture of
CANINE (Clark et al., 2022), a tokenization-free
model that operates on characters, might be better
suited to the highly variable spelling of Swiss Ger-
man. Indeed, a CANINE model adapted to Swiss
German excels on the retrieval tasks, while POS
tagging works better with subwords.

Finally, we aim to combine the best of both
worlds by integrating character-level down- and
upsampling modules into a subword-based model
and training a character-level adapter for Swiss
German. However, this jointly modular and
tokenization-free strategy underperforms the indi-
vidual approaches. We hope that our findings can
inform the development of modular approaches for
other languages with dialectal variation.
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2 Adaptation Scenario

Our goal is to train an encoder model for Swiss
German (language code gsw) with limited training
data. Since Standard German (language code de)
is a closely related language, we focus on transfer
learning from Standard German to Swiss German.
We rely on pre-trained multilingual models that
have already been trained on Standard German,
and adapt them to Swiss German using continued
pre-training.

Swiss German adaptation data For training on
Swiss German, we use the SwissCrawl corpus (Lin-
der et al., 2020), which contains 11M tokens of
Swiss German text extracted from the web. The
text in SwissCrawl exhibits some normalizations
that eventual input text will not have, e.g., isolation
of individual sentences, normalization of punctua-
tion and emoji removal. To diversify the training
data, we extend the pre-training dataset with a cus-
tom collection of 382k Swiss German tweets. In
total, we use 18M tokens for pre-training on Swiss
German. Both datasets were automatically mined
and may contain some text in other languages.

Standard German data To promote transfer
from Standard German to Swiss German later on,
we include an equal part of Standard German data
in the continued pre-training data. We use a sample
of news articles retrieved from the Swissdox@LiRI
database, comparable to the data the SwissBERT
model has been trained on (Vamvas et al., 2023).

3 Monolithic Approaches

We evaluate a subword-based model and a
character-based model, with and without continued
pre-training on Swiss German. We call these mod-
els monolithic (non-modular), because the entire
model is updated during continued pre-training.

3.1 XLM-R

We train XLM-R (Conneau et al., 2020) with
masked language modeling (MLM). XLM-R was
pre-trained on 100 languages, which include Stan-
dard German but not Swiss German.

3.2 CANINE

The CANINE model (Clark et al., 2022) was pre-
trained on 104 languages, again including Stan-
dard German but excluding Swiss German. Un-
like XLM-R, CANINE directly encodes character

sequences and does not require a tokenizer at in-
ference time. This is achieved by extending the
standard transformer architecture with character
down- and upsampling modules.

The downsampling module combines a single-
layer blockwise transformer with strided convolu-
tion, which reduces the sequence length by a factor
of r = 4, where r is a hyperparameter. As a con-
sequence, the standard transformer does not see
every character individually, but only sees down-
sampled positions. The upsampling module, which
is needed for token-level tasks, mirrors the down-
sampling procedure and restores the original se-
quence length. We refer to Clark et al. (2022) for a
detailed description of the architecture.

Clark et al. (2022) describe two alternative ap-
proaches for pre-training: CANINE-S, which uses
a tokenizer to determine masked tokens and is sim-
ilar to standard MLM, and CANINE-C, which is an
autoregressive character loss. In our experiments,
we use CANINE-S with the SwissBERT subword
tokenizer to perform continued pre-training.

4 Modular Approaches

4.1 SwissBERT

We base our adapter experiments on
SwissBERT (Vamvas et al., 2023), a variant
of X-MOD (Pfeiffer et al., 2022) that includes
language adapters for Standard German, French,
Italian and Romansh. Compared to the original
X-MOD model, which was trained with language
adapters for 81 languages, SwissBERT has a
custom SentencePiece vocabulary and word
embeddings optimized for Switzerland-related text,
and we assume that this is beneficial for continued
pre-training on Swiss German.

4.2 Subword-level Adapter for SwissBERT

We add a Swiss German adapter to SwissBERT
and freeze the parameters of the model except for
the adapter modules during continued pre-training.
We initialize the Swiss German adapter with the
weights of the Standard German adapter and pre-
train it on the Swiss German part of our dataset.
During fine-tuning on downstream tasks, we freeze
the adapters and update the remainder of the model.

For this approach, we only use the Swiss Ger-
man part of our pre-training corpus for continued
pre-training, and not Standard German, since the
modular architecture is expected to allow for cross-
lingual transfer without continued pre-training
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POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

XLM-R:
– without continued pre-training 52.6±1.8 47.2±15.1 60.6 75.7 56.0
– with continued pre-training 86.9±0.3 62.1±0.8 91.1 96.0 80.9

CANINE:
– without continued pre-training 46.7±1.3 59.0±0.6 92.8 94.8 66.5
– with continued pre-training 60.9±1.4 60.8±0.4 96.4 96.9 72.8

SwissBERT:
– DE adapter without continued pre-training 64.8±2.0 61.3±0.5 66.1 82.2 66.7
– subword-level GSW adapter 83.2±0.3 62.0±0.4 82.9 92.4 77.6
– character-level GSW adapter 41.5±0.9 51.9±1.3 35.6 42.6 44.2

Table 2: Comparison of different models on three downstream tasks: part-of-speech (POS) tagging accuracy,
German dialect identification (GDI) F1-score, and cross-lingual sentence retrieval accuracy. For the supervised
tasks, we report the average and standard deviation across 5 fine-tuning runs. Underlined results indicate the best
performance for a task.

on the source language. Table A4 provides an
overview of the languages used for each approach.

4.3 Character-level Adapter for SwissBERT

Previous work has found that learning a custom
subword segmentation and embeddings that are
adapted to the vocabulary of the target language
can improve performance (Wang et al., 2019; Pfeif-
fer et al., 2021; Vamvas et al., 2023). However, this
limits the degree of modularity, and we thus investi-
gate a tokenization-free approach as an alternative.
In this experiment, we discard SwissBERT’s sub-
word embeddings when training the Swiss German
adapter, and instead add the downsampling and
upsampling modules of the CANINE architecture.2

Adding these modules results in exactly the same
architecture as CANINE, except that we opt for byte
embeddings instead of character hash embeddings.
CANINE uses a hash embedding method that can
map any Unicode code point to a fixed-size embed-
ding. Since Standard German and Swiss German
are mainly written in Latin script and there are lim-
ited training data, we forgo the hash embedding
and learn UTF-8 byte embeddings instead.

Using the CANINE-S objective, we first pre-train
the character modules on Standard German pre-
training data. We then continue pre-training the
adapters and the joint character modules on both
languages, while freezing the rest of the model.
During fine-tuning, we freeze the adapters and train

2We term this approach GLOBI (Granular Localization of
Bidirectional Encoders).

the remainder, analogous to the subword-level ex-
periment.

5 Evaluation

5.1 Part-of-Speech Tagging (POS)

Following Aepli and Sennrich (2022), we evaluate
our models on POS tagging with zero-shot cross-
lingual transfer from Standard German. To train
the models, we use the German HDT Universal De-
pendencies Treebank (Borges Völker et al., 2019)
and test on a dataset introduced by Hollenstein
and Aepli (2014). We report accuracy across the
54 STTS tags (Schiller et al., 1999).3 We rely on
the provided word segmentation and label the first
token (subword/character/byte) of each word.

5.2 German Dialect Identification (GDI)

The GDI task (Zampieri et al., 2019) is based
on transcripts of the ArchiMob corpus of spo-
ken Swiss German (Samardžić et al., 2016). This
dataset contains four dialects, namely, Bern, Basel,
Lucerne, and Zurich regions, constituting four dis-
tinct classes. We report the weighted F1-score.

5.3 Sentence Retrieval

For evaluating cross-lingual sentence retrieval,
we use human translations of the English
newstest2019 source dataset (Barrault et al.,
2019) into different languages. Translations into

3We mask the APPRART gold tag, which is not included in
the training tag set, when calculating accuracy.
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POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

SwissBERT subword-level GSW adapter:
– only updating the adapter weights 83.2±0.3 62.0±0.4 82.9 92.4 77.6 (97.5%)

– also updating the word embeddings 83.9±0.1 62.1±0.3 86.0 93.7 78.6 (98.7%)

– updating all the weights 85.7±0.3 63.1±0.3 86.6 93.4 79.6 (100%)

Table 3: Effect of modularity on continued pre-training: Only updating the adapter weights during continued pre-
training achieves 97.5% of the accuracy of a monolithic baseline where we update all the parameters of SwissBERT.

Standard German are provided by NTREX-128 (Fe-
dermann et al., 2022); translations into Swiss Ger-
man are provided by Aepli et al. (2023) for two
regions, Bern (gsw-be) and Zurich (gsw-zh).

For both Swiss German test sets, we report the
top-1 accuracy of retrieving the correct transla-
tion among all 1,997 translations, given the Stan-
dard German equivalent. Note that 100% accu-
racy is not attainable, since newstest2019 has a
small number of duplicate or near-duplicate sen-
tences. Following an evaluation approach used
for SwissBERT (Vamvas et al., 2023), we perform
unsupervised retrieval with the BERTScore met-
ric (Zhang et al., 2020). We average the hidden
states across all encoder layers. In the case of the
CANINE-style models, we use only the transformer
layers that represent the downsampled positions.

6 Experimental Setup

Continued pre-training We combine Swiss Ger-
man and Standard German training data with a 1:1
ratio. The resulting bilingual dataset contains 37M
tokens in total, and we set aside 5% for valida-
tion (Table A6). We set the learning rate to 1e-4
and select the best checkpoint based on the val-
idation loss out of 10 epochs; otherwise we use
the default settings of Hugging Face transformer’s
MLM example script. We train the models on a
Nvidia V100 GPU with 32GB of memory and ad-
just the batch size dynamically to fit the available
memory. With the subword-based models, we set
the sequence length to 512. With the CANINE-style
models, we use the default downsampling rate of
r = 4 and a sequence length of r × 512 = 2048
tokens (characters or bytes).

Fine-tuning For the downstream tasks that in-
volve fine-tuning (POS and GDI), we fine-tune the
model with a learning rate of 2e-5 and a batch size
of 16. We train for 10 epochs and select the best
checkpoint based on the validation accuracy. We

report average and standard deviation across 5 fine-
tuning runs with different random seeds.

7 Results

Table 2 presents a comparison of the different mod-
els on the three downstream tasks. Continued pre-
training is highly beneficial for written Swiss Ger-
man, confirming previous work (Muller et al., 2021;
Aepli and Sennrich, 2022; Aepli et al., 2023). This
finding extends to the CANINE model, for which
language-adaptive pre-training has not been tested
before, to our knowledge.

The adapted CANINE shows state-of-the-art per-
formance on the retrieval tasks. A simple ChrF
baseline (Popović, 2015) achieves only 90.9% and
93.0% accuracy on the two retrieval tasks, and both
the original and the adapted CANINE clearly sur-
pass this baseline. However, the CANINE model
has low accuracy on POS tagging, reflecting pre-
vious findings for named entity recognition (Clark
et al., 2022). Future work could explore alternative
strategies for token-level classification tasks.

While the monolithic XLM-R model performs
best overall, we consider adding a subword-based
Swiss German adapter to SwissBERT a competi-
tive alternative, with the number of trainable pa-
rameters reduced by 95% (see Table A1 for a com-
parison of the model sizes). Table 3 confirms that
restricting the continued pre-training to the adapter
weights conserves most of the accuracy, compared
to updating all the parameters of SwissBERT.

Finally, a character-level adapter, where char-
acter up- and downsampling modules are added
to the model specifically for Swiss German, per-
forms better than random but clearly worse than
the standard approaches. This indicates that while
the transformer layers of a subword-based model
bear some similarity to the downsampled positions
in the CANINE architecture, continued pre-training
cannot completely bridge the gap between the two
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architectures. Future work could pre-train a mod-
ular character-level model from scratch to further
improve adaptability to new languages and dialects,
while taking into account more recent findings re-
garding the optimal design of character-level mod-
ules for text encoding (Tay et al., 2022; Cao, 2023).

8 Conclusion

We compared strategies for adapting multilingual
encoders to Swiss German. We found that the
monolithic approach of continued pre-training
XLM-R is a strong baseline. Adding a Swiss Ger-
man adapter to SwissBERT, a model with a mod-
ular architecture, is a viable alternative. Finally,
adapting CANINE on Swiss German works well for
cross-lingual retrieval. The four Swiss German en-
coder models we trained for our experiments will
be made available to the research community.

Limitations

Differences between the pre-trained models make
a fair comparison more difficult. The encoder mod-
els we compare have originally been pre-trained
with different data and hyperparameters (but never
on Swiss German). They also differ in their num-
ber of parameters and vocabulary sizes, as detailed
in Table A1. Furthermore, we use a single, stan-
dard set of hyperparameters for pre-training and
for evaluation, respectively. Optimizing these hy-
perparameters for each model individually could
lead to further improvements.

