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Abstract

Language fairness in multilingual information
retrieval (MLIR) systems is crucial for ensur-
ing equitable access to information across di-
verse languages. This paper sheds light on the
issue, based on the assumption that queries
in different languages, but with identical se-
mantics, should yield equivalent ranking lists
when retrieving on the same multilingual doc-
uments. We evaluate the degree of fairness
using both traditional retrieval methods, and
a DPR neural ranker based on mBERT and
XLM-R. Additionally, we introduce ‘LaKDA’,
a novel loss designed to mitigate language bi-
ases in neural MLIR approaches. Our analy-
sis exposes intrinsic language biases in current
MLIR technologies, with notable disparities
across the retrieval methods, and the effective-
ness of LaKDA in enhancing language fairness.

1 Introduction

Information retrieval (IR) is the process of obtain-
ing relevant information from a large collection of
data according to a user’s information needs. This
information may exist in various formats, including
text documents, images, or videos. Conventionally,
the collection is a corpus of text documents, and
user information needs are expressed in plain text
queries. IR serves as a foundational technology
in numerous NLP applications including question-
answering systems (Abbasiyantaeb and Momtazi,
2020; Chen et al., 2017), and is also assuming
an increasingly pivotal role in supporting the ad-
vancement of Large Language Models (LLMs) for
text understanding and knowledge inference (Miao
et al., 2024; Zhu et al., 2024).

Multilingual information retrieval (MLIR) en-
tails queries being in different languages, with the
results for a query in a given language being across
multiple languages (including the source language
of the query). MLIR has particular importance as it
enables (multilingual) users to access information

Figure 1: The case of language bias studied in this
work. Semantically parallel queries retrieve the same
documents, but the ranking outputs are inconsistent.

that may be unavailable or limited in their native
language, thereby fostering cultural and linguistic
diversity.

Research has shown that MLIR systems often
exhibit biases towards certain languages due to
factors like morphological complexity (Park et al.,
2021) and resource availability (Lawrie et al., 2023;
Huang et al., 2023). For instance, Lawrie et al.
(2023) found that documents in higher-resource
languages tend to be ranked higher in MLIR. This
phenomenon is particular notable when the mod-
els are built upon multilingual pretrained models
(Yang et al., 2024).

Another case of language bias in MLIR is shown
in Figure 1. Given semantically equivalent queries
in different languages and the same documents, we
are interested in determining the consistency of the
obtained ranking lists. This forms the basis for our
investigation of language fairness in MLIR from a
query-level perspective.

Our study compares MLIR methods using se-
mantically equivalent queries in 24 European lan-
guages, which we use to search a fixed multilingual
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document collection. These parallel query sets are
from the original dataset, not machine-translated,
and are based on human-annotated document tags.
In repurposing them as queries and using the tags
as relevance judgements, we fashion a multilingual
IR collection with massively-multilingual parallel
query sets.

Our work makes four main contributions:1

1. Novel evaluation metric for fairness under
ranking: we propose the mean rank correla-
tion (MRC) score to evaluate language fair-
ness under MLIR, based on the premise that
semantically-equivalent queries in different
languages should yield consistent document
rankings.

2. Novel dataset: we develop the MultiEup-v2
dataset, consisting of semantically parallel
queries and multilingual documents, along
with demographic attributes. This dataset
serves as a benchmark for future fairness re-
search in MLIR.

3. Quantification of language (un)fairness: we
analyze language fairness in MLIR across dif-
ferent languages and language families, and
find that BM25 exhibits larger language bias
than neural retrieval frameworks like mDPR.
Additionally, higher-resource languages tend
to be associated with higher degrees of lan-
guage fairness.

4. Proposal of a new ranking bias mitiga-
tion method: we propose the language KL-
divergence alignment (LaKDA) loss to miti-
gate language bias in MLIR, demonstrating
its effectiveness within the mDPR neural re-
trieval framework with multilingual text en-
coders mBERT and XLM-R.

2 Language Bias in MLIR

In this section, we examine language bias in MLIR.
First, we introduce a novel metric for quantifying
language fairness, our evaluation benchmark, and
introduce a method for mitigating language bias.

2.1 MLIR Language Fairness Metric

We define fairness in MLIR as follows: queries
in different languages but with identical semantics
should yield equivalent ranking lists when executed
against the same multilingual document collection.

1The dataset and code are available from https://
github.com/jrnlp/MLIR_language_bias under an Apache
2.0 license.

