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Abstract

Dense retrieval systems are commonly used for
information retrieval (IR). They rely on learn-
ing text representations through an encoder
and usually require supervised modeling via la-
belled data which can be costly to obtain or sim-
ply unavailable. In this study, we introduce a
novel unsupervised text representation learning
technique via instruction-tuning the pre-trained
encoder-decoder large language model (LLM)
under the dual-encoder retrieval framework.
We demonstrate on multiple languages that
the corpus representation can be augmented
by the representations of relevant synthetic
queries generated by the instruct-tuned LLM
founded on the Rao-Blackwell theorem. Fur-
thermore, we effectively align the query and
corpus text representation with self-instruct tun-
ing. We evaluate our proposed method under
low-resource settings on three English, two Ger-
man and one Portuguese retrieval datasets mea-
suring NDCG@10, MRR@100, Recall@100.
We significantly improve the average zero-shot
retrieval performance on all metrics, increas-
ing out-of-box FLAN-T5 model variations by
[4.73%, 6.15%] in absolute NDCG@10 and ex-
ceeding four supervised dense retrievers.

1 Introduction

Dense retrieval systems typically employ dual-
encoder retrieval models which use two separate
encoders, either symmetric or asymmetric, to repre-
sent the query and corpus in any languages (Gillick
et al., 2018; Karpukhin et al., 2020b; Yang et al.,
2020; Dong et al., 2022). The corpora are in-
dexed with representation and will be retrieved
in response to each query based on the relevance
scores. The scores are usually calculated based on
embedding similarity, such as dot product or cosine
similarity. Although dense retrieval systems have
developed rapidly, the model performance largely
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depends supervised text representation learning and
relevancy capturing between the query and corpus
(Zhao et al., 2022). Yet, it remains to be a major
challenge to properly retrieve when lacking labeled
modeling data. Existing work (Ni et al., 2022a,b)
leveraged pre-trained large encoders (specifically
T5 models, Raffel et al. (2020)) to alleviate the
data thirst. However, their proposals still required
annotated datasets either by web mining or man-
ual annotation for fine-tuning in order to improve
the generalization ability of dual-encoder retrieval
models, for example, dealing with out-of-domain
data. An alternative solution is to train a dense
retrieval on synthetic query-corpus relevance pairs.
Ma et al. (2021) trains a question generation sys-
tem on general domain data and applies it to the
targeted domain to construct synthetic question-
passage data. To save the effort of training a task-
specific generation model on general data, like
Natural Questions (Kwiatkowski et al., 2019) or
MSMARCO (Nguyen et al., 2016), Promptaga-
tor (Dai et al., 2023) proposes to use pre-trained
large language models (LLMs), like FLAN (Wei
et al., 2022), as a few-shot query generator to build
the data for training the dual-encoder. However,
the synthetic queries are not directly leveraged at
inference, potentially causing gaps between train-
ing and inference of dense retrievers (Cho et al.,
2022). Earlier work, e.g., doc2query (Nogueira
et al., 2019b), concatenates the generated queries
with the corresponding corpus, aiming to enrich the
corpus representation with questions that the cor-
pus can potentially answer. An improved version,
docTTTTTquery (Nogueira et al., 2019a) lever-
ages pre-trained T5 models as the expansion model,
leading to more relevant synthetic queries and bet-
ter retrieval performance.

Different from the previous work, we demon-
strate directly on the embedding level instead of the
text level, that the synthetically generated queries’
embeddings can effectively augment the corpus rep-
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Figure 1: Illustration of the corpus representation aug-
mented by embedding of relevant and synthetic queries
generated by open-box and instruct-tuned LLMs.

resentation (Figure 1). Here, we propose an unsu-
pervised representation learning approach through
self-instructed-tuning leveraging the embedding
generation and sequence generation capability of
an encoder-decoder LLM. This approach consists
of two steps, i.e., self-instructed-learning and Rao-
Blackwellization. In the first step, we design
two instruction tasks, namely question generation
and keyword summarization, to generate synthetic
questions and keywords for each given corpus
via prompting a pre-trained LLM. Next, we ap-
ply filters to gate the synthetic data quality and
instruction-tune the pre-trained LLM (and its vari-
ant versions) on the filtered output (Step one in Fig-
ure 2). In the second step, we use the instruct-tuned
LLM to generate better synthetic questions and key-
words following the same instruction prompts as
in training. We then obtain the embeddings of the
newly generated synthetic questions and keywords
and that of corpus from the instruct-tuned encoder,
and take the weighted average as our augmented
corpus representation (Step two in Figure 2).

