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Abstract

Despite the widespread availability of LLMs,
there remains a substantial gap in their capabil-
ities and availability across diverse languages.
One approach to address these issues has been
to take an existing pre-trained LLM and con-
tinue to train it on new languages. While prior
works have experimented with language adapta-
tion, many questions around best practices and
methodology have not been covered. In this
paper, we present a comprehensive investiga-
tion into the best practices for adapting LLMs
to new languages. Our study explores the key
components in this process, including vocab-
ulary extension and initialization of new to-
kens, direct preference optimization and the
data scarcity problem for human alignment in
low-resource languages. We scale these ex-
periments across 9 languages and 2 parameter
scales (7B and 70B). We compare our models
against Llama 2, Aya-101, XGLM, BLOOM
and existing language experts, outperforming
all prior published baselines. Additionally, all
evaluation code1 and checkpoints2 are made
public to facilitate future research.

1 Introduction

New state of the art large language models are be-
ing released at a breakneck speed, yet their training
data, tokenizer, and evaluations remain primarily
centered around a few popular languages such as
English, Chinese, French and Arabic. In principle,
the way to create large language models for specific
languages is to pre-train models from scratch (Sen-
gupta et al., 2023; Zhang et al., 2020). However,
it is difficult to obtain a large amount of compute
resources and a vast quantity of data in diverse lan-
guages. Researchers have tackled this problem by
training monolithic multi-lingual models that cover
a wide range of languages (Workshop et al., 2023;

1Fork of lm-evaluation-harness Gao et al., 2023 with new
multilingual benchmarks: lm-evaluation-harness

2All SambaLingo Checkpoints: SambaLingo Checkpoints

Lin et al., 2022; Shliazhko et al., 2023; Xue et al.,
2021). These models can still struggle to achieve
uniformly good results across all languages due to
various factors such as the curse of multilingual-
ity (Chang et al., 2023; Conneau et al., 2020) and
the scarcity of pre-training data in many languages
(Chung et al., 2023).

Recently, adapting English centric models to
new languages has gained prominence (Blevins
et al., 2024; Yong et al., 2023; Ebrahimi and
Kann, 2021; Pires et al., 2023; Pipatanakul et al.,
2023; Lin et al., 2024). The resulting models
can outperform large multilingual models and
even language specific models pre-trained from
scratch. Adaptation requires various design
choices around the tokenizer, data, alignment and
evaluation strategies. This paper aims to provide
a comprehensive study to help inform these
decisions, outlining a clear protocol to adapt a
pre-trained model to a new language. We show that
our methodology works by training models across
9 languages and 2 parameter scales (7B and 70B)
and comparing them against publicly available
models. Figure 1 and 2 show that our methodology
can lead to better models than existing state of the
art models in these languages.

The key studies and contributions include:

• Best practices for adapting existing LLMs to
new languages scaled across 9 typologically
and linguistically diverse languages including
Arabic, Bulgarian, Hungarian, Japanese, Rus-
sian, Serbian, Slovenian, Thai, and Turkish

– Expanding the vocabulary for the target
language improves the tokenizer fertil-
ity (12), but does not have a siginficant
impact on downstream accuracy (5.1.1)

– Various embedding initialization meth-
ods have minimal impact on accuracy,
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Figure 1: Evaluation perplexity on hold out dataset, we also evaluate perplexity over wikipedia and Mc4 in appendix
F. Open source expert baselines: Japanese - Swallow-7b-hf (TokyoTech, 2023), Thai: typhoon-7b (Pipatanakul et al.,
2023), Arabic: jais-13b (Sengupta et al., 2023), Hungarian: PULI-GPTrio (Yang et al., 2023), Russian: saiga-7b
(Gusev, 2023), Bulgarian: mGPT-bulgarian(Shliazhko et al., 2023). We could not find Serbian, Slovenian and
Turkish languages models with low enough perplexity that would fit the graph so we chose to omit them here to
ensure readability.

but sub word averaging accelerates train-
ing loss convergence (5.1.2)

– The quality of the base checkpoint on
English benchmarks can improve down-
stream language adaptation results (5.3)

• A recipe for human preference alignment in
any language using open source data

– Aligning the adapted model requires min-
imal data from the target language, re-
ducing the need of gathering expensive
alignment data (5.2.1)

