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Abstract

Approaches to improving multilingual lan-
guage understanding often struggle with signif-
icant performance gaps between high-resource
and low-resource languages. While there are
efforts to align the languages in a single la-
tent space to mitigate such gaps, how differ-
ent input-level representations influence such
gaps has not been investigated, particularly
with phonemic inputs. We hypothesize that
the performance gaps are affected by represen-
tation discrepancies between these languages,
and revisit the use of phonemic representa-
tions as a means to mitigate these discrepan-
cies. To demonstrate the effectiveness of phone-
mic representations, we present experiments
on three representative cross-lingual tasks on
12 languages in total. The results show that
phonemic representations exhibit higher simi-
larities between languages compared to ortho-
graphic representations, and it consistently out-
performs grapheme-based baseline model on
languages that are relatively low-resourced. We
present quantitative evidence from three cross-
lingual tasks that demonstrate the effectiveness
of phonemic representations, and it is further
justified by a theoretical analysis of the cross-
lingual performance gap.

1 Introduction

Large language models have significantly advanced
natural language processing, offering improved ca-
pabilities across numerous languages. However,
substantial performance gaps remain, particularly
between high-resource languages like English and
the majority of the world’s low-resource languages.
While these gaps are partly driven by discrepan-
cies in data availability and quality, recent studies
suggest that linguistic gaps—potentially caused by
structural and lexical differences—also contribute
significantly to these disparities .

Cross-lingual transfer techniques, which aim
to adapt to arbitrary target language, have shown
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Figure 1: Example of orthographic and phonemic input
representations of a sentence (English and Korean).

promise with the advancement of pre-trained multi-
lingual language models (Devlin et al., 2019; Con-
neau et al., 2020; Clark et al., 2022). However, they
continue to face challenges, particularly with low-
resource languages. One line of prior research has
focused on mitigating these gaps through cross-
lingual representation alignment (Zhang et al.,
2022; Wu and Monz, 2023; Stap et al., 2023), but
these efforts often overlook the impact of varying
input representations on performance consistency
across languages.

In this work, we explore the use of phonemic rep-
resentations written in International Phonetic Al-
phabet (IPA) characters as a robust input represen-
tation (see Figure 1) to reduce linguistic gaps and,
consequently, performance gaps across languages.
We define the linguistic gap as the representation
discrepancy between embedding vectors and the
performance gap as the relative difference in down-
stream task performances between languages, to
analyze the impact of phonemic representations in
cross-lingual adaptation.

Our empirical analysis shows that phonemic
representations consistently reduce linguistic gaps
between languages compared to orthographic
character-based models. This reduction in linguis-
tic gaps directly correlates with smaller perfor-
mance gaps in tasks such as cross-lingual natural
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language inference (XNLI), named-entity recog-
nition (NER), and part-of-speech (POS) tagging,
demonstrating the potential of phoneme-based
models to enhance cross-lingual transfer across di-
verse languages. We further support these findings
with theoretical analysis from domain generaliza-
tion literature, where we frame the performance
gap as a consequence of linguistic gaps driven by
lexical and syntactic differences.

Our key contributions are as follows:

• We revisit the use of phonemic representations
(IPA) as a universal input strategy to reduce
performance gaps across languages in multi-
lingual language models.

• We empirically demonstrate the effectiveness
of phonemic representations by comparing
them with subword and character-based mod-
els, highlighting their ability to minimize both
performance and linguistic gaps.

• We provide a theoretical explanation for the
observed benefits of phonemic representa-
tions, drawing parallels between linguistic
gaps in multilingual settings and domain gaps
in domain generalization literature.

2 Related Works

2.1 Cross-lingual Transfer with Multilingual
Language Model

Cross-lingual transfer learning aims to improve
performance on low-resource languages (LRLs)
by leveraging data from high-resource languages.
Models like mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020), trained on hun-
dreds of languages, have demonstrated effective
cross-lingual adaptation by leveraging large mul-
tilingual pre-train datasets (Fujinuma et al., 2022;
Wu and Dredze, 2020; Conneau et al., 2020). How-
ever, significant performance discrepancies remain
between languages due to differences in data avail-
ability, script types, and language families (Wu and
Dredze, 2020; Muller et al., 2021a; Bagheri Nezhad
and Agrawal, 2024). This "performance gap" has
been systematically evaluated in benchmarks such
as XTREME (Hu et al., 2020), highlighting the
need for methods that can ensure more consistent
performance across languages.