Finally, the evaluation results show that it is
challenging to perform GDI classification purely
based on written text, as previously discussed
by Zampieri et al. (2017). In interpreting the re-
sults, we focus mainly on the other two tasks, but
still report results for GDI to provide a complete
picture.
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A List of Encoder Models

Model Total parameters Trained Vocabulary size URLs (original→adapted)

XLM-R 278M 278M 250,002 →
CANINE 132M† 132M - →
SwissBERT
– subword-level adaptation 139M‡ 8M 50,262 →
– character-level adaptation 123M‡ 38M‡ 261 →

Table A1: The main encoders trained in this work. † Figure does not include the CANINE-S output embeddings,
which can be discarded after pre-training. ‡ Figure includes two adapters (Swiss German and Standard German).

B Ablation Study: Custom Subword Vocabulary

POS GDI Retrieval Macro-Avg.
GSW-BE GSW-ZH

XLM-R:
– XLM-R vocabulary 86.9±0.3 62.1±0.8 91.1 96.0 80.9
– custom GSW vocabulary 60.3±0.4 60.0±0.6 64.2 79.9 64.1

SwissBERT subword-level GSW adapter†:
– SwissBERT vocabulary 83.9±0.1 62.1±0.3 86.0 93.7 78.6
– custom GSW vocabulary 23.7±2.3 56.9±0.6 65.6 77.3 50.7

CANINE:
– CANINE-S with SwissBERT vocabulary 60.9±1.4 60.8±0.4 96.4 96.9 72.8
– CANINE-S with custom GSW vocabulary 57.8±1.2 62.1±0.6 95.6 96.3 71.9

SwissBERT character-level GSW adapter:
– CANINE-S with SwissBERT vocabulary 41.5±0.9 51.9±1.3 35.6 42.6 44.2
– CANINE-S with custom GSW vocabulary 40.6±1.2 11.0±1.9 28.7 38.4 28.4

Table A2: In an ablation experiment, we create a custom subword vocabulary for our continued pre-training dataset
using SentencePiece (Kudo and Richardson, 2018). For the subword-based models, we train a new embedding
matrix while initializing it with lexically overlapping embeddings from the original model. Using the custom
vocabulary for Swiss German decreases performance on all downstream tasks, probably due to the limited amount
of training data. For the character-based models, we use the CANINE-S objective with the custom vocabulary.
Surprisingly, the custom vocabulary decreases performance, possibly because it is less similar to the subword
vocabulary originally used by Clark et al. (2022) to train CANINE-S. † In this experiment, we update the embedding
weights of SwissBERT to enable a fair comparison.

Vocabulary Vocabulary Size Compression Ratio

XLM-R vocabulary 250,002 3.36
SwissBERT vocabulary 50,262 3.37
Custom GSW vocabulary 50,262 4.17

Table A3: Comparison of the SentencePiece vocabularies involved in the above ablation study. We report the
compression ratio as the number of characters per subword token in a tokenized sample of our continued pre-training
dataset.
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C Model Training Details

Approach Languages trained Training samples per second

XLM-R continued pre-training GSW + DE 88.9
CANINE continued pre-training GSW + DE 149.6
SwissBERT character-level adapter GSW + DE 127.1

SwissBERT subword-level adapter:
– only updating the adapter weights GSW 215.3
– also updating the word embeddings GSW 202.4
– updating all the weights GSW 225.9

Table A4: Empirical training speed in terms of training samples per second. Note that training speed is only
comparable for models trained on the same languages, since the DE samples are longer than the GSW samples.

D Pre-training Datasets

Dataset Language Time Range Examples Tokens URL

SwissCrawl (Linder et al., 2020) GSW until 2019 563,037 10,961,075
Swiss German Tweets GSW 2007–2018 381,654 7,259,477 -
Swissdox Sample DE 2021 409,572 351,643,710

Table A5: Details of the datasets from which we source data for continued pre-training.

Split Examples (news articles / tweets / sentences) Tokens

Training GSW 897,477 17,308,288
Training DE 20,140 17,459,689
Validation GSW 47,214 912,264
Validation DE 1,082 905,476

Table A6: Training and validation splits used for continued pre-training.

E Evaluation Datasets

Dataset Examples Tokens Citation URL

POS DE (train) 75,617 13,655,973 Borges Völker et al. (2019)
POS DE (validation) 18,434 324,848 Borges Völker et al. (2019)
POS GSW (test) 7,320 113,565 Hollenstein and Aepli (2014)

GDI (train) 14,279 112,707 Zampieri et al. (2019) -
GDI (validation) 4,530 33,579 Zampieri et al. (2019) -
GDI (test) 4,743 42,699 Zampieri et al. (2019) -

Retrieval DE 1,997 50,833 Federmann et al. (2022)
Retrieval GSW-BE 1,997 53,119 Aepli et al. (2023)
Retrieval GSW-ZH 1,997 54,501 Aepli et al. (2023)

Table A7: Dataset statistics for the downstream tasks.
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Abstract
Modular deep learning has been proposed for
the efficient adaption of pre-trained models to
new tasks, domains and languages. In partic-
ular, combining language adapters with task
adapters has shown potential where no super-
vised data exists for a language. In this paper,
we explore the role of language adapters in
zero-shot cross-lingual transfer for natural lan-
guage understanding (NLU) benchmarks. We
study the effect of including a target-language
adapter in detailed ablation studies with two
multilingual models and three multilingual
datasets. Our results show that the effect of
target-language adapters is highly inconsistent
across tasks, languages and models. Retaining
the source-language adapter instead often leads
to an equivalent, and sometimes to a better, per-
formance. Removing the language adapter after
training has only a weak negative effect, indi-
cating that the language adapters do not have a
strong impact on the predictions.

1 Introduction

Adding smaller components to a large language
model (LLM) that can be specifically targeted,
trained, stacked and exchanged is becoming in-
creasingly common (Pfeiffer et al., 2023). Partic-
ularly adapters (Houlsby et al., 2019) and LoRA
(Hu et al., 2021) are widespread for the efficient
adaption of LLMs. They often perform on par
or better than fine-tuning the models’ parameters
while avoiding issues of interference such as catas-
trophic forgetting (McCloskey and Cohen, 1989;
Ratcliff, 1990).

In this work, we focus on pre-trained target-
language adapters for zero-shot cross-lingual trans-
fer. Pfeiffer et al. (2020b) found that any cross-
lingual transfer problem can be decomposed in
language and task, and introduce a setup that com-
bines task and language adapters, both indepen-
dently trained on top of a pre-trained multilingual

*Equal Contribution

model. This setup is appealing particularly for low-
resource and medium-resource languages that lack
high-quality data for supervised training as it can
be applied to unseen task-language combinations.
However, how consistent the effect of the target-
language adapter is has not been explored explicitly.
In particular, it has not been explored how includ-
ing target-language adapters compares to keeping
the source-language adapter for the cross-lingual
transfer. In addition, the detailed ablations by Pfeif-
fer et al. (2020b) focus on named entity recogni-
tion, while it remains unclear if similar results also
hold for higher-level language understanding tasks.
Therefore, we focus on three multilingual natural
language understanding (NLU) benchmarks. We
investigate the following questions:

RQ1. How robust is the positive effect of adding
a target-language adapter across languages,
models and tasks? To answer this ques-
tion, we compare the performance with target-
language adapters to other setups that keep the
source-language adapter or that only include
task adapters.

RQ2. How much does the model rely on the effect
of the language adapters? We test this with
a setup that leaves out the language adapter
without substitution, and measure the perfor-
mance drop.

RQ3. Does the amount of source-language and
target-language pre-training data in the base
model affect the effect of the target-language
adapter? We compare the effect of target-
language and source-language adapters condi-
tioned on the languages’ representation in the
pre-training corpora.

Surprisingly, our extensive ablations show that
instead of using the target-language adapter, we can
often retain the source-language adapter that was
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used during training, or even leave out the language
adapter after training with no negative (or even
positive) effects on the models’ performance. Even
a setup that does not include language adapters at
all is competitive and sometimes better. The results
are however inconsistent across models, datasets
and language pairs. We observe a higher benefit of
target-language adapters for lower-resource target
languages, but only for one out of four model-task
combinations.

We conclude that the contribution of language
adapters is less clear than we thought and that they
do not play an interpretable role in the decision-
making for language understanding tasks. How-
ever, they sometimes have a strong positive effect
on the performance, making it worthwhile to test
them in scenarios where they could be useful. We
suggest putting more effort into understanding if
there are interpretable properties of the base model,
task, source language or target language that cause
gains when using language adapters.

2 Related Work

Modular Deep Learning. Modular deep learn-
ing has gained attention with the primary goal of
adapting pre-trained models to new tasks and lan-
guages efficiently, but also to avoid issues of inter-
ference such as catastrophic forgetting (McCloskey
and Cohen, 1989; Ratcliff, 1990) and the curse of
multilinguality (Conneau et al., 2020). Adapters
(Houlsby et al., 2019) introduce a small number of
additional parameters, which increases the infer-
ence overhead (Hu et al., 2021) but shows promis-
ing performance. For large-enough models (>3B
parameters), language-specific adapters are even
reported to outperform continued pre-training on
unseen target languages (Yong et al., 2022). On the
other hand, Ebrahimi and Kann (2021) report that
for the XLM-R (Conneau et al., 2020) model, lan-
guage adapters perform inferior to target-language
fine-tuning. Crucially, post-hoc fine-tuning of
adapters reportedly performs on par with includ-
ing them in pre-training (Kim et al., 2021), which
makes them particularly attractive where computa-
tional resources are limited.

Language Adapters. For language transfer with
adapters, some work has focused on aggregating
information from related languages, language fam-
ilies and genera. In the study by Lauscher et al.
(2020), syntactic tasks rely heavily on language
similarity, while it is less pronounced (though

still existent) for semantic tasks. The UDapter
framework (Üstün et al., 2020) integrates language
adapters in a syntactic dependency parsing model,
conditioned on typological features of the language.
Faisal and Anastasopoulos (2022) adapt MLMs to
unseen languages using hierarchical adapters in-
spired by phylogenetic trees. The tree hierarchy
enables linguistically informed parameter sharing
between related languages, leading to strong per-
formance gains, especially for very low-resource
languages and zero-shot transfer. This structured
approach is apparently getting more consistent re-
sults than continued pre-training, where a diverse
set of languages can top related languages (Fu-
jinuma et al., 2022).

The MAD-X framework (Pfeiffer et al., 2020b)
combines independently trained language and task
adapters. Input embeddings are also processed
by invertible adapters, whose inverse processes
the output embeddings. They report successful
cross-lingual transfer even for unseen combina-
tions, making it possible to use models even where
no annotated data exists for a language and even
if the language was unseen during model pre-
training. For cross-lingual transfer from a mono-
lingual model, (Artetxe et al., 2020)’s results indi-
cate some improvement using Houlsby-style lan-
guage adapters over exchanging the token embed-
dings only for NLU tasks . However, Ebrahimi
and Kann (2021) report that for languages un-
seen during pre-training, performing continued pre-
training outperforms training language adapters
and invertible adapters. He et al. (2021) explore
task adapters (with no language adapters) for cross-
lingual transfer on XLM-R and find that they per-
form better than fine-tuning, both on the full data
and on low-resource setups. They hypothesize that
adapters better maintain the target-language knowl-
edge from pre-training as the original model’s pa-
rameters are not changed. Pfeiffer et al. (2022) pro-
pose a framework that introduces language modu-
larity at pre-training time, overcoming interference
at no parametric cost.

3 Experimental Setup

In the following, we introduce the models, adapters,
adapter training setups, ablation setups and datasets
that we use for our ablation studies of language
adapters. A link to our code including hyperpa-
rameters used to run our experiments will be pub-
lished after the anonymity period. The code, in-
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cluding the hyperparameters used to run our ex-
periments, is available at https://github.com/
oskarholmstrom/lang-adapters-impact.

3.1 Model and Adapters

We use XLM-Roberta-base (XLM-R), trained
on 100 languages (Conneau and Lample, 2019;
Conneau et al., 2020), and multilingual BERT
(mBERT), trained on 104 languages (Devlin et al.,
2019). Most languages we test on are included in
the pre-training of both models with the exception
of Haitian Creole (ht) for XLM-R and Quechua
(qu) for both models. We use pre-trained lan-
guage adapters from AdapterHub (Pfeiffer et al.,
2020a). We train task-specific Pfeiffer adapters us-
ing AdapterHub’s associated adapter-transformers
library1. Only task adapter parameters and classi-
fication heads are trained; language adapters and
model parameters are kept frozen.

Adapter Setups. We train models with source-
language adapters and evaluate them on the target
language in three setups:

• Target replaces source-language adapters with
target-language adapters at evaluation time.

• Source keeps the source-language adapters
even at evaluation time.

• None leaves out the language adapter entirely
at evaluation time (although still trained with
source-language adapters).

To test if language adapters are beneficial at all, we
include a fourth setup:

• In Nonetr, models are both trained and eval-
uated without language adapters. Only task
adapters are included in the models.

Pre-Training Data. For ablations that test the
effect of the representation of the source- and tar-
get language in the pre-training corpus, we create
a ranking. For XLM-R, we use the data on lan-
guage representation given in the original paper
(Conneau and Lample, 2019). mBERT is trained
on Wikipedia data2. While no exact numbers or
details on the dump are given, we estimate the
size with the current number of articles for each

1https://github.com/adapter-hub/
adapter-transformers

2Source: https://github.com/google-research/
bert/blob/master/multilingual.md

language3. Wikipedia data was also used for the
pre-training of the language adapters.