– The choice of translated versus human
written alignment data does not have a
large impact on win rates (5.2.2)

• Open sourcing code and checkpoints to pro-
mote future research

– State of the art models adapted from
Llama 2 in 9 languages and 2 parame-
ter scales (7B, 70B)2

– Integration of FLORES-200, SIB-200,
EXAMS and multilingual perplexity
benchmarks with lm-eval-harness1 (Gao
et al., 2023)

2 Related Work

While prior work has explored adapting pre-trained
LLMs to new languages, they do not extensively
study the methodology to do so. None of these
works explore the design choices around aligning
models in new languages, for example the mixture

of data in the base models language and the new lan-
guage or the impact of translated data on qualitative
evaluation. Pires et al. (2023) and Cui et al. (2023b)
adapt Llama models to Portuguese and Chinese re-
spectively, but they do not explore the impact of
vocabulary extension and/or initialization. Blevins
et al. (2024) explores training language experts
to break the curse of multilinguality starting from
a pre-trained model, but they do not explore the
impact of vocabulary extension, initialization and
quality of the base model. Extension of vocabulary
was discussed in Zhao et al. (2024b); Tikhomirov
and Chernyshev (2023), however they do not ex-
plore token embedding initialization strategies or
impact of quality of base model. Lin et al. (2024)
studies simultaneous language adaptation to 500
languages. Nevertheless, they also do not answer
questions around alignment or token initialization
strategy. Ye et al. (2023) studies language adapta-
tion of a wide variety of English-centric and mul-
tilingual models, however they only focus on fine-
tuning XNLI tasks.

There has been a significant body of work around
open-source multi-lingual models (Workshop et al.,
2023; Lin et al., 2022; Shliazhko et al., 2023). Our
work differs from the aforementioned studies as we
solely focus on adapting pre-trained LLMs to new
languages and not on pre-training from scratch.
Notably, these multilingual open-source models
tend to be pretrained on significantly fewer tokens
than the base models we adapt from. As the models
in this work tend to outperform these multilingual
models, this presents a promising path forward for
obtaining the state of the art in new languages.
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3 Adaptation Methodology

We present our methodology to adapt large lan-
guages models to a new language, with state of
the art results in 9 target languages: Arabic, Thai,
Turkish, Japanese, Hungarian, Russian, Bulgarian,
Serbian and Slovenian. We select these languages
because they provide a mix of high resource and
lower resources languages with diverse character
sets and linguistic patterns. We additionally limit
the scope of the languages studied in this paper to
languages with easily available text datasets from
CulturaX (Nguyen et al., 2023). See Section 4 for
evaluation results on the final checkpoints produced
by this methodology, and Section 5 for ablations
justifying our methods.

We use the term initial language to describe the
original language that the base model was trained
on (in this case, English) and the term target lan-
guage as the new language this model is being
adapted to.

3.1 Selecting a Base Model

Our methodology starts with an existing base
checkpoint instead of pre-training from scratch.
Previous work has shown that starting from an
existing checkpoint leads to faster training con-
vergence, better downstream evaluation accuracy
and lower compute/data requirements (Pires et al.,
2023; Lin et al., 2024; Csaki et al., 2023). Sec-
tion 5.3 demonstrates that it is important to select a
starting checkpoint with the best results for the ini-
tial language, as that will improve the downstream
results for the target language. Based on these ob-
servations, we chose Llama2 7B as our base model
to adapt to target languages, the best open source
model available at the time of the experiments.

We additionally scale this methodology to Llama
2 70B. Given compute restrictions, we only do this
for 3 languages - Arabic, Thai and Hungarian. See
Section 4.2 for in-depth comparisons of our 7B and
70B models.

3.2 Extending Model Vocabulary

Llama 2 (et al, 2023) was trained predominantly on
English text, and has poor tokenizer efficiency for
other languages (see Section 5.1). To address this
inefficiency, we chose to extend the vocabulary of
the Llama 2 tokenizer by adding non overlapping
tokens from the target language and initializing
them using sub-word embeddings from the original
tokenizer. See Section 5.1 for experiments that

justify our approach.