Assume we have L languages and N queries
for each language. For language pair a, b ∈
{ℓ1, ℓ2, . . . , ℓL}, let:

Qa = {q(1,a), q(2,a), . . . , q(N,a)}

Qb = {q(1,b), q(2,b), . . . , q(N,b)}

represent the sets of all queries in languages a and
b, respectively, where q(i,a) is the i-th query in lan-
guage a and q(i,b) is the i-th semantically parallel
query in language b.

Assume a ranking method π produces a ranked
result list R(q(i,a), D) when given query q(i,a)
against document collection D. Then for each
query i and pair of languages (a, b), we compute
the ranking correlation RCi

(a,b) between the rank-
ing lists R(q(i,a), D) and R(q(i,b), D) using Spear-
man’s rank correlation (Oakes, 2010; Spearman,
1904):

RCi
(a,b) = corr(R(q(i,a), D), R(q(i,b), D))

Next, we compute the average correlation for lan-
guage a with query i with the other L−1 language
pairs, denoted as RCi

(a):

RCi
(a) =

1

(L− 1)

∑

1≤a<b≤L

RCi
(a,b)

The overall mean correlation score (MRC) for
a specific language a among L languages with N
queries is:

MRC@k(a) =
1

N

N∑

i=1

RCi
(a)

The MRC@k represents the average degree of
consistency between ranking lists for semantically
identical queries across all language pairs in the top-
k results. A higher MRC@k value indicates greater
fairness, reflecting a higher degree of equivalence
in the search results across different languages.

2.2 Mitigation Language Bias Methodology

Figure 2 demonstrates our co-training MLIR model
framework with two losses. Section 2.2.1 intro-
duces the unitized Dense Passage Retrieval (DPR)
loss for IR, and in Section 2.2.2 we propose Lan-
guage KL-Divergence Alignment (LaKDA) loss to
improve language fairness.
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Figure 2: Our model framework contains two parts: the IR component, and the parallel query component. For the
IR part, we adopt a DPR module for retrieval with DPR loss. For the parallel query part, we use the LaKDA loss to
improve MLIR language fairness.

2.2.1 DPR Loss
Dense passage retrieval (Karpukhin et al., 2020) is
a neural retrieval framework initially proposed for
monolingual supervised fine-tuning. This architec-
ture separately encodes queries and documents into
dense vectors, optimizing their alignment through
a contrastive loss. The goal is to maximize the simi-
larity between queries and their relevant documents
while minimizing it with irrelevant documents.

Assume we have a query q and a collection of
documents D = {d−1 , d+2 , d−3 , . . . , d−M}, where d+i
indicates a relevant document and d−j an irrelevant
document.

Let q be the dense vector representation of the
query, and d+

i and d−
j be dense vector representa-

tions of the corresponding documents.
The similarity between the query and each

document is computed using the dot product:
sim(q, d+i ) = q · d+ ⊺

i and sim(q, d−j ) = q · d− ⊺
j .

We then define the loss to be the negative log-
likelihood of the positive documents’ similarity
scores among all documents:

LDPR = − 1

N

N∑

i=1

log
exp(sim(qi, d

+
i ))

Zi

Zi = exp(sim(qi, d
+
i )) +

M∑

m=1

exp(sim(qi, d
−
i,m)).

This contrastive loss formulation ensures that the
query embedding is closer to the positive docu-
ment embedding than to any of the negative docu-

ment embeddings, thereby enhancing the model’s
retrieval performance.

2.2.2 LaKDA Loss
To further mitigate language bias in MLIR, we add
a Kullback-Leibler (KL) divergence term to mea-
sure the similarity of the distribution of retrieval
scores between the original and parallel-language
queries over a shared set of document embeddings.

For each query q(i, ℓa) and its parallel query
q(i, ℓb), we compute their similarity distributions
over the document embeddings as follows:

1. Compute Similarity Scores:

For the original query q(i, ℓa) and the parallel
query q(i, ℓb):

sim(i, ℓ) = q(i, ℓ)·D⊺ where ℓ ∈ {ℓa, ℓb}

2. Transform to Probability Distributions:

The similarity scores are transformed into
probability distributions using the softmax
function:

p(i, ℓ) =
exp(sim(i, ℓ))

∑M
j=1 exp(sim(i, ℓ)j)

3. KL Divergence Calculation:

The KL divergence between the similarity dis-
tributions of the original and parallel queries
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is defined as:

DKL(p(i, ℓb) ∥ p(i, ℓa)) =
M∑

j=1

p(i, ℓb)j log

(
p(i, ℓb)j

p(i, ℓa)j + ϵ

)

where ϵ is a small constant to avoid taking the
log of zero.