2.2 Cross-lingual Representation Gap
One approach to reducing performance gaps fo-
cuses on narrowing the representation gap between

languages. Multilingual pre-training enables mod-
els to learn shared representation space for mul-
tiple languages. (Singh et al., 2019) and (Muller
et al., 2021b) both analyze the representations of
pre-trained multilingual models and observe that
lower layers are responsible for this cross-lingual
alignment. (Yang et al., 2022) employs mixup
(Zhang et al., 2018) to bring representations closer
together, improving performance by reducing their
distance in the latent space. Other works show a
strong correlation between representation distance
and machine translation performance, suggesting
that improved alignment leads to better transfer
results (Wu and Monz, 2023; Stap et al., 2023).
While these studies provide valuable insights into
the benefits of aligning cross-lingual representa-
tions, they do not explore how variations in input-
level representations, such as the use of phonemic
representations instead of orthographic characters,
might affect this alignment. This paper investigates
how phonemic representations can further reduce
cross-lingual gaps.

2.3 Phonemic Representations for
Multilingual Language Modeling

Phonemes, typically represented by International
Phonetic Alphabet (IPA) characters, are the percep-
tual sounds of a language. Phonemic representa-
tions offer a language-agnostic input that can en-
hance multilingual modeling, especially for LRLs.
By using phonological features that are less de-
pendent on specific orthographic systems, these
representations offer a language-agnostic alterna-
tive that can help bridge performance gaps across
languages. Previous studies have shown that us-
ing the IPA characters as input can enhance per-
formance in cross-lingual tasks such as named en-
tity recognition (Chaudhary et al., 2018; Bharad-
waj et al., 2016; Leong and Whitenack, 2022) and
machine translation (Chaudhary et al., 2018; Sun
et al., 2022), particularly for low-resource lan-
guages. Similarly, Sohn et al. (2024) report that
phoneme-based models outperform other baselines
on target languages unseen during pre-training.
While these works demonstrate the potential of
phonemic representations in language modeling,
few have explored the specific embeddings and rep-
resentations of phonemes. Although some studies
have developed pre-defined phoneme embeddings
(e.g., PanPhon (Mortensen et al., 2016), Phoible
(Moran and McCloy, 2019)) and learned embed-
dings from masked language modeling (Li et al.,
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2023; Jia et al., 2021; Sundararaman et al., 2021;
Zhang et al., 2022), there is limited understanding
of how these embeddings function in cross-lingual
contexts.

We utilize XPhoneBERT (Nguyen et al., 2023),
a model pre-trained with phonemes across approx-
imately 100 languages, to investigate how using
phonemic representations as input can mitigate
cross-lingual performance discrepancies. Our em-
pirical and theoretical analyses provide new in-
sights into the benefits of phonemic representations
for multilingual language modeling, particularly in
terms of narrowing the cross-lingual linguistic gap
and performance gap.

3 Experimental Setup

In this section, we describe the experiment setup in
terms of models, datasets, and downstream tasks,
including the selected target languages and details
for preprocessing. Additionally, we provide details
on evaluation strategies, particularly on quantifying
the performance and linguistic gap.

3.1 Models
We employ three masked language models that
are pre-trained on multilingual corpus that covers
around 100 languages from Wikipedia dump files1:
mBERT (Devlin et al., 2019), CANINE (Clark
et al., 2022), and XPhoneBERT (Nguyen et al.,
2023). Each model is trained on different types of
language representation.

Multilingual BERT (mBERT) is a subword-
based model that utilizes WordPiece algorithm for
tokenization. During pre-training, mBERT learns
to perform masked language modeling (MLM) and
next sentence prediction (NSP).