3.3 Continual Pre-training
We train each language independently on data that
consists of a 1:3 mixture of English and target lan-
guage web data biased towards the target language.
Pretraining data for all languages, including En-
glish, is sourced from CulturaX (Nguyen et al.,
2023). These decisions are grounded in results
from previous works: Zhao et al. (2024b); Csaki
et al. (2023) show that mixing in data from the
base model domain helps downstream accuracy
and training stability, Gupta et al. (2023) find that
including a higher proportion of data from the tar-
get distribution helps improve the convergence in
the target distribution, Almazrouei et al. (2023)
showed the importance of cleaned web data. Addi-
tionally, hyperparameters used for training can be
found in Appendix A.

3.4 Aligning To Human Preferences In Other
Languages

To train a chat-aligned version of the model, we
follow the two-stage approach from Tunstall et al.
(2023) - supervised finetuning (SFT) followed by
direct preference optimization (DPO). More details
about hyperparameters for each of these phases
used can be found in Appendix A.

• For SFT, we use ultrachat-200k (Tunstall
et al., 2023), in a 1:1 ratio with a Google trans-
lated version of ultrachat-200k.

• For human preference alignment, we use
the ultrafeedback (Cui et al., 2023a)
and cai-conversation-harmless dataset
(Huang et al., 2024). We mix these datasets
with a 10:1 ratio of English to machine trans-
lated data. Section 5.2.1 shows that this ra-
tio of data performs almost as well as other
ratios and section 5.2.2 shows that machine-
translated data can perform as well as human
written data.

4 Evaluation

4.1 Quantitative Evaluation
We use a wide variety of benchmarks to quanti-
tatively evaluate the performance of our models
and compare them to prior work. See Table 1 for
the full list of quantitative benchmarks. In sum-
mary, we evaluate language modeling with perplex-
ity on a holdout set of CulturaX (Nguyen et al.,
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Datasets
Task
Category

Num
Few-Shot

Number Of
Languages

Metric

mc4 , Wikipedia Perplexity - 323 Perplexity
FLORES-200 Translation 8 200 CHRF
SIB-200 Text Classification 3 200 Accuracy
BELEBELE Question Answering 3 122 Accuracy
Exams Knowledge 3 11 Accuracy
XNLI
XStoryCloze
XCOPA
XWinograd
PAWS-X

Natural Language
Understanding

0 25+ Accuracy

Table 1: Multi-lingual evaluation suite
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Figure 2: Quantitative evaluation results. The “best open source experts” are the same as ones specified in Figure 1.
See Appendix F for the full breakdown.

2023), translation with CHRF (Popović, 2015) on
FLORES-200 (Goyal et al., 2021; Zhu et al., 2023),
text classification accuracy on SIB-200 (Adelani
et al., 2024; Lin et al., 2024), open-book ques-
tion answering on BELEBELE (Bandarkar et al.,
2023), closed-book question answering on EX-
AMS (Hardalov et al., 2020), and a variety of nat-
ural language understanding benchmarks (XNLI
(Conneau et al., 2018), XStoryCloze (Lin et al.,
2022), XCOPA (Ponti et al., 2020), XWinograd
(Emelin and Sennrich, 2021), and PAWS-X (Yang
et al., 2019)).

All quantitative evaluations are performed on
our adapted models after continuous pretraining,
but before the alignment stage. We evaluate each
checkpoint only on the language that it was trained
on. Note that not all of our target languages are
covered across all benchmarks. However, each lan-
guage we examine has evaluations in at least 4 of
these benchmarks. We ensured that perplexity mea-
surements were done on a held out set in the target
language, and verify that evaluating perplexity on
different domains of text such as Wikipedia and

MC4 (Raffel et al., 2019) have very similar results
in appendix F.

4.1.1 Quantitative Results
We compare our continuously pretrained models
against the best open source models available in
each target language and state of the art multilin-
gual models. Figure 1 shows that our SambaLingo
models have a lower perplexity across all exist-
ing baselines on a holdout set from our training
data. Perplexity on other domains also follows the
same trend as shown in appendix F. Figure 2 shows
the average evaluation score across the evaluation
benchmarks introduced in Section 4.1, where we
see our models outperform all other models in 7/9
languages.