We consider the corpus representation learning
task as a problem of query embedding expectation
estimation. Based on the Rao-Blackwell theorem,
the crude estimator, corpus embedding, can be im-
proved by taking the conditional expectation given
the sufficient statistics, i.e., sample mean of the
embedding of their (synthetic) relevant queries and
keywords. Thus, we expect combining the raw cor-
pus embedding and synthetic query embedding to
achieve better corpus representation. Besides, by
aligning instruction-tuning and synthetic query gen-
eration, the retrieval model is directly optimized
on corpus representation during training. To as-
sess the effectiveness of our proposed method, we
compare retrieval method of corpus only embed-
ding with our augmented corpus representation,
models with and without instruction-tuning and

evaluate against four competitive dense retrievers
(i.e., mDPR (Zhang et al., 2021, 2022), mBART
(Tang et al., 2020), T-Systems (T-Systems, 2020),
Albertina-PT (Santos et al., 2024)). Our main con-
tributions are as follows:

• We propose a novel unsupervised text repre-
sentation learning approach for information re-
trieval (IR) by instruction-tuning a pre-trained
encoder-decoder with unlabelled corpus.

• We demonstrate our approach of using condi-
tional expectation of the relevant (synthetic)
query/keywords embedding the representation
of the corpus can be augmented effectively,
founded on the Rao-Blackwell theorem.

• We verify the effectiveness of the proposed
methods on three English, two German and
one Portuguese IR datasets. We significantly
improve the zero-shot average retrieval perfor-
mance with our unsupervised approach and
exceed four competitive supervised dense re-
trievers (Table 5 - 7).

2 Related Work

2.1 Instruction-tuning
Tuning pre-trained LLMs with (natural language
instruction, response) pairs to enhance models’
ability to follow instructions and understand user
intention. It is a rising paradigm in natural lan-
guage processing (NLP) to strengthen model’s gen-
eralizability on unseen tasks. FLAN (Wei et al.,
2022) significantly improves a 137B LLM’s zero-
shot performance via instruction learning on var-
ious NLP datasets with multiple instruction tem-
plates. InstructDial (Gupta et al., 2022) also shows
significant zero-shot performance boost in unseen
dialogues when applying instruction-tuning to dia-
logue domain. InstructGPT (Ouyang et al., 2022)
enhances GPT-3’s performance by fine-tuning it on
instructions and human feedback collected from
OpenAI API. Self-Instruct (Wang et al., 2023) fine-
tunes the open-box GPT-3 on its own generated
instructions and instances which achieved on par
performance of InstructGPT.

2.2 Dense Retrieval Text Representation
Text representation is the foundational component
of dense retrieval. Under dual-encoder framework,
it has been a long standing practice to represent
query and corpus with encoder only models, e.g.,
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Figure 2: A high-level overview of Encoder-Decoder corpus representation with our approach. In the instruction-
tuning step, given a set of instruction tasks (in our case keyword summarization: “Read the passage and summarize
keywords.” and question generation: “Read the passage and generate a question.”), the pre-trained LLM will
generate instruction following examples which are passed through filters for quality control. The filtered examples
form an instruction pool and are used to instruction-tune the open-box LLM. In the Rao-Blackwellization step, by
prompting the instruct-tuned LLM using the same instructions as before, synthetic questions and keywords are
generated for the corpus. Both the corpus and the generated sequences are encoded by the LLM encoder and the
weighted average of their embedding is used as corpus representation.

BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), such as in Sentence-BERT (Reimers
and Gurevych, 2019), ColBERT (Khattab and Za-
haria, 2020). Recently, Sentence-T5 (Ni et al.,
2022a) demonstrates superior performance with
encoder-decoder pre-trained LLM, T5. Moreover,
representing corpus with single representation may
not well model the fine-grained semantic interac-
tion between the queries and corpus. Poly-encoder
(Humeau et al., 2019) and ME-BERT (Luan et al.,
2020) learn multiple representations to better cap-
ture the corpus semantics and show significant im-
provement. Doc2query (Nogueira et al., 2019b)
and docTTTTTquery (Nogueira et al., 2019a) ap-
pend generated synthetic queries to the corpus and
thus enrich the semantic information.

3 Method

We propose an unsupervised text representation
learning approach through self-instructed-tuning a
pre-trained encoder-decoder LLM. First, we gener-
ate instruction following responses from an LLM

and instruction-tune the LLM itself with filtered
quality (natural language instruction, response)
pairs. Next, we compute the augmented corpus em-
bedding weighing in synthetic queries’ (e.g., ques-
tions, keywords) embeddings. Figure 2 presents
the overall flow of our approach.

3.1 Problem Scenario

Denote corpora as C1,C2,...,Cn, and their rele-
vant queries as Q11, Q12,...,Q21,..., where queries
Qi1,Qi2,... are relevant to the same corpora Ci. For
example, Q11 can be Harry Potter 1 and Q12

can be Harry Potter and the Philosopher’s
Stone, whereas C1 is Harry Potter and the
Sorcerer’s Stone. Qi = Qi1, ..., Qim

Given a pre-trained encoder-decoder LLM, be-
sides treating the encoder as a text representation
model, we consider it as a random variable, where
the sample space consists of the range of the possi-
ble embedding values, and the corresponding prob-
ability measure to each text portion.

Encoder(·) : text 7→ embedding (1)
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where the embedding refers to the sentence embed-
ding of the text.

We assume that an effective encoder maps each
group of Qi near a group center in the high-
dimensional space and also maps the corresponding
Ci to the surrounding area so that Qi and Ci are
well associated. For example, given Q21 ∈ Q2

query, the retrieval system will retrieve the C2 cor-
pora which is the closest to the query (Figure 1).
Corpus Embedding as an Expectation Estima-
tor The group center is a comprehensive depic-
tion of the entire group and is indicative to dis-
tinguish from other groups. With the pre-trained
Encoder(·), the group center is essentially the ex-
pected value of each group queries’ embeddings,
denoted by E(Encoder(Qi)). When we use the
embedding of the corpus, i.e., Encoder(Ci), as its
representation, we are using it to estimate the group
center E(Encoder(Qi)). This is effective when we
don’t have any information from the query group.
Application of the Rao–Blackwell theorem As-
sume we have relevant queries Qi1,Qi2, ..., Qim

for corpus Ci. Then 1
m

∑m
j=1

Encoder(Qij) is a sufficient statistics to estimate
E(Encoder(Qi)).

According to Rao–Blackwell Theorem: If g(X)
is any kind of estimator of a parameter θ, then
the conditional expectation of g(X) given T (X),
namely E(g(x)|T (x)), where T is a sufficient
statistic, is typically a better estimator of θ, and
is never worse. Plug in Equation (2), we get an
improved estimator for E(Encoder(Qi)), which is
E(Encoder(Ci)| 1m

∑m
j=1 Encoder(Qij)).

g(x) = Encoder(Ci)

T (x) =
1

m

m∑

j=1

Encoder(Qij)

θ = E(Encoder(Qi))

(2)

With some regularity assumptions, e.g., Ci ∈ Qi

and Ci = Qi1, the conditional expectation can be
written as

E(Encoder(Ci)|
1

m

m∑

j=1

Encoder(Qij))

=
1

m

m∑

j=1

Encoder(Qij)

=
1

m
Encoder(Ci) +

1

m

m∑

j=2

Encoder(Qij)

(3)

We expect to achieve better performance with this
formula for corpus representation. An intuitive

understanding is that it gets closer to the relevant
queries’ embedding in the vector space (Figure 1).