Lang. XLM-R (#Tokens) mBERT (#Articles)

Ar 2,869M 1.2M
De 10,297M 2.9M
El 4,285M 229K
En 55,608M 6.8M
Es 9,374M 1.9M
Et 843M 241K
Hi 1,715M 160K
Ht not included 69K
Id 2,2704M 676K
Ja 530M 1.4M
Qu not included not included (24K)
Ru 23,408M 2.0M
Sw 275M 79K
Tr 2,736M 543K
Vi 24,757M 1,3M
Zh 259M+176M 1.4M

Table 1: Representation of languages in the pre-training
corpora of the models. The mBERT data is approxi-
mated with the current number of Wikipedia articles.
Quechua was not included in mBERT’s pre-training.
Wikipedia data was also used for the pre-training of the
language adapters.

3.2 Data Sets

We evaluate language adapters on three natural lan-
guage understanding and commonsense reasoning
data sets. All data sets include human translations
from the English original into several diverse lan-
guages, and are balanced with respect to the dif-
ferent labels. XCOPA is the only of the three data
sets that was also included in the original MAD-X
evaluation (Pfeiffer et al., 2020b).

PAWS-X. English PAWS (Zhang et al., 2019) is
a paraphrase detection data set. Specifically, the
task is to classify if a pair of sentences is a para-
phrase or not. PAWS includes 108,463 paraphrase
and non-paraphrase pairs deliberately chosen to
have a high lexical overlap. PAWS-X (Yang et al.,
2019) is a multilingual extension of English PAWS.
It includes 51401 examples human-translated into
German (de), Spanish (es), French (fr), Japanese
(ja), Korean (ko) and Chinese (zh).

3https://meta.wikimedia.org/wiki/List_of_
Wikipedias (version: 2023/12/15)

26

https://github.com/oskarholmstrom/lang-adapters-impact
https://github.com/oskarholmstrom/lang-adapters-impact
https://github.com/adapter-hub/adapter-transformers
https://github.com/adapter-hub/adapter-transformers
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias


XNLI. The Multi-Genre Natural Language Infer-
ence (MultiNLI) corpus (Williams et al., 2018) is a
multi-genre corpus with the goal of classifying the
entailment relation of a pair of sentences. Possible
labels are entailment, neutral or contradiction. The
corpus contains a total of 432,702 sentence pairs.
XNLI (Conneau et al., 2018) extends MultiNLI
with human translations into Arabic (ar), Bulgarian
(bg), German (de), Greek (el), Spanish (es), French
(fr), Hindi (hi), Russian (ru), Swahili (sw), Thai
(th), Turkish (tr), Urdu (ur), Vietnamese (vi) and
Chinese (zh).

XCOPA. The Choice Of Plausible Alternatives
(COPA) dataset (Roemmele et al., 2011; Gordon
et al., 2012) is part of the SuperGLUE benchmark
(Wang et al., 2019) and consists of 500 training
and 500 test examples. Each example consists
of a premise, a question (What was the CAUSE?
or What happened as a RESULT?) and two an-
swer options. The task is to select the option that
is more likely to have a causal relation with the
premise. XCOPA (Ponti et al., 2020) is a multi-
lingual extension that includes human translations
of the evaluation data into Estonian (et), Haitian
Creole (ht), Indonesian (id), Italian (it), Eastern
Apurímac Quechua (qu), Kiswahili (sw), Tamil
(ta), Thai (th), Turkish (tr), Vietnamese (vi), and
Mandarin Chinese (zh).

3.3 Evaluation Setup

For each experiment, we report the mean accuracy
over five random seeds. For better comparabil-
ity across models, we only include the languages
from the data sets for which pre-trained language
adapters exist on AdapterHub for both models.

4 Results

Given the large number of combinations of models,
tasks and language pairs in our experiments, we
summarise them and present individual results of
particular interest in this section. The full results
can be found in Appendix A.

4.1 General Trends

Overall, as we see in table 2 that the Nonetr
model is the best-performing setup. For the in-
dividual models, there is however always a similar-
performing setup that includes language adapters:
For XLM-R, the Target setup has the same perfor-
mance, while for mBERT, the difference to Source
is negligible (0.1%). For XLM-R, using Target has

an advantage of 2.4% over Source, but for mBERT,
it is vice versa with a difference of 2.1%.

Target Source None Nonetr

XLM-R 72.6 70.2 71.0 72.6
mBERT 62.7 64.8 59.8 64.9

Table 2: Average results for each model over all lan-
guages and datasets (XNLI, PAWS-X and XCOPA).

Breaking down the results by datasets, we see
in table 3 that the best-performing setup varies no-
tably. All setups except None perform best for
at least one model-task combination. And while
Nonetr was the best overall, we see that Target per-
forms the best on three out of six combinations.
Note in this context that the results in table 2 were
not adjusted for the number of languages included
in the datasets, leading to the smaller PAWS-X set
being underrepresented. The difference between
Target and None varies from 0.6% to 5.4%, show-
ing that the reliance of the model on the language
adapter is inconsistent.

4.2 Transfer from English
We now zoom into the different target languages,
focusing on cross-lingual transfer with English as
the source language. This is arguably the most real-
istic scenario due to the large amount of annotated
data available in English. Similar tables for other
source languages are presented in Appendix A.

PAWS-X. The results for PAWS-X are reported
in table 4. For XLM-R, all setups show a relatively
similar performance, with the range of the average
across languages being between 77.3% (English
and None) and 78.2% (Nonetr). For mBERT, None
is an outlier with a strong drop in performance that
is consistent across all target languages, getting
an accuracy of only 69.4% instead of 76.3-77.4%,
while keeping the English source-language adapter
is the best setup in all languages.

XNLI. Results for XNLI are reported in table 5.
For XLM-R, the Nonetr setup that is trained and
evaluated without language adapters performs best,
and this is the case for 7 out of 10 cross-lingual
evaluation languages and for English. Comparing
Target and Source, there is a small advantage for
using the target-language adapters (on average 70.6
versus 70.0%), but the results are inconsistent over
target languages: For 5 evaluation languages, the
target-language adapter is better, for 4 languages,
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XLM-R mBERT
Target Source None Nonetr Target Source None Nonetr

XNLI 72.1 69.4 70.3 72.4 60.5 62.9 57.9 63.3
PAWS-X 80.9 80.1 80.3 80.8 76.7 78.0 71.3 77.0
XCOPA 53.7 51.9 52.3 50.3 52.3 51.3 51.4 51.4

Table 3: Average results for all model-task combinations.

XLM-R mBERT
Target English None Nonetr Target English None Nonetr

En (91.4) (91.4) (91.0) (91.1) (91.3) (91.3) (82.7) (90.4)
De 83.3 82.3 82.4 83.2 81.1 82.2 73.1 81.2
Es 84.0 84.1 83.5 84.1 82.0 83.1 72.8 81.6
Ja 69.7 69.2 69.6 70.2 69.7 69.9 64.1 69.1
Zh 74.3 73.7 73.8 75.1 72.6 73.6 67.8 73.4

Avg. 77.8 77.3 77.3 78.2 76.4 77.2 69.4 76.3

Table 4: Results on PAWS-X with transfer from English (en) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on English are included for reference but excluded from the average.

the English adapter is better, and for one language,
they get the same results. For mBERT, keeping the
English adapter is the overall best setup with 63.0%
(and the best for 9 out of 10 languages), followed
by Nonetr with 62.2%. Exchanging the adapter
and especially leaving it out after training can have
a strong negative effect for mBERT, showing a
higher reliance on the language adapter parameters:
The drop when using None as compared to using
the English adapter that was active during training
is 9.4 percentage points.

XCOPA. Results for XCOPA are reported in
table 6. For XLM-R, target-language adapters in-
crease the performance consistently compared to
all other setups. Nonetr is the lowest-performing
setup by a notable margin (50.3% compared to
52.0-53.8% for the other setups), showing that this
model-task combination draws the strongest posi-
tive effect from including language adapters in the
training. The results for mBERT are more mixed:
While Target performs best on average, it only per-
forms better than the English adapter for half of
the languages. Compared to the other two datasets,
exchanging adapters after training does not have a
negative impact on mBERT; the English adapter is
even the worst on average, while Target is the best
setup with a margin of 1.0 to 1.1%.

For XLM-R, there are previous results by Pfeif-
fer et al. (2020b). Our accuracy scores are lower

than theirs. However, our results are not directly
comparable to theirs as they perform sequential
fine-tuning of the task adapter that additionally con-
tains the SIQA dataset, what reportedly improves
the performance on XCOPA (Sap et al., 2019).

4.3 Effect of Pre-Training Data

In this section, we contrast the amount of pre-
training data of source and target languages by
visualising the improvement of using the target-
language adapter as compared to keeping the
source-language adapter. This is inspired by Pfeif-
fer et al. (2020b)’s evaluation that finds that adding
language adapters helps more for the transfer from
high-resource to low-resource languages in named
entity recognition. Note that for XCOPA, training
data only exists for English, therefore we limit this
analysis to PAWS-X and XNLI.

PAWS-X. The cross-lingual transfer for PAWS-
X, as seen in Figure 1, does not show a consis-
tent pattern. For mBERT, we see that having a
lower-resource source language correlates with a
decreased performance with the target-language
adapter. It has to be noted though that for this
dataset, none of the evaluated languages is particu-
larly low-resource, as we can see in Table 1.

XNLI. For the XNLI data set, we report the re-
sults for both models in Figure 2. For XLM-R,
we observe a tendency for lower-resource target
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XLM-R mBERT
Target English None Nonetr Target English None Nonetr

En (81.8) (81.8) (81.5) (81.7) (78.1) (78.1) (70.9) (77.7)
De 73.6 73.3 73.4 73.6 66.1 67.9 58.1 67.5
Ru 72.4 72.4 72.7 72.8 64.1 64.6 55.0 64.1
Es 76.0 76.2 75.9 75.9 69.1 71.4 62.5 70.5
Zh 70.0 71.7 70.8 71.0 66.3 67.4 57.7 65.8
Vi 71.6 71.5 71.3 71.8 68.2 68.4 58.7 66.8
Ar 68.6 65.8 68.2 68.8 38.7 62.7 50.7 61.9
Tr 69.8 70.7 70.2 71.0 62.0 61.3 50.6 60.4
El 72.3 71.9 71.8 72.0 60.8 60.9 54.0 60.2
Hi 66.7 67.1 66.9 67.2 57.1 57.4 47.6 56.5
Sw 65.2 59.0 62.4 62.7 37.4 47.7 40.8 48.2

Avg. 70.6 70.0 70.4 70.7 59.0 63.0 53.6 62.2

Table 5: Results on XNLI with transfer from English (en) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on English are included for reference but excluded from the average.

XLM-R mBERT
Target English None Nonetr Target English None Nonetr

Zh 55.2 55.0 54.3 49.4 53.7 52.7 54.2 53.2
Vi 55.3 54.9 55.1 52.8 51.6 52.9 51.1 52.6
Tr 53.1 51.9 51.2 49.3 51.9 53.2 54.1 55.6
Id 55.7 53.6 53.4 49.8 50.4 50.8 50.8 50.8
Et 54.1 50.7 52.3 51.4 53.8 49.3 49.1 51.2
Sw 54.0 49.7 52.0 49.7 50.0 50.4 50.5 49.1
Ht 51.2 48.6 50.6 49.6 54.6 52.7 51.2 50.2
Qu 51.4 51.2 49.6 50.2 52.6 48.5 49.8 48.2

Avg. 53.8 52.0 52.3 50.3 52.3 51.3 51.4 51.4

Table 6: Results on XCOPA with transfer from English (en) into all evaluated target languages, ordered by pre-
training resources top-to-bottom.

Figure 1: Difference between the target-language
adapter and source-language adapter on PAWS-X for
XLM-R (left) and mBERT (right) for each source and
target language. The amount of pre-training data de-
creases top-to-bottom/left-to-right.

languages to benefit more, as the right side of the
Figure has higher numbers. A strong outlier ef-
fect is visible for the lowest-resource language in
our evaluation, Swahili, where the gains from the
target-language adapter are bigger than for all other
target languages by a large margin. Surprisingly,
we also see that the benefit of Target for English
as a source language is smaller than for all other
source languages. For mBERT, we do not see a gen-
eral pattern across all or most of the lower-resource
languages. However, with Swahili and Arabic, two
outliers show a strongly negative effect from their
target-language adapters, except when transferred
to each other (and, for Swahili, from Russian).
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Figure 2: Difference between the target-language adapter and source-language adapter on XNLI with XLM-R
(left) and mBERT (right) for each source and target language. The amount of pre-training data decreases top-to-
bottom/left-to-right.

5 Discussion

In Section 4 have observed relatively inconsistent
results regarding the utility of language adapters,
and of target-language adapters in particular. In the
following, we discuss the relation of our results to
the research questions introduced in Section 1, as
well as the variance across datasets, limitations of
our experiments, and avenues for future work.