4.2 Scaling to 70B

Scaling to 70B consistently leads to better results
as seen in table 2. The 70B models in the table
have trained on fewer tokens than the 7B models.

Additionally, we evaluate compute-matched
checkpoints of our 7B and 70B Llama 2 models
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Language Checkpoint ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic 70B 1.44 54.25 65.60 0.78 0.69 0.33 0.68

7B 1.44 53.67 61.66 0.29 0.26 0.34 0.65
Hungarian 70B 1.57 58.81 64.03 0.82 0.64 - -

7B 1.63 52.70 58.31 0.33 0.25 - -

Table 2: This table compares compute matched 7B and 70B checkpoints. We look at intermediate checkpoint results
and compare 7B models trained for 40B tokens with 70B models trained for 4B tokens.

Arabic

Turkish
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Our Model tie Aya101

(a) SambaLingo vs Aya101
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(b) SambaLingo vs BloomChat-v1

Japanese

0% 25% 50% 75%

Our Model tie ELYZA-japanese-7b-instruct

(c) SambaLingo vs ELEYZA-7b-instruct

Arabic

0% 25% 50% 75%

Our Model tie Jais-13b-chat

(d) SambaLingo vs Jais-13b-chat

Figure 3: GPT4 evaluation result

in table 2. The compute-matched 70B checkpoints
are trained for 10x fewer steps (4B tokens vs 40B
tokens) and perform as well as or better than 7B
variants trained over 40B tokens in every bench-
mark across Arabic and Hungarian.

4.3 Evaluating Human Aligned Checkpoints

4.3.1 GPT-4 as a Judge

To test our human aligned models’ ability to gen-
erate high quality responses to real user prompts,
we use GPT-4 (OpenAI and et al, 2024) as a judge.
This method was first introduced by Zheng et al.
(2023) to evaluate English models, and then used by
Üstün et al. (2024) as a method to evaluate multilin-
gual models. The resulting model generations are
shuffled and fit to the prompting style suggested by
(Zheng et al., 2023) before being fed to GPT-4. See
Appendix D for the manually collected prompts
and section 4.3.2 for the evaluation results.

GPT-4 as a judge has been widely accepted by
the community as a way to evaluate chat models
(Zheng et al., 2023; Verga et al., 2024), and we
extend this to multilingual models. To ensure that
GPT-4 is understanding the multilingual text we
have native speakers read through a few examples
of GPT-4 explaining its decision making process.
The native speakers unanimously agree that GPT-4
clearly understands the content in other languages.

In appendix D.2 we include example model gen-
erations along with GPT-4’s corresponding prefer-
ences and explanations. Further work is needed to
do a large scale study to see how GPT-4 preferences
align with human preferences in other languages.

4.3.2 Qualitative Results

Measuring win-rate using GPT-4 as a judge only
works in scenarios where a human aligned or in-
struction tuned model is available in a language.
Given this constraint, we were only able to find rele-
vant comparisons for Arabic, Japanese and Turkish,
and do not have qualitative evaluations for our mod-
els in the other 6 languages. We do not compare
to llama2-chat because we found that Llama2-chat
and other open source English foundation chat mod-
els reply in English when prompted in the target
language, instead of replying back in the target lan-
guage. The results of our evaluation are shown in
Figure 3. Our SambaLingo models consistently out-
perform other models in the same language. For
details about the native speaker-curated prompts,
see Appendix D. We additionally run evaluations
with Claude Opus (Anthropic, 2024) as a judge to
ensure that there is no bias by GPT-4 and find very
similar results in appendix D.1
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Added Tokens Hungarian Russian Turkish Bulgarian Arabic Japanese Thai
0 2.70 2.28 3.28 2.36 4.23 2.07 4.84
1000 2.52 2.25 2.56 2.19 2.11 1.75 2.10
4000 2.14 2.05 2.20 1.92 1.67 1.23 1.50
25000 1.78 1.78 1.77 1.66 1.26 0.93 1.10

Table 3: Number of added tokens vs fertility (average number of tokens per "word")

Language Tokenizer ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic Original 1.50 48.27 57.35 0.27 0.27 0.34 0.63

