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Abstract

While machine translation (MT) systems have
seen significant improvements, it is still com-
mon for translations to reflect societal biases,
such as gender bias. Decoder-only language
models (LLMs) have demonstrated potential in
MT, albeit with performance slightly lagging
behind traditional encoder-decoder neural ma-
chine translation (NMT) systems. However,
LLMs offer a unique advantage: the ability
to control the properties of the output through
prompting. In this study, we leverage this flexi-
bility to explore Llama’s capability to produce
gender-specific translations. Our results indi-
cate that Llama can generate gender-specific
translations with translation quality and gender
bias comparable to NLLB, a state-of-the-art
multilingual NMT system.

1 Introduction

Over the last few years, machine translation (MT)
systems have seen significant improvements with
the introduction of Neural Machine Translation
(NMT). Despite these advances, MT can reflect
societal biases, such as gender bias. A prominent
instance of this problem occurs when the target
language marks the grammatical gender, but the
source language does not (Fig. 1b). In such in-
stances, translating into either gender can be cor-
rect, but MT systems tend to pick the gender that
corresponds to stereotypical associations (e.g., as-
sociating certain professions to males and others
to females (Escudé Font and Costa-jussà, 2019)).
Instead, it would be preferable to generate both
options, and/or let the user control the gender.

Decoder-only Large Language Models (LLMs)
have shown MT capabilities inferior to but compet-
itive with encoder-decoder Neural Machine Trans-
lation (NMT) systems (Chowdhery et al., 2022;
Agrawal et al., 2023; Zhang et al., 2023; Bawden
and Yvon, 2023; Zhu et al., 2023; Jiao et al., 2023;
Hendy et al., 2023). However, LLMs have been

Translate the following English sentences into Spanish. 
 
[English] I have friends who are Hispanic people. 
[Spanish] Tengo amigos que son personas hispanas. 
 
[English] What do you think about ginger children? 
[Spanish] ¿Qué piensas de las niñas pelirrojas? 
 
[English] I have friends who are orphans. 
[Spanish] Tengo amigos huérfanos. 

(a) Standard MT template.

Translate the following English sentences into both 
grammatical genders of Spanish. Provide two Spanish 
sentences for each English source sentence. 
 
[English] I have friends who are Hispanic people.  
[Spanish] Tengo amigos que son personas hispanas.  
[Spanish] Tengo amigas que son personas hispanas.  
  
[English] What do you think about ginger children?  
[Spanish] ¿Qué piensas de los niños pelirrojos?  
[Spanish] ¿Qué piensas de las niñas pelirrojas?  
  
[English] I have friends who are orphans. 
[Spanish] Tengo amigos huérfanos.  
[Spanish] Tengo amigas huérfanas. 

(b) Gender-specific template.

Figure 1: Prompt templates employed. Languages like
Spanish (displayed here) present morphological dif-
ferences between masculine (red) and female (purple)
grammatical genders.

proven to allow for more control over the properties
of the output (Garcia et al., 2023; Moslem et al.,
2023; Pilault et al., 2023). While NMT models are
trained to accept a single sequence and output its
translation, LLMs make it possible to condition the
output format with a prompt.

The task of inferring gender-specific translations
from a gender-neutral source has been addressed
mainly through post-editing, the most popular solu-
tion being Google Translate’s post-translation gen-
der rewriter (Johnson, 2020). The proposed system
produces a single sentence that is then switched
into the opposite gender using a second language-
specific model. This approach is limited by having
to train language-specific gender-switching models
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Lang Source Sentence Masculine Feminine Neutral/Generic

est What do you think about
Hasidic children?

- - Mida arvate lastest, kes on
hassiidid?

spa What do you think about
Hasidic children?

¿Qué piensas de los niños
judíos jasídicos?

¿Qué piensas de las niñas
judías jasídicas?

-

kat What do you think about
Hasidic children?

- - ras pikrob sasid
bav˝vebze? (ras pikrob

sasid bavshvebze?)

Table 1: Example of entries in the full MULTILINGUALHOLISTICBIAS dataset. From the 50 languages present in
MULTILINGUALHOLISTICBIAS, we selected those that exhibit grammatical gender differences, like Spanish (spa).
The sentence in Georgian (kat) has been transcribed into Latin script by the authors.

and the breadth of patterns it can cover.
Given the flexibility of prompting, we explore

the capacity of LLMs to produce gender-specific
translations for languages with grammatical gen-
der from gender-neutral sources without significant
losses in translation quality or increases in gender
bias.

