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Abstract

This paper presents Multi-Lingual/Task
Demonstration Retrieval (MLT-DR) for
in-context learning with Large Language
Models (LLMs). Our goal is to investigate
how dense demonstration retrieval models
are generalized across languages and tasks.
We first convert 81 tasks into a common
format, covering various languages, task
types, and domains. For 8 English-based tasks
among them, we use machine translation to
create synthetic multi/cross-lingual tasks, by
translating the examples into non-English
languages to explicitly cover more than 130
languages. We then use an instruction-tuned
LLM to estimate utility of demonstrations
for all the tasks to train the demonstration
retrieval models. In our experiments, we show
an interesting counterintuitive observation;
to compute embeddings of demonstrations,
using both the input and ground-truth output
hurts the generalization ability of the retriever
on unseen tasks whose output space is quite
different from those in the seen task set. We
also examine that our retriever robustly works
even with LLMs that we did not touch during
the development of the models.

1 Introduction

In-Context Learning (ICL) is an emergent strategy
to make Large Language Models (LLMs) perform
a task by showing its instruction and demonstra-
tions (i.e., input-output pairs) without fine-tuning
the LLMs (Brown et al., 2020; Zhao et al., 2021).
A crucial research question in this line of work
is how to select demonstrations for a new test in-
put. A well-studied approach is to use a general
or task-specific text encoder to retrieve demonstra-
tions whose inputs are similar to the test input (Liu
et al., 2022). Furthermore, such a text retriever can
be effectively fine-tuned by estimating the utility
of the demonstrations for a specific LLM (Rubin
et al., 2022; Luo et al., 2023).

Li et al. (2023) and Wang et al. (2023) have made
progress towards fine-tuning a single demonstra-
tion retriever for multiple tasks. They have even
shown that the multi-task demonstration retrievers
can be generalized on unseen datasets (that are not
used in fine-tuning the retrievers). The key factor
is that the unseen datasets share the output formats
with those used in the fine-tuning.1 What is the
boundary of the generalization ability?

As an attempt to answer this question, we inves-
tigate capabilities of Multi-Lingual/Task Demon-
stration Retrieval (MLT-DR). We first collect 81
tasks from publicly available datasets,2 covering
diverse languages, task types, and domains. We ap-
ply a data augmentation technique to generate syn-
thetic multi/cross-lingual tasks for 8 English-based
tasks to improve the generalization ability on low-
resource languages, by using machine translation
for more than 130 languages. We then fine-tune a
general multi-lingual text retriever with feedbacks
from an LLM and evaluate fine-tuned models both
on seen and unseen tasks.

The findings in our experiments are summarized
as follows:

• A counterintuitive finding is that using both
the input and ground-truth output to compute
demonstration embeddings hurts the gener-
alization ability on unseen tasks, especially
when the output spaces are semantically non-
trivial.

• The simple translation-based data augmenta-
tion helps preserve the generalization ability
for low-resource languages (and cross-lingual
ICL).

1Sentiment classification in a different domain, natural lan-
guage inference in a different input style, code summarization
for different programming languages, etc.

2We use the two terms, “tasks” and “datasets,” interchange-
ably as in Wang et al. (2023).
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• The fine-tuned retriever can be used for un-
seen LLMs, and thus we believe that our re-
triever will serve as a baseline, a building
block to be combined with various techniques,
starting points to try further fine-tuning, etc.
for future research.

2 Multi-Task Demonstration Retrieval

A multi-task demonstration retriever R is designed
to estimates s(d|x, t), a utility score of a demon-
stration d given an input x and its corresponding
task t (Li et al., 2023; Wang et al., 2023). It is a
common practice to model this as a dense retrieval
model (Karpukhin et al., 2020):

s(d|x, t) = Eq(x, t) · Ec(d, t), (1)

where Eq is an encoder model for the query input,
and Ec for the demonstration candidate. We fine-
tune a general dense retrieval model R0; for our
primary research question, we assume that R0 can
handle many languages and domains in diverse text
formats (like mT5 (Xue et al., 2021)) and is trained
by a general task-agnostic text retrieval objective
(like Izacard et al. (2021)).

Contrastive Learning The dense retriever
model is usually fine-tuned with contrastive learn-
ing (Karpukhin et al., 2020). The previous studies
used various forms of contrastive learning; for
example, Wang et al. (2023) used a combination of
cross-attention and dense-retrieval models with a
knowledge distillation technique. In this work, we
follow a simple and well-established formulation
in Yang et al. (2019). To do this, we construct a
query set Qt and a demonstration candidate set Ct,
by splitting the original training set of the task.

Sampling candidates We first sample demon-
stration candidates (from Ct) for a query input
x ∈ Qt, by combining two types:

• retrieval-based candidates and

• random candidates.

` candidates are given by the baseline retriever R0,
and m candidates by random sampling, resulting
in (`+m)|Qt| query-candidate pairs for the task t.
(`,m) = (10, 10) is the default setting, except that
we use (`,m) = (50, 50) for very small datasets.

Scoring candidates Next, we annotate the use-
fulness of a candidate d to perform the task t for x.
The usefulness is scored by using an LLM:

u(d|x, y, t), (2)

where y is a gold output of x. We employ the incre-
mental utility function in Hashimoto et al. (2024),
where the scores are in the range of [0.0, 1.0];

• u(d|x, y, t) = 0.5 means that d does not affect
the LLM’s prediction,

• u(d|x, y, t) > 0.5 means a positive effect, and

• u(d|x, y, t) < 0.5 means a negative effect.