Expanded 1.46 52.66 61.05 0.32 0.35 0.34 0.64
Hungarian Original 1.61 52.70 58.31 0.33 0.26 - -

Expanded 1.63 51.82 57.12 0.30 0.34 - -
Serbian Original 1.403 56.15 64.89 0.32 0.59 - -

Expanded 1.435 58.30 66.35 0.37 0.52 - -

Table 4: Accuracy after training with expanded vocabulary vs original tokenizer

5 Ablations

In this section, we present ablations of our design
decisions in Section 3. Section 5.1 presents experi-
ments motivating the modifications we make to the
base model’s tokenizer and how we initialize its
new embeddings. Section 5.2 ablates the amount of
target language data and use of machine translated
data in the DPO phase of our methodology. Finally,
section 5.3 looks at the impact of the quality of the
base model.

5.1 Vocabulary Expansion

The Llama2 tokenizer is centered towards English.
While this tokenizer can encode characters in any
language, it will be very inefficient for non-English
text. In fact, the BPE tokenizer may tokenize
non-Latin characters as multiple independent bytes.
One way to mitigate this problem is to extend the
vocabulary of the base model by adding new tokens
that represent the target language to it, and start
adaptation training with this expanded vocabulary.
This method also helps improve the inference effi-
ciency in the target language. We explore different
sizes for the expanded vocabulary and their im-
pacts on fertility (Ács, 2019) in Table 3 and Figure
12. We chose to expand the vocabulary by 25,000
tokens for all languages as it yields the lowest fer-
tility for all languages and highest throughput on
the hardware platform.

5.1.1 Vocabulary Expansion vs Original
Tokenizer

To measure the impact of vocabulary expansion on
accuracy, we train two models—one using an ex-
panded vocabulary and the other using the original

vocabulary—across two three languages: Hungar-
ian, Arabic and Serbian. We find that expanding
the vocabulary does not have significant impact on
the downstream accuracy. Nonetheless, given the
benefit that the expanded vocabulary has for infer-
ence and sequence length utilization in the target
language, we chose to expand the vocabulary of
the base model.

5.1.2 Initializing new token embeddings
We experiment with 4 different token initialization
strategies for the new tokens added to the vocab-
ulary across 3 languages - Hungarian Arabic and
Thai. For each experiment, we train the model for
10 billion tokens and compare the loss values. Let
V be the set of tokens in the original vocabulary,
and E(t) the embedding vector of a token t ∈ V .
The four token initialization methods we consider
are as follows:

• gaussian: N (0, 0.02)

• xavier_uniform

• avg_all (Hewitt, 2021): For each new token
t′, initialize E(t′) = mean({E(t)∀t ∈ V })

• avg_subwords (Liu et al., 2024; Koto et al.,
2021): For each new token t′, let Lt′ =
[t1, ..., tk] be the list of k tokens that t′ would
have been tokenized as under the original to-
kenizer. Initialize the new embedding with
E(t′) = mean([E(t1), ..., E(tk)]).

Figure 4 shows that after continuous pretraining
for 10B tokens, all methods converge to similar loss
values, with avg_subwords showing faster conver-
gence. Table 5 shows the impact on downstream
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Figure 4: Training loss for different token initialization methods

Language Initialization Method ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic gaussian 1.50 48.48 57.31 0.34 0.25 0.34 0.61

xavier_uniform 1.49 50.46 58.90 0.36 0.26 0.33 0.62
avg_all 1.48 50.54 58.29 0.34 0.25 0.35 0.63
avg_subwords 1.48 50.87 59.62 0.38 0.27 0.34 0.64

Hungarian gaussian 1.65 51.42 56.92 0.32 0.50 - -
xavier_uniform 1.65 49.52 55.81 0.34 0.42 - -
avg_all 1.76 51.39 56.86 0.34 0.45 - -
avg_subwords 1.65 50.79 56.77 0.33 0.30 - -

Thai gaussian 1.31 51.50 52.95 0.33 0.53 0.44 -
xavier_uniform 1.31 52.88 55.34 0.32 0.30 0.38 -
avg_all 1.31 52.89 55.36 0.35 0.60 0.46 -
avg_subwords 1.30 53.34 55.36 0.37 0.35 0.46 -

Table 5: Multilingual evaluations across token embedding initialization methods

benchmarks. For Thai and Arabic, avg_subwords
achieves marginally better scores while for Hungar-
ian the results are mixed. These results show that
the choice of initialization has minimal impact on
the accuracy of end model when trained for 10 bil-
lion tokens. However avg_subwords gives faster
training loss convergence, so we chose to initialize
the new embeddings using avg_subwords.