3.2 Synthetic Query Generation

Obtaining a comprehensive set of labeled queries
is labor-intensive and costly, especially in low re-
source setting. LLMs are known for its genera-
tive capability following well designed instructions.
Not only can the model generate text, but it also
can output the generation probability of the text.
We denote the generation model by LLM(·), then
the generation can be written as

Q̂ij , P̂ (Q̂ij) = LLM(Instruction+ Ci) (4)

where Q̂ij is the generated query and P̂ (Q̂ij) is
the generation probability. The instruction is a
pre-defined generation task, for example “write a
question for” or “what are the keywords of”.

3.3 Corpus Representation

Plug in the synthetic queries, let R(Ci) denote the
final representation of corpora Ci, Equation (3)
becomes a weighted average of the original corpora
embedding and its synthetic query embedding,
R(Ci) =̂ w0Encoder(Ci) +

(1− w0)
∑

j

P̂ (Q̂ij)Encoder(Q̂ij)

(5)

where w0 is a hyper-parameter that is tuned on
a subset of test queries. Equation (5) is our pro-
posed corpus representation for the dual-encoder
retrieval system. Note that we can generate differ-
ent types of synthetic queries in Equation (4) using
various instructions, and we can generate multiple
sequences for each instruction by adopting decod-
ing strategies such as beam search. We can also im-
prove the quality of the generated queries through
instruction-tuning as follows.

3.4 Instruction-Tuning the LLM

While LLM has reasonable text generation capabil-
ities, its ability to precisely follow specific instruc-
tions can be honed via instruction-tuning.

As we don’t have the query-corpora labeled data,
we propose to self-instructed-tuning the LLM on its
self-generated quality (i.e., gated) responses follow-
ing given instructions to enhance synthetic queries
generation relevance. This approach has demon-
strated its effectiveness (Wang et al., 2023). The
instruct-tuned LLM is then used to prepare the
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synthetic queries for the corpus representation aug-
mentation as in Equation (6).

Q̂ij , P̂ (Q̂ij) =

InstructTunedLLM(Instruction+ Ci)
(6)

We use the same instructions across the entire
framework, including generation and training. Fig-
ure 1 shows a schematic diagram that although the
generated queries from an open-box pre-trained
LLM may not effectively enrich the corpora, after
instruction-tuning, the generated synthetic queries
become more relevant and the corpus representa-
tion can be improved consequently.

4 Experiments

4.1 Datasets

In this work, we tested six IR datasets where the
summary of the database is shown in Table 1. En-
glish: (1) NFCorpus (Boteva et al., 2016) has
automatically extracted relevance judgments for
medical documents. (2) SciFact (Wadden et al.,
2020) consists of expert-annotated scientific claims
with abstracts and rationales. (3) SCIDOCS (Co-
han et al., 2020) has seven document-level tasks
from citation prediction, document classification,
and recommendation. German: (4) GermanQuAD
(Möller et al., 2021) has the relevant information
for high complex German QA with a large size of
corpora. (5) GermanDPR (Möller et al., 2021) is
a passage retrieval dataset which shares the same
corpus as GermanQuAD. Portuguese: (6) mMAR-
CO/PT (Bonifacio et al., 2021) is translated ver-
sion of MS MARCO (Bajaj et al., 2018) in Por-
tuguese with anonymized questions from Bing’s
search query logs. Due to computation resource
limits, we downsample the corpus in SCIDOCS,
GermanQuAD, GermanDPR and mMARCO/PT
datasets, where we ensure the downsampled corpus
include all relevant corpus for test queries. Note
that such downsampling does not prevent us from
fairly comparing the zero-shot retrieval efficacy
of our approach with open-box LLMs because all
experiments are performed under the same data set-
ting. To help the encoder capture the fine-grained
semantic interaction between queries and corpus,
we divide each corpora into multiple sentences us-
ing the PunktSentenceTokenizer 1 from nltk pack-
age and use the sentence level multi-representation

1https://www.nltk.org/api/nltk.tokenize.
PunktSentenceTokenizer.html

Table 1: Details of datasets used. The size of corpus
is downsampled to 15K in SCIDOCS, 10K in German-
QuAD and GermanDPR, and 7K in mMARCO/PT. Fil-
tered Queries: Generated synthetic queries from FLAN-
T5-Large with filtering.