We use in-context examples (ICEs) to elicit the
task of translation from a gender-neutral source to
two gender-specific targets (Figure 1b). Addition-
ally, we evaluate the quality of the gender-specific
translations on two aspects: gender bias (measured
against coreference resolution accuracy) and trans-
lation quality (measured in BLEU).

We show that it is possible to generate gender-
specific translations with translation quality and
gender bias competitive with NLLB, with a slightly
better performance than Llama for masculine/both
references evaluation and over 10 BLEU points for
the feminine reference. We also demonstrate the
reliance on coreference resolution of the gender-
specific translation method, showing steep de-
creases in performance when using the opposite
gender as an evaluation reference in a gender-
focused dataset (MULTILINGUALHOLISTICBIAS),
but exhibiting lesser variance in a general transla-
tion dataset (FLoRes).

2 Related Work

MT and controlled output with LLMs A few
papers have evaluated the quality of MT using dif-
ferent models and GPT-based commercial products,
such as PALM (Chowdhery et al., 2022), XGLM
(Agrawal et al., 2023), GLM (Zhang et al., 2023),
BLOOM (Bawden and Yvon, 2023), OPT (Zhu
et al., 2023) or ChatGPT (Jiao et al., 2023; Hendy
et al., 2023). They conclude that the translation
quality comes close but remains behind the per-

formance of NMTs (Kocmi et al., 2023). Using
LLMs can, however, allow for more control over
the properties of the output without further finetun-
ing, such as specifying the language variety and
style of the translation (Garcia et al., 2023), produc-
ing terminology-constrained translations (Moslem
et al., 2023) or using an iterative prompting pro-
cess to clarify ambiguities in the source sentence
(Pilault et al., 2023). Challenges persist in the area
of hallucinations (Zhang et al., 2023; Guerreiro
et al., 2023) and in performance in low-resource
languages (Bawden and Yvon, 2023; Zhu et al.,
2023). This work revisits these ideas, taking gen-
der specificity as a controllable feature.

Gender Bias in MT Some authors have worked
in analyzing and mitigating gender bias in MT.
Prates et al. (2018) studied the bias of the com-
mercial translation system Google Translate and
found that it yields male defaults much more fre-
quently than what would be expected from US de-
mographic data. Costa-jussà et al. (2022) inves-
tigate the role of model architecture in the level
of gender bias, while Měchura (2022) looks at the
source sentences and elaborates a taxonomy of the
features that induce gender bias into the transla-
tions. Others have looked more closely at the chal-
lenge of gender bias mitigation. Stafanovičs et al.
(2020) assume that it’s not always possible to in-
fer all the necessary information from the source
sentence alone and a method that uses word-level
annotations containing information about the sub-
ject’s gender to decouple the task of performing
an unbiased translation from the task of acquiring
gender-specific information. Saunders and Byrne
(2020) treat the mitigation as a domain adaptation
problem, using transfer learning on a small set of
trusted, gender-balanced examples to achieve con-
siderable gains with a fraction of the from-scratch
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cat deu fra ita nld por rus spa swe ukr avg

nllb 45.81 43.38 53.43 36.34 33.96 53.05 38.40 32.99 47.58 36.31 42.13
unsp. 46.05 41.79 52.24 34.70 32.54 51.76 36.17 31.34 47.74 36.02 41.04
masc. 46.06 42.18 52.05 34.46 32.36 51.68 36.23 31.25 47.90 36.05 41.02
fem. 43.83 41.02 50.25 33.25 31.43 49.29 34.57 29.72 47.63 35.38 39.64
∆F 2.23 1.16 1.80 1.21 0.93 2.39 1.66 1.53 0.27 0.67 1.39

Table 2: BLEU scores for each output of Llama’s gender-specific translation on FLoRes’s testset. ∆F denotes the
difference between male and female translations. Since FLoRes’s sentences are not expected to contain a high rate
of ambiguity, a correct translation should tend to be identical in both outputs.

training costs. Fleisig and Fellbaum (2022) develop
a framework to make NMT systems suitable for
gender bias mitigation through adversarial learning,
adjusting the training objective at fine-tuning time.
Finally, Wang et al. (2022) focus on existing biases
in person name translation, applying a data augmen-
tation technique consisting of randomly switching
entities, obtaining satisfactory results. Given this
work’s focus area, we aim not only at producing
accurate gender-specific translations, but also at en-
suring selecting an output gender does not increase
reproduction of underlying gender biases.