5.2 Direct Preference Optimization

5.2.1 DPO Data Mixture
There is a lack of supervised finetuning and human
alignment data across different languages. Collect-
ing such data can be difficult and expensive. Given
that the models obtained from our methodology are
bilingual, we explore the question of how much of
the human alignment data can be English and how
much of it has to be from the target language. We
run DPO on data mixtures of the English/Target
language data ratio across 100:1, 10:1, 10:3 and
1:1, and observe the resulting win-rate in pairwise
comparisons with the model trained on a 1:1 data
ratio. For each experiment we keep the amount of
English data the same and downscale the target lan-
guage. We run these experiments on two languages:
Hungarian and Arabic, with results in Table 6. We

show that a 10:1 data ratio can perform almost as
well as 1:1 data ratio for Hungarian. For Arabic,
even a 10:3 data ratio still falls behind the perfor-
mance of 1:1. One hypothesis is that Hungarian is
more linguistically similar to English than Hungar-
ian so there is more language transfer during fine
tuning, but further research is needed to understand
how the language impacts optimal alignment data
mixture ratio.

5.2.2 Impact of Translated Human Preference
Data

Results in Table 6 are based on translated data from
the target language. Üstün et al. (2024) emphasized
the importance of human written prompt comple-
tion pairs and claim that translated data does not
perform as well. However, their work does not
start with a high quality pretrained base model, nor
do they use DPO. In order to understand whether
machine translated data is a viable option for hu-
man alignment, we explore the impact of alignment
using both approaches. We use Google translated
ultrafeedback-200k data for one run and human-
written data from Open Assistant Conversations
(OASST1) (Köpf et al., 2023) for the other. We
run this study on Russian, as it is has the most hu-
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Target Language: English Ratio 100:1 10:1 10:3 1:1
Arabic 30.39% 35.00% 34.62% 50.00%
Hungarian 39.29% 45.18% 45.78% 50.00%

Table 6: DPO data mixture result (win-rate compared with 1:1 data mixture)

Base Model ppl(↓) FLORES EN→X(↑) FLORES X→en(↑) Belebele(↑) SIB-200(↑)
GPT-13B 1.80 37.94 48.99 0.28 0.25
Llama-2-7b 1.61 53.72 58.65 0.34 0.25

Table 7: Performance of GPT-13B and Llama 2 7B on Hungarian benchmarks after adaptation

man written data from OASST1 (Köpf et al., 2023).
The model trained using translated data attains a
50.47% win rate compared to the model trained
with OASST1. This comparison does not control
for the diversity and quality of the question answer
pairs in the dataset because chat datasets with par-
allel human translated data in multiple languages.
so this comparison is not meant to illustrate that
translated data is as good or better than native data,
but rather to show that human written data is not a
silver bullet required to obtain good quality aligned
models in other languages.

5.3 Importance Of Base Model Quality

To explore the relationship between the quality of
the base model employed for language adaptation
and its subsequent impact on accuracy in the target
language, we ablate using two different base mod-
els - Llama 2 7B and GPT-13B (Srinivasan et al.,
2023). The GPT-13B model is trained on much
fewer tokens compared to llama2. We measure the
GPT-13B model on some commonly accepted En-
glish benchmarks instead of our multilingual eval-
uation suite because these benchmarks are used
more frequently to compare English checkpoints.
GPT-13B lags behind Llama 2 7B in every English
evaluation tasks we measured in Table 9.

We adapt both of these models to Hungarian.
Table 7 illustrates that using a higher quality base
model (Llama 2 7B) leads to better downstream
performance in the target language. These results
show that many of the benefits of training come
from the base model quality not just the continuous
training we do. This additionally indicates that
as newer higher quality models become available,
there is value in applying our proposed adaptation
methodology on new base models.