The utility scores are annotated in a task-specific
fashion as described in Appendix A.1. We use the
utility scores to select positive and hard negative
candidates for the contrastive learning.

Positive candidates For x, a positive candidate
dp satisfies

u(dp|x, y, t) ≥ 0.5 + δ1, (3)

where δ1 ∈ (0.0, 0.5] is a margin to ensure the
quality of dp. The larger the margin value is, the
more significant the contribution of dp is. However,
there is a trade-off; a large margin value reduces the
number of the training examples we can use. We
have tried different values in the development of
our framework, and we empirically set δ1 = 0.05.

Hard negative candidates We pair dp with a set
of hard negative candidates {dn}, such that they
satisfy

u(dp|x, y, t)− u(dn|x, y, t) ≥ δ2, (4)

where δ2 ∈ [0.0, 1.0] is another margin to ensure
the quality difference between the positive and hard
negatives; we empirically set δ2 = 0.1.

Multi-task fine-tuning Consequently, we have
a set of the tuples

(x, dp, {dn}) (5)

for the task. Then the baseline retriever R0 is fine-
tuned to satisfy s(dp|x, t) > s(dn|x, t) by the con-
trastive learning. The fine-tuning process is done
by mixing the tuples from all the tasks we use for
the retriever training.
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3 The Role of Ground-Truth Outputs

There are two major dimensions in the design of
the demonstration retriever in Section 2: what texts
are fed into

1) the query encoder Eq and

2) the candidate encoder Ec.

The former is relatively straightforward; we can
concatenate a task instruction of t and the query
text: [Instruction(t);x] as done in Li et al. (2023)
and also in task-aware retrievers (Asai et al., 2023;
Su et al., 2023).

For the candidate encoder, we find a standard
practice in the previous studies (Rubin et al., 2022;
Li et al., 2023; Luo et al., 2023; Wang et al., 2023);
they concatenate the input and ground-truth output
of the demonstration:

[Instruction(t); din; dout],

where the instruction is used optionally for the
multi-task learning cases. We may think that this is
a natural and reasonable design; however, we cast
doubt on this from a view point of the generaliza-
tion ability on unseen tasks.

Diversity in the output space Let’s think about
tasks whose outputs are specifically designed for
them. Classification is considered to be the most
representative one. For some datasets, the output
space is limited and not ambiguous:

• {“positive”, “negative”, “neutral”} in senti-
ment classification,

• {“entailment”, “contradiction”, “neutral”} in
natural language inference, and

• {“sports”, “music”, ...} in topic classification.

For others, we see diverse, unlimited, and domain-
specific labels: intent classification, relation clas-
sification, etc. It is often the case that such
class labels are represented with simple words or
short phrases, and they are not always comprehen-
sive even for humans. Other example tasks are
slot labeling and named entity recognition, where
slot/entity labels can be arbitrary strings, and the
output format can be designed in various ways (Ra-
man et al., 2022). Is the candidate encoder robust
in the diverse output space?

To answer this question, we compare the follow-
ing three designs for the demonstration representa-
tions by the candidate encoder:

- STD: [Instruction(t); din; dout],

- DESC: [Instruction(t); din; Desc(dout)],

- NO: [Instruction(t); din].

STD is the standard approach in the previous
work as mentioned above.

DESC is to replace dout with its description,
Desc(dout), to explain the meaning of the out-
put (Rastogi et al., 2020; Gao et al., 2023b). We
apply DESC to tasks with symbolic outputs (e.g.,
classification), and manually give a description
for each output candidate. For example, in the
DDI13 relation extraction task, we adapt the origi-
nal definitions of the relation labels in the dataset
paper (Herrero-Zazo et al., 2013); if we cannot find
definitions even in the dataset papers, we refer to
training examples to come up with the descriptions.

NO removes the use of dout, which is counterin-
tuitive against the common practice. During the de-
velopment of DESC, we have observed that it is not
trivial to provide comprehensive descriptions, and
the actual examples themselves clearly tell us the
meaning of the output space (Simard et al., 1992;
Zhang et al., 2020). This motivates us to investigate
NO solely based on the input representations.

4 Experimental Settings

4.1 LLM and Retriever

We use Flan-PaLM2 (S) (Google et al., 2023) as
our main LLM, and follow the prompt design in
Gao et al. (2023a). As the baseline (multi-lingual)
retriever R0, we use the t5x-retrieval code base (Ni
et al., 2022) to fine-tune mT5 large (Xue et al.,
2021) with a general text retrieval objective in Izac-
ard et al. (2021) on the mC4 corpus (Xue et al.,
2021). The retriever has 565M model parameters.