4. Overall LaKDA Loss:

The LaKDA Loss for all N queries is the
mean of KL Divergence over all queries:

LLaKDA =
1

N

N∑

i=1

DKL(p(i, ℓb) ∥ p(i, ℓa))

Finally, to balance information retrieval perfor-
mance and language fairness, we define a joint loss
function as a weighted combination of the DPR
loss LDPR and the LaKDA loss LLaKDA:

L = (1− α)LDPR + αLLaKDA (1)

where α is a tunable hyperparameter.

2.3 MLIR Language Fairness Benchmark
Overview The European Parliament (EP) serves
as a crucial forum for political debate and decision-
making in the European Union. During debates,
Members of the European Parliament (MEPs) dis-
cuss topics in their own languages, and debates
are then transcribed in the original languages, and
indexed with multilingual topics.

We constructed MultiEuP-v2 by expanding Mul-
tiEuP (Yang et al., 2023), taking the debate titles
as queries, and individual MEP speeches in a given
debate as documents. The documents are multilin-
gual, encompassing 24 languages from 8 language
families. Each query has parallel versions in all 24
languages, sourced from the original dataset. Addi-
tionally, we collected the basic demographic details
of each of the MEPs, making it the perfect target
for the study of fairness in an IR context, in terms
of both language and other protected attributes.

Dataset Statistics We partition the dataset into
mutually-exclusive train/dev/test sets to ensure that
the queries and documents in the three sets are dis-
tinct. Table 1 details the statistics of the dataset.
The number of unique queries is counted per lan-
guage; i.e., for the dev and test sets, each language
has 100 queries, with parallel versions across all 24

# Documents # Unique Queries
Train 44,961 1,623
Dev 2,787 100
Test 2,589 100

Table 1: Data size and unique query IDs in train, dev,
and test sets. The number of unique query IDs repre-
sents the counts for each language.

languages. The document collection is also made
up of documents from all 24 languages. Table 6 in
the Appendix shows the language distribution, with
languages such as English (EN), German (DE), and
French (FR) making up over 50% of the dataset in
terms of document count.

3 Experiments and Findings

Our language fairness experiment consists of two
main parts: the detection and comparison of lan-
guage bias among different ranking methods (Sec-
tion 3.1) and the mitigation of fairness bias (Sec-
tion 3.2).

3.1 Language Bias Detection

3.1.1 Detection Experiment Setting

We used the MultiEuP-v2 dataset in a many-vs-
many setting for traning, where both queries and
documents are multilingual to ensure language di-
versity. For evaluation, we adopted a parallel one-
vs-many approach, with queries in one language
and documents in multiple languages, enabling par-
allel comparison across different languages.

3.1.2 Detection Experiment Models

BM25 We implemented BM25, a commonly
used traditional information retrieval baseline, us-
ing Pyserini (Lin et al., 2021). Pyserini is built upon
Lucene (Yang et al., 2017). We used the default set-
tings (k1 = 0.9 and b = 0.4) and language-specific
analyzers.

DPR Our neural IR approach is based on DPR
and uses a bi-directional encoder to encode queries
and documents separately. We compare DPR per-
formance over two text encoders: mBERT with
bert-base-multilingual-uncased, and XLM-R with
xlm-roberta-base. In each case, the batch size was
set to 96 and the learning rate was 5e-5, with each
epoch taking approximately 40 minutes on a single
Tesla V100 GPU.
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MRR@100
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 87.6 59.8 29.6 25.5 21.4 59.6 58.2 33.9 51.7 49.7 39.9 33.4 22.6 30.9 32.5 28.2 22.9 20.3 19.6 22.8 21.6 18.1 12.6 16.5 34.1

mBERT

LDPR 42.8 39.4 37.1 36.3 33.9 38.3 41.0 38.3 39.2 40.1 39.9 37.9 36.9 39.0 39.7 37.9 32.5 32.2 30.7 35.8 33.7 30.6 27.0 14.5 35.6
+LMSE 29.1 28.7 25.8 22.5 26.5 26.2 27.0 26.2 26.9 26.8 26.9 25.9 22.8 25.7 26.0 26.3 22.7 23.7 23.3 20.0 22.9 16.3 15.6 12.2 24.0 (↓ 32.6%)
+LLaKDA 46.5 47.5 43.0 43.3 40.7 45.7 42.6 41.5 44.4 41.4 42.3 42.6 39.7 43.3 39.4 43.8 39.5 42.3 37.1 38.1 39.5 31.7 28.1 16.8 40.0 (↑ 12.4%)