CANINE is a multilingual character-based
model that is trained on the same corpus with the
same training objective as mBERT. CANINE is
a tokenization-free language model that directly
maps each unicode character to its codepoint by
hashing. This prevents unknown tokens, enabling
the model to handle a large amount of distinct char-
acters.

Lastly, XPhoneBERT is a phoneme-based
model trained to do MLM. XPhoneBERT follows
the pre-training scheme of XLM-R (Conneau et al.,
2020), so NSP is not employed in its pre-training.
This model takes as input the sequence of IPA char-

1pre-trained weights are obtained from
https://huggingface.co/models

acters, where the input data are created from origi-
nal text by G2P conversion followed by phoneme
segmentation.

While character-level models are known to bet-
ter generalize to low-resource languages (Clark
et al., 2022), their general performance falls behind
subword-based models. To specifically compare in-
put representations–phonemes versus orthographic
scripts–we minimize the impact of different to-
kenization units by focusing on phoneme-based
models versus character-based models, rather than
directly comparing with subword-based models
like mBERT. Nevertheless, we include mBERT
results for the XNLI task to highlight its significant
performance drop on low-resource languages. For
other tasks, we report results from phoneme and
character-based models to ensure a fair comparison,
and leave further improvements of character-level
models in overall performance as future work.

3.2 Downstream Tasks
We adopted the cross-lingual generalization bench-
mark tasks suggested in XTREME (Hu et al.,
2020).

Token-level Classification. We choose POS tag-
ging and NER as our testbed for structured predic-
tion tasks. Both tasks require labeling each token
from the model. These types of tasks were pre-
viously analyzed as being relatively independent
from the data size of each language used for pre-
training the language model (Hu et al., 2020). We
find this particularly suitable in our scenario where
two models with different pre-training strategy are
compared. For datasets, we utilize the corpora
from Universal Dependencies2 for POS tagging,
and WikiAnn (Pan et al., 2017) with train, dev, test
splits following Rahimi et al. (2019) for NER.

Sentence-level Classification. XTREME sup-
ports two sentence-level classification tasks. This
type of task requires semantic understanding of
given sentences to make a prediction. We employ
XNLI (Conneau et al., 2018) dataset, which is a
representative benchmark for the natural language
inference task on cross-lingual generalization set-
ting. This task requires the model to classify the
relation of two given sentences into three different
classes.

2https://universaldependencies.org/ , v2.13, 148 lan-
guages, released Nov 15, 2023.
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3.3 Performance Gap
We analyze performance gaps of each model for all
downstream tasks. As we are interested in how dif-
ferent models with different input types performs
consistent across languages rather than their ab-
solute overall performance, we take the relative
percentage difference (RPD) (Miller, 2011) to de-
rive the performance gap. Here, we define RPD
as

RPD(Li, Lj) =
|S(Li)− S(Lj)|
1
2(S(Li) + S(Lj))

× 100, (1)

where S(Li) represents the performance for the lan-
guage Li. This is used to analyze the performance
gap, which specifically computes the relative per-
formance gaps across languages.

3.4 Linguistic Gap
To compute representation discrepancy across lan-
guages, we use FLORES+ (Costa-jussà et al., 2022)
corpus which contains parallel sentences of more
than 200 languages. We employ devtest set of each
language subset, which contains 1,012 sentences.

After training each model on each downstream
task, we utilize each model to obtain similarity
in their representations. We adopt mean-pooling
to obtain sentence representations and Centered
Kernel Alignment (CKA) (Kornblith et al., 2019)
to measure the similarity, which Del and Fishel
(2021) has recommended for robust analysis on
cross-lingual similarity. CKA is defined as,

CKA(X,Y) =
∥XTY∥22

∥XTX∥2∥YTY∥2
, (2)

where features X and Y are from different lan-
guages. They are extracted from the input embed-
ding layers as we are interested in how different
input types (i.e., orthographic vs. phonemic) affect
cross-lingual alignment, and Muller et al. (2021b)
finds that cross-lingual alignment happens in the
lower layers of the model. We use this similarity
scores computed with CKA to refer to linguistic
gaps, where smaller CKA score means larger lin-
guistic gap.