4.2 Tasks

Seen tasks To fine-tune our retrievers, we col-
lect NLP tasks in diverse languages and domains
from publicly available resources like Flan-v1 (Wei
et al., 2021), MTEB (Muennighoff et al., 2023),
those used in Li et al. (2023), and others, resulting
in 81 tasks in total. The complete list of them is
summarized in Table 1. For each task, we manu-
ally write a long task instruction to construct the
prompt for the LLM, and a short task instruction
(i.e., Instruction(t)) for the retriever.
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No. Name Type Languages Source Scoring |Qt| |Ct|
01 WMT14 en→fr (Bojar et al., 2014) Machine translation en, fr Link GLEU 100,000 30,059,732
02 WMT14 fr→en (Bojar et al., 2014) Machine translation en, fr Link GLEU 100,000 30,059,732
03 WMT16 en→de (Bojar et al., 2016) Machine translation de, en Link GLEU 60,000 4,143,251
04 WMT16 de→en (Bojar et al., 2016) Machine translation de, en Link GLEU 60,000 4,143,251
05 WMT16 en→ru (Bojar et al., 2016) Machine translation en, ru Link GLEU 30,000 2,296,592
06 WMT16 ru→en (Bojar et al., 2016) Machine translation en, ru Link GLEU 30,000 2,296,592
07 ANLI r1 (Nie et al., 2020) Natural language inference en [+MT] Link Probability 8,473 8,473
08 ANLI r2 (Nie et al., 2020) Natural language inference en Link Probability 22,730 22,730
09 ANLI r3 (Nie et al., 2020) Natural language inference en Link Probability 30,000 70,459
10 QNLI (Rajpurkar et al., 2018) Natural language inference en Link Probability 30,000 74,543
11 MNLI (Williams et al., 2018) Natural language inference en Link Probability 30,000 100,000
12 WNLI (Levesque et al., 2012a) Natural language inference en Link Probability 317 318
13 MRPC (Dolan and Brockett, 2005) Paraphrase identification en Link Probability 200 3,268
14 PAWS (Zhang et al., 2019) Paraphrase identification en Link Probability 30,000 19,401
15 Tatoeba (Artetxe and Schwenk, 2019) Translation identification sqi, fry, kur, tur, ... Link Probability 30,000 177,554
16 IMDB (Maas et al., 2011) Sentiment classification en Link Probability 12,400 12,400
17 SST2 (Socher et al., 2013) Sentiment classification en Link Probability 30,000 37,149
18 Yelp (Fast.AI) Sentiment classification en Link Probability 30,000 100,000
19 Tweet Sentiment Extraction (Kaggle) Sentiment classification en [+MT] Link Probability 10,000 17,281
20 AfriSenti (Muhammad et al., 2023a) Sentiment classification amh, hau, ibo, ... Link Probability 30,000 33,685
21 TweetEval-emoji (Barbieri et al., 2018) Emoji classification en Link Probability 20,000 25,000
22 TweetEval-emotion (Mohammad et al., 2018) Emotion classification en Link Probability 1,600 1,657
23 DialogEmotion (Kumar et al., 2024) Multi-speaker emotion classification en, hi Link F1 700 799
24 Massive-intent (FitzGerald et al., 2022) Dialog intent classification af, am, ar, az, ... Link Probability 30,000 100,000
25 MTOP-domain (Li et al., 2021) Dialog domain classification de, en, es, fr, ... Link Probability 30,000 43,928
26 MTOP-intent (Li et al., 2021) Dialog intent classification de, en, es, fr, ... Link Probability 30,000 43,928
27 ATIS-intent (Price, 1990) Multi-label dialog intent classification en Link F1 2,000 2,189
28 E2ENLG-reversed (Dušek et al., 2019) Semantic parsing (text to dict) en Link F1 16,662 16663
29 WikiSQL (Zhong et al., 2017) Semantic parsing (text/table to SQL) en Link GLEU 20,000 36,355
30 BC5CDR (Li et al., 2016) Named entity recognition (biomedical) en Link F1 2,000 2,560
31 BioNLP13PC (Ohta et al., 2013) Named entity recognition (biomedical) en Link F1 1,000 1,499
32 JNLPBA (Huang et al., 2020) Named entity recognition (biomedical) en Link F1 9,000 9,346
33 MultiCoNER2 (Fetahu et al., 2023) Named entity recognition de, fa, fr, ... Link F1 30,000 140,824
34 CoNLL2003 (Tjong Kim Sang and De Meulder, 2003) Named entity recognition en Link F1 7,000 7,041
35 MTOP-slot (Li et al., 2021) Dialog slot labeling en, fr, hi Link F1 19,000 19,811
36 SNIPS-slot (Coucke et al., 2018) Dialog slot labeling en Link F1 6,000 7,084
37 ATIS-slot (Price, 1990) Dialog slot labeling en Link F1 2,000 2,478
38 SemRel (Hendrickx et al., 2010) Relation classification (nominals) en [+MT] Link Probability 3,800 4,000
39 DDI13 (Herrero-Zazo et al., 2013) Relation classification (drugs) en Link Probability 8,000 10,779
40 ChemProt (Islamaj Doğan et al., 2019) Relation classification (chemical and protein) en Link Probability 9,000 10,460
41 WordSeg (Bañón et al., 2020) Word segmentation en Link GLEU 30,000 100,000
42 FixPunct (Bañón et al., 2020) Punctuation fix en Link GLEU 30,000 100,000
43 CoLA (Warstadt et al., 2019) Linguistic acceptability judgment en Link Probability 4,175 4,176
44 CoNLL2000 (Tjong Kim Sang and Buchholz, 2000) Syntactic phrase chunking en Link F1 4,000 4,936
45 Pronoun (Rahman and Ng, 2012) Coreference resolution en Link Probability 561 561
46 WSC (Levesque et al., 2012b) Coreference resolution en Link Probability 252 252
47 WinoGrande (Sakaguchi et al., 2019) Sentence completion en Link Probability 20,099 20,099
48 WiC (Pilehvar and Camacho-Collados, 2019) Word sense disambiguation en Link Probability 2,614 2,614
49 Python (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
50 Java (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
51 Go (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
52 PHP (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
53 Gigaword (Napoles et al., 2012) Text summarization en Link GLEU 30,000 100,000
54 SAMSum (Gliwa et al., 2019) Dialog summarization en Link GLEU 7,366 7,366
55 iDebate (Wang and Ling, 2016) Debate summarization en [+MT] Link GLEU 859 800
56 MultiHateCheck (Röttger et al., 2022) Hate speech detection/classification en, fr, hi, it, ... Link Probability 20,055 20,055
57 Toxic (Muennighoff et al., 2023) Toxic text detection en Link Probability 24,900 24,900
58 Countfact (O’Neill et al., 2021) Counterfactual review detection de, en, ja Link Probability 7,500 7,718
59 Irony (Van Hee et al., 2018) Irony detection en Link Probability 1,400 1,462
60 Offensive (Zampieri et al., 2019) Offensive text detection en Link Probability 5,000 6,916
61 Sarcasm (Abu Farha et al., 2022) Sarcasm detection ar, en Link Probability 2,500 3,414
62 SQuAD2 (Rajpurkar et al., 2018) Reading comprehension en Link GLEU 30,000 100,119
63 BoolQ (Clark et al., 2019) Reading comprehension en [+MT] Link Probability 4,613 4,614
64 DROP (Dua et al., 2019) Reading comprehension (numerical) en Link Probability 29,635 46,621
65 OpenbookQA (Mihaylov et al., 2018) Reading comprehension en Link Probability 2,478 2,478
66 Cosmos (Huang et al., 2019) Reading comprehension (common sense) en Link Probability 12,531 12,531
67 SciDocs (Cohan et al., 2020) Relevance, re-ranking en Link Probability 30,000 99,159
68 HotpotQA (Yang et al., 2018) Relevance, re-ranking en Link F1 30,000 60,447
69 AI2 ARC-easy (Clark et al., 2018) Closed-book question answering en Link Probability 1,025 1,026
70 AI2 ARC-challenge (Clark et al., 2018) Closed-book question answering en Link Probability 459 460
71 TriviaQA (Joshi et al., 2017) Closed-book question answering en Link Probability 30,000 108,184
72 Math (Saxton et al., 2019) Math question answering en Link Probability 30,000 100,000
73 CommonGen (Lin et al., 2020) Constrained text generation (common sense) en Link GLEU 30,000 37,189
74 SNLI-en (Bowman et al., 2015) Constrained text generation (entailment) en Link GLEU 10,112 33,106
75 PIQA-qgen (Bisk et al., 2019) Question/query generation en [+MT] Link GLEU 7,956 7,957
76 arXiv (Muennighoff et al., 2023) Multi-label topic/category classification en Link F1 30,000 69,113
77 medRxiv (Muennighoff et al., 2023) Topic/category classification en Link Probability 5,000 16,229
78 DBpedia (Lehmann et al., 2014) Topic/category classification en [+MT] Link Probability 5,000 5,000
79 Yahoo (Zhang et al., 2015) Topic/category classification en Link Probability 14,575 14,575
80 AG news (Zhang et al., 2015) Topic/category classification en Link Probability 30,000 89,800
81 TREC (Li and Roth, 2002) Topic/category classification en [+MT] Link Probability 2,626 2,626