5.1 Effect of Target-Language Adapters
(RQ1)

The positive effect of adding a target-language
adapter instead of keeping the source-language
adapter is inconsistent. While the XLM-R model
gains on average 2.4% across all combinations
of tasks, source languages and target languages,
the mBERT model loses on average 2.1% (Table
2). For the XCOPA dataset, the target-language
adapters appear to be crucial to transfer skills, espe-
cially for the XLM-R model but to a lesser extent
also for mBERT. For the other two datasets, the
results are however mixed. Even where the target-
language adapter has an advantage, keeping the
source-language adapter does not hurt the perfor-
mance much. This indicates that while zero-shot
cross-lingual transfer is possible, for the languages
we test on, the performance does not rely much on
the target-language adapters. It also indicates that
we do not observe a strong isolated modular effect
of the language adapters. In line with previous re-

sults by He et al. (2021), we hypothesise that much
of the target language performance comes from
the frozen base model’s multilingual capabilities,
combined with the task adapter and classification
head. This is also confirmed by the finding that
no language adapter at all (the Nonetr setup) of-
ten performs on par or better than the models with
language adapters.

5.2 Reliance on Language Adapters (RQ2)

The drop in performance when removing the lan-
guage adapter that was included at training time
without substitution is weak for XLM-R which
loses only 1.6% compared to the Target setup and
0.8% compared to the Source setup. For mBERT
however, it is much stronger, with −2.9% com-
pared to the Target and −5.0% compared to the
Source setup. mBERT appears to be more sensi-
tive to adapter changes after training, indicating
that it relies more on the parameters of the lan-
guage adapters than the relatively robust XLM-R
model. However, it does not appear that the lan-
guage adapter parameters themselves are heavily
important, as Nonetr does not see a similar drop.
We conclude that the contribution of the language
adapters is small.

Related results indicating that the modular role
of adapters is inconsistent and not always pre-
dictable have been reported by Rücklé et al. (2021)
pruning adapters from AdapterFusion models to
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reduce inference time. They show that this is often
possible without sacrificing task performance.

5.3 Effect of Pre-Training Resources (RQ3)
We do not observe a consistent pattern that would
indicate that transfer from high-resource to lower-
resource languages is more beneficial. In this re-
spect, the NLU benchmarks appear to differ from
named entity recognition, where Pfeiffer et al.
(2020b) observed a strong effect. That lower-
resource languages benefit more is notable for the
combination of the XLM-R model and XNLI, but
not for the other three model-task combinations.
For source languages, we do not see the expected
effect; on the contrary, English as the source lan-
guage has the worst record for Target. We do how-
ever note large differences between language pairs,
and outlier languages that benefit or lose more than
other languages. This suggests that while language
adapters and specifically target-language adapters
are not always beneficial, it is worthwhile to test
them for every target language individually.

Looking at Quechua, which is not included in the
pre-training of either model, and Haitian Creole,
which is not included in the pre-training of XLM-R,
we observe a positive effect of the target-language
adapter. However, both languages are included
only in the XCOPA dataset which benefits most
from target-language adapters in general, and do
not stand out with a higher margin to the Source
setup than other languages.

5.4 Variance across Datasets
We have observed that for XCOPA, the target-
language adapters are more crucial, while for
PAWS-X and XNLI, the cross-lingual transfer
works similarly well without the language adapter,
based on the multilingual capabilities of the pre-
trained base model only. A natural question arising
from this observation is what causes these differ-
ences. One obvious fact is that COPA is a harder
task, with models reaching a relatively low perfor-
mance. In comparison, XNLI is translated from
MultiNLI which is reportedly robust to random
word-order permutations (Sinha et al., 2021), in-
dicating that lexical cues and less nuanced inter-
actions between words play a large role. This is
confirmed by the results of Kew et al. (2023) who
compare English versus multilingual instruction
fine-tuning of LLMs for cross-lingual transfer and
find that for highly structured tasks like XNLI, the
language of the fine-tuning plays less of a role. To

what extent this is also the case for COPA examples
that the models succeed on remains to be tested.

Another hypothesis is that the translations play a
role. The translations of XCOPA may be less close
to the English source, making a better command of
the target language crucial. Closer and more literal
translations of PAWS-X and XNLI may enable an
easier inheritance of skills learned in English.

5.5 Limitations and Future Work

Architecture. While we do not observe higher
increases from Source to Target for lower-resource
languages, there remain large differences in over-
all performance that correlate with pre-training re-
sources, indicating that cross-lingual transfer is far
from a solved problem. The potential of language
adapters to narrow this gap has not been exhaus-
tively tested in this work. We have only explored
the Pfeiffer adapter architecture and only one sin-
gle language adapter at a time. As we discussed in
Section 2, there are alternative methods which can
be explored. The analysis could even be extended
with models introducing modularity already at pre-
training time (Pfeiffer et al., 2022), which has a
different scope but may reveal important insights.

A factor that may limit the potential of language
adapters trained post-hoc is the finding that cross-
lingual capabilities emerge late in pre-training, as
reported by Blevins et al. (2022) doing probing
studies on pre-training checkpoints of XLM-R.
More work on the interactions of languages in mul-
tilingual models, and the prerequisites for success-
ful cross-lingual transfer, may inform the design
and training of language adapters in the future.

Languages and Data. Another avenue for fu-
ture work is a more thorough investigation of
adapters for more languages not included in the
base model’s pre-training. Even adapters for new
languages in monolingual models (Artetxe et al.,
2020) would be an insightful addition to our anal-
ysis. A limiting factor, as in the present work, is
the lack of high-quality language understanding
benchmarks that cover a broad set of languages.
In addition, all datasets we use are translations
from the English original, which commonly in-
troduces translation artefacts translation artifacts
(Gellerstam, 1986; Freitag et al., 2019). The cre-
ation of more such datasets would enable a better
understanding of cross-lingual transfer methods.
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6 Conclusion

In this work, we performed extensive ablations
on cross-lingual transfer with pre-trained language
adapters for NLU benchmarks. We found that the
inclusion of target-language adapters appears to
have a small benefit on average, but it is slight and
varies significantly across languages, models and
tasks. As the effect is not robust and we do not
observe patterns clear enough to predict it, it re-
mains to be tested for each use case and language
individually. Keeping the source-language adapter
often has a surprisingly good performance, and for
one of two models, even leaving out the adapter
without substitution is possible without large per-
formance drops. This shows that the model does
not rely much on the language adapter, and that
language adapters do not appear to be an impactful
isolated language module.

While this work provides new insights into the
utility of language adapters for NLU, many ques-
tions remain open. We conclude that there is a
need to identify the specific conditions — such as
properties of the base model, task, source, and tar-
get languages — under which language adapters
enhance performance, and thereby unlocking their
usefulness in a broader setting.
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A Full results

In this section, we present the full results for both
models, all three tasks, and all language pairs.

XNLI. For XNLI, we report the results for each
source language in the following tables, in decreas-
ing order of the languages’ representation in the
pre-training corpora of the models: English (Table
7), German (Table 8), Russian (Table 9), Spanish
(Table 10), Chinese (Table 11), Vietnamese (Table
12), Arabic (Table 13), Turkish (Table 14), Greek
(Table 15), Hindi (Table 16), and Swahili (Table
17). For XLM-R, note the better performance of
the Target compared to the Source setup for source
languages other than English, which we discussed
in section 5.3. For mBERT however, the patterns
for the other source languages are similar to the
patterns for English.

PAWS-X. For PAWS-X, the results for each
source language are found in the following tables,
ordered from highest resource to lowest resource:
English (Table 18), German (Table 19), Spanish
(Table 20), Japanese (Table 21), and Chinese (Ta-
ble 22). For this dataset, we do not observe major
differences between different source languages.

XCOPA. Lastly, for XCOPA, there exists a train-
ing set only for English. Therefore, we cannot pro-
vide results for other source languages. The results
for English are detailed in Table 23.

The impact of source language pre-training re-
sources on the performance. Another obser-
vation we would like to draw attention to is the
fact that we do not observe a tendency that higher-
resource source languages lead to a higher per-
formance in cross-lingual transfer: For English
as a source language, the best result for XLM-R
and XNLI is 70.7% and for mBERT and XNLI, it
is 63.0% accuracy. For the lowest-resource lan-
guage, Swahili, the corresponding numbers are
72.2% accuracy for XLM-R and 61.3% accuracy
for mBERT. For PAWS-X, for English, the best re-
sult for XLM-R is 78.2%; for mBERT, it is 77.2%.
For the lowest-resource language Chinese, the cor-
responding numbers are higher: 81.9% for XLM-R
and 78.6% for mBERT. While the increase is likely
to be caused by the fact that the target languages
for lower-resource languages are relatively higher-
resourced, the patterns we observe show that the
amount of pre-training resources of the source lan-
guage is not of importance for these two datasets.
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XLM-R mBERT
Target English None Nonetr Target English None Nonetr

en (81.8) (81.8) (81.5) (81.7) (78.1) (78.1) (70.9) (77.7)
de 73.6 73.3 73.4 73.6 66.1 67.9 58.1 67.5
ru 72.4 72.4 72.7 72.8 64.1 64.6 55.0 64.1
es 76.0 76.2 75.9 75.9 69.1 71.4 62.5 70.5
zh 70.0 71.7 70.8 71.0 66.3 67.4 57.7 65.8
vi 71.6 71.5 71.3 71.8 68.2 68.4 58.7 66.8
ar 68.6 65.8 68.2 68.8 38.7 62.7 50.7 61.9
tr 69.8 70.7 70.2 71.0 62.0 61.3 50.6 60.4
el 72.3 71.9 71.8 72.0 60.8 60.9 54.0 60.2
hi 66.7 67.1 66.9 67.2 57.1 57.4 47.6 56.5
sw 65.2 59.0 62.4 62.7 37.4 47.7 40.8 48.2

Avg. 70.6 70.0 70.4 70.7 59.0 63.0 53.6 62.2

Table 7: Results on XNLI with transfer from English (en) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on English are included for reference but excluded from the average.

XLM-R mBERT
Target German None Nonetr Target German None Nonetr

en 80.0 78.7 79.1 80.5 74.3 74.2 67.9 74.2
de (76.1) (76.1) (74.9) (75.6) (71.9) (71.9) (65.9) (71.2)
ru 73.5 71.4 72.7 74.1 66.6 66.5 59.7 66.0
es 76.4 74.1 75.0 76.5 71.5 71.6 64.7 70.9
zh 73.4 72.7 72.9 73.8 67.6 68.4 60.1 67.4
vi 73.5 71.3 72.1 73.4 67.3 68.0 60.2 67.3
ar 70.6 63.4 69.4 71.1 42.0 62.4 53.2 63.7
tr 71.6 67.4 70.9 72.9 62.8 60.9 53.2 61.4
el 73.1 69.0 72.2 73.1 61.6 62.1 55.7 61.8
hi 68.8 65.9 68.5 69.6 58.4 58.0 50.1 58.8
sw 66.7 51.8 63.1 64.2 36.5 45.7 40.3 49.3

Avg. 72.8 68.6 71.6 72.9 60.9 63.8 56.5 64.1

Table 8: Results on XNLI with transfer from German (de) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on German are included for reference but excluded from the average.
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XLM-R mBERT
Target Russian None Nonetr Target Russian None Nonetr

en 80.3 79.4 79.8 80.7 73.3 73.2 69.0 73.5
de 74.5 73.3 73.8 74.9 67.3 68.5 63.3 68.7
ru (74.7) (74.7) (74.0) (74.9) (69.5) (69.5) (64.2) (69.4)
es 76.1 75.1 75.8 76.7 70.6 70.8 66.2 70.8
zh 73.3 73.1 72.6 73.3 66.7 68.0 61.0 67.7
vi 73.4 73.7 72.5 73.8 66.9 65.7 62.0 67.7
ar 70.3 67.0 69.6 71.2 38.9 57.9 56.6 63.0
tr 71.5 68.1 71.2 72.2 62.4 54.4 56.3 61.0
el 73.3 70.0 72.9 73.8 60.5 58.4 58.0 61.9
hi 69.4 67.0 68.9 69.6 56.5 53.3 52.1 59.1
sw 67.8 56.7 64.6 64.5 40.2 39.0 44.2 47.2

Avg. 73.0 70.3 72.2 73.1 60.3 60.9 58.9 64.1

Table 9: Results on XNLI with transfer from Russian (ru) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on Russian are included for reference but excluded from the average.

