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1 Creoles in Machine Translation

Creole languages are low-resource languages, of-
ten genetically related to languages like English,
French, and Portuguese, due to their linguistic his-
tories with colonialism (DeGraff, 2003). As such,
Creoles stand to benefit greatly from both data-
efficient methods and transfer-learning from high-
resource languages. At the same time, it has been
observed by Lent et al. (2022b) that machine trans-
lation (MT) is a highly desired language technol-
ogy by speakers of many Creoles. To this end,
recent works have contributed new datasets, al-
lowing for the development and evaluation of MT
systems for Creoles (Robinson et al., 2024; Lent
et al., 2024). In this work, we explore the use
of the limited monolingual and parallel data for
Creoles using parameter-efficient adaptation meth-
ods. Specifically, we compare the performance of
different adapter architectures over the set of avail-
able benchmarks. We find adapters a promising
approach for Creoles because they are parameter-
efficient and have been shown to leverage trans-
fer learning between related languages (Faisal and
Anastasopoulos, 2022). While we perform experi-
ments across multiple Creoles, we present only on
Haitian Creole in this extended abstract. For future
work, we aim to explore the potentials for leverag-
ing other high-resourced languages for parameter-
efficient transfer learning.

2 Methodology and Experiments

To train adapters for Haitian, we use monolingual
data from NLLB-OPUS (Fan et al., 2020), and the
parallel CreoleM2M training split from CREOLE-
VAL (Lent et al., 2024). For evaluation, we lever-
age two evaluation datasets from CREOLEVAL: the
CreoleM2M evaluation split and the MIT-Haiti Cor-
pus for MT; we also evaluate over FLORES-200
(Goyal et al., 2022) (see Table 1).

All experiments are conducted with Kreyòl-MT,

Dataset Domain Size (#lines)
NLLB-OPUS Web scrape ∼15M
FLORES-2003 Wikipedia 3,001

CreoleM2M Religion
208,772 (train)

1,000 (eval)
MIT-Haiti3 Education 1,559

Table 1: Datasets used in our preliminary experiments.
A 3 indicates the dataset is used only as evaluation data.

Method Source Config name
Bottleneck Houlsby et al., 2019 double_seq_bn

+ Invertible Houlsby et al., 2019 ._inv
Compacter Mahabadi et al., 2021 compacter
LoRA Hu et al., 2021 lora
(IA)3 Liu et al., 2022 ia3

Table 2: Adapter architectures compared in our experi-
ments (Table adapted from Poth et al., 2023). We also
experiment with prefix tuning adapters (Li and Liang,
2021) and bottleneck adapters from Pfeiffer et al. (2020),
which differ only from those of Houlsby et al. (2019) in
adapter placement. However some preliminary experi-
ments found they performed worse than these five.

an mBART-50 model fine-tuned on the KREYÒL-
MT dataset (Robinson et al., 2024). Furthermore,
we apply dNLLB-200, a 600M-parameter distil-
lation of the original 54B-parameter NLLB-200
model as a baseline (NLLB Team et al., 2022).
Both models have 12 encoder and 12 decoder lay-
ers, 16 attention heads, and 1024 dimensions, and
each model have their own model vocabularies of
over 250,000 sentence-piece tokens shared across
all languages.

2.1 Experiments

Following Üstün et al. (2021), we attempt to lever-
age monolingual data to improve MT performance
by training denoising adapters added to the encoder,
the decoder, or or both components of Kreyòl-
MT model. Additionally, we experiment with or
without cross-attention (CA) fine-tuning between
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eng→hat hat→eng

eval set: CreoleM2M FLORES MIT-Haiti CreoleM2M FLORES MIT-Haiti
compacter 42 28 35 76 40 31
double-seq-bn 40 27 34 77 38 32
double-seq-bn-inv 41 26 35 76 37 32
ia3 42 28 34 77 39 32
lora 42 28 35 79 38 31
Kreyòl-MT w/ CA 42 27 35 75 40 31
Kreyòl-MT 33 27 32 66 40 30
NLLB 22 26 33 34 37 36

Table 3: Average BLEU scores across each evaluation benchmark. Different adapter methods are on top, while
baselines are on bottom.

the components. We evaluate using a number of
adapter architectures (see Table 2) which to our
knowledge have not yet been directly compared
against each other.

In preliminary experiments we narrowed down
all adapters from AdapterHub1 to the five best per-
forming, as shown in Table 2. We compare ap-
pendage of these adapters to three baseline models:
Kreyòl-MT out-of-the-box, Kreyòl-MT with CA
fine-tuning, and the 600M-parameter NLLB-200
model (NLLB Team et al., 2022).

2.2 Results

We find that some adapter architectures are more
amenable to Üstün et al. (2021)’s monolingual
adaptation methodology, as demonstrated by their
relative increased performance over baselines (see
Table 3). However, these scores consistently drop
as the quality and cultural relevance of the data in-
creases (i.e., we observe much better performance
on the religious-domain samples from CreoleM2M,
and worse performance on MIT-Haiti, which is cul-
turally appropriate data sourced from the commu-
nity). Regarded holistically, even the best adapters
do not consistently improve over CA fine-tuning
between encoder and decoder, and they either im-
prove or degrade performance by only marginal
amounts. Our results also suggest that CA fine-
tuning generally helps performance.

3 Conclusion and Future Work

While gains over baselines were reached via the
monolingual adaptation, most Creoles do not have
lage amounts of web-scraped data, as found in
NLLB-OPUS. Thus, the ability to leverage data

1https://docs.adapterhub.ml/overview.html

and transfer from closely related languages to Cre-
oles has great potential for bolstering Creole MT.
To this end, we plan experiments for parameter-
efficient transfer learning, inspired by Faisal and
Anastasopoulos (2022), who found success with
phylogenetically-motivated adaptation. The appli-
cation of phylogenetic adaptation for Creoles is not
straight-forward, however. There is no consensus
phylogeny of Creoles or even their broader lan-
guage families (Bakker et al., 2011; Aboh, 2016).
Simultaneously, previous works have shown that
transfer learning to Creoles from related languages
is nontrivial (Lent et al., 2022a, 2024; Robinson
et al., 2022, 2023). Thus an important area of Cre-
ole MT remains selecting favorable languages for
transfer learning.

In addition to phylogentic relation, we are explor-
ing selection of transfer languages via embedding
clustering. We cluster NLLB-200 language token
embeddings with cosine and Euclidean distance,
and identify Afrikaans, Igbo, and Yiddish as the
nearest neighbors of Haitian. These are interesting
findings, since Igbo is one of Haitian’s hypothe-
sized relatives (Seguin, 2020), and Yiddish and
Afrikaans are Indo-European languages influenced
by Afroasiatic and South African Khoisan lan-
guages, respectively—which appears analogous to
Haitian’s mixed Indo-European and Niger-Congo
influences. We also explore measuring vocabu-
lary subword evenness, as introduced by Pelloni
et al. (2022), as a more helpful language selection
method than simple typological proximity. While
experiments are still underway, these explorations
will help establish the languages amenable to cross-
lingual transfer for Creoles, and ultimately the de-
gree to which cross-lingual adaptation methods can
benefit speakers of Creoles.
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