Dataset Language #Test
Queries

Corpus
Size

#Filtered
Queries

NFCorpus English 323 3.6K 5.9K
SciFact English 300 5.1K 8.2K
SCIDOCS English 1K 25.6K 29.4K
GermanQuAD German 2K 2.8M 17.5K
GermanDPR German 1K 2.8M 17.5K
mMARCO/PT Portuguese 6K 8.8M 12.7K

Table 2: Average performance of FLAN-T5 with out-
of-box encoder-only embedder on Passage vs Sen-
tence level indexing. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models ♠ ♣ ♡
Base (Passage) 8.1 9.1 29.8
Large (Passage) 12.0 12.6 41.1

Base (Sentence) 23.1 25.0 49.0
Large (Sentence) 24.9 26.4 52.1

for the corpora, meaning that if any of the sentence
is retrieved, the passage is retrieved.

4.2 Baseline

We compare between the corpus-only representa-
tion and our proposed augmented corpus repre-
sentation in zero-shot experiments under the dual-
encoder framework. To obtain the representation
of a sequence from the encoder, we perform mean
aggregation over the last hidden state of each to-
ken (Ni et al., 2022a). We measure the relevance
between query and corpus using cosine similarity.

To understand the superiority of our approach,
we compare with four different state-of-the-art
(SOTA) models: (1) mDPR (Zhang et al., 2021,
2022) is a variation of DPR model (Karpukhin
et al., 2020a) which replaces BERT to multilingual
BERT (Devlin et al., 2019) to support non-English
languages for retrieval tasks. (2) mBART-Large
(Tang et al., 2020) is a multilingual Sequence-to-
Sequence generation model. It supports 50 lan-
guages and we consider it for comparison in same
model structure (i.e., encoder-decoder). (3) T-
Systems (T-Systems, 2020) is developed for com-
puting sentence embeddings for English and Ger-
man texts. It uses a XLM-RoBERTa (Conneau
et al., 2019) and is fine-tuned with English-German
datasets. (4) Albertina-PT (Santos et al., 2024) is a
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Table 3: Comparison of model performances with and without instruction-tuning. Base/Large: out-of-box FLAN-
T5-Base/Large. Instruct-Base/Large: FLAN-T5-Base/Large with instruction-tuning. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models NFCorpus SciFact SCIDOCS GermanQuAD GermanDPR mMARCO/PT Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

Base 12.2 26.6 15.8 29.6 28.5 66.3 6.4 13.4 17.7 49.4 45.8 83.2 41.5 37.8 81.3 20.4 19.1 51.0 26.6 28.5 52.6
Large 10.4 23.4 14.6 30.7 28.8 71.5 7.2 14.1 22.1 50.8 47.2 83.6 47.4 43.5 82.2 25.0 23.3 57.06 28.6 30.1 55.2
Instruct-Base 12.3 27.0 16.2 30.7 29.6 65.1 6.0 12.7 16.5 52.4 48.5 84.4 42.6 38.5 81.4 28.8 31.3 52.7 27.8 29.7 53.1
Instruct-Large 11.9 27.0 15.9 32.0 29.9 73.2 7.2 14.6 22.4 55.5 52.0 86.8 51.6 48.1 85.5 31.6 34.3 56.7 31.1 33.0 57.5

Table 4: Example of synthetic queries from FLAN-T5-Large according to the instruction-tuning.

Corpus Instruction Type Open-box Instruct-tuned

Fluorometric titration of E. coli single-stranded DNA binding
protein with various RNAs showed that the protein specifically
and cooperatively binds to its own mRNA. The binding inhibited
in vitro expression of ssb and bla but not nusA. This inhibition
takes place at a physiological concentration of SSB. The function
of the protein in gene regulation is discussed.