XLM-R mBERT
Target Spanish None Nonetr Target Spanish None Nonetr

en 80.2 79.5 79.5 80.5 75.4 75.3 71.7 75.0
de 74.0 71.7 73.4 74.8 69.0 68.0 65.2 68.4
ru 72.7 71.5 71.9 73.7 66.5 66.5 61.9 65.3
es (76.9) (76.9) (75.9) (77.1) (74.2) (74.2) (70.2) (73.9)
zh 71.4 71.7 71.2 73.0 67.1 68.6 63.0 67.4
vi 72.3 72.0 71.6 73.6 66.1 68.3 63.4 67.5
ar 67.2 67.8 67.7 70.4 42.6 62.7 57.2 62.7
tr 70.6 66.8 70.2 71.9 60.7 59.1 55.3 60.3
el 72.1 69.9 71.4 73.1 62.0 61.7 58.1 61.5
hi 67.7 66.1 67.6 69.1 57.2 56.4 51.9 57.6
sw 65.6 55.5 62.6 63.2 38.1 45.0 45.8 48.3

Avg. 71.4 69.2 70.7 72.3 60.5 63.2 59.4 63.4

Table 10: Results on XNLI with transfer from Spanish (es) into all evaluated target languages, ordered by pre-
training resources top-to-bottom. Results on Spanish are included for reference but excluded from the average.
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XLM-R mBERT
Target Chinese None Nonetr Target Chinese None Nonetr

en 78.7 78.0 77.8 79.0 73.4 73.1 70.9 72.6
de 72.9 71.8 71.4 73.7 66.2 67.6 65.2 67.1
ru 72.3 69.0 70.8 72.6 65.1 65.6 63.4 66.0
es 74.6 73.9 73.5 75.5 69.0 70.1 67.9 69.6
zh (73.7) (73.7) (72.7) (74.4) (72.1) (72.1) (68.9) (71.5)
vi 72.5 73.2 71.4 73.5 66.9 68.5 64.8 67.7
ar 68.9 65.2 67.6 69.9 34.7 62.5 59.6 62.3
tr 69.6 65.3 69.4 71.7 61.9 59.2 58.2 60.7
el 71.0 69.2 70.5 72.5 58.3 60.4 58.8 60.5
hi 67.3 64.0 66.8 68.8 57.2 58.3 54.2 58.9
sw 65.6 50.6 62.6 64.0 33.7 42.4 44.9 43.7

Avg. 71.3 68.0 70.2 72.1 58.6 62.8 60.8 62.9

Table 11: Results on XNLI with transfer from Chinese (zh) into all evaluated target languages, ordered by pre-
training resources top-to-bottom. Results on Chinese are included for reference but excluded from the average.

XLM-R mBERT
Target Vietnamese None Nonetr Target Vietnamese None Nonetr

en 78.3 77.1 76.9 79.5 72.6 71.8 70.0 72.3
de 73.6 69.4 71.0 74.2 66.8 66.8 64.4 66.4
ru 72.6 69.2 69.1 73.5 65.4 64.7 61.9 64.8
es 75.3 72.0 72.4 75.9 69.2 70.1 67.4 69.5
zh 72.5 71.0 70.1 73.3 66.3 69.1 65.9 68.0
vi (74.7) (74.7) (70.9) (74.8) (71.0) (71.0) (68.5) (70.3)
ar 69.9 63.0 67.2 70.4 39.5 61.0 58.5 62.0
tr 71.8 70.0 68.4 72.3 63.4 60.3 59.3 60.1
el 72.7 65.1 69.9 73.1 60.8 61.1 60.6 61.9
hi 68.9 63.8 66.8 69.1 58.5 58.1 55.8 57.8
sw 65.7 50.4 61.1 63.5 37.8 46.4 47.1 48.6

Avg. 72.1 67.1 69.3 72.5 60.0 62.9 61.1 63.1

Table 12: Results on XNLI with transfer from Vietnamese (vi) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on Vietnamese are included for reference but excluded from the
average.
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XLM-R mBERT
Target Arabic None Nonetr Target Arabic None Nonetr

en 78.4 78.4 76.5 79.9 69.6 71.4 63.4 71.4
de 72.5 73.8 69.8 74.5 65.2 66.8 60.0 66.5
ru 71.4 68.8 68.1 73.4 62.5 64.4 57.0 64.0
es 75.0 75.1 72.8 76.3 67.1 69.7 61.8 69.9
zh 71.0 72.1 68.0 72.9 65.1 67.3 60.7 66.5
vi 72.3 73.1 69.0 73.4 64.5 63.3 58.8 66.8
ar (72.6) (72.6) (68.7) (72.3) (67.1) (67.1) (59.5) (65.9)
tr 70.2 56.8 66.6 72.1 58.4 59.2 54.3 60.0
el 71.6 71.1 69.8 73.2 58.1 61.9 56.4 61.2
hi 67.4 67.7 65.0 68.8 57.2 57.8 53.0 56.6
sw 66.0 53.4 61.1 63.8 57.5 47.0 44.8 49.0

Avg. 71.6 69.0 68.7 72.8 62.5 62.9 57.0 63.2

Table 13: Results on XNLI with transfer from Arabic (ar) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on Arabic are included for reference but excluded from the average.

XLM-R mBERT
Target Turkish None Nonetr Target Turkish None Nonetr

en 78.1 76.8 75.8 79.0 70.8 68.6 68.3 67.9
de 73.5 71.3 69.6 73.8 66.2 66.0 64.9 65.4
ru 72.4 70.6 67.6 73.4 64.1 63.9 61.8 62.4
es 74.8 72.7 71.2 75.7 66.8 67.2 65.8 66.6
zh 70.2 72.2 65.4 73.3 64.4 66.1 63.1 65.2
vi 72.3 71.1 66.7 73.0 65.8 65.5 62.7 65.1
ar 70.4 61.0 64.5 69.7 39.8 61.1 58.9 61.0
tr (73.7) (73.7) (68.0) (73.7) (68.0) (68.0) (64.5) (67.1)
el 71.8 68.1 68.2 72.3 59.9 59.3 59.2 59.9
hi 68.5 66.1 63.8 69.3 58.0 58.1 55.2 57.6
sw 66.2 53.1 58.4 64.8 36.3 48.2 47.2 50.4

Avg. 71.8 68.3 67.1 72.4 59.2 62.4 60.7 62.2

Table 14: Results on XNLI with transfer from Turkish (tr) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on Turkish are included for reference but excluded from the average.
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XLM-R mBERT
Target Greek None Nonetr Target Greek None Nonetr

en 79.5 78.7 78.4 79.9 69.3 68.9 64.7 70.6
de 74.6 73.2 73.7 74.7 66.0 66.1 62.1 66.3
ru 73.2 71.9 72.1 73.7 64.2 63.5 60.3 64.8
es 76.5 75.4 75.5 76.5 67.9 68.3 64.3 69.0
zh 72.2 71.1 71.5 73.4 60.0 65.0 60.4 65.3
vi 72.6 72.8 71.3 73.3 64.5 64.2 61.8 65.4
ar 69.9 68.6 69.3 70.9 45.7 59.0 57.3 61.7
tr 70.7 67.8 69.8 71.8 60.5 57.9 55.9 60.5
el (74.4) (74.4) (73.2) (73.8) (65.9) (65.9) (61.2) (64.8)
hi 68.3 66.0 67.8 69.2 55.6 54.0 52.2 57.9
sw 67.0 58.6 63.1 64.5 41.0 43.3 45.4 49.2

Avg. 72.5 70.4 71.2 72.8 59.5 61.0 58.4 63.1

Table 15: Results on XNLI with transfer from Greek (el) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on Greek are included for reference but excluded from the average.

XLM-R mBERT
Target Hindi None Nonetr Target Hindi None Nonetr

en 77.7 76.3 76.6 77.3 68.0 66.7 61.7 68.4
de 72.7 69.1 70.4 72.5 64.5 64.4 61.1 64.7
ru 71.7 68.3 69.0 71.8 62.8 62.5 58.8 63.9
es 73.9 70.4 71.8 73.6 66.0 66.0 62.2 65.3
zh 70.7 67.8 68.2 71.2 65.8 65.4 61.7 64.8
vi 71.8 71.4 69.8 71.6 65.9 64.9 61.2 65.3
ar 69.0 63.6 66.3 69.1 36.9 58.2 56.3 60.8
tr 70.9 65.3 68.6 70.9 62.0 58.2 57.4 60.6
el 71.5 66.7 70.1 71.4 60.4 57.7 58.3 60.6
hi (68.5) (68.5) (66.1) (68.2) (63.2) (63.2) (59.5) (61.7)
sw 66.3 56.0 61.1 63.1 33.9 46.9 46.5 50.1

Avg. 71.6 67.5 69.2 71.2 58.6 61.1 58.5 62.4

Table 16: Results on XNLI with transfer from Hindi (hi) into all evaluated target languages, ordered by pre-training
resources top-to-bottom. Results on Hindi are included for reference but excluded from the average.
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XLM-R mBERT
Target Swahili None Nonetr Target Swahili None Nonetr

en 78.1 77.6 77.2 77.3 67.6 69.5 53.5 67.4
de 73.0 70.7 72.1 72.1 56.6 62.8 47.4 59.6
ru 72.6 70.9 71.1 71.7 58.0 62.7 46.4 61.0
es 74.8 72.1 73.5 73.6 59.7 63.5 49.0 63.2
zh 71.8 70.5 70.7 72.1 60.8 63.6 44.9 61.7
vi 71.8 71.4 70.5 72.4 55.4 64.5 48.7 63.0
ar 68.6 66.7 67.9 69.5 60.7 58.7 42.8 59.0
tr 71.1 65.6 70.1 70.2 50.4 55.0 43.3 55.2
el 71.8 66.9 70.8 70.8 48.7 57.8 44.3 57.1
hi 68.0 65.0 67.3 68.0 49.5 55.1 42.1 52.9
sw (68.0) (68.0) (64.6) (66.7) (62.3) (62.3) (45.6) (60.2)

Avg. 72.2 69.7 71.1 71.8 56.7 61.3 46.2 60.0

Table 17: Results on XNLI with transfer from Swahili (sw) into all evaluated target languages, ordered by pre-
training resources top-to-bottom. Results on Swahili are included for reference but excluded from the average.

XLM-R mBERT
Target English None Nonetr Target English None Nonetr

en (91.4) (91.4) (91.0) (91.1) (91.3) (91.3) (82.7) (90.4)
de 83.3 82.3 82.4 83.2 81.1 82.2 73.1 81.2
es 84.0 84.1 83.5 84.1 82.0 83.1 72.8 81.6
ja 69.7 69.2 69.6 70.2 69.7 69.9 64.1 69.1
zh 74.3 73.7 73.8 75.1 72.6 73.6 67.8 73.4

Avg. 77.8 77.3 77.3 78.2 76.4 77.2 69.4 76.3

Table 18: Results on PAWS-X with transfer from English (en) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on English are included for reference but excluded from the average.

XLM-R mBERT
Target German None Nonetr Target German None Nonetr

en 90.1 89.3 89.4 89.8 86.9 87.8 80.7 86.2
de (84.5) (84.5) (83.9) (84.3) (81.6) (81.6) (74.3) (81.0)
es 84.3 83.6 83.7 84.2 78.9 80.8 74.3 79.8
ja 71.0 69.4 70.6 71.6 66.4 68.4 64.0 68.9
zh 75.2 74.2 75.0 75.1 71.7 73.1 68.8 72.0

Avg. 80.1 79.1 79.7 80.2 76.0 77.5 72.0 76.7

Table 19: Results on PAWS-X with transfer from German (de) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on German are included for reference but excluded from the average.
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XLM-R mBERT
Target Spanish None Nonetr Target Spanish None Nonetr

en 90.1 89.6 89.6 89.9 88.1 87.7 77.9 87.2
de 83.5 82.1 82.4 82.9 80.3 80.7 68.5 80.5
es (86.4) (86.4) (84.4) (85.0) (83.0) (83.0) (67.6) (83.1)
ja 70.9 67.7 69.4 70.4 67.3 69.2 62.2 69.5
zh 75.4 73.0 74.6 75.0 71.8 72.8 63.9 72.6

Avg. 80.0 78.1 79.0 79.6 76.9 77.6 68.1 77.4

Table 20: Results on PAWS-X with transfer from Spanish (es) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on Spanish are included for reference but excluded from the average.

XLM-R mBERT
Target Japanese None Nonetr Target Japanese None Nonetr

en 87.3 87.0 86.9 87.2 74.9 78.0 73.1 75.4
de 82.0 80.8 81.4 81.7 72.3 74.4 70.7 71.7
es 81.4 80.2 80.9 82.7 72.2 75.7 71.7 73.2
ja (74.3) (74.3) (73.5) (73.7) (72.1) (72.1) (68.8) (71.5)
zh 77.3 77.0 77.4 77.1 73.5 74.1 69.7 72.6

Avg. 82.0 81.2 81.6 82.2 73.2 75.6 71.3 73.2

Table 21: Results on PAWS-X with transfer from Japanese (ja) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on Japanese are included for reference but excluded from the average.

