@inproceedings{skianis-etal-2024-leveraging,
title = "Leveraging {LLM}s for Translating and Classifying Mental Health Data",
author = {Skianis, Konstantinos and
Do{\u{g}}ru{\"o}z, A. Seza and
Pavlopoulos, John},
editor = {S{\"a}lev{\"a}, Jonne and
Owodunni, Abraham},
booktitle = "Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.mrl-1.20",
pages = "236--241",
abstract = "Large language models (LLMs) are increasingly used in medical fields. In mental health support, the early identification of linguistic markers associated with mental health conditions can provide valuable support to mental health professionals, and reduce long waiting times for patients.Despite the benefits of LLMs for mental health support, there is limited research on their application in mental health systems for languages other than English. Our study addresses this gap by focusing on the detection of depression severity in Greek through user-generated posts which are automatically translated from English. Our results show that GPT3.5-turbo is not very successful in identifying the severity of depression in English, and it has a varying performance in Greek as well. Our study underscores the necessity for further research, especially in languages with less resources.Also, careful implementation is necessary to ensure that LLMs are used effectively in mental health platforms, and human supervision remains crucial to avoid misdiagnosis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="skianis-etal-2024-leveraging">
<titleInfo>
<title>Leveraging LLMs for Translating and Classifying Mental Health Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Skianis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Pavlopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonne</namePart>
<namePart type="family">Sälevä</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="family">Owodunni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) are increasingly used in medical fields. In mental health support, the early identification of linguistic markers associated with mental health conditions can provide valuable support to mental health professionals, and reduce long waiting times for patients.Despite the benefits of LLMs for mental health support, there is limited research on their application in mental health systems for languages other than English. Our study addresses this gap by focusing on the detection of depression severity in Greek through user-generated posts which are automatically translated from English. Our results show that GPT3.5-turbo is not very successful in identifying the severity of depression in English, and it has a varying performance in Greek as well. Our study underscores the necessity for further research, especially in languages with less resources.Also, careful implementation is necessary to ensure that LLMs are used effectively in mental health platforms, and human supervision remains crucial to avoid misdiagnosis.</abstract>
<identifier type="citekey">skianis-etal-2024-leveraging</identifier>
<location>
<url>https://aclanthology.org/2024.mrl-1.20</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>236</start>
<end>241</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Leveraging LLMs for Translating and Classifying Mental Health Data
%A Skianis, Konstantinos
%A Doğruöz, A. Seza
%A Pavlopoulos, John
%Y Sälevä, Jonne
%Y Owodunni, Abraham
%S Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F skianis-etal-2024-leveraging
%X Large language models (LLMs) are increasingly used in medical fields. In mental health support, the early identification of linguistic markers associated with mental health conditions can provide valuable support to mental health professionals, and reduce long waiting times for patients.Despite the benefits of LLMs for mental health support, there is limited research on their application in mental health systems for languages other than English. Our study addresses this gap by focusing on the detection of depression severity in Greek through user-generated posts which are automatically translated from English. Our results show that GPT3.5-turbo is not very successful in identifying the severity of depression in English, and it has a varying performance in Greek as well. Our study underscores the necessity for further research, especially in languages with less resources.Also, careful implementation is necessary to ensure that LLMs are used effectively in mental health platforms, and human supervision remains crucial to avoid misdiagnosis.
%U https://aclanthology.org/2024.mrl-1.20
%P 236-241
Markdown (Informal)
[Leveraging LLMs for Translating and Classifying Mental Health Data](https://aclanthology.org/2024.mrl-1.20) (Skianis et al., MRL 2024)
ACL