Keyword

The single-stranded DNA
binding protein(SSB)
specifically and cooperative
-ly binds to its own mRNA.

mRNA, protein, titration

This paper describes an aggregation and correlation algorithm
used in the design and implementation of an intrusion-detection
console built on top of the Tivoli Enterprise Console (TEC). The
aggregation and correlation algorithm aims at acquiring
intrusion-detection alerts and relating them together to expose a
more condensed view of the security issues raised by
intrusion-detection systems.

Question
What is the purpose
of the paper?

What is the purpose of
the aggregation and
correlation algorithm?

foundational model for European Portuguese. It is
based on the DeBERTa model (He et al., 2021) and
we consider this model as the competitive model
in Portuguese dataset. Lastly, we compare with
docTTTTTquery (Nogueira et al., 2019a) to under-
stand the effectiveness of our corpus representation
augmentation.

4.3 Encoder-Decoder Models

T5 is an encoder-decoder model pre-trained on a
combination of unsupervised and supervised tasks,
where each task is transformed into a text-to-text
format (Raffel et al., 2020). FLAN-T5 is an en-
hanced version of T5 fine-tuned on a mixture of
tasks (Wei et al., 2022). Considering that these
types of models are open source, offer various sizes,
support English, German and Portuguese, and have
an encoder-decoder architecture, we leverage the
FLAN-T5-Base and Large models in our experi-
ments.

4.4 Instruction Query Generation

For instruction query generation and instruction-
tuning, we consider two types of instructions (i.e.,
keyword summarization and question generation)
as shown in Figure 2. We also develop a filter to
improve the quality of generated instructions. If
the task is keyword summarization, the number of
keywords should be smaller than the half number

of sentences in corpus. If it’s question generation,
the generated sequence should end with a question
mark. The filter is simple, leaving room for further
improvement. The numbers of the filtered synthetic
queries are shown in Table 1.

4.5 Hyperparameter Setting

When performing instruction-tuning, we use the
same hyperparameter setting for all the models.
Specifically, we use the AdaFactor optimizer with
learning rate 0.0001, batch size 16, and the number
of epochs 30. Early stopping is performed when
the validation loss shows no improvement for five
consecutive epochs.

When generating queries using FLAN-T5 mod-
els, we only consider one returned sequence for
each instruction and assume they are equally im-
portant. We denote the generated question and key-
words as ˆquestioni and ˆkeywordsi. We tested the
multiple weighting methods for corpus representa-
tion where the best approach is giving the weight
on the original corpus as w0 = 0.6, so that each
of ˆquestioni and ˆkeywordsi has the weight 0.2.
Thus, the corpus representation is:
R(Ci) = 0.6× Encoder(Ci) + 0.2 ×
(Encoder( ˆquestioni) + Encoder( ˆkeywordsi))

(7)
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5 Results and Discussion

5.1 Corpora vs Sentence Indexing

We evaluate whether the sentence level multi-
representation can capture the semantic interaction
between the corpora and the query. Results for
FLAN-T5 models using encoder-only representa-
tion are shown in Table 2. The sentence level multi-
representation embedding technique outperforms
the corpora level single representation by a large
margin across all datasets. As the model size in-
creases, the performance also gets better. Note that
our approach uses no labeled data to achieve on par
performance as SOTA models, and sentence level
indexing is a way we do for chunking. According
to the promising empirical results, we will apply
the sentence level multi-representation technique
to all the following experiments.

5.2 Overall Results

Table 3 describes the performance of FLAN-T5
models regarding instruction-tuning. Overall, we
can mostly find the improvements of performances
in all metrics after instruction-tuning, especially in
non-English. This is mainly because the quality
of generated queries after instruction-tuning are
proper and detailed (Table 4), and also each syn-
thetic query is less overlapped which makes the cor-
pora distinguishable. The influence of instruction-
tuning is mostly greater in larger model since it
can have better generation capability and be more
affected by fine-tuning with instructions.