XLM-R

LDPR 47.6 49.7 45.6 49.4 45.6 48.7 51.2 51.7 45.4 47.1 47.1 45.7 51.0 50.0 43.5 49.8 43.7 47.1 44.3 46.1 49.4 46.5 40.6 30.0 46.5
+LMSE 48.4 46.4 53.9 50.2 54.1 60.8 58.5 58.0 50.1 45.6 51.7 46.1 52.7 50.6 45.9 51.7 50.2 48.1 43.1 41.4 48.7 47.5 28.8 24.7 48.2 (↑ 3.7%)
+LLaKDA 70.0 65.3 65.6 68.8 69.1 69.0 62.0 66.0 67.3 60.7 69.1 57.3 62.2 61.4 64.4 63.4 62.6 59.2 56.7 61.5 60.7 55.4 34.9 30.8 61.0 (↑ 31.2%)

Table 2: The MLIR performance evaluation results on MultiEuP-v2. MRR@100 (×100) ranges from 0 to 100,
where values closer to 100 indicate better performance. Underscore indicates the best performance for mBERT,
and bold indicates the best performance for XLM-R. The symbol ↑/↓ indicates the percentage increase or decrease
compared to the vanilla setting LDPR. All differences are significant at p < 0.0005. Note the broad similarities in
results for a given language and also language family.

MRC@5
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 0.5 −1.0 1.4 −0.6 −0.5 −1.2 0.4 2.0 2.8 1.1 −0.3 1.8 3.2 −0.3 1.5 3.3 1.7 0.4 0.6 0.7 −2.4 1.0 −1.4 −0.5 0.6

mBERT

LDPR 12.9 15.0 15.9 15.2 12.8 12.9 15.4 15.1 14.4 13.7 14.6 15.2 15.6 15.5 13.8 16.0 7.3 13.0 10.3 10.6 11.3 12.9 10.2 5.3 13.1
+LMSE 14.3 15.6 12.2 14.5 14.6 15.5 13.5 18.3 17.1 15.5 15.5 14.4 10.7 15.5 14.3 17.2 13.2 14.2 12.1 12.1 12.7 6.5 13.7 7.7 13.8 (↑ 5.3%)
+LLaKDA 18.3 17.4 20.1 17.4 14.9 20.6 20.2 19.1 18.2 20.7 17.3 18.2 16.9 20.0 17.5 16.7 16.9 18.7 16.0 14.2 13.0 10.2 9.4 3.5 16.5 (↑ 25.6%)

XLM-R

LDPR 12.6 13.8 9.3 13.9 15.2 12.7 11.7 13.1 9.5 12.7 15.0 15.7 13.0 14.1 13.7 11.2 13.8 10.0 10.9 11.3 10.6 9.5 0.2 7.4 11.7
+LMSE 12.8 11.7 11.0 12.1 13.1 9.2 12.5 12.7 13.5 11.3 11.9 12.4 11.3 9.3 11.9 10.5 11.5 10.5 9.9 11.9 9.3 8.6 2.2 0.7 10.5 (↓ 10.3%)
+LLaKDA 12.9 20.1 15.8 18.5 18.6 19.3 15.9 16.2 16.9 18.0 17.2 16.0 17.0 16.5 18.3 18.3 17.5 16.6 15.5 16.4 14.3 12.9 6.7 6.2 15.9 (↑ 35.9%)

Table 3: The MLIR fairness evaluation results on MultiEuP-v2. MRC@5 (×100) ranges from −100 to 100, where
values closer to 100 indicate better fairness. Underscore indicates the best fairness for mBERT, and bold indicates
the best fairness for XLM-R.

3.1.3 Detection Evaluation and Findings
Performance Metrics To evaluate MLIR re-
trieval performance, we used the MRR@100 met-
ric, which represents the Mean Reciprocal Rank
for the top 100 documents (Radev et al., 2002;
Voorhees and Tice, 2000). For a single query, the
Reciprocal Rank (RR) is defined as RR = 1

rank ,
where rank is the position of the highest-ranked
relevant document. If no relevant document is re-
turned, the RR is set to 0. For multiple queries N ,
the MRR is the mean of RRs (Yang et al., 2023).