XLM-R mBERT
Target Chinese None Nonetr Target Chinese None Nonetr

en 88.7 87.7 88.3 88.7 80.7 83.1 77.2 81.7
de 82.6 81.1 81.9 82.2 76.0 79.0 72.7 76.9
es 82.3 82.7 82.5 83.6 76.5 79.9 74.7 78.2
ja 73.2 72.4 72.8 73.1 71.2 72.4 67.6 71.4
zh (78.4) (78.4) (78.0) (78.0) (76.1) (76.1) (72.4) (75.6)

Avg. 81.7 81.0 81.4 81.9 76.1 78.6 73.1 77.1

Table 22: Results on PAWS-X with transfer from Chinese (zh) into all evaluated target languages, ordered by
pre-training resources top-to-bottom. Results on Chinese are included for reference but excluded from the average.
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XLM-R mBERT
Target English None Nonetr Target English None Nonetr

zh 55.2 55.0 54.3 49.4 53.7 52.7 54.2 53.2
vi 55.3 54.9 55.1 52.8 51.6 52.9 51.1 52.6
tr 53.1 51.9 51.2 49.3 51.9 53.2 54.1 55.6
id 55.7 53.6 53.4 49.8 50.4 50.8 50.8 50.8
et 54.1 50.7 52.3 51.4 53.8 49.3 49.1 51.2
sw 54.0 49.7 52.0 49.7 50.0 50.4 50.5 49.1
ht 51.2 48.6 50.6 49.6 54.6 52.7 51.2 50.2
qu 51.4 51.2 49.6 50.2 52.6 48.5 49.8 48.2

Avg. 53.8 52.0 52.3 50.3 52.3 51.3 51.4 51.4

Table 23: Results on XCOPA with transfer from English (en) into all evaluated target languages, ordered by
pre-training resources top-to-bottom.
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Abstract
This paper investigates how to combine en-
coders and decoders of different indepen-
dently trained NMT models. Combining en-
coders/decoders is not directly possible since
the intermediate representations of any two in-
dependent NMT models are different and can-
not be combined without modification. To ad-
dress this, firstly, a dimension adapter is added
if the encoder and decoder have different em-
bedding dimensionalities, and secondly, rep-
resentation adapter layers are added to align
the encoder’s representations for the decoder to
process. As a proof of concept, this paper looks
at many-to-Estonian translation and combines
a massively multilingual encoder (NLLB) and
a high-quality language-specific decoder. The
paper successfully demonstrates that the sen-
tence representations of two independent NMT
models can be made compatible without chang-
ing the pre-trained components while keeping
translation quality from deteriorating. Results
show significant improvements in both transla-
tion quality and speed for many-to-one transla-
tion over the baseline multilingual model.

1 Introduction

As the availability of pre-trained models continu-
ously increases, there is a growing need to investi-
gate how to use them efficiently. Previous works
have looked at effectively using pre-trained neu-
ral machine translation (NMT) models by effec-
tive fine-tuning (Bapna and Firat, 2019; Zhu et al.,
2021) as well as using pre-trained language models
in NMT model training (Zhu et al., 2020; Rothe
et al., 2020; Chen et al., 2021; Sun et al., 2021;
Chen et al., 2022).

This paper examines the feasibility of combining
together components (like encoders and decoders)
of independent pre-trained NMT models without
any retraining or fine-tuning. We investigate how
representations of independently trained models
can be made compatible and evaluate the result-
ing translation quality and efficiency. Surprisingly,

our evaluation shows that the resulting combined
model can surpass the original models in transla-
tion quality and speed.

Combining any pre-trained encoder and decoder
poses two problems. Firstly, their representation
spaces will not be compatible, as the models are
trained independently. Secondly, the embedding di-
mension of the representation can also differ across
any two pre-trained models. We propose a method
that solves both issues and allows the encoder and
decoder of any pre-trained NMT models to be com-
bined. Specifically, in our architecture (Figure 1),
we use a small adapter to convert the dimensional-
ity and representation space of the encoder to some-
thing the decoder is trained to process. In order for
the adapter to learn its weights, the whole pipeline
(Encoder A - adapter - Decoder B) is trained in an
end-to-end fashion, except both the encoder and
decoder are frozen. Thus, the only part changing
the weights is the adapter itself while the original
components remain intact.

As a proof of concept, we investigate combin-
ing encoders and decoders of multiple different
pre-trained NMT models, focusing on an output
language-specific scenario. In other words, a highly
multilingual encoder is combined with a monolin-
gual decoder, tuned to high performance on a single

Encoder Decoder
Representation

adapter
Dimension
adapter

Figure 1: The proposed mix-and-match architecture.
Dimension adapter is a component that takes input with
the dimensionality of model A output and outputs with
the dimensionality of model B (for example a linear
transformation). Adapter layers are transformer encoder
layers. Components from models A and B have frozen
parameters.
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language. Since highly multilingual models often
suffer from the capacity bottleneck (Johnson et al.,
2017; Tan et al., 2019; Arivazhagan et al., 2019),
we hypothesize that adding a high-quality language-
specific decoder can improve the translation quality
to the language of the decoder. Furthermore, trans-
lation to one language requires less capacity than
many-to-many scenarios and thus would potentially
require fewer parameters, resulting in faster trans-
lation.

Using NLLB (Team et al., 2022) as the multilin-
gual model and MTee (Tättar et al., 2022) as the
language-specific Estonian model, we demonstrate
significant improvements in translation quality over
the baseline NMT model for many-to-Estonian
translation and show competitive results to pivoting
and fine-tuning. Our method is not only effective
to train compared to traditional fine-tuning but also
provides a reduction in running costs of the trans-
lation model thanks to the number of parameters
being reduced by 40% compared to the baseline
NLLB model.

The main contributions of this work are:

• a novel method for combining pre-trained
NMT models, which improves translation
quality, is effective to train, and reduces the
model’s parameters (Section 3);

• a detailed ablation of the proposed method,
exploring the effect of freezing or unfreez-
ing different involved components, comparing
simpler and more complicated adapter archi-
tectures, and involving more source languages
in training (Section 4);

• an open-source implementation of our pro-
posed method (see subsection 3.5).

2 Related Work

To the best of our knowledge, creating new NMT
models by connecting encoders and decoders of
different pre-trained NMT models has not been ex-
plored yet. Similar approaches have been tested in
speech translation (Li et al., 2021; Gállego et al.,
2021). Similarity between independently learned
representations has been explored between linguis-
tic, image representations as well as brain waves
(Søgaard, 2023; Li et al., 2023), however we at-
tempt direct conversion and exploitation of these
representations.

2.1 Pre-trained NMT models

There are many pre-trained NMT models already
openly available for use. OpusMT provides over
1000 NMT models, most of which are bilingual, but
some also multilingual (Tiedemann and Thottingal,
2020). Rothe et al. (2020) published NMT models
which were initialized from BERT and trained on
the NMT task. M2M-100 is a series of NMT mod-
els (varying in size) which were trained on 7.5B
sentence pairs and support translation between 100
languages (Fan et al., 2020). The NLLB-200 NMT
model further improves it and extends support to
200 languages with a training dataset of 18B sen-
tence pairs (Team et al., 2022). Both M2M-100 and
NLLB-200 are strong baselines in NMT research
regarding translation quality. MTee provides an
Estonian-centric (Estonian to/from English, Ger-
man, Russian) NMT model with language-specific
encoders-decoders (Tättar et al., 2022). The most
recent contribution to massively multilingual mod-
els is MADLAD-400 (Kudugunta et al., 2023),
with both decoder-only as well as sequence-to-
sequence models with both the encoder and de-
coder released. Finally, large multilingual language
models like GPT-3 and GPT-4 have demonstrated
an ability to translate (Brown et al., 2020; Bubeck
et al., 2023), however they only demonstrate highly
competitive quality for high-resource languages.

2.2 Multilingual NMT

Recently, there have been numerous advancements
in multilingual NMT. One of the most widely
followed approaches is demonstrated by Johnson
et al. (2017), where they use a single (universal)
model with shared vocabulary for multilingual
NMT, which enables transfer learning and zero-
shot translation. Massively multilingual training
has since been successfully demonstrated (Aha-
roni et al., 2019; Arivazhagan et al., 2019; Zhang
et al., 2020). Additionally, fine-tuning methods
of NMT models have been investigated, including
lightweight fine-tuning methods such as adapters
(Bapna and Firat, 2019; Zhu et al., 2021). In ad-
dition to universal models, there has been success-
ful research into modular multilingual NMT using
language-specific encoders and decoders (Escolano
et al., 2021; Lyu et al., 2020). As an alternative
to supporting all directions in the models, pivot-
ing (translating through a pivot language) has also
been used as a method for achieving higher quality
multilingual translation (Habash and Hu, 2009).

45



2.3 Pre-trained Language Models for NMT
With many pre-trained language models (LMs) be-
coming available, making use of them in NMT has
become an important topic.

The first line of works takes the approach of
pre-training an encoder-decoder model for seq2seq
tasks and then fine-tuning the model for MT, for
example, mBART (Liu et al., 2020), and MASS
(Song et al., 2019).

In the second approach, the encoder or the de-
coder can be trained independently and later used
in an NMT model. Zhu et al. (2020) incorporates
input sentence representations into an NMT model.
Rothe et al. (2020) initializes NMT model’s en-
coder and/or decoder weights from pre-trained lan-
guage models. SixT (Chen et al., 2021) used XLM-
R as the pre-trained encoder in combination with a
randomly initialized decoder, trained using 2-stage
training where first the decoder is trained (rest of
the model frozen) and secondly, the rest of the
model is tuned. This was further improved and
expanded in SixT+ (Chen et al., 2022). Sun et al.
(2021) combined a BERT-like encoder and a GPT-
like decoder into a single model by adding extra
layers to both the encoder and decoder.

Ma et al. (2021) uses aspects of both approaches
by initializing an encoder-decoder model from an
encoder-only language model and pre-training on
seq2seq tasks before fine-tuning for MT.

Li et al. (2021) combines a pre-trained audio en-
coder and pre-trained decoder from mBART to cre-
ate a speech translation model through fine-tuning.

3 Approach and Setup

3.1 Methodology
Our approach combines two pre-trained NMT mod-
els using an adapter placed “between” the encoder
and decoder: see Figure 1). The adapter consists of
a dimension adapter and representation adapter.

The dimension adapter is a linear transforma-
tion (feed-forward layer) with input dimensionality
equal to the encoder embedding dimension and the
output dimensionality to the decoder embedding di-
mension. We place the dimension adapter directly
after the pre-trained encoder.

Representation adapter layers are implemented
as randomly initialized transformer layers. They
have the same embedding dimension as the decoder.
We do not modify the decoder by adding extra lay-
ers or other parameters; thus it is kept lightweight,
leading to fast translation using beam search since

encoder embeddings are calculated once for a sen-
tence, but the decoder is used repeatedly.

Training: when training the model, the adapter
learns with the rest of the components in an end-to-
end fashion. Training examples are passed through
the whole pipeline (encoder, then adapter, then
decoder), however both the encoder and decoder
remain frozen. Thus the only weights that are al-
lowed to change are the parts of the adapter.

We also perform reverse-ablation and compare
our original approach of freezing all but the adapter
to less efficient alternatives of also letting the de-
coder tune itself during training, randomly initializ-
ing the decoder as well as tuning the whole model.
A combination of the originally proposed approach
(tuning only the adapter) and then continuing train-
ing the adapter and an unfrozed pre-initialized de-
coder will be referred to as the 2-stage approach.

3.2 Translation models

We rely on NLLB-1B-distilled as the pre-trained
model for encoders in our experiments (referred
to in the further text as NLLB-1B or NLLB); Sec-
tion 4.3.3 also includes a comparison to NLLB-
600M-distilled as the base model. For the decoder,
we use the Estonian decoder from MTee (Tättar
et al., 2022) – a modular model with language-
specific encoders and decoders (encoders/decoders
follow transformer base architecture (Vaswani
et al., 2017)).

The pre-trained NLLB-1B encoder has 24 lay-
ers with an embedding dimension of 1024 and a
feed-forward dimension of 8192. In the main ex-
periments, we add a linear dimension adapter that
transforms the embedding dimension from 1024
to 512 and 4 representation adapter layers with
the same embedding and feed-forward dimension
as the decoder (512 and 2048 respectively) to the
encoder.

3.3 Dataset

We use English-Estonian (22M, sentence pairs),
German-Estonian (12.5M sentence pairs), French-
Estonian (11.7M sentence pairs), and Polish-
Estonian (7M sentence pairs) directions from CC-
Matrix (Schwenk et al., 2019). In Ablation Sec-
tion 4.3.3 we use Europarl (Tiedemann, 2012).

We use SentencePiece (SP) (Kudo and Richard-
son, 2018) models from the respective pre-trained
NMT models for segmenting the data. For example
when we use NLLB encoder and MTee decoder,
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we use NLLB SP model for processing the source
and MTee SP model for processing the target.

The models are evaluated using FLORES-200
(Team et al., 2022) devtest as the test set and dev as
the validation set. The same directions the model is
trained on are used for validation. The best check-
point, according to the validation loss, is used for
test set evaluation. Test set evaluation is carried out
on all 201 many-to-Estonian directions. We con-
firmed that the test set was not present in the train-
ing data of MTee and also trust that since FLORES-
200 was the main test set of NLLB (Team et al.,
2022), it would be properly cleaned from their train-
ing dataset.

3.4 Evaluation

For evaluation we mainly rely on chrF++1

(Popović, 2017), but also report chrF2 (Popović,
2015) for comparison with previous research. We
use the sacreBLEU (Post, 2018) implementation.