3.5 Implementation Details
Models were trained for 30 epochs on a single
NVIDIA A5000 GPU for POS tagging, 30 epochs a
single NVIDIA A40 GPU for NER, and 20 epochs
on NVIDIA A6000 for XNLI. For all experiments,
batch size was set to 128 and AdamW (Loshchilov

and Hutter, 2018) optimization was used. Addition-
ally, cosine learning rate scheduler was adopted
with its initial learning rate set by grid search.
Learning rates used for each model on each lan-
guage are in the supplementary material.

3.6 Data Preparation
Languages. To evaluate token-level tasks, we
selected 10 languages with diverse typoloigi-
cal background—English(eng), French(fra),
Russian(rus), Italian(ita), Hungarian(hun),
Ukrainian(ukr), Korean(kor), Turkish(tur),
Finnish(fin), and Hindi(hin). First four languages
are high-resource languages, where English,
French, and Italian are written in Latin scripts
and Russian in Cyrillic. The other languages are
pre-trained on each model with moderate or small
amount of data, and are written in diverse scripts,
such as Hangul, Cyrillic and Devanagari. For
further analysis using sentence-level tasks, we
chose two low-resource languages—Swahili(swa),
and Urdu(urd)—to compare with a representative
high-resource language, English(eng).

Preprocessing. In order to prepare inputs for
a phoneme-based model, we employed G2P
(Grapheme-to-Phoneme) conversion to obtain an
IPA version of the input. This conversion was done
with Epitran3 (Mortensen et al., 2018) , an external
tool for G2P conversion. After converting to IPA,
phoneme segmentation with a python package, seg-
ments4, to identify each phoneme. Lastly, to make
it compatible with XPhoneBERT’s tokenizer, white
space was inserted between every phoneme.

4 Results and Analysis

Here, we present our observations and analyses
of the results. We first discuss the behavior of
phoneme-based model towards low-resource lan-
guages and writing systems, which contributes
to robust cross-lingual performance. Next, we
delve into the performance and linguistic gaps of
phoneme-based models through empirical and the-
oretical analyses.

4.1 Phoneme-based Model on Low-Resource
Languages and Writing Systems

We observe that phoneme-based model shows
promising performance in low-resource languages

3https://github.com/dmort27/epitran
4https://pypi.org/project/segments/
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Method Language Performance gap Linguistic Gap

eng fra rus ita hun ukr kor tur fin hin Std. (↓) Mean RPD (↓) Mean CKA (↑)

Named Entity Recognition

Character 87.13 91.27 91.80 92.26 93.14 93.88 84.11 92.92 90.45 87.68 0.0316 4.02 0.4584
Phoneme 83.61 89.42 89.60 90.56 91.89 92.76 87.19 92.35 89.23 88.23 0.0259 3.52 0.7195

Part-of-Speech Tagging

Character 96.62 95.54 87.91 96.06 74.57 85.79 86.71 90.49 91.78 96.81 0.0692 8.77 0.4593
Phoneme 95.94 96.35 86.69 96.37 85.87 91.32 85.82 91.11 93.76 96.94 0.0455 5.80 0.7204

Table 1: Performance of POS tagging and NER across different languages. Std. refers to the standard deviation of
the scores across the languages, and Mean RPD indicates average relative difference of F1 scores between different
languages. Mean CKA represents the average linguistic gap between languages.

and writing systems (scripts). Results from Ta-
ble 1 show that phoneme-based model outperforms
the character-based model on NER task, in lan-
guages written in scripts other than major scripts5—
Korean and Hindi. This can be attributed to the
fact that named entities, such as geopolitical or
personal names, are often pronounced similarly
across languages. When different writing systems
and scripts are used, models may struggle to align
such entities. However, representing them in IPA
characters that reflect their pronunciations helps
the model to better align these entities, resulting
in better cross-lingual transfer. This results align
with findings from Muller et al. (2021a); Sohn et al.
(2024), which focus on unseen languages, whereas
we observe this phenomenon with diverse ‘seen’
languages.