MRR =
1

N

N∑

i=1

1

ranki

Performance Findings Table 2 shows the
MRR@100 results for semantically identical
queries in different languages. The findings in-
clude: (1) for low-resource languages2 like Mal-
tese (MT) and Irish (GA), the MRR@100 is lower
than high-resource languages; (2) interestingly, de-
spite Maltese having more documents than Esto-
nian (ET) in our dataset (Table 6), the MRR@100

2Defined as those languages in Conneau et al. (2020) with
less than 0.5 GiB in training data.

disparity suggests that data augmentation alone
does not eliminate the inherent bias in pre-trained
IR models against low-resource languages; and (3)
DPR with mBERT is slightly better overall than
BM25, while DPR with XLM-R significantly out-
performs both BM25 and DPR with mBERT.

Fairness Findings When we evaluate language
fairness based on MRC@5 (see Section 2.1), we ob-
tain the results shown in Table 7. The main findings
are: (1) BM25 has lower language fairness than
DPR; (2) similarly to MRR@100, low-resource
languages (MT and GA) exhibit lower language
fairness than high-resource languages; and (3) ac-
cording to Figure 3, which shows the MRC@5
correlation between language pairs (noting that the
results are symmetric), languages in the same lan-
guage family (within the black squares) tend to
have higher MRC scores, esp. for the Germanic,
Romance, and Slavic language families (the dashed
square).

3.2 Language Bias Mitigation

Next we turn to the question of language bias miti-
gation.
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Figure 3: The MRC@5 matrix among parallel queries. The x-axis and y-axis both represent query languages.

3.2.1 Mitigation Experiment Setting
The training parameters and evaluation protocol
and metrics used to measure language bias miti-
gation are consistent with those described in Sec-
tion 3.1.

3.2.2 Mitigation Experiment Models
Vanilla Our vanilla setting is using only the DPR
loss for MLIR (Karpukhin et al., 2020) and not
incorporating any language fairness loss.

MSE Another baseline involves calculating the
Mean Squared Error (MSE, Hastie et al. (2009))
between the embeddings of parallel queries to in-
crease their similarity. We employ the same joint
MSE loss with DPR loss.

LaKDA With our proposed LaKDA debiasing
method (Section 2.2.2), for each query, we ran-
domly sample a semantically identical query in a
different language and compute the LaKDA loss,
which is then jointly optimized with the DPR loss
as shown in Equation (1). For both mBERT and
XLM-R, we set α = 0.5 for comparability (but
return to investigate the hyperparameter sensitivity
in Figure 4).

3.2.3 Mitigation Evaluation and Findings
Table 2 presents the IR performance (MRR@100),
and Table 7 demonstrates language fairness
(MRC@5) for the DPR framework with different
pretrained multilingual models. Our observations
are as follows:

mBERT Findings Compared to the vanilla set-
ting (DPR only): (1) incorporating either MSE

Figure 4: MSE and LaKDA sensitivity plot.

or LaKDA enhances language fairness (MRC@5)
with mBERT, but LaKDA is more effective (25.6%
vs. 5.1%); and (2) for MRR@100, LaKDA
achieves an 11.3% improvement, whereas MSE
loss reduces MRR@100 by 32.6%. Figure 4 also
shows that during the hyperprameter α grid search,
the DPR model with LaKDA loss is more robust in
terms of MRR than MSE loss. This is because, un-
like MSE loss, LaKDA loss considers not only the
similarity between parallel queries but also their
embedding similarity with documents, providing a
better trade-off between fairness and performance.

XLM-R Findings Compared to the vanilla set-
ting (DPR only): (1) only LaKDA improves lan-
guage fairness (MRC@5), by 35.9%, while MSE
leads to a slight degradation; and (2) both MSE
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Figure 5: Parallel query similarity over training.

and LaKDA improve IR performance (MRR@100),
with increases of 3.7% and 16.6%, respectively.
XLM-R not only achieves better IR performance
but is also more robust. This observation aligns
with other research, and is why XLM-R is more
commonly used in MLIR (Hu et al., 2020; Conneau
et al., 2020; Conneau and Lample, 2019).

4 Discussion

4.1 Improvement of Parallel Query Similarity

In our experimental setup, an important character-
istic for enhancing language fairness is the increase
in similarity of semantically parallel queries. We
calculated the average parallel query similarity in
each batch over training for mBERT, as depicted in
Figure 5. We observe that with the addition of the
LaKDA loss, the final stable value of parallel query
similarity is higher compared to the vanilla setting.
This result explains the enhancement in language
fairness (MRC).

4.2 Effect of Size and Quality of Parallel
Queries

To explore the impact of the number and quality of
parallel queries on IR performance and language
fairness, we selected queries in two languages, MT
and GA, from the training dataset and conducted
experiments under the following three settings:

Zero-shot: As low-resource languages, there is
relatively little training data for MT and GA; we
therefore excluded queries in MT and GA from the
training dataset, keeping the other parallel queries
unchanged, and then conducted the same training
and evaluation settings.