Although BLEU (Papineni et al., 2002) is a
widely adopted metric, several evaluation cam-
paigns (Barrault et al., 2021; Koehn et al., 2022)
have shown its weaker correlation with human
judgements of translation quality compared to
chrF/chrF++ and neural metrics like COMET (Rei
et al., 2020). However, we still include BLEU
scores for comparison in Appendix A. Addition-
ally, we provide COMET scores (Rei et al., 2020)
for a selection of languages in Appendix B.

For the main experiments, we conduct 5 random
restarts for each model and report the mean score
with a confidence interval (p = 0.01, t-distribution).
We also report the Win Rate with Significance
(WRS) – the percentage of language pairs where
the model outperforms the baseline (NLLB-1B)
with significance p = 0.01. The significance is
tested using a one-sample one-tailed t-test for ex-
periments with 5 seeds. Additionally, we report
WRS based on a single seed with significance cal-
culated with paired bootstrap resampling (PBR)
(Koehn, 2004).

3.5 Implementation and training

We use Fairseq (Ott et al., 2019) for implement-
ing training. Additionally, we made our specific
implementation of training and models public3.

1sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:2|space:no|version:2.3.1

2sacreBLEU signature: nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.3.1

3https://anonymous.4open.science/r/mix-and-match-nmt

For the main experiments, all models are trained
for a total of 100k updates. If 2-stage training is
used, the first stage is trained for 50k updates and
the second stage for 50k updates. The learning rate
used is 0.0005 for the first stage and 0.0001 for the
second stage. We use Adam optimizer (Kingma
and Ba, 2015). An inverse square root learning rate
scheduler with 4000 warm-up steps is used for all
experiments. We use dropout and attention dropout
of 0.1. Models are trained with mixed precision
(fp16). All translations are acquired using beam
search with beam size 4.

The models were trained on 8 GPUs for the main
experiments. The batch size was 4096 tokens per
GPU. The training was performed on the LUMI
supercomputer4, utilizing 4 AMD Instinct MI250X
128GB HBM2e (each acting as 2 GPUs).

4 Results

4.1 Main Results

The main results are reported in Table 1. NLLB-
1B-distilled is used as a baseline. Additionally, re-
sults of the largest publicly available NLLB model
(NLLB-MoE) with 54.5B parameters reported by
Team et al. (2022) are used for comparison. The
table lists average chrF++ scores over all many-
to-Estonian translation directions and all official
EU languages5. The EU language averages are
reported to highlight the translation quality for lan-
guages more closely related to Estonian and also
more frequently translated from. We analyze the
quantitative results of pivoting, fine-tuning, and our
mixing and matching approach of combining the
encoder and the decoder of different pre-trained
models.

4.1.1 Pivoting

NLLB-1B English pivoting for many-to-Estonian
translation results in an average 1.2 chrF++ point
improvement across all directions, significantly out-
performing the baseline NLLB-1B model on 84.6%
of directions (see (3) in Table 1). When NLLB-1B
is used to translate to English and MTee is used for
English-to-Estonian translation (see (4) in Table 1),
the translation quality is improved by 3.2 chrF++

4https://www.lumi-supercomputer.eu/
5Bulgarian, Croatian, Czech, Danish, Dutch, English, Es-

tonian, Finnish, French, German, Greek, Hungarian, Irish,
Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Ro-
manian, Slovak, Slovenian, Spanish, and Swedish
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Model Parameters Train. average chrF++ ↑ WRS (%) ↑
train total eff. time full EU t-test PBR

(1) NLLB-1B - 1.37B 1.37B - 40.2 46.7 - -
(2) NLLB-MoE† - 54.5B 54.5B - 43.0 49.6 - 99.5

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B - 1.37B 2.74B - 41.4 47.5 - 84.6
(4) en2et: MTee - 1.42B 1.42B - 43.4 50.2 - 100.0

Fine-tune NLLB-1B
(5) - 1.37B 1.37B 1.37B 22.3 42.5 ± 0.1 50.1 ± 0.3 91.0 86.6
(6) freeze enc 604M 1.37B 1.37B 15.0 43.0 ± 0.1 50.3 ± 0.2 98.0 98.5

Ours: NLLB-1B enc +
(7) rand dec 51M 817M 817M 4.4 42.6 ± 0.3 50.2 ± 0.3 93.5 97.5
(8) MTee dec 13M 817M 817M 3.9 42.5 ± 0.1 50.4 ± 0.1 92.0 89.1
(9) MTee dec, 2-stage 51M 817M 817M 4.1 43.1 ± 0.1 50.9 ± 0.1 93.0 96.5

Table 1: Many-to-Estonian translation average chrF++ scores. Additionally model training, total and effective
parameters and training time (hours) is reported. Effective parameter count represents the number of parameters
used during translation. For experiments involving model training, the average of 5 random seeds is reported with
confidence intervals (p = 0.01). Average chrF++ is reported for all directions and official EU languages separately.
WRS (Win Rate with significance, p = 0.01) reports what percentage of directions outperform the baseline with
both significance based on t-test on 5 seeds and significance based on paired bootstrap resampling t-test (PBR). † -
Scores reported by (Team et al., 2022).

points on average compared to the baseline (1), sig-
nificantly outperforming it on all directions. These
results demonstrate that pivoting can enhance trans-
lation quality without additional training. How-
ever, pivoting requires passing through two models,
which increases the time required for translation
and reduces long-term cost efficiency.

4.1.2 Fine-tuning
We experimented with two different fine-tuning
strategies: full fine-tuning (5) and fine-tuning only
the decoder of the baseline NLLB model with the
encoder frozen (6). We found that both approaches
lead to significant improvements over the baseline:
2.3 and 2.8 chrF++ points, respectively. Moreover,
fine-tuning exhibited superior performance com-
pared to the baseline across more language pairs,
as confirmed by the t-test WRS scores: 98.0% for
the frozen encoder method vs. 91.0% for full fine-
tuning.

4.1.3 Mixing and Matching
When NLLB encoder and MTee decoder are com-
bined with adapter layers, by only training the
adapter (13M parameters) and freezing the pre-
trained components, the resulting model (NLLB
enc + MTee dec model (8)) significantly outper-
forms the baseline on 92.0% of the directions ac-
cording to the t-test (89.1% according to PBR),
with an average improvement of 2.3 chrF++ points.
The 2-stage training approach (9) – training the

adapter first (13M parameters), followed by train-
ing the adapter with the decoder (51M parameters)
– achieved the best results. This method (9) outper-
forms the baseline by 2.9 chrF++ points on average
across all directions and achieves similar average
chrF++ scores to the 54B parameter NLLB model.
It is only slightly behind the best-performing piv-
oting model in terms of average chrF++ scores.
Additionally, we observed that the 2-stage train-
ing approach significantly outperforms the baseline
on 93% of the language pairs according to the t-
test (96.5% according to the PBR). However, the
fine-tuning method with a frozen encoder showed
significant improvements over the baseline in 5%
more directions than our approach.

We also evaluated a decoder that was randomly
initialized with the same architecture and vocabu-
lary as MTee (7), and trained in a single stage with
a frozen encoder, only training the adapter and de-
coder. It outperformed the baseline by 2.4 chrF++
points on average. This method performs similarly
to the initialized model with no decoder training.
Although it is still slightly outperformed by the
2-stage model with the pre-initialized decoder in
terms of the average chrF++ score, it can be useful
when a high-quality pre-trained decoder model is
unavailable.

Average BLEU scores are presented in Ap-
pendix A Table 6, since they support the same
conclusions as the chrF++ scores.
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Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 52.6 48.5 46.6 40.2 45.8
NLLB-MoE† 56.1 51.8 49.5 43.8 49.1
MTee 56.9 52.2 49.9 - -

Pivot, m2en: NLLB-1B
en2et NLLB-1B 52.6 48.7 47.2 42.4 46.8
en2et: MTee 56.9 52.4 49.8 45.5 49.5

Fine-tune NLLB-1B
- 56.6 ± 0.3 52.3 ± 0.5 50.1 ± 0.2 44.5 ± 0.2 48.8 ± 0.2
freeze enc 56.2 ± 0.4 52.3 ± 0.3 50.1 ± 0.2 44.6 ± 0.2 48.8 ± 0.2

Ours: NLLB-1B enc +
rand dec 56.1 ± 0.4 52.0 ± 0.5 49.8 ± 0.5 44.1 ± 0.3 48.6 ± 0.3
MTee dec 56.7 ± 0.5 52.4 ± 0.4 49.9 ± 0.3 43.5 ± 0.3 48.6 ± 0.2
MTee dec 2-stage 57.3 ± 0.3 52.8 ± 0.2 50.4 ± 0.3 44.6 ± 0.4 49.1 ± 0.3

Table 2: Many-to-Estonian translation chrF++ scores for selected directions. Confidence intervals are based on 5
random seeds. † - Scores reported by Team et al. (2022). Language abbreviations following Team et al. (2022).

For EU languages, NLLB-enc+MTee-dec, 2-
stage (9) achieves the highest average chrF++ score
and outperforms the baseline by 4.2 chrF++ points.
This shows that our method achieves the best result
for more closely related languages, whereas the
pivoting approach of combining two models was
better for more distant languages. A possible expla-
nation could be the training data being composed
of EU languages. Furthermore, the pre-trained de-
coder was also trained with two EU languages and
Russian as input, which could contribute to the
high performance on translating EU languages.

In Table 2, we present the chrF++ scores for
translations from a selection of languages to Es-
tonian, serving as an example. It also shows the
comparison with the MTee model for the languages
supported by the pre-trained MTee model. The
mix-and-match models (ours) perform similarly to
the MTee model, with the 2-stage model outper-
forming MTee slightly. It can also be seen that
for Chinese and Arabic, our approach is outper-
formed by pivoting with NLLB and MTee. This
further suggests that our method produces better
translation quality for closer related languages. We
also provide COMET scores for these directions
in Appendix B, which support mostly the same
conclusions, except for NLLB-MoE scores, which
rank the highest among the models.

4.1.4 Efficiency

The mix-and-match method (NLLB-1B enc. +
MTee dec.) reduces the number of parameters by
40% compared to the baseline model and the de-
fault fine-tuning approach. Even though we add
13M trainable parameters to the encoder (adapter

layers), we use a significantly smaller decoder than
NLLB-1B, leading to fewer trained and total param-
eters. This makes the training time of our method
(4.1 hours for NLLB-enc+MTee-dec, 2-stage) 5.4
times faster than the full fine-tuning (22.3 hours).
Furthermore, the inference with NLLB-enc+MTee-
dec is approximately 6.5 times faster than with
NLLB-1B. This demonstrates that our approach
offers an efficient and cost-effective alternative to
fine-tuning and pivoting that delivers comparable
or better translation quality, with the added benefit
of faster training (compared to fine-tuning), fewer
parameters, and faster inference.

4.2 Ukrainian-Estonian Translation

Model chrF ↑
NLLB-1B 50.9
NLLB-MoE† 54.0

NLLB-MTee EN pivot 54.5

NLLB-enc+MTee-dec 54.6 ± 0.2
NLLB-enc+MTee-dec, 2-stage 55.0 ± 0.1

Bergmanis and Pinnis (2022) 53.5

Table 3: Ukrainian (Cyrillic) to Estonian (Latin) trans-
lation chrF scores on FLORES-101 devtest. NLLB-1B
model was used for all experiments, except for NLLB-
MoE (54B). † - calculated from translations reported by
(Team et al., 2022).

We demonstrate that without needing Ukrainian-
Estonian data, we can rapidly create a model with
competitive translation quality. We compare scores
of our best model with work by Bergmanis and
Pinnis (2022) and report chrF to be compatible with
their evaluation. We can see that our best model
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(NLLB-enc+MTee-dec, 2-stage) outperforms their
Ukrainian to Estonian model by 1.5 chrF points
(see Table 3). It also outperforms the NLLB-1B
baseline by 4.1 chrF points and achieves a slightly
higher score than NLLB-MoE and pivoting with
NLLB-1B and MTee.

4.3 Ablation

4.3.1 Effect of multi-stage training

We look at additional training strategies in addition
to training adapter or adapter and decoder. It can
be seen in Table 4 that training only the adapter
and decoder yields the best results both in single-
stage and multi-stage training strategies. Strategies
involving encoder training take longer to train due
to more trained parameters and do not yield any
visible benefit. We can hypothesize that it is be-
cause the encoder is already trained for the domain
of the test set. We can see that the 2-stage training,
which trains the adapter in the first stage and the
adapter and decoder in the second stage, produces
the best scoring model and is also the second fastest
behind the single-stage model, which trains only
the adapter. While encoder training did not yield
improvements for the current pre-trained models,
training and test datasets, it might yield different
results if these elements differ. For example, when
pre-trained models are trained for a domain differ-
ent from the training and test datasets, fine-tuning
the encoder might be necessary.