3 Experimental Framework

Data For our main experiments, we use the MUL-
TILINGUALHOLISTICBIAS dataset (Costa-jussà
et al., 2023), a multilingual subset of Holistic Bias
(Smith et al., 2022) with separate translations for
each noun class or grammatical gender for those
languages that make use of them1. An example
of an entry of the dataset can be found in Table
1. We also filtered out the languages which are
not explicitly present in the Llama-2 pre-training
set (Touvron et al., 2023). Since MHB was cre-
ated translating a limited number of templates, we
exclude entries with a similar template when per-
forming ICL. A complete list of languages used
from the MULTILINGUALHOLISTICBIAS dataset
can be found in Appendix A. Additionally, we use
a subset of BUG’s (Levy et al., 2021) gold (human-
annotated) set for gender bias analysis and the FLo-
Res (NLLB Team et al., 2022; Goyal et al., 2021a;
Guzmán et al., 2019) devtest set to reproduce our
results in the general domain.

1For this study, we selected the subset of languages that
make use of grammatical genders or noun classes and for
which there is correlation between grammatical gender and
natural gender, allowing us to establish a relationship between
gender bias and the accuracy of coreference resolution in a
model.

Models We use Llama-2 (Touvron et al., 2023),
a decoder-only model, and NLLB (NLLB Team
et al., 2022), an encoder-decoder model. We use
the NLLB-200 version with 3 billion parameters.
For Llama-2 we use the 70 billion parameter ver-
sion. We prompt Llama-2 with ICEs (Figure 1b)
to elicit the gender-specific translation task. To fa-
cilitate comparisons, we also prompt Llama-2 with
a standard MT in-context learning (ICL) prompt
template (Figure 1a).

Evaluation Following the work of Costa-jussà
et al. (2023), we use the sacrebleu implementa-
tion of spBLEU (Goyal et al., 2021b) to compute
the translation quality with ‘add-k = 1’ smooth-
ing. We also provide evaluations in chrF (Popović,
2015), COMET (Rei et al., 2020), BLEURT (Sel-
lam et al., 2020) and BLASER (Chen et al., 2023)
as alternative metrics. For gender bias evaluation,
we use Stanovsky et al. (2019)’s reference-less
coreference resolution metric.

Experimental Setup We investigate the capabil-
ity of Llama to produce gender-specific transla-
tions. We prompt Llama with 8 ICEs comprised by
source, masculine and feminine translations from
MULTILINGUALHOLISTICBIAS (Fig. 1b). We
also prompt Llama with a standard MT template,
randomly selecting among the available transla-
tions when there’s more than one option (Fig. 1a).
Hereinafter all experiments are performed with
these settings. For NLLB, we calculate three BLEU
scores on the output: one with the masculine refer-
ence, one with the feminine reference and one with
both. In the case of Llama, we calculate two BLEU
scores for each gender-specific output: one with
the corresponding gender’s reference and one with
both references, for a total of four BLEU scores
per generation.
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masc fem both

NLLB unsp 40.07 28.67 40.41

Llama
unsp 41.57 30.92 42.43
masc 41.63 30.12 42.08
fem 31.84 39.55 43.37

Table 3: BLEU scores of the unspecified, masculine
and feminine outputs of NLLB and Llama evaluated on
masculine, feminine, and both references of MULTILIN-
GUALHOLISTICBIAS

4 Results

Gender-specific MT results in MULTILINGUAL-
HOLISTICBIAS As Table 3 shows, on average
Llama outperforms NLLB on all three references.
While the differences between masculine/both ref-
erences are moderate (Figs. 2a & 2c), Llama out-
performs NLLB by an average of over 10 BLEU
points for the feminine reference (Fig. 2b), high-
lighting the capacity of gender-specific MT to pro-
vide comparable results for masculine and feminine
outputs. Some of the most common errors encoun-
tered while generating gender-specific translations
can be found in Figure 3.

(a) Masculine reference (b) Feminine reference

(c) Both references

Figure 2: BLEU scores of the unspecified, masculine
and feminine outputs of NLLB and Llama-2 evaluated
on masculine, feminine, and both references of MULTI-
LINGUALHOLISTICBIAS.