Translation: Without the original MT and GA
parallel queries, we translated English queries into
MT and GA parallel queries using Google Trans-

Parallel MT Query MRR@100 MRC@5

Zero-shot 21.2 2.8
Translated 36.2 1.2
Original 34.9 6.7

Table 4: Maltese (MT) query MLIR results.

Parallel GA Query MRR@100 MRC@5

Zero-shot 21.4 0.6
Translated 29.6 1.4
Original 30.8 6.2

Table 5: Irish (GA) query MLIR results.

late.3 The BLEU scores (Papineni et al., 2002)
of the translation results compared to the original
were 0.196 and 0.251, respectively.

Original: The original queries in MT and GA,
as per the experiments in Section 3.2.

Findings: Tables 4 and 5 show the results for
MT and GA, conducted on the XLM-R model with
LaKDA loss. We found that:

1. The zeroshot setting had the worst MRR per-
formance, indicating the importance of paral-
lel queries.

2. The translated version serves as a silver-
standard, with improvements in MRR com-
pared to the zeroshot setting.

3. The original texts are the best choice, achiev-
ing the best MRR and MRC, demonstrating
the value of our MultiEuP-v2 dataset in pro-
viding an original multilingual corpus.

4.3 Effect of Neural Retrieval Approaches

The MRC@5 results presented in Table 7 show
more than a 20-fold disparity between BM25 and
the neural retrieval ranker DPR, with scores of 0.6
and 11.7, respectively. To understand the underly-
ing causes, we analyzed the top 100 ranking out-
puts from both methods. As shown in Figure 6,
BM25’s output document languages and query lan-
guages exhibit a strong correlation along the diago-
nal line, contributing to heightened language bias.
Since BM25 is only able to retrieve documents con-
taining keywords present within the query (Thakur
et al., 2021) and suffers from lexical gap (Berger
et al., 2000), resulting in high retrieval rates for
documents in the same language as the query.

Meanwhile, DPR retrieves documents across dif-
ferent languages more effectively, with substantial

3https://translate.google.com/
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Figure 6: The correlation of query language with document language in top 100 ranking output.

off-diagonal values and reflecting the skewness of
the dataset (see Table 6). This suggests that neu-
ral retrieval approaches can mitigate language bias
to leveraging multilingual pre-trained models that
understand semantic content regardless of the lan-
guage.

5 Related Work

Fairness in Information Retrieval (IR) has been ex-
tensively studied through two primary dimensions:
individual fairness and group fairness. These frame-
works are crucial in ensuring equitable access to
information, addressing concerns related to biases
in ranking systems.

Individual fairness refers to the principle that
similar items (in this case, documents) should be
treated similarly (Biega et al., 2018; Dwork et al.,
2011). In IR, this means that if two documents
are equally relevant to a query, they should receive
similar rankings. A violation of individual fair-
ness occurs when two comparable documents are
ranked differently due to irrelevant factors, such as
their format or metadata. This concept is rooted
in the idea of consistency and uniform treatment,
ensuring that the system does not unfairly prioritize
or penalize specific documents that are otherwise
similar in content and relevance.

Group fairness, on the other hand, ensures that
predefined groups (such as demographic groups
or, in our case, languages) are treated equitably
in the ranking process (Sapiezynski et al., 2019;
Zehlike et al., 2022, 2017). The goal is to pre-
vent bias against any group by ensuring that the
system does not favor one group over another. In
IR, this often translates to ensuring that documents
associated with a protected group (e.g., underrepre-
sented languages or communities) are not system-

atically ranked lower than those associated with
unprotected groups. Group fairness frameworks at-
tempt to mitigate historical and societal biases that
might seep into the retrieval process, making sure
that members of different groups have equitable
access to information. In our work, we extend this
concept to multilingual IR, treating each language
as a group and ensuring that rankings are fair and
consistent across languages.

Two key fairness metrics in group fairness that
align with our work are Probability of Equal
Expected Rank (PEER) and Attention Weighted
Ranked Fairness (AWRF).

• PEER (Yang et al., 2024) is designed to
ensure equity in ranking by guaranteeing
that documents from different languages are
treated equally when they are equally rele-
vant. This metric is particularly valuable for
multilingual retrieval, as it addresses the risk
of language bias, ensuring that a document’s
rank does not depend on the language of the
query if the content is of similar relevance
across languages.