Table 1: The list of the 81 tasks used as seen tasks. “[+MT]” in the Languages column means that the dataset is
used for the data augmentation described in Section 5.4.
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Name Type Notes
AfriSenti Zero Sentiment classification Two held-out African languages are targeted, while 12 other African
(Muhammad et al., 2023b) (positive, negative, neutral) languages are used in a seen sentiment classification task (AfriSenti).
GoEmotions Multi-label emotion This is a multi-label fine-grained task, while a 4-way (single-class)
(Demszky et al., 2020) classification (28 classes) classification task (TweetEval-emotion) is included in the seen tasks.
CLINC150 Dialog intent classification Similar tasks (ATIS/MTOP/Massive-intent) are included in the seen
(Larson et al., 2019) (150 classes) tasks, and this is another task with multi-domain fine-grained classes.
Orcas-I Search query intent This is different from those in the seen tasks; the search queries are
(Alexander et al., 2022) classification (5 classes) not always comprehensive and thus rely on retrieval augmentation.
MIT-R Dialog slot labeling Similar tasks (ATIS/MTOP/SNIPS-slot, E2ENLG-reversed) are used
(Dataset link) (8 slot types) in the seen tasks, and this is expected to be the easiest unseen task.
SSENT Polar expression extraction The task format is similar to that of MIT-R, but focuses on polar
(Barnes et al., 2022) (positive, negative) (positive and negative) expressions of hotel reviews in Spanish.
XML-MT Machine translation Machine translation tasks (WMT14/16) are included in the seen tasks,
(Hashimoto et al., 2019) (en→ja, en→fi) but this focuses on two other language pairs and XML-tagged texts.

Table 2: Tasks for the unseen task evaluation. “Notes” explain what aspects we focus on in the evaluation.