Results also demonstrates the potential of
phoneme-based model in addressing low-resource
languages. As shown in Table 2, the phoneme-
based model achieves a smaller gap when trans-
ferred to low-resource languages such as Swahili
and Urdu, compared to other baselines. This find-
ing is further analyzed in Section 4.2

4.2 Performance Gap Across Languages
We observe that the phoneme-based model consis-
tently exhibits the smallest performance gap across
diverse languages, highlighting its robustness in
cross-lingual tasks. In Table 1, we present the
standard deviation (Std.) and average percentage
difference (Mean diff.) for all models, which re-
flect the variability in performance across different
languages. The phoneme-based model exhibits
both a lower standard deviation and a smaller aver-
age percentage difference in the NER and POS

5Latin and Cyrillic are scripts that are used the most dur-
ing the pre-training phase.

Method

Language

eng swa urd

Acc. Acc. ∆ from eng Acc. ∆ from eng
(Rel./Abs.) (Rel./Abs.)

Subword 80.80 62.93 24.87 / 17.87 61.57 27.01 / 19.23
Character 75.02 59.72 22.71 / 15.30 56.55 28.08 / 18.47
Phoneme 71.89 60.88 16.59 / 11.01 56.10 24.67 / 15.79

Table 2: Accuracy (%) and relative/absolute perfor-
mance gaps on XNLI task. eng, swa, and urd refer
to English, Swahili, and Urdu, respectively, and relative
difference is computed with RPD. Phonemic representa-
tion shows relatively small performance gaps compared
to other representations.

tasks, demonstrating its relatively stable perfor-
mance across different languages.

Table 2 provides additional evidence by show-
ing that the phoneme-based model achieves a
smaller gap in performance between English and
other low-resource languages—Swahili(swa) and
Urdu(urd)—compared to other models. We report
both relative and absolute differences in perfor-
mance, with the relative difference calculated as
described in Section 3.3.

While subword-based mBERT achieves the high-
est scores, the performance gaps between models
narrow when applied to low-resource languages,
with outperforming the phoneme-based model by
8.91% in English and by 2.05% and 5.47% in
Swahili and Urdu, respectively. This reflects
subword LM’s significant performance drops on
low-resource languages, while highlighting the
phoneme-based LM’s robustness in cross-lingual
transfer to such languages. The leftmost panel
of Figure 3 also illustrates the performance gaps
of each model, where the phoneme-based model
predominantly displays lower gaps compared to
others.

These metrics collectively suggest that phone-
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Figure 2: Linguistic gaps across languages in each model. (Center) Upper and lower triangular elements of
the heatmap indicate pairwise linguistic gaps derived with character-based model and phoneme-based model,
respectively. Darker color indicates larger CKA score, which means smaller discrepancy. Lower triangular elements
show relatively darker colors, implying smaller discrepancies across languages of phoneme-based model. (Left,
right) T-SNE plots for each model are shown with only five languages, for better visibility.

mic representations offer a more consistent perfor-
mance in multilingual settings, reducing the dispar-
ities typically observed when models are applied
to languages with varying resource availability.

4.3 Linguistic Gap of Different
Representations

To investigate the potential of phonemes as a robust
representation for multilingual language modeling,
we analyze the linguistic gap between languages us-
ing different input representations. Following Yang
et al. (2022); Muller et al. (2021b), we use linear
CKA to quantify representation similarity across
languages. Figure 2 shows the pairwise similarities
between languages, with the lower triangle of the
heatmap, which corresponds to phonemic repre-
sentations, demonstrating higher similarity values.
This indicates a smaller linguistic gap compared
to models that use orthographic inputs, contribut-
ing to a smaller performance gap. Moreover, the
t-SNE plots placed in both sides show how the
distributions of the representations from different
languages resemble each other. Phoneme-based
model exhibits more similar distribution across lan-
guages.

Figure 3 further supports these observations by
showing the linguistic gap after fine-tuning on the
XNLI task. The plot in the center illustrates that
phonemic representations have higher CKA scores
than other baseline models, indicating closer align-
ment between language representations. As XNLI
directly learns to build a sentence representation
during fine-tuning, we extract the representation
from the last hidden layer unlike in other token-

level tasks. Additionally, by using Sinkhorn dis-
tance to compare the logit space, we observe that
the phoneme-based model shows lower distances,
reflecting more consistent predictions across lan-
guages.