We also assessed the capacity of the BLEU
evaluation metric to capture gender nuances. We
inverted masculine and feminine references and
found steep decreases, indicating the effectiveness

Source: I have friends who are Hispanic people.

Masc: Tengo amigos que son personas hispanas.

Fem: Tengo amigos que son personas hispanos.

(a) Error generating Spanish language.

Source: I have friends who are American-born people.

Masc: J'ai des amis qui sont des Américains nés aux États-Unis.

Fem: J'ai des amis qui sont des Américaines nées aux États-Unis.

(b) Error generating French language.

Figure 3: Two examples of the sort of errors encoun-
tered while generating gender-specific translations. In
some cases, masculine gender marker is used in both
outputs, particularly when there’s already a female gen-
der marker in another part of the sentence. In other
cases, agreement errors are encountered in the feminine
gender output.

of our approach in specifying the grammatical gen-
der. We provide evaluations in chrF, COMET,
BLEURT and BLASER, which show consistency
with BLEU scores. Full results can be found in Ap-
pendix B. Additionally, we included a comparison
of results between LLama-2 and GPT-4o to vali-
date whether our results are model-specific or can
be generalized. We also find satisfactory results for
GPT-4o (Table 4).

Gender bias MT results in BUG Besides trans-
lation accuracy, we’re interested in verifying the
incidence of gender bias in gender-specific trans-
lations with respect to unspecified translation. We
translate BUG’s gold set, reusing MULTILINGUAL-
HOLISTICBIAS examples for ICL. BUG’s gold
set is made of English sentences that require un-
ambiguous coreference resolution or grammatical
gender utilization to produce correct translations,
regardless of stereotypical associations. To en-
sure fairness in our analysis, we sampled four sub-
sets of 90 sentences from BUG gold, each sub-
set corresponding to a combination of stereotypi-
cal/antistereotypical correferences and male/female
nouns. Stanovsky et al. (2019) and Levy et al.
(2021) found that several (encoder-decoder) NMTs
are significantly prone to translate based on gen-
der stereotypes rather than more meaningful con-
text. We verify to which degree these errors are
reproduced by Llama in gender-specific transla-
tions. When performing the translation of BUG,
we noticed that the phenomenon of empty or in-
complete outputs occasionally occurs (i.e., either
only one output or no output at all is produced).
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Language Llama GPT-4o

cat Masc. 53.36 58.44
Fem. 58.56 60.63

ces Masc. 23.85 21.83
Fem. 23.88 30.54

deu Masc. 22.04 35.93
Fem. 16.88 36.89

fra Masc. 56.69 57.52
Fem. 51.76 58.82

ita Masc. 42.16 39.61
Fem. 44.86 40.45

ron Masc. 36.85 34.92
Fem. 35.96 35.17

rus Masc. 41.81 42.49
Fem. 36.67 43.82

slv Masc. 37.07 38.55
Fem. 27.98 35.42

spa Masc. 59.94 61.84
Fem. 59.36 62.61

avg Masc. 41.53 43.46
Fem. 39.55 44.93

Table 4: BLEU score comparison between LLama-2 and
GPT-4o. Results remain competitive, further supporting
the potential of LLMs to produce gender-specific trans-
lations.

NLLB Llama

unsp unsp masc fem

acc.(↑) ∆B(↓) acc.(↑) ∆B(↓) acc. ∆B(↓) acc.(↑) ∆B (↓)

ces 59.3 6.5 57.2 11.3 61.7 10.1 48.4 8.8
deu 66.4 11.8 67.8 10.8 70.6 9.5 52.4 8.6
ita 46.2 12.5 45.4 13.7 46.5 14.4 38.9 14.2
spa 52.5 10.1 50.0 11.4 49.4 14.4 34.2 29.4
rus 36.6 25.0 39.5 23.8 38.1 27.5 36.9 16.7
ukr 41.2 11.1 42.1 10.1 43.2 8.8 39.0 1.0

Table 5: Noun gender prediction accuracy on the subset
of BUG’s gold dataset’s fully generated gender-specific
translations with Llama, compared to NLLB’s predic-
tion accuracy. Llama results are presented for male (m.),
female (f.), and unspecified (unsp.) genders. We also
show the differences in accuracy between male nouns
and female nouns for each case (∆B)

Since a gender bias analysis is not defined over an
empty sentence, for each language we evaluate all
models in the subset that has been correctly gen-
erated by Llama both in the unspecified and the
gender-specific modalities.