AfriSenti (46.30) DDI13 (18.18) ATIS-intent (35.49) MTOP-intent (48.46)
R0 49.24 51.39 52.78 54.98 19.92 23.59 25.52 28.8 70.31 87.16 91.74 95.48 84.22 88.55 90.55 92.55
RSTD +1.24 +2.75 +4.84 +7.29 +8.42 +11.13 +14.90 +14.87 +4.11 +2.79 +3.87 +2.27 +8.10 +5.67 +4.53 +3.11
RDESC +1.28 +3.12 +5.12 +8.03 +5.56 +10.39 +15.67 +15.11 +5.60 +2.41 +3.88 +2.65 +7.86 +5.46 +4.48 +2.92
RNO +1.43 +3.07 +4.97 +7.74 +7.46 +11.06 +12.89 +16.14 +6.61 +3.24 +3.87 +2.87 +8.32 +6.07 +4.97 +3.50

Countfact (26.48) Offensive (53.44) BC5CDR (2.70) PHP (3.00)
R0 41.44 48.80 55.28 63.37 61.15 65.14 63.98 63.76 37.44 55.14 60.45 63.28 13.61 14.44 13.82 11.00
RSTD +5.34 +9.47 +9.79 +6.90 +1.26 +2.21 +3.46 +1.99 +7.87 +4.21 +1.49 -1.08 +1.68 +1.39 +1.54 +0.55
RDESC +4.92 +9.48 +9.81 +4.79 +0.72 +1.80 +4.00 +1.32 +7.76 +4.01 +2.01 -0.83 +1.75 +1.54 +1.51 +1.38
RNO +4.01 +8.92 +10.27 +10.44 +0.73 +2.89 +4.44 +3.66 +7.26 +4.41 +2.55 +0.49 +1.42 +1.20 +1.09 +0.28

Table 3: Seen task results. The four numbers in the R0 rows correspond to the scores by 1,3,5,10-shot ICL with
the baseline retriever R0. The rest of the rows show the absolute improvements by using the fine-tuned retrievers
(RSTD,RDESC, andRNO) based on the three types of the demonstration representations. The score next to the task
name reports the LLM’s zero-shot performance to know its knowledge about the task without any demonstrations.

Unseen tasks To evaluate the generalization abil-
ity of the demonstration retrievers from diverse an-
gles, we use the tasks summarized in Table 2. The
“Notes” in the table explain what kinds of unseen
aspects we would like to test with the retrievers.
For each task, we use the whole training set to con-
struct the candidate set Ct; the AfriSenti Zero task
does not have any training examples, and we use
the AfriSenti task for the candidate set (i.e., a cross-
lingual ICL setting). We describe more details in
Appendix B.

5 Results

We evaluate the retrievers based on k-shot ICL with
k ∈ {1, 3, 5, 10}. Unless otherwise stated, we sim-
ply use the top-k retrieved demonstrations to con-
struct the prompts for the LLM. All the evaluation
scores are in the range of [0, 100], and Appendix C
describes the metric for each task.

5.1 Evaluation on Seen Tasks

We first confirm the effectiveness of the fine-tuned
retrievers on the seen tasks as in the previous stud-

ies (Li et al., 2023; Wang et al., 2023). We use a sen-
timent classification task in 12 African languages
(AfriSenti), a relation extraction task in the biomed-
ical domain (DDI13), two (single/multi-label) dia-
log intent classification tasks (ATIS/MTOP-intent),
two binary (counterfactual/offensive) detection
tasks (Countfact, Offensive), a named entity recog-
nition task in the biomedical domain (BC5CDR),
and a code summarization task (PHP).

Table 3 shows the results. It is consistent with the
previous work that the fine-tuned retrievers perform
significantly better than the baseline retriever. We
hypothesized that the three types of the fine-tuned
retrievers perform similarly on the seen tasks, and
it is true in most of the cases. Overall, we did not
observe the potential advantage of RDESC in the
results.

However, we sometimes see nontrivial gains by
RNO, for example, in the COUNTFACT result.
This is presumably because using the output labels
is severely affected by overfitting. It is also inter-
esting to see that RNO works well even on tasks
with more complex output space like BC5CDR.
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AfriSenti Zero (39.43) GoEmotions (27.92) CLINC150 (70.58) Orcas-I (42.00)
R0 40.50 41.48 41.92 42.97 27.19 29.05 30.66 32.36 91.36 93.53 94.24 95.87 46.30 48.70 51.00 54.30
RSTD -0.51 -0.54 -0.03 -1.37 +0.52 +0.34 -0.48 -1.31 -1.34 -1.60 -1.62 -1.96 -0.90 -1.20 -3.50 -6.00
RDESC -1.00 -0.27 -0.32 -1.81 +0.53 +0.53 -0.04 +0.74 -0.69 -1.31 -1.08 -2.11 +1.40 +0.90 +0.50 -0.30
RNO -0.41 -1.32 -1.25 -0.44 +0.34 +0.61 -0.05 -0.09 +2.35 +2.14 +1.78 +0.40 +0.70 +0.50 -1.00 -0.80

MIT-R (1.09) SSENT (7.38) XML-MT enja (37.71) XML-MT enfi (23.56)
R0 40.14 49.34 54.54 60.46 24.66 27.52 30.33 27.32 52.10 55.54 56.19 56.08 36.43 39.00 39.86 40.00
RSTD +6.44 +6.10 +4.68 +1.83 +3.21 +3.02 -0.21 -2.10 +0.36 +0.93 +0.31 +0.55 -0.23 +0.26 +0.08 -0.43
RDESC +5.63 +5.18 +3.98 +1.78 +3.95 +4.03 +1.38 +1.38 +0.52 +0.57 +1.08 +0.28 -0.06 -0.03 +0.56 -0.22
RNO +5.19 +5.88 +3.99 +2.26 +0.66 +1.35 -1.16 +0.44 +0.85 +0.06 +0.92 +0.02 +0.84 +0.72 +0.60 -2.32

Table 4: Unseen task results with Flan-PaLM 2. The structure of this table is analogous to that of Table 3.