These results highlight the potential of phonemic
representations to address the performance gaps
that challenge multilingual language models, par-
ticularly in bridging the gap between high-resource
and low-resource languages by more similar repre-
sentations.

4.4 Connecting Performance Gap and
Linguistic Gap

Correlation Analysis. Meanwhile, one may
speculate the low-performance gap of the phoneme-
based model can be driven by the low English per-
formance rather than reducing the linguistic gap.
To clarify this, we simulate 15 repeated runs (with
different random seeds) of phonemic representa-
tion using 10% of the XNLI train dataset over En-
glish, Swahili, and Urdu. After computing the best
performance per each language, Sinkhorn distance
(S-Dist), and CKA between English and the other
two languages, we conducted correlation analyses
by performing hypothesis tests with Spearman’s
rank correlation coefficient and Kendall’s Tau.

As can be seen from Table 3, rather than the En-
glish performance, S-Dist and CKA have stronger
correlations, indicating that the linguistic gap has
stronger correlations that are statistically signifi-
cant (with a significant level less than 0.01).
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Figure 3: Qualitative analysis of performance gap (difference of accruacy) on XNLI task. (Left) the absolute
difference between performance across two languages, (center) centered kernel alignment (CKA) scores to measure
cross-lingual embedding similarity, and (right) Sinkhorn distance on the output probability space. Phonemic
representation shows relatively small performance gaps w.r.t. eng ↔ swa and eng ↔ urd, and these gaps are
correlated with similarity and discrepancy on the embedding space (CKA) and logit space (Sinkhorn distance).

Correlation Spearman’s R Kendall’s T

coefficient p-value coefficient p-value

Performance Gap <-> eng Performance 0.111 5.60E-01 0.104 4.30E-01

Performance Gap <-> S-Dist 0.681 3.50E-05 0.457 2.00E-04

Performance Gap <-> CKA -0.782 3.40E-07 -0.577 2.10E-06

Table 3: Correlation analysis with 45 phoneme-based models. We fine-tune the phoneme-based language model
XPhoneBERT on three languages, eng, swa, and urd, with 15 different random seeds and conduct two types of
correlation analyses.

Theoretical Analysis. We aim to diminish the
performance gap between different languages by
adopting IPA as a universal language representa-
tion. Motivated by domain adaptation literature
(Kifer et al., 2004; Ben-David et al., 2010), we
present a theoretical justification of IPA for ro-
bust multilingual modeling by deriving a bound
for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input X , such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X → {0, 1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X → {0, 1} that is expected to minimize a
risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has
a small risk-deviation over two domains DA and
DB . Then, to formalize the cross-lingual perfor-
mance gap, we first need a discrepancy measure
between two languages. By following Ben-David
et al. (2010), we adopt H-divergence (See Ap-
pendix C for its definition) to quantify the distance
between two language distributions.

Now, based on Lemma 1 and 3 of Ben-David
et al. (2010), we make reasoning on performance
gap over different language domains.

Theorem 4.1. Let h : X → [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. If D̂A and D̂B are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from DA and DB respectively, then
for any δ ∈ (0, 1), and for all h, the bound below
hold with probability at least 1− δ.

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B)

+2

√
d log(2n) + log(2/δ)

n

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given
⊕ as a xor operation (proof is in Appendix C). We
see that performance gap between two lanauges is
bounded from above with a distribution divergence
plus an irreducible term defined by problem setup.
That is, if we reduce the divergence between lan-
guage distributions, the expected performance gap
can also be reduced accordingly.

To investigate whether this is indeed a case or
not, we provided embedding space similarity and
logit-space Sinkhorn distance (Cuturi, 2013) be-
tween different languages in Figure 3. We argue
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that phonemic representation’s relatively mild per-
formance gap is achieved by reducing linguistic
gaps which is confirmed in the embedding space
(high CKA) and final output space (low Sinkhorn
distance).