Table 5 shows that Llama’s masculine out-
put’s noun gender prediction accuracy outperforms
NLLB’s for almost every language, but underper-

forms NLLB for feminine outputs. Difference of
accuracy between genders for the same type of
output (∆B) is comparable across models.

General domain MT results in FLoRes A pos-
sible concern about previous results is that they are
produced by the system forcing a specific gender
instead of performing coreference resolution to de-
termine the correct gender. To study whether this
is the case, we assess the difference in performance
for each produced gender when there aren’t major
gender ambiguities to translate. In this case, a ro-
bust model should not have significant differences
between both genders. We translate FLoRes’s de-
vtest set into ten languages included in Llama’s
training corpus. Given that FLoRes is a general
domain dataset, ambiguities should not be preva-
lent and both outputs should tend to converge. We
use MULTILINGUALHOLISTICBIAS as ICEs and
compare the BLEU scores of both outputs. The list
of languages we translate into for this experiment
can be found in Table 6 (Appendix A).

The results show minor differences between both
genders, suggesting a coreference resolution-based
gender-specific generation rather than on mechan-
ically switching the grammatical gender of the
words of the sentence.

5 Conclusions

In this paper, we explored the capabilities and lim-
itations a decoder-only LLM to produce gender-
specific translations. We observed that Llama’s
gender-specific translations’ accuracy is consis-
tently above NLLB’s. We also showed that Llama’s
gender-specific translations’ gender bias is compa-
rable to NLLB’s. These results indicate that it is
possible to use LLMs to produce gender-specific
translations without compromising on lower trans-
lation accuracy or higher gender bias. Our ex-
periments also reveal that Llama’s translations
rely on coreference resolution to determine gender,
showing significant performance drops when eval-
uated against opposite-gender references in gender-
ambiguous datasets, but maintaining consistency
in less ambiguous contexts.

While these results are promising indicator of
the flexibility of the output in the task of MT for lan-
guages present in Llama’s training set, the limited
multilinguality of currently available LLMs limits
the application of this approach to a subset of the
languages present in state-of-the-art NMT models.
More work is needed to bring LLMs’ multilingual
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capabilities on par with NMTs.

Limitations

Even though we performed a diverse set of experi-
ments, some limitations arise due to the vastness of
the research space we’re dealing with. The study
heavily relies on the effectiveness of prompt en-
gineering, specifically in providing accurate ICEs.
The conclusions drawn are thus constrained by the
quality and relevance of the prompts used. Vari-
ations in prompt structure or content could yield
different results. Moreover, the study focuses on
a particular model, Llama-2, leaving out an explo-
ration of alternative LLMs that could yield different
results.

MULTILINGUALHOLISTICBIAS’s small number
of templates and their simplicity limit the scope of
our results. An exploration with a more diverse
dataset could bring additional insights to our con-
clusions.

Ethics Statement

The understanding of nuanced gender contexts is
intricate and can be challenging even for humans.
The study tends to approach gender in a binary
manner, which might not account for social percep-
tions among some of the users of these languages.
This limitation is inherent in the current state of
the field and warrants future investigations into bet-
ter representation and handling of gender-related
nuances.

Furthermore, the stereotypical and non-
stereotypical datasets were built based on the US
Department of Labor data. Since we work with a
variety of world languages, the proportions stated
on these datasets might not reflect the realities of
the users of the wide range of languages employed
in this study.
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A Languages

Language code Name Script MULTILINGUALHOLISTICBIAS BUG FLoRes
arb Modern Standard Arabic Arabic D
cat Catalan Latin D D
ces Czech Latin D D
deu German Latin D D D
fra French Latin D D
ita Italian Latin D D D
nld Dutch Latin D
por Portugese Latin D
ron Romanian Latin D
rus Russian Cyrillic D D D
slv Slovenian Latin D
spa Spanish Latin D D D
swe Swedish Latin D
ukr Ukrainian Cyrillic D D