AfriSenti Zero (44.48) GoEmotions (28.26) CLINC150 (92.62) Orcas-I (49.10)
R0 55.83 55.81 54.42 54.03 31.61 33.50 35.57 37.97 96.22 97.22 97.51 97.73 59.00 60.90 61.90 65.4
RNO -0.75 -2.61 -3.00 -3.37 -0.33 +0.34 -0.12 +0.10 +0.54 +0.85 +0.56 +0.56 -0.90 +0.50 +0.80 -0.30

MIT-R (8.60) SSENT (22.40) XML-MT enja (27.94) XML-MT enfi (24.16)
R0 64.93 68.45 72.85 75.25 44.96 50.34 52.22 53.91 58.45 62.51 63.10 63.94 42.90 45.47 45.90 47.34
RNO +3.48 +2.98 +2.23 +1.65 +0.93 +1.49 +1.05 +3.68 +1.37 +0.58 +1.01 +0.97 +0.57 -0.07 -0.40 +0.23

Table 5: Unseen task results with Gemini 1.5 Pro. The structure of this table is analogous to that of Table 3.

5.2 Evaluation on Unseen Tasks

We then evaluate the retrievers on the unseen tasks.
Table 4 shows the results, and below we summarize
the key points.

• All the fine-tuned retrievers perform worse
than R0 on AfriSenti Zero. We hypothesize
that “catastrophic forgetting” is caused by the
fact that the two zero-shot languages (Oromo
and Tigrinya) are never observed in the re-
triever fine-tuning process.

• It is surprising to see that RSTD performs sig-
nificantly worse than R0 on fine-grained clas-
sification tasks whose labels are not easy to
interpret. Especially, it fails on CLINC150,
even when we have successful results on the
intent classification tasks in Table 3. In con-
trast, RNO provides more robust results.

• It matches our expectation that all the fine-
tuned retrievers perform well on MIT-R as
explained in Table 2.

• Overall, the effects of using RDESC are not
conclusive. We see the potential benefit on
Orcas-I (whose label descriptions are helpful
even for humans) and SSENT, while it does
not help on CLINC150. It is possible that
the provided label descriptions are not good
enough, but this nontrivial process itself indi-
cates that RDESC would not be the best way.

Natural Instructions (25.28)
R0 26.59 27.08 26.95 27.04
RNO +0.26 +0.49 +0.81 +0.37

Table 6: Natural Instructions results.

• Based on the SSENT results, using the task
output would be effective for some tasks. An
interesting future work is to consider how to
strike a balance between RSTD and RNO.

More unseen tasks We further perform evalua-
tion on 20 unseen text generation tasks from Su-
per Natural Instructions (Wang et al., 2022) to test
the robustness of the demonstration retriever. The
tasks include machine translation, text summariza-
tion, question answering, paraphrase generation,
etc, and the datasets are not used in fine-tuning
our retrievers. Table 6 shows the average scores
across all the tasks, and we can see some gains by
using RNO. The size of the training set for a task is
limited to around 6,000 examples in Super Natural
Instructions, and thus this might not be the best
setup for ICL; still, our retriever shows the robust
results.

Transfer ability Following the previous
work (Li et al., 2023; Wang et al., 2023), we test
how RNO works with another LLM, Gemini 1.5
Pro (Reid et al., 2024). It should be noted that
we have never touched the new LLM until we
perform the final test evaluation. Table 5 shows the
results, and we can see consistent trends. Gemini
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ATIS-intent COUNTFACT
R0 87.16 91.74 95.48 48.80 55.28 63.37
RNO +3.24 +3.87 +2.87 +8.92 +10.27 +10.44
+cov. +4.85 +4.34 +2.14 +11.13 +12.65 +11.57

AfriSenti Zero SSENT
R0 41.48 41.92 42.97 27.52 30.33 27.32
RNO -1.32 -1.25 -0.44 +1.35 -1.16 +0.44
+cov. -1.12 -0.05 -0.20 +3.07 +1.19 +1.54

Table 7: Coverage-based selection results. k = 1 is not
affected by this method, and we only show the scores
with k = 3, 5, 10.

1.5 pro achieves much better baseline scores than
those of Flan-PaLM 2 (S), but still RNO helps. It
is encouraging that our fine-tuned retriever works
well even for this much stronger LLM.

5.3 Compatibility with Existing Methods
We discuss the potential of using RNO as a basic
building block in diverse scenarios for future work.
In other words, we do not intend to claim that our
retriever should be always used alone, and instead
we believe that our retriever can be used along with
existing methods.

For example, we consider the coverage-based
demonstration selection method in Gupta et al.
(2023), and we apply their “cosine” method to the
top-retrieved candidates by RNO. Table 7 shows
the results, and the method works well with our
retriever.

Other possible future directions are using our
retriever for sequential selection models (Scarlatos
and Lan, 2024; Liu et al., 2024), continual learn-
ing with more tasks and languages, and explicit
adaptation to other LLMs.

5.4 Improved Language Coverage by
Machine Translation

We have observed that the fine-tuning process de-
grades the generalization ability of the retriever on
unseen languages. Our seen task set covers various
languages as shown in Table 1, but still, English is
dominant. How can we make our retriever more
robust from this viewpoint? One solution is to add
more and more tasks in many languages, but it is
not a trivial effort.