5 Conclusion

Towards robust multilingual language modeling,
we argue that mitigating the linguistic gap between
different languages is crucial. Moreover, we advo-
cate the use of IPA phonetic symbols as a universal
language representation partially bridges such lin-
guistic gaps without any complicated cross-lingual
training phase. Empirical validation on three repre-
sentative NLP tasks demonstrates the superiority of
phonemic representation compared to subword and
character-based language representation in terms
of the cross-lingual performance gap and linguistic
gap. Theoretical analysis of the cross-lingual per-
formance gap explains such promising results of
phonemic representation.

6 Limitations

While we have shown that phonemic representa-
tion induces a small cross-lingual linguistic gap,
therefore a small performance gap, the absolute per-
formance of this phonemic representation is still
lacking compared to subword-level models. We
spur the necessity of putting research attention to
developing phoneme-based LMs. Moreover, there
is no such large phonemic language model beyond
the BERT-base-size architecture, so we confine the
scope of our empirical validation to BERT-base-
size LMs. This also means the experiments rely on
existing pre-trained models, limiting control over
their pre-training settings. Since the models were
trained on different language sets and pre-training
objectives (as noted in 3.1), it is important to verify
these findings in a controlled environment. Addi-
tionally, we performed evaluation with a limited
languages (up to 12), so it is unclear whether IPA
language representations are effective for other nu-
merous languages (especially low-resource ones)
or not.
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A Dataset Statistics

In Table 4, we provide the dataset statistics. For
the experiments, we used train set for training and
validation set for evaluation.

Dataset Lang. Train Dev Test

FLORES+

eng

- 1.2k -

fra
rus
ita
hun
ukr
kor
tur
fin
hin

XNLI
eng

393k 2.49k 5.01kswa
urd

WikiAnn

eng 20k 10k 10k
fra 20k 10k 10k
rus 20k 10k 10k
ita 20k 10k 10k
hun 20k 10k 10k
ukr 20k 10k 10k
kor 20k 10k 10k
tur 20k 10k 10k
fin 20k 10k 10k
hin 5k 1k 1k

UD

eng 12.5k 2k 2k
fra 14.5k 1.5k 0.4k
rus 16k 0.9k 0.9k
ita 13k 0.6k 0.5k
hun 0.9k 0.4k 0.4k
ukr 5.5k 0.7k 0.9k
kor 23k 2k 2.3k
tur 15k 1.6k 1.6k
fin 12k 1.4k 1.6k
hin 13k 1.7k 1.7k

Table 4: Dataset statistics for datasets used in experi-
ments: FLORES+, XNLI, WikiAnn, Universal Depen-
dencies Tree Bank. For FLORES+ dataset, we used
devtest set with 1,012 sentences.

B Hyperparameter sweep.

We sweep hyperparameters over grid below (in
Table 5), and select the final parameters for each
model based on the best validation performance
(Accuracy for XNLI and F1-score for NER and
POS Tagging).

C Details on Theoreoretical Analysis

We aim to diminish the performance gap between
different languages by adopting IPA as a univer-
sal language representation. Motivated by domain
adaptation literature (Kifer et al., 2004; Ben-David
et al., 2010), we present a theoretical justification of
IPA for robust multilingual modeling by providing
a bound for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input X , such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X → {0, 1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X → {0, 1} that is expected to minimize a
risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has
a small risk-deviation over two domains DA and
DB . Then, to formalize the cross-lingual perfor-
mance gap, we first need a discrepancy measure
between two languages. By following (Ben-David
et al., 2010), we adopt H-divergence to quantify
the distance between two language distributions.
Definition C.1 (H-divergence; Ben-David et al.
(2006)). Let H be a hypothesis class for input
space X and a collection of subsets from X is de-
noted by SH := {h−1(1)|h ∈ H} which is the
support of hypothesis h ∈ H. The H-divergence
between two distributions D and D′ is defined as

dH(D,D′) = 2 sup
S∈SH

|PD(S)− PD′(S)|

H-divergence is a relaxation of total variation be-
tween two distributions, and it can be estimated by
finite samples from both distributions if H governs
a finite VC dimension. Now, based on Lemma 1
and 3 of Ben-David et al. (2010), we make reason-
ing on performance gap over different language
domains.
Theorem C.2. Let h : X → [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. If D̂A and D̂B are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from DA and DB respectively, then
for any δ ∈ (0, 1), and for all h, the bound below
hold with probability at least 1− δ.

