@inproceedings{sanchez-etal-2024-gender,
title = "Gender-specific Machine Translation with Large Language Models",
author = "S{\'a}nchez, Eduardo and
Andrews, Pierre and
Stenetorp, Pontus and
Artetxe, Mikel and
Costa-juss{\`a}, Marta R.",
editor = {S{\"a}lev{\"a}, Jonne and
Owodunni, Abraham},
booktitle = "Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.mrl-1.10",
pages = "148--158",
abstract = "{`}While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama{''}s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.{'}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sanchez-etal-2024-gender">
<titleInfo>
<title>Gender-specific Machine Translation with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Sánchez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Andrews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pontus</namePart>
<namePart type="family">Stenetorp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Artetxe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonne</namePart>
<namePart type="family">Sälevä</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="family">Owodunni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>‘While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama”s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.’</abstract>
<identifier type="citekey">sanchez-etal-2024-gender</identifier>
<location>
<url>https://aclanthology.org/2024.mrl-1.10</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>148</start>
<end>158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Gender-specific Machine Translation with Large Language Models
%A Sánchez, Eduardo
%A Andrews, Pierre
%A Stenetorp, Pontus
%A Artetxe, Mikel
%A Costa-jussà, Marta R.
%Y Sälevä, Jonne
%Y Owodunni, Abraham
%S Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F sanchez-etal-2024-gender
%X ‘While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama”s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.’
%U https://aclanthology.org/2024.mrl-1.10
%P 148-158
Markdown (Informal)
[Gender-specific Machine Translation with Large Language Models](https://aclanthology.org/2024.mrl-1.10) (Sánchez et al., MRL 2024)
ACL
- Eduardo Sánchez, Pierre Andrews, Pontus Stenetorp, Mikel Artetxe, and Marta R. Costa-jussà. 2024. Gender-specific Machine Translation with Large Language Models. In Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024), pages 148–158, Miami, Florida, USA. Association for Computational Linguistics.