Training setup Trained Time chrF++
dec. init. stage params (hrs) avg

single
random A+D 51M 4.3 42.8
MTee A+D 51M 4.4 42.9
MTee A 13M 3.8 42.4

I II
random A+D E+A+D 817M 5.5 42.7
MTee A A+D 51M 4.0 43.2
MTee A E+A 779M 7.5 42.1
MTee A E+A+D 817M 7.2 42.8

Table 4: Comparison of training strategies. chrF++
scores as calculated on FLORES200 devtest. All models
listed have 817M total parameters. Trained parameters
are based on the last stage and models follow the NLLB-
1B+MTee mix-and-match model structure. The stage
column describes which parameters are trained. A - dim.
adapter and adapter layers, D - decoder, E - encoder. The
results are based on a single seed.
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Figure 2: Average test chrF++ score for NLLB+MTee
models for first 10,000 training updates (evaluated every
1250 updates). Decoder and adapter (dimensional and
layers) are trained, with the rest of the encoder frozen,
unless specified with frozen.
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Figure 3: Average test chrF++ score for NLLB+MTee
models for three dataset sizes: 500k sentence pairs per
direction (2M in total), 1M per direction (4M in total)
and the whole dataset (53M in total) trained for 100k
updates. For MTee Dec model only dimensional adapter
and adapter layers are trained, while the decoder and
encoder remain frozen.

4.3.2 Effect of the pre-trained decoder

Since we saw that using a pre-trained decoder had
a result close to using a randomly initialized de-
coder, we investigated further how fast the models
converge and how the results would compare using
less training data.

From Figure 2, we can see that surprisingly for
the first 2500 updates the model with a pre-trained
encoder and decoder, which trains only the adapter
converges the slowest, even being behind the ran-
domly initialized decoder. However, when the de-
coder is not frozen, we can see that it converges
faster than with an uninitialized decoder.

For the dataset size, we can see on Figure 3 that
the model with pre-trained encoder and decoder
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models is less affected by the dataset size, com-
pared to the model that only uses a pre-trained
encoder.

4.3.3 Effect of adapter structure and the
number of languages

Model chrF++↑
NLLB-600M baseline 36.6

NLLB-600M + MTee
adapter config DA type src langs

(1) DA MLP 2 35.7 ± 0.2
(2) DA linear 2 34.6 ± 0.3

(3) DA + AL MLP 2 35.7 ± 2.3
(4) DA + AL linear 2 38.2 ± 0.3

(5) DA + 2 AL MLP 2 38.0 ± 1.9
(6) DA + 2 AL linear 2 38.7 ± 0.3

(7) 2 AL + DA linear 2 38.3 ± 0.9
(8) AL + DA + AL linear 2 38.5 ± 0.2

(9) DA + 2 AL linear 4 38.9 ± 0.1
(10) DA + 2 AL linear 6 38.9 ± 0.1

(11) DA + 3 AL linear 4 39.0 ± 0.1
(12) DA + 4 AL linear 4 39.1 ± 0.1
(13) DA + 5 AL linear 4 39.0 ± 0.2

Table 5: Many-to-Estonian translation average chrF++
scores of ablation models trained on Europarl evaluated
on FLORES200 devtest. DA - dimension adapter, AL
- adapter layer, DA + n AL means dimension adapter
followed by n adapter layers. Training set source lan-
guages used are EN, DE, FR, PL, LV, FI, added in the
same order when number of languages is increased.

Experiments in this section are performed on the
Europarl dataset with results reported in Table 5.
The models are trained for 20 epochs on 1 GPU.

It can be seen that using only a dimension
adapter without any added layers does not yield
as good results and adding layers significantly in-
creases the chrF++ score (see experiments 1–6 in
Table 5). Additionally, we see that using the MLP
dimension adapter instead of linear yields better
results when only using the dimension adapter, but
when adding layers it is less stable, resulting in
higher variance in average chrF++ scores and lower
scores in general.

We can also see that changing the position of the
dimension adapter in relation to the adapter layers
(to the middle or to the end) does not result in any
benefit (see experiments 7 – 9 vs 6).

Using 4 languages results in slightly higher
scores than 2 languages (experiments 8 vs 9), how-
ever, there is no significant difference when using
6 languages compared to 4 (experiments 9 vs 10).

The increase in chrF++ scores could also be caused
by the larger dataset and not require different lan-
guages to be achieved.

Using 4 layers yields the best result, although
the difference in chrF++ scores is small and might
not be significant when compared to other numbers
of layers (see experiments 11 – 13).

5 Conclusion

We have demonstrated that different pre-trained
models can be successfully combined even if they
have different architectures that wouldn’t be di-
rectly compatible. With our method, the pre-trained
models can remain unchanged while the added di-
mension adapter and adapter layers align the em-
beddings. However, in our experiments, the best
results were obtained by continuing decoder train-
ing after initial adapter training. This might dif-
fer in other scenarios depending on the dataset,
pre-trained models, and desired translation domain.
Our method allowed for a 40% reduction in pa-
rameters, efficient training, fast translation, and in-
creased translation quality compared to the original
models. With this in mind, we can think of pre-
trained translation model encoders and decoders as
modules that can be combined depending on the
desired outcome.

6 Future Works

Our focus is on many-to-one translation. However,
it should also be investigated how the mix-and-
match approach could be used in one-to-many or
many-to-many (or many-to-few) scenarios. The
proposed method should also be investigated for
other more specific domains and other languages
apart from Estonian. Additionally, it should be in-
vestigated how other parameter-efficient methods
compare to this approach and how they could be in-
corporated into this method. Further comparisons
with pre-trained language models and a combina-
tion of using LM and NMT models need exploring
as well. Finally, this approach of making sequence
representations compatible is not limited to NMT
and could be applied to other tasks and modalities.
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8 Limitations

One potential limiting factor of the proposed ap-
proach is the evaluation process. To ensure accurate
and fair evaluation of the models, it is necessary
to possess knowledge of the data on which the
model was trained to avoid issues with leaky test
data. The evaluation of our results relied primarily
on automatic metrics, and we mainly utilized the
FLORES-200 devtest due to the limited availability
of test sets for Estonian and non-English languages.
Additionally, we were unable to confirm that other
available test sets were not part of the original mod-
els’ training data, so we could not use them for a
fair evaluation.

Moreover, the applicability of the mix-and-
match method is dependent on the availability of
pre-trained models in the target language. For in-
stance, while Estonian models were readily avail-
able, other languages may not have such models,
rendering the proposed method inapplicable. How-
ever, as an alternative, we proposed training the
decoder from scratch and demonstrated its compet-
itive performance.

It should also be noted that the translation qual-
ity results for Estonian cannot be generalized to all
other languages. For example, English already ex-
hibits high translation quality in most multilingual
pre-trained NMT models, hence our method may
not significantly improve performance as it would
for Estonian. However, this limitation does not
detract from other positive aspects of our method,
including reduced parameter count and efficient
training.

Ethics Statement

From an environmental standpoint, our method re-
duces the training time, giving a significant one-
time reduction. Since our scenario also created a
smaller model with faster translation, it reduces
long-term computation costs.

From the social standpoint, the resulting models
might still be suffering from the same kind of biases
as the original models and this aspect is yet to be
evaluated. However, with our methods, we can
make the use of pre-trained models accessible to
more people in terms of computational costs.
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Bougares, Rajen Chatterjee, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Alexander Fraser,
Markus Freitag, Yvette Graham, Roman Grund-
kiewicz, Paco Guzman, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Tom Kocmi, André
Martins, Makoto Morishita, Christof Monz, Masaaki
Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie
Névéol, Mariana Neves, Martin Popel, Marco Turchi,
and Marcos Zampieri, editors. 2022. Proceedings
of the Seventh Conference on Machine Translation
(WMT). Association for Computational Linguistics,
Abu Dhabi, United Arab Emirates (Hybrid).

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier
Garcia, Christopher A. Choquette-Choo, Katherine
Lee, Derrick Xin, Aditya Kusupati, Romi Stella,
Ankur Bapna, and Orhan Firat. 2023. Madlad-400:
A multilingual and document-level large audited
dataset.

Jiaang Li, Yova Kementchedjhieva, and Anders Søgaard.
2023. Implications of the convergence of language
and vision model geometries.

Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 827–838,
Online. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Sungwon Lyu, Bokyung Son, Kichang Yang, and Jaeky-
oung Bae. 2020. Revisiting Modularized Multilin-
gual NMT to Meet Industrial Demands. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
5905–5918, Online. Association for Computational
Linguistics.

Shuming Ma, Li Dong, Shaohan Huang, Dong-
dong Zhang, Alexandre Muzio, Saksham Singhal,
Hany Hassan Awadalla, Xia Song, and Furu Wei.
2021. DeltaLM: Encoder-Decoder Pre-training for

53

https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://doi.org/10.18653/v1/2021.eacl-main.80
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://doi.org/10.18653/v1/2021.iwslt-1.11
https://doi.org/10.18653/v1/2021.iwslt-1.11
https://doi.org/10.18653/v1/2021.iwslt-1.11
https://aclanthology.org/W09-0431
https://aclanthology.org/W09-0431
https://aclanthology.org/W09-0431
https://aclanthology.org/W09-0431
https://aclanthology.org/W09-0431
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://doi.org/10.1162/tacl_a_00065
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://aclanthology.org/2022.wmt-1.0
https://aclanthology.org/2022.wmt-1.0
https://aclanthology.org/2022.wmt-1.0
https://aclanthology.org/2022.wmt-1.0
https://aclanthology.org/2022.wmt-1.0
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://arxiv.org/abs/2309.04662
http://arxiv.org/abs/2309.04662
http://arxiv.org/abs/2309.04662
http://arxiv.org/abs/2309.04662
http://arxiv.org/abs/2309.04662
http://arxiv.org/abs/2302.06555
http://arxiv.org/abs/2302.06555
http://arxiv.org/abs/2302.06555
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.18653/v1/2020.emnlp-main.476
https://doi.org/10.18653/v1/2020.emnlp-main.476
https://doi.org/10.18653/v1/2020.emnlp-main.476


Language Generation and Translation by Augment-
ing Pretrained Multilingual Encoders.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Transactions of the Associ-
ation for Computational Linguistics, 8:264–280.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, and Armand Joulin. 2019. Ccmatrix:
Mining billions of high-quality parallel sentences on
the web. arXiv preprint arXiv:1911.04944.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. 2019. Mass: Masked sequence to sequence pre-
training for language generation. In International
Conference on Machine Learning, pages 5926–5936.

Zewei Sun, Mingxuan Wang, and Lei Li. 2021. Multi-
lingual translation via grafting pre-trained language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2735–2747,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Anders Søgaard. 2023. Grounding the vector space of
an octopus: Word meaning from raw text. Minds &
Machines, 33:33––54.

Xu Tan, Yi Ren, Di He, Tao Qin, and Tie-Yan Liu.
2019. Multilingual neural machine translation with
knowledge distillation. In International Conference
on Learning Representations.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Confer-
enec of the European Association for Machine Trans-
lation (EAMT), Lisbon, Portugal.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Inter-
national Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Andre Tättar, Taido Purason, Hele-Andra Kuulmets,
Agnes Luhtaru, Liisa Rätsep, Maali Tars, Mārcis Pin-
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A BLEU Scores

Average BLEU scores are presented in Table 6

B COMET Scores for Selected Directions

COMET scores of selected directions are displayed
in Table 7.
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Model average BLEU ↑
full EU

(1) NLLB-1B 12.8 16.9
(2) NLLB-MoE† 15.5 20.1

Pivot, m2en: NLLB-1B
(3) en2et NLLB-1B 13.5 17.3
(4) en2et: MTee 15.7 20.4

Fine-tune NLLB-1B
(5) - 15.4 ± 0.1 20.8 ± 0.2
(6) freeze enc 15.5 ± 0.1 20.8 ± 0.1

Ours: NLLB-1B enc +
(7) rand dec 14.5 ± 0.1 19.8 ± 0.1
(8) MTee dec 15.1 ± 0.1 20.6 ± 0.2
(9) MTee dec, 2-stage 15.6 ± 0.1 21.3 ± 0.1

Table 6: Many-to-Estonian translation average BLEU scores. For experiments involving model training, the average
of 5 random seeds are reported with confidence intervals (p = 0.01). † - Scores reported by (Team et al., 2022).

Model eng_Latn deu_Latn rus_Cyrl zho_Hans arb_Arab

NLLB-1B 0.8967 0.8805 0.8700 0.8435 0.8492
NLLB-MoE† 0.9144 0.9031 0.8904 0.8826 0.8781
MTee 0.8916 0.8908 0.8819 - -

Pivot, m2en NLLB-1B
en2et NLLB-1B 0.8967 0.8808 0.8705 0.8673 0.8583
en2et MTee 0.8916 0.8899 0.8782 0.8788 0.8615

Fine-tune NLLB-1B
- 0.8954 0.8878 0.8825 0.8775 0.8631
freeze enc 0.8974 0.8912 0.8812 0.8772 0.8552

Ours: NLLB-1B enc +
rand dec 0.9001 0.8902 0.8793 0.8688 0.8561
MTee dec 0.9049 0.8953 0.8831 0.8659 0.8586
MTee dec 2-stage 0.9060 0.8929 0.8857 0.8724 0.8607

Table 7: Many-to-Estonian translation COMET scores for selected directions. Underlined results indicate a
significant gain over the baseline NLLB-1B with p = 0.01 according to Paired Bootstrap Resampling t-test. † -
Scores calculated from translations reported by Team et al. (2022). Language abbreviations are following Team
et al. (2022).
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