6 Limitations

Our work has several limitations, including the
need for extensive data from the target language,
which is often unavailable for many languages. We
study 9 diverse languages, but further research is
required to address multilingual data scarcity and
generalize our recipe. Due to compute and time
constraints, our ablation studies focus on around 3
languages each, assuming similar results for other
languages, although linguistic diversity and data
availability may affect this. Additionally, we evalu-
ate our chat-based model using GPT-4 as a judge,
and while this has been shown to strongly corre-
late with human preferences in English, we are
uncertain how well this works in other languages.
We acknowledge that publicly releasing LLMs is
risky because they can inadvertently generate harm-
ful or biased content, compromise privacy, and be
exploited for malicious purposes such as spread-
ing misinformation. Moreover, while our models
are adapted to other languages and cultures, the
English base model, data biases, and use of trans-
lation may prevent them from fully capturing the
nuances of cultures and languages from around the
world.

7 Conclusion

We present a methodology to adapt pretrained
LLMs to new languages. The methodology encom-
passes both continuous pretraining and alignment
to human preferences in the target language. We
present experimental results to justify our design
choices and scale our methodology to 9 typologi-
cally diverse languages and 2 parameter scales. We
make our evaluation scripts and final checkpoints
publically available to facilitate future research,
and we hope this work outlines a clearer path to-
wards attaining state of the art language models in
every language.
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A Hyperparameters

• Continuous Pre-training: We pack the pre-
training mixture into sequences of length 4096
and pretrain with document attention as de-
scribed in Section 3.2 of Iyer et al. (2022) to
ensure we only attend to tokens in the con-
text of the corresponding text document. We
train with a global batch size of 1024, se-
quence length of 4096, maximum learning
rate of 1e-4 with cosine decay, warm-up ra-
tio of 0.01 and a weight decay of 0.1. Each
expert is trained for a maximum of 4 epochs,
following (Muennighoff et al., 2023). Notably,
we train all model parameters, foregoing use
of PEFT methods such as LoRA (Hu et al.,
2022), which are known to be inferior to full
parameter training (Zhao et al., 2024a)(Sun
et al., 2023).

• Supervised Finetuning: We use a global
batch size of 512 and a maximum sequence
length of 2048 tokens. We used a linear decay
learning rate of 2e-5 with 10% warm up

• Direct Preference Optimization: We train
with a global batch size 32 for 3 epochs, a lin-
ear decay learning rate of 5e-7, 10% warmup
and β = 0.1 as the regularization factor for
DPO

B Language Experts vs Monolith
Multilingual Model

“The Curse Of Multilinguality” (Chang et al., 2023;
Conneau et al., 2020) is the idea that LLMs have
a fixed capacity with which to learn various lan-
guages. This theory claims that as one expands
the number of languages a model is trained on,
the various languages compete for the capacity of
the model, therefore degrading the models perfor-
mance across all languages. Blevins et al. (2024)
attempt to address this phenomenon by adapting
multiple small-scale language experts from XGLM-
1.7B (Lin et al., 2022), one for each language, and
show that each expert outperforms training a sin-
gle monolithic model trained simultaneously on
one language. We build on these results by scaling
this study to 7B parameters and use more com-
prehensive evaluation metrics than just perplexity.
We compare our 9 Llama 2 7B language experts
against a monolith Llama 2 7B model continuously
pretrained on all 9 languages. We ensure that each
language is represented equally in the monolith’s

training data and the vocabulary is expanded to
represent all 9 languages evenly.

For comparison’s sake, we select intermediate
model checkpoints such that each individual lan-
guage expert has used the same amount of com-
pute as the monolith multilingual model. This
means that the experts required 9x more compute
to train then the monolith. Table 8 averages the
evaluation results across all 9 languages and finds
that the monolith model and language experts have
very similar performance. This implies that if one
wants to adapt to many languages at once, it may
be more compute-efficient to continuously train
a multi-linugal model rather then independent ex-
perts. Further work is warranted to determine how
this result scales with an increasing number of tar-
get languages.