• AWRF (Sapiezynski et al., 2019) assesses
group exposure by comparing how documents
are distributed across ranked positions rela-
tive to a predefined target distribution. This
metric focuses on ensuring that documents
from all languages receive appropriate visi-
bility within the top-ranked results, balancing
relevance and fairness in exposure.

While these metrics primarily emphasize
document-level fairness, our approach uniquely
focuses on query-level fairness. In our context,
we argue that the retrieval system should provide
consistent performance across languages, ensuring
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that the language of the query does not affect the
user’s ability to access relevant information. This
promotes inclusivity, ensuring that users from dif-
ferent linguistic backgrounds experience similar
outcomes when interacting with the system, ulti-
mately fostering equal access to information.

6 Background Knowledge

MultiEuP The European Parliament (EP) serves
as a crucial forum for political debate and decision-
making in the European Union. During debates,
Members of the European Parliament (MEPs) dis-
cuss topics in their own languages, and debates
are then transcribed in the original languages, and
indexed with multilingual topics. As such, the data
is naturally occurring in the 24 official languages
of the EU, and expertly transcribed and multilin-
gually annotated. Additionally, we have access to
basic demographic details of each of the MEPs,
making it the perfect target for the study of fairness
in an IR context, in terms of both language and pro-
tected attributes was crafted. The EU has published
different language versions of all titles, providing
semantically identical queries for investigating lan-
guage fairness in MLIR.

An earlier version of the MultiEuP dataset was
published in 2023 covering debates up to October
2022 (Yang et al., 2023). In this work, we have
expanded the dataset using the same data collection
and preprocessing procedures, to include debates
up to 2024. This doubles the total data volume,
and provides a sufficient sample size to research
neural ranking methods. We additionally augment
each document with comprehensive metadata of
the author, including gender, nationality, political
affiliation, and age, for use in exploring fairness
with respect to protected attributes.

Unlike MLIR datasets such as mMARCO (Boni-
facio et al., 2021), a multilingual version of the MS
MARCO (Bajaj et al., 2016), that relies on machine
translation, our benchmark queries and documents
are original rather than translated versions. This re-
duces noise and ensures the linguistic authenticity
of the corpus.

Another commonly used MLIR datasets Mr.
TyDi (Zhang et al., 2021) and MIRACL (Zhang
et al., 2023) , are actually mixed monolingual IR
dataset, since they were structured such that queries
in different languages are matched only with docu-
ments in the same language. This limits the compa-
rability of results across different languages. Our

benchmark addresses this limitation by introduc-
ing semantically parallel queries across multiple
languages, enabling comprehensive analysis of lan-
guage fairness in MLIR.

DPR Dense Passage Retrieval (DPR: Karpukhin
et al. (2020)) is a neural retrieval framework ini-
tially proposed for monolingual supervised fine-
tuning. DPR uses dual encoders: one for encoding
queries and another for encoding passages (doc-
uments), both based on the BERT architecture
(Devlin et al., 2019). The primary advantage of
DPR over traditional retrieval models like BM25
is its ability to embed both queries and documents
into a shared dense vector space, enabling efficient
nearest-neighbor search for retrieval. The relevance
of a document to a query is determined by the sim-
ilarity between their embeddings, typically using
the dot product as a similarity measure.

In our work, we employ mDPR using mBERT
and XLM-R to handle multilingual queries and doc-
uments. These models are fine-tuned on parallel
query-document pairs from multiple languages, al-
lowing the system to generalize across different
languages. The use of mDPR allows us to explore
how multilingual language models handle language
biases, which often favor high-resource languages
over low-resource ones. Furthermore, we investi-
gate the performance of these models on the Mul-
tiEuP dataset, assessing their ability to ensure fair
and equitable retrieval across 24 languages, thus
promoting fairness in multilingual IR.

7 Conclusion

We introduced a novel benchmark, MultiEup-v2,
for investigating language fairness in multilingual
information retrieval (MLIR) systems. Addition-
ally, we proposed the mean rank correlation (MRC)
score to assess language fairness in MLIR systems,
which ensures that queries in different languages
but with the same semantic meaning retrieve sim-
ilar documents. Our findings indicate that the tra-
ditional IR method BM25 exhibits larger language
biases than DPR with multilingual pretrained lan-
guage models. Furthermore, we designed the lan-
guage KL-divergence alignment (LaKDA) loss to
mitigate language bias, and found that incorpo-
rating LaKDA loss into DPR improves language
fairness substantially without sacrificing retrieval
performance.
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Ethics Statement