Table 5 - 7 compare ours with SOTA models in
zero-shot scenarios. In English datasets (Table 5),
instruct-tuned FLAN-T5-Base mostly outperforms
other baselines, except for T-Systems which is en-
hanced model for English and German and has a
bigger size. With instruct-tuned FLAN-T5-Large,
we exceeds all others in terms of average perfor-
mances. In German datasets (Table 6), instruct-
tuned FLAN-T5-Base shows the better overall per-
formances with smaller size which emphasizes the
resource-effectiveness of our approach. When we
consider the larger model, we significantly outper-
forms other SOTAs. Lastly, in Portuguese dataset
(Table 7), we slightly underperform than the com-
petitive baseline which only supports the single
language. By considering the larger model with
instruct-tuning, we exceed others with large gap.
Overall, our approach shows the effectiveness in
all languages, especially in non-English datasets.

5.3 Ablation Study
To deeply understand the effectiveness of our ap-
proach, we did the solid ablation study where we
exclude the GermanDPR and mMARCO/PT for
this study which always shows the similar pattern.
Optimal Corpus Representation From our find-
ings, new corpus representation based on synthetic
queries from instructions is useful to improve re-
trieval performances. To define the optimal weights
in corpus representation, we investigate four dif-
ferent weighting methods: (1) Equal: giving equal
weights for corpus and synthetic queries (i.e., key-
word, question). (2) Manual: same as Equation (7).
(3) BERTScore: Assigning the weights based on
BERTScore (F1) with BERT (Multilingual-Cased)
model (Devlin et al., 2018) as shown in Equation
(8), where X denotes ˆkeywordsi, ˆquestioni. (4)
BERTScoreSoftmax: applying Softmax on top of
BERTScore.

WeightX =
BERT(X,Ci)

1 + Sum(BERT(X,Ci)
,

WeightCi
=

1

1 + Sum(BERT(X,Ci))

(8)

Table 8 shows the overall performances of dif-
ferent weight approaches in corpus representation.
Firstly, the equal weight approach shows the worst
performance which confirms that the corpus ba-
sically contains the most relevant information for
queries which should be weighted more. Also, ex-
tracted keywords and questions mostly have the
essential contexts but partial information of cor-
pus which is not enough to include the semantic
meaning of corpus. Thus, manual weighting with
emphasis on corpus promises better result than
BERTScore approaches. Lastly, we generated the
corpus representation based on text-level concate-
nation (Nogueira et al., 2019a) where we confirm
the superiority of embedding-level representations.
Effectiveness of Instruction-tuning Table 4
gives the examples of generated synthetic queries.
In keyword summarization, open-box extracts
a simple copy of sentence as keywords while
instruction-tuning helps to observe the whole cor-
pus to extract the core keywords. For question
generation, open-box generates the general ques-
tion while instruction-tuning gives the detailed and
suitable questions which can be accountable by the
specific corpus.

Figure 3 shows the distributions of embeddings
of corpora and test queries with FLAN-T5-Large.
Overall, the weighted corpus representation and
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Table 5: Comparison with SOTA models (size) on English datasets. Instruct-Base/Large: FLAN-T5-Base/Large
with instruction-tuning. Metrics: ♠: NDCG@10, ♣: MRR@100, ♡: Recall@100.

Models NFCorpus SciFact SCIDOCS Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

mDPR (177M) 8.3 19.2 11.6 23.5 21.9 58.9 4.8 10.3 16.0 12.2 17.1 28.8
T-Systems (278M) 15.3 29.1 17.1 25.3 23.7 59.3 8.4 17.6 23.8 16.3 23.5 33.4
mBART-Large (331M) 1.9 5.9 4.6 23.9 22.5 52.5 3.6 7.8 12.7 9.8 12.1 23.3
Instruct-Base (109M) 12.3 27.0 16.2 30.7 29.6 65.1 6.0 12.7 16.5 16.4 23.1 32.6
Instruct-Large (341M) 11.9 27.0 15.9 32.0 29.9 73.2 7.2 14.6 22.4 17.0 23.8 37.2

Table 6: Comparison with SOTA models (size) on German datasets. Instruct-Base/Large: FLAN-T5-Base/Large
with instruction-tuning. Metrics: ♠: NDCG@10, ♣: MRR@100, ♡: Recall@100.