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B)

+2

√
d log(2n) + log(2/δ)

n

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given
⊕ as a xor operation.
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Task Hyperparam Search space Selected parameter value

mBERT CANINE XPhoneBERT

XNLI
learning rate [5e-6, 7e-6, 1e-5, 3e-5, 5e-5] 5e-6 5e-6 (en), 1e-5 (sw, ur) 7e-6 (en), 3e-6 (sw, ur)
weight decay [0.0, 1e-1, 1e-2, 1e-3] 0.01 0.1 (en), 0.0 (sw), 0.01 (ur) 0.1 (en), 0.0 (sw), 0.01 (ur)

learning rate scheduling [True, False] True True False

NER learning rate [3e-5, 5e-5, 1e-4, 3e-4] - 5e-5 (en, fr, it, hu, ko, tr), 1e-4 (ru, uk, fi, hi) 3e-5 (ru, it), 5e-5 (en, fr, hu, uk, tr, fi, hi), 1e-4 (ko)
weight decay 1e-2 - 1e-2 1e-2

POS learning rate [3e-5, 5e-5, 1e-4, 3e-4] - 5e-5 (ru, uk, tr), 1e-4 (en, fr, fi, hi), 3e-4 (it, hu, ko) 5e-5 (en), 1e-4 (fr, ru, it, hu, uk, ko, tr, fi, hi)
weight decay 1e-2 - 1e-2 1e-2

Table 5: List of hyperparameter, search spaces and selected parameter values for different models applied to XNLI,
NER, and POS tasks, detailing learning rate, weight decay, and learning rate scheduling for mBERT, CANINE, and
XPhonemBERT, with specific configurations for optimal model performance per task.

proof of Theorem B.2. we start to prove Theorem
B.2. by restating Lemma 1 of (Ben-David et al.,
2010) adapted to our notation.

Lemma C.3. Let DA and DB be distributions of
domain A and B over X , respectively. Let H be
a hypothesis class of functions from X to [0, 1]
with VC dimension d. If D̂A and D̂B are the n-size
empirical distributions generated by DA and DB

respectively, then, for 0 < δ < 1, with probability
at least 1− δ,

dH(DA,DB) ≤ dH(D̂A, D̂B)

+ 4

√
d log(2n) + log(2/δ)

n
.

Then, for any hypothesis function h, h′ ∈ H, by
the definition of dH∆H-divergence, we have:

dH∆H(DA,DB)

= 2 sup
h,h′∈H

|Px∼DA [h(x) ̸= h′(x)]− Px∼DB [h(x) ̸= h′(x)]|

= 2 sup
h,h′∈H

|εDA(h, h
′)− εDB (h, h′)|

≥ 2|εDA(h, h
′)− εDB (h, h′)|

Now the below bound holds for any hypothesis
functions h, h′ ∈ H (See Lemma 3 of (Ben-David
et al., 2010)).

|εDA
(h, h′)− εDB

(h, h′)| ≤ 1

2
dH∆H(DA,DB)

Finally, by plugging the Lemma C.3 into the above
bound, we have Theorem C.2.

From Theorem C.2, we see that the difference
between true risks across language domains is
bounded by an empirical estimation of the diver-
gence (dH∆H) between those two domains plus an
irreducible term defined by problem setup. Thus, if

we reduce the divergence between language distri-
butions, the expected performance gap can also be
reduced accordingly. To investigate whether this is
indeed a case or not, we provided the embedding-
space similarity and logit-space Sinkhorn distance
between different languages in Figure 3. We ar-
gue that phonemic representation’s relatively mild
performance gap is achieved by reducing linguistic
gaps in the embedding space (high CKA) and final
output space (low Sinkhorn distance) those are the
proxy of H-divergence.
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