The dataset contains publicly-available EP data that
does not include personal or sensitive information,
with the exception of information relating to public
officeholders, e.g., the names of the active members
of the European Parliament, European Council, or
other official administration bodies. The collected
data is licensed under the Creative Commons Attri-
bution 4.0 International licence.4

Limitations

Our investigation into language fairness in multi-
lingual information retrieval (MLIR) is limited to
European languages in this work. However, our
approaches and evaluation methods are adaptable
to other languages. Additionally, we focused exclu-
sively on language fairness, leaving other dimen-
sions of fairness in MLIR, such as demographic
fairness, unexplored. We encourage the research
community to conduct more comprehensive studies
on fairness in MLIR, building upon the foundation
of our benchmark.
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Language ISO
code Countries where official lang. Language

Family
Total
Usage # Docs Words

per Doc

English EN United Kingdom, Ireland, Malta Germanic 51% 14086 271/192
German DE Germany, Belgium, Luxembourg Germanic 32% 5861 183/168
French FR France, Belgium, Luxembourg Romance 26% 5313 267/210
Italian IT Italy Romance 16% 3378 191/176
Spanish ES Spain Romance 15% 4621 228/195
Polish PL Poland Slavic 9% 2857 150/142
Romanian RO Romania Romance 5% 1482 183/172
Dutch NL Netherlands, Belgium Germanic 5% 1642 180/166
Greek EL Greece, Cyprus Hellenic 4% 1104 180/171
Hungarian HU Hungary Uralic 3% 979 131/131
Portuguese PT Portugal Romance 3% 2185 183/169
Czech CS Czech Republic Slavic 3% 913 155/143
Swedish SV Sweden Germanic 3% 1038 168/154
Bulgarian BG Bulgaria Slavic 2% 737 190/171
Danish DA Denmark Germanic 1% 498 206/191
Finnish FI Finland Uralic 1% 564 115/111
Slovak SK Slovakia Slavic 1% 698 158/157
Lithuanian LT Lithuania Baltic 1% 250 145/125
Croatian HR Croatia Slavic <1% 995 175/162
Slovene SL Slovenia Slavic <1% 549 188/158
Estonian ET Estonia Uralic <1% 88 167/162
Latvian LV Latvia Baltic <1% 176 128/113
Maltese MT Malta Semitic <1% 243 151/148
Irish GA Ireland Celtic <1% 80 179/163

Table 6: MultiEuP-v2 statistics, broken down by language: ISO language code; EU member states using the
language officially; language family; proportion of the EU population speaking the language (Chalkidis et al.,
2021); number of debate speech documents; and words per document (mean/median).

Recall@100
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 77.7 75.5 77.7 75.5 75.5 68.1 75.5 76.6 77.7 76.6 74.5 77.7 75.5 76.6 75.5 74.5 75.5 74.5 75.5 77.7 76.6 76.6 75.5 62.8 75.2

mBERT

LDPR 88.3 89.4 88.3 87.2 88.3 89.4 89.4 88.3 90.4 87.2 88.3 88.3 87.2 88.3 86.2 87.2 85.1 86.2 86.2 88.3 86.2 86.2 85.1 73.4 87.0
+LMSE 74.5 72.3 72.3 71.3 72.3 66.0 72.3 72.3 73.4 73.4 71.3 73.4 71.3 72.3 71.3 69.1 70.2 72.3 72.3 69.1 70.2 71.3 67.0 60.6 70.9
+LLaKDA 77.7 78.7 76.6 76.6 77.7 79.8 79.8 81.9 78.7 78.7 78.7 79.8 77.7 76.6 75.5 77.7 77.7 77.7 78.7 76.6 76.6 76.6 73.4 72.3 77.6

XLM-R

LDPR 86.2 89.4 86.2 84.0 86.2 85.1 89.4 89.4 86.2 87.2 86.2 84.0 87.2 88.3 90.4 86.2 89.4 90.4 84.0 80.9 86.2 86.2 88.3 81.9 86.6
+LMSE 91.5 92.6 90.4 86.2 88.3 69.1 91.5 91.5 90.4 91.5 90.4 90.4 90.4 91.5 88.3 92.6 91.5 88.3 87.2 88.3 91.5 90.4 87.2 78.7 88.7
+LLaKDA 93.6 96.8 93.6 93.6 93.6 67.0 94.7 94.7 92.6 96.8 95.7 96.8 95.7 94.7 92.6 92.6 94.7 92.6 95.7 93.6 93.6 92.6 89.4 75.5 92.2

Table 7: The MLIR additional evaluation results on MultiEuP-v2. Recall@100 (×100) ranges from 0 to 100, where
values closer to 100 indicate better performance.
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