Table 6: List of languages analyzed in this work by dataset

B Full Results

Reference

Language Model Type masc fem both

cat

NLLB unsp 49.13 28.14 49.14

Llama
unsp 52.86 31.08 53.56
masc 53.36 30.59 53.52
fem 33.07 58.56 62.44

ces

NLLB unsp 25.41 24.32 26.05

Llama
unsp 24.74 23.53 26.00
masc 23.85 21.11 24.44
fem 20.23 23.88 24.38

deu

NLLB unsp 22.40 16.05 22.63

Llama
unsp 21.03 14.24 21.35
masc 22.04 15.74 22.29
fem 20.37 16.88 22.20

fra

NLLB unsp 57.79 45.47 57.90

Llama
unsp 61.56 50.47 61.78
masc 56.69 45.44 56.77
fem 49.68 51.76 56.99

ita

NLLB unsp 38.87 24.37 38.38

Llama
unsp 41.88 29.39 42.99
masc 42.16 29.03 43.10
fem 26.74 44.86 45.68

Reference

Language Model Type masc fem both

ron

NLLB unsp 28.61 24.23 30.47

Llama
unsp 35.04 29.38 37.39
masc 36.85 29.89 38.62
fem 26.27 35.96 37.47

rus

NLLB unsp 36.48 31.75 36.78

Llama
unsp 40.71 35.80 40.71
masc 41.81 36.88 41.80
fem 35.72 36.67 39.12

slv

NLLB unsp 34.53 22.66 35.51

Llama
unsp 37.55 24.58 38.57
masc 37.07 23.26 37.66
fem 33.07 27.98 38.17

spa

NLLB unsp 67.46 41.00 66.87

Llama
unsp 58.72 39.83 59.56
masc 59.94 39.13 60.50
fem 41.42 59.36 62.98

avg

NLLB unsp 40.07 28.67 40.41

Llama
unsp 41.57 30.92 42.43
masc 41.63 30.12 42.08
fem 31.84 39.55 43.37

Table 7: BLEU scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.
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Reference

Language Model Type masc fem both

cat

NLLB unsp 68.76 57.33 68.85

Llama
unsp 71.08 59.62 71.40
masc 71.24 59.41 71.44
fem 62.11 72.81 72.98

ces

NLLB unsp 50.21 48.72 50.54

Llama
unsp 49.68 47.95 50.15
masc 48.44 46.09 48.60
fem 47.28 47.83 48.86

deu

NLLB unsp 50.14 43.45 50.25

Llama
unsp 50.17 43.37 50.30
masc 51.63 44.88 51.77
fem 50.65 46.16 51.08

fra

NLLB unsp 69.68 65.81 69.79

Llama
unsp 76.77 72.81 76.85
masc 73.63 69.64 73.66
fem 71.77 71.95 73.68

ita

NLLB unsp 62.34 53.45 62.65

Llama
unsp 65.55 57.44 66.17
masc 64.76 56.55 65.29
fem 55.70 66.39 66.71

Reference

Language Model Type masc fem both

ron

NLLB unsp 61.24 57.88 61.60

Llama
unsp 63.98 60.50 64.51
masc 64.82 61.14 65.22
fem 61.27 63.75 64.56

rus

NLLB unsp 55.58 50.59 55.78

Llama
unsp 58.32 53.07 58.43
masc 58.94 53.66 59.06
fem 53.53 52.83 55.79

slv

NLLB unsp 56.80 51.33 57.35

Llama
unsp 57.01 50.88 57.33
masc 56.66 50.37 56.88
fem 54.81 51.93 55.80

spa

NLLB unsp 79.81 68.44 79.84

Llama
unsp 76.36 65.66 76.61
masc 77.21 66.03 77.33
fem 67.91 75.55 77.26

avg

NLLB unsp 61.62 55.22 61.85

Llama
unsp 63.21 56.81 63.53
masc 63.04 56.42 63.25
fem 58.34 61.02 62.97

Table 8: chrF scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.

Reference

Language Model Type masc fem both

cat

NLLB unsp 0.87 0.85 -

Llama
unsp 0.88 0.86 -
masc 0.89 0.87 -
fem 0.86 0.88 -

ces

NLLB unsp 0.88 0.86 -

Llama
unsp 0.88 0.87 -
masc 0.88 0.86 -
fem 0.84 0.84 -

deu

NLLB unsp 0.72 0.71 -

Llama
unsp 0.72 0.70 -
masc 0.72 0.71 -
fem 0.71 0.71 -

fra

NLLB unsp 0.87 0.85 -

Llama
unsp 0.89 0.88 -
masc 0.88 0.87 -
fem 0.87 0.87 -

ita

NLLB unsp 0.86 0.82 -

Llama
unsp 0.88 0.84 -
masc 0.88 0.84 -
fem 0.83 0.85 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 0.89 0.87 -