Benchmark Llama2-7b Multilingual Language
(Num Shots) Avg Monolith Avg Expert Avg

↓ Holdout PPL 1.75 1.55 1.50
↑ FLORES (8) 40.42% 50.69% 51.71%
↑ Belebele (3) 36.24% 33.36% 32.09%
↑ SIB-200(3) 26.67% 38.04% 33.43%
↑ XNLI (0) 39.00% 43.44% 43.04%
↑ XStoryCloze (0) 56.35% 65.75% 68.03%
↑ XWinograd (0) 69.48% 72.39% 71.97%
↑ PAWS-X (0) 51.00% 54.40% 53.50%
↑ MGSM (3) 5.40% 4.00% 4.20%

Table 8: Monolith multilingual continuous training vs
language experts, averaged over all 9 languages.
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C Base Model English Evaluation

HellaSwag(↑) OpenBookQA(↑) ARC-E(↑) ARC-C(↑) PiQA(↑) Winogrande(↑)
GPT-13B 0.60 0.36 0.53 0.30 0.76 0.60
Llama-2-7B 0.76 0.57 0.73 0.48 0.80 0.70

Table 9: Performance of GPT-13B and Llama-2-7B on
English NLU benchmarks
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D Qualitative Results

For Arabic, we compare our 7B arabic expert
with aya-101 (Üstün et al., 2024), Jais-13b-
chat (Sengupta et al., 2023), and Bloomchat-v1
(SambaNova Systems, 2023) and use prompts
from x-self-instruct-seed-32 (Systems, 2023a) and
xOA22 (Systems, 2023b). Our Arabic chat model
reaches 87.96% win rate compared to Jais-13B-
chat, 99.06% win rate compared to Aya101, and
68.52% compared to Bloomchat-v1. For Japanese,
we compare our Japanese chat model with ELYZA-
japanese-Llama-2-7b-instruct (Sasaki et al., 2023)
on 100 randomly sampled prompts aya dataset
(Üstün et al., 2024), reaching a win rate of 53.5%
For Turkish, we compare our Turkish chat model
against aya-101 (Üstün et al., 2024) using prompts
from the test set of aya dataset (Üstün et al., 2024),
leading to win-rate of 92.4%.

D.1 Evaluating Chat Models With Claude
We run evaluations using the same prompt as GPT-
4 as a judge, but use Claude Opus (Anthropic, 2024)
as a judge. Figure 5 shows the evaluations to be
in line with our previous results with GPT-4 as a
judge 3. This shows that there is no strong bias in
using GPT-4 as a judge.

Arabic

0% 25% 50% 75%

SambaLingo-Arabic-Chat Tie Jais-13b-chat

(a) SambaLingo vs Jais-13b-chat

Arabic

0% 25% 50% 75%

SambaLingo-Arabic-Chat Tie BloomChat-17B

(b) SambaLingo vs BloomChat-v1

Japanese

0% 25% 50% 75%

SambaLingo-Japanese-Chat Tie elyza-7b-instruct

(c) SambaLingo vs ELEYZA-7b-instruct

Figure 5: Claude Opus evalution results

D.2 GPT-4 As A Judge
Below are some examples of how GPT-4 judged
two candidate responses in Japanese, Arabic and
Turkish. See figures 6, 7, 8, 9, 10, 11
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Figure 6: Japanese Example 1

Figure 7: Japanese Example 2
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Figure 8: Arabic Example 1
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Figure 9: Arabic Example 2

Figure 10: Turkish Example 1
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Figure 11: Turkish Example 2
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E Expanded Vocabulary Tokenizer
Fertility

E.1 Expanded Vocabulary Tokenizer Fertility
In figure 12 We measure the fertility of the tok-
enizer as we expand the vocabulary, and see that
we can improve the fertility from about 4.8 to 1.1
on Thai. This is about a 4.35x improvement, im-
plies that inference speeds can improve up to 4.35x
compared to the Llama2 tokenizer.

Number Of Added Tokens
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Hungarian Russian Turkish Bulgarian Arabic Japanese Thai

Figure 12: Tokenizer Fertility: the average number of
tokens per "word" (Ács, 2019)
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F Main Results Details

See tables 13 and 14 for all evaluation results

Figure 13: Main results, evaluation benchmarks de-
scribed in 4.1.This data is averaged to create 2.
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Figure 14: Main results, evaluation benchmarks de-
scribed in 4.1.This data is averaged to create 2.
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