Models GermanQuAD GermanDPR Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

T-Systems (278M) 33.9 31.0 64.1 53.4 49.6 83.5 43.7 40.3 73.8
mBART-Large (331M) 34.1 31.5 63.3 30.8 27.4 64.2 32.5 29.5 63.8
Instruct-Base (109M) 52.4 48.5 84.4 42.6 38.5 81.4 47.5 43.5 82.9
Instruct-Large (341M) 55.5 52.0 86.8 51.6 48.1 85.5 53.5 50.1 86.1

Table 7: Comparison with SOTA on Portuguese dataset
mMARCO/PT. Instruct-Base: FLAN-T5-Base with
instruction-tuning. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Metric Albertina-PT
(139M)

mBART-Large
(331M)

Instruct-Base
(109M)

♠ 23.7 2.3 22.9
♣ 22.0 2.2 21.6
♡ 57.1 18.3 55.1

instruction-tuning spread out the corpora embed-
dings to make them distinguishable. It also helps to
locate the test queries closer to the corpora. Thus,
our approach helps to integrate the crucial and
detailed synthetic queries for corpus representa-
tion that leads to unique corpora representation to
achieve enhanced retrieval performances.
Effectiveness of Corpus Representation Aug-
mentation We compare with other corpus
representation augmentation, docTTTTTquery
(Nogueira et al., 2019a), to validate our corpus
augmentation. Here, we follow the default strategy
of docTTTTTquery: top-10 with 40 predictions
appending on corpus. According to Table 9, we
demonstrate significant improvement via our ap-
proach - embedding level augmentation with repre-
sentations from self-instructed-tuned model. Based
on this finding, we can confirm that augmenting
representation on embedding level is more effec-
tive than on input text level with concatenation
as docTTTTTquery, and our self-instructed-tuned
model performs better than their supervised repre-

sentation generation model.

Table 8: Effects of different weight methods for corpus
representation with FLAN-T5. Concatenation means
the appending corpus with synthetic queries in text-level
while others are done in embedding-level. Metrics: ♠:
NDCG@10, ♣: MRR@100, ♡: Recall@100.

Corpus Weights Models ♠ ♣ ♡

N/A
Base 22.0 26.0 43.5
Large 23.2 26.5 46.2

Equal
Base 18.3 22.0 38.8
Large 17.9 21.6 39.9

Manual
Base 24.4 28.6 45.8
Large 24.8 28.4 47.9

BERTScore
Base 22.4 26.1 43.6
Large 22.0 25.5 45.2

BERTScoreSoftmax
Base 20.1 23.6 40.7
Large 19.5 23.1 42.7

Concatenation
Base 15.8 18.9 36.7
Large 15.6 19.1 36.9

Table 9: Effects of different corpus representation aug-
mentation with FLAN-T5. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models ♠ ♣ ♡
docTTTTTquery (Base) 9.6 12.8 24.9
Our approach (Base) 22.0 26.0 43.5
docTTTTTquery (Large) 13.4 16.3 33.3
Our approach (Large) 23.2 26.5 46.2

6 Conclusion

In our research, we propose the unsupervised
text representation learning technique through self-
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Figure 3: t-SNE distributions for corpus representation generated from FLAN-T5-Large. (a-d) NFCorpus, SciFact,
SCIDOCS, GermanQuAD. (1-2) Original corpus, Weighted corpus with synthetic queries after instruction-tuning.

instructed-tuning encoder-decoder LLMs. Based
on the Rao-Blackwell theorem, we leverage the
embeddings of synthetically generated queries (i.e.,
questions and keywords) to augment the corpus
representation for the dual-encoder retrieval frame-
work. In zero-shot experiments, our proposed cor-
pus representation consistently improves the per-
formance over encoder-only corpus representation.
Even if the open-box LLM was not pre-trained on
retrieval task and there is no labeled modeling data,
after fine-tuning with our approach it exceeds the
SOTA models across different datasets, presenting
the high effectiveness and data efficiency of our
method in retrieval tasks.

In future work, we plan to explore our proposed
method on separate encoder and decoder models.
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