To this end, we consider using machine transla-
tion for data augmentation as in the common prac-
tice (Balahur and Turchi, 2014; Lee et al., 2018).
We describe our process below:

1. Select 8 tasks (∼10% of the whole) from the
seen task list in Table 1: ANLI r1, Tweet Sen-

AfriSenti Zero (39.43)
R0 40.50 41.48 41.92 42.97
RNO -0.41 -1.32 -1.25 -0.44
RNO+MT +0.15 +0.39 +0.49 +1.29

ATIS-intent hi,tr (29.67)
R0 62.18 79.09 84.39 89.26
RNO +3.11 +2.44 +2.57 +1.27
RNO+MT +5.72 +3.82 +3.02 +2.47

Table 8: Cross-lingual ICL results with Flan-PaLM 2.

timent Extraction, SemRel, iDebate, BoolQ,
PIQA-qgen, DBpedia, and TREC; all the se-
lected tasks are originally in English.

2. Use Google Translate3 to translate the exam-
ples in the query set Qt and the candidate set
Ct for the selected task; for each example in
Qt, we randomly sample a target languages
(b (> a) for Ct), and consequently we have
multi-lingual query and candidate sets.4

3. Add the multilingual version of the 8 tasks
to the seen task list; note that the new tasks
are separated from the original English ones,
and the utility estimation for the retriever fine-
tuning is done solely within the synthetic data.

By this, the demonstration retriever is exposed to
more than 130 languages during the fine-tuning.

We revisit the evaluation on AfriSenti Zero; this
is considered to be a cross-lingual ICL evaluation,
in that the languages in the query set and the candi-
date set are different. We add another cross-lingual
ICL evaluation with the Hindi and Turkish variants
of the ATIS-intent task, where we use the original
English ATIS-intent for the candidate set.

Table 8 shows the results, and we can see that
RNO with the data augmentation (RNO+MT) per-
forms the best. Hindi and Turkish are included in
seen tasks (e.g., Massive-intent), but still the data
augmentation helps. Note that using the synthetic
data does not degrade the retriever’s performance
on other tasks.

In our checkpoint release, we will also provide a
model that is based on even more languages for the
data augmentation. The model covers more than
230 languages.5

3As of early June 2024, 132 non-English lan-
guages are supported at https://cloud.google.com/
translate/docs/languages.

4In Appendix A.3, we describe details of this process
5https://support.google.com/translate/

answer/15139004
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6 Conclusion

We have presented our multi-lingual and multi-
task demonstration retriever for in-context learn-
ing with LLMs. We showed the counterintuitive
finding to improve the generalization ability of
the demonstration representations, and improved
multi/cross-lingual performance of the retriever by
the translation-based data augmentation. We be-
lieve that our released models will be useful for
future work.

Limitations

Task coverage We did our best to collect as di-
verse tasks as possible. However, we would be
able to find new tasks where our retriever does not
work well. Our future effort will be to improve the
task coverage or seek the use of instruction-tuned
LLMs themselves (Gemini, GPT, Llama, etc.) as a
retriever to leverage their generalization ability.

Short task instruction We assume the use of the
short task instruction for our retriever. To handle
new tasks that are quite different from those in our
task set, we may need to come up with new short
task instructions. In such a case, we suggest that the
users refer to the complete list (in Appendix A.2)
of all the instructions we used, to design the new
instructions.

Translation error in data augmentation No
machine translation systems (including Google
Translate we used in our experiments) are perfect,
and thus we expect that translation errors exist in
our synthetic multi-lingual tasks. To avoid the po-
tential negative effects by the translation errors, we
did not use the synthetic data for validation and
evaluation to test our retriever’s quality.
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Appendix

A Seen Tasks

A.1 Task List
Table 1 summarizes the 81 tasks we used to
fine-tune the demonstration retriever. We started
with datasets from Flan-v1 (Wei et al., 2021),
MTEB (Muennighoff et al., 2023), and those in
Li et al. (2023). We then further collected more
datasets whose task formats are not well covered by
our initial collection. In the following, we explain
how to read the table.

Name We give a task name for each of them,
while the names would not exactly match with
those used in previous work.

Type We briefly describe the goal of every task
by commonly-used terminologies.

Languages We collect datasets that use not only
English, but also other languages to make our
demonstration retriever work in as many languages
as possible. Note that our retriever is based on
mT5 (Xue et al., 2021) for the same purpose.

Source We provide the URL where we get the
dataset for each task. The “Link” works only on
PDF readers.

Scoring In the “Scoring candidates” paragraph
in Section 2, we use the LLM to score a demon-
stration’s usefulness for an input. We follow
Hashimoto et al. (2024) to use different scoring
functions, depending on the task types. We use the
following three functions in this work:

• Probability– for tasks like single-class clas-
sification and multiple-choice selection, we
use the probability value for generating the
ground-truth output by the LLM: p(y|x, t, d).

• F1– for tasks like text segmentation and multi-
label classification, we use an F1 score by
comparing the LLM’s prediction (i.e., 1-shot
prediction with d) against the ground-truth
output, so that we can reward partially correct
predictions.

• GLEU– for other text generation tasks, we use
the GLEU score (Wu et al., 2016).

A.2 Task Information
We briefly describe the information about each
of the seen tasks, to mainly present our full (F)
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and short (S) task instructions used in our experi-
ments. For all the data in any languages, we use
the English-based instructions.