Llama
unsp 0.89 0.87 -
masc 0.89 0.87 -
fem 0.86 0.88 -

rus

NLLB unsp 0.88 0.87 -

Llama
unsp 0.88 0.86 -
masc 0.89 0.87 -
fem 0.86 0.88 -

slv

NLLB unsp 0.85 0.84 -

Llama
unsp 0.85 0.83 -
masc 0.85 0.83 -
fem 0.81 0.82 -

spa

NLLB unsp 0.91 0.88 -

Llama
unsp 0.91 0.88 -
masc 0.91 0.88 -
fem 0.88 0.90 -

avg

NLLB unsp 0.86 0.84 -

Llama
unsp 0.86 0.84 -
masc 0.87 0.84 -
fem 0.84 0.85 -

Table 9: COMET scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.
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Reference

Language Model Type masc fem both

cat

NLLB unsp 0.83 0.77 -

Llama
unsp 0.84 0.78 -
masc 0.85 0.79 -
fem 0.77 0.82 -

ces

NLLB unsp 0.81 0.80 -

Llama
unsp 0.81 0.80 -
masc 0.81 0.78 -
fem 0.76 0.79 -

deu

NLLB unsp 0.54 0.53 -

Llama
unsp 0.54 0.53 -
masc 0.54 0.53 -
fem 0.52 0.52 -

fra

NLLB unsp 0.77 0.75 -

Llama
unsp 0.80 0.78 -
masc 0.78 0.76 -
fem 0.76 0.76 -

ita

NLLB unsp 0.79 0.76 -

Llama
unsp 0.81 0.78 -
masc 0.81 0.78 -
fem 0.76 0.81 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 0.80 0.79 -

Llama
unsp 0.82 0.81 -
masc 0.83 0.81 -
fem 0.77 0.80 -

rus

NLLB unsp 0.77 0.76 -

Llama
unsp 0.78 0.76 -
masc 0.78 0.77 -
fem 0.73 0.74 -

slv

NLLB unsp 0.76 0.76 -

Llama
unsp 0.77 0.75 -
masc 0.77 0.76 -
fem 0.73 0.76 -

spa

NLLB unsp 0.85 0.79 -

Llama
unsp 0.85 0.80 -
masc 0.86 0.80 -
fem 0.80 0.84 -

avg

NLLB unsp 0.77 0.75 -

Llama
unsp 0.78 0.75 -
masc 0.78 0.75 -
fem 0.73 0.76 -

Table 10: BLEURT scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.

Reference

Language Model Type masc fem both

cat

NLLB unsp 4.32 4.27 -

Llama
unsp 4.35 4.30 -
masc 4.36 4.30 -
fem 4.27 4.30 -

ces

NLLB unsp 4.31 4.27 -

Llama
unsp 4.24 4.20 -
masc 4.24 4.20 -
fem 4.20 4.18 -

deu

NLLB unsp 4.15 4.11 -

Llama
unsp 4.14 4.10 -
masc 4.14 4.10 -
fem 4.11 4.08 -

fra

NLLB unsp 4.44 4.41 -

Llama
unsp 4.48 4.45 -
masc 4.48 4.10 -
fem 4.11 4.08 -

ita

NLLB unsp 4.46 4.39 -

Llama
unsp 4.48 4.42 -
masc 4.48 4.41 -
fem 4.35 4.38 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 4.38 4.34 -

Llama
unsp 4.35 4.30 -
masc 4.34 4.29 -
fem 4.28 4.28 -

rus

NLLB unsp 4.47 4.43 -

Llama
unsp 4.33 4.30 -
masc 4.39 4.35 -
fem 4.29 4.28 -

slv

NLLB unsp 4.14 4.08 -

Llama
unsp 4.08 4.02 -
masc 4.08 4.01 -
fem 4.04 4.01 -

spa

NLLB unsp 4.56 4.47 -

Llama
unsp 4.53 4.45 -
masc 4.56 4.48 -
fem 4.43 4.46 -

avg

NLLB unsp 4.36 4.31 -

Llama
unsp 4.33 4.28 -
masc 4.34 4.25 -
fem 4.23 4.22 -

Table 11: BLASER scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.

158