No. 01–06 For the standard machine translation
tasks, we use the following task instructions:

F: The goal of this task is to translate from [lan-
guage 1] to [language 2].

S: Translation: [language 1] to [language 2].

No. 07–09 For the ANLI tasks, we use the fol-
lowing task instructions:

F: The goal of this task is to judge if the hypoth-
esis can be concluded, given the context. The
output is "Yes", "No", or "It’s impossible to
say".

S: Natural language inference: context to hypoth-
esis.

No. 10 For the QNLI task, we use the following
task instructions:

F: The goal of this task is to identify if the sen-
tence correctly answers the question. The out-
put is yes or no.

S: Natural language inference: sentence to ques-
tion.

No. 11 For the MNLI task, we use the following
task instructions:

F: The goal of this task is to identify if the
premise entails the hypothesis. The output
is entailment, contradiction, or neutral.

S: Natural language inference: premise to hy-
pothesis.

No. 12 For the WNLI task, we use the following
task instructions:

F: The goal of this task is to identify if text2 is
true or false, given text1.

S: Natural language inference: text1 to text2.

No. 13–14 For the paraphrase identification
tasks, we use the following task instructions:

F: The goal of this task is to identify if sentence1
and sentence2 have the same meaning. The
output is yes or no.

S: Paraphrase identification: sentence1 and sen-
tence2.

No. 15 For the Tatoeba task, we use the following
task instructions:

F: The goal of this task is to identify if sentence1
is a translation of sentence2. The output is
Yes or No.

S: Translation identification: sentence1 and sen-
tence2.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for Tatoeba
evaluation in any ways.

No. 16–18 For the binary sentiment classification
tasks, we use the following task instructions:

F: The goal of this task is to identify the senti-
ment given the text. The output is positive or
negative.

S: Sentiment classification.

No. 19–20 For the three-way sentiment classifi-
cation tasks, we use the following task instructions:

F: The goal of this task is to identify the senti-
ment label of the tweet. The output is positive,
negative, or neutral.

S: Sentiment classification.

No. 21 For the TweetEval-emoji task, we use the
following task instructions:

F: The goal of this task is to identify the emoji
relevant to the tweet. The 20 possible emojis
are ...

S: Emoji generation.

No. 22 For the TweetEval-emotion task, we use
the following task instructions:

F: The goal of this task is to identify the emotion
of the tweet. The 4 possible emotions are
anger, joy, optimism, or sadness.

S: Emotion classification.

No. 23 For the DialogEmotion task, we use the
following task instructions:

F: The goal of this task is to list all the
speaker names who experience the spe-
cific emotion in the conversation. The
output will be a #-separated list like
"speaker_1#speaker_4#speaker_5".

S: Emotion detection: speakers.
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No. 24 For the Massive-intent task, we use the
following task instructions:

F: The goal of this task is to identify the intent la-
bel of the user’s input. The list of the 60 labels
is: alarm_query, alarm_remove, alarm_set, au-
dio_volume_down, audio_volume_mute, ...

S: User input intent classification.

No. 25 For the MTOP-domain task, we use the
following task instructions:

F: The goal of this task is to identify the domain
of the user’s input. There are 11 possible do-
mains: alarm, calling, event, messaging, mu-
sic, news, people, recipes, reminder, timer,
weather.

S: User input domain classification.

No. 26 For the MTOP-intent task, we use the
following task instructions:

F: The goal of this task is to identify the
intent of the user’s input. There are
113 possible intents: ADD_TIME_TIMER,
ADD_TO_PLAYLIST_MUSIC, ...

S: User input domain classification.

No. 27 For the ATIS-intent task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify user’s
intents from abbreviation, aircraft, airfare,
... If multiple intents are identified, the
output will be a #-separated string: in-
tent_1#intent_2#intent_3.

S: Multi-label intent classification.

No. 28 For the E2ENLG-reversed task, we use
the following task instructions:

F: The goal of this task is to extract attributes
given a text about restaurant. The list of the 8
possible attributes are area, customerRating,
eatType, familyFriendly, food, name, near, or
priceRange. The output is a Python dictionary
like {"attribute_1": "value_1", "attribute_2":
"value_2", "attribute_3": "value_3"}

S: Attribute extraction.

No. 29 For the WikiSQL task, we use the follow-
ing task instructions:

F: The goal of this task is to convert the natural
language question into an SQL query, based
on the table.

S: Text/table to SQL generation.

No. 30 For the BC5CDR task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given
text by tagging entities with XML tags.
There are 2 entity types: Chemical, Dis-
ease. Then the output is like "word1 <Chem-
ical>word2 word3</Chemical> word4 <Dis-
ease>word5</Disease>".

S: Named entity extraction: biomedical.

No. 31 For the BioNLP13PC task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There are
4 entity types: Cellular_component, Complex,
Gene_or_gene_product, Simple_chemical.
Then the output is like "word1 <Com-
plex>word2 word3</Complex> word4 <Sim-
ple_chemical>word5</Simple_chemical>".

S: Named entity extraction: biomedical.

No. 32 For the JNLPBA task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 5 entity types: DNA, RNA, cell_line,
cell_type, protein. Then the output is like
"word1 <DNA>word2 word3</DNA> word4
<protein>word5</protein>".

S: Named entity extraction: biomedical.

No. 33 For the MultiCoNER2 task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 33 entity types: AerospaceManufacturer,
AnatomicalStructure, ... Then the output is
like "word1 <Artist>word2 word3</Artist>
word4 <Drink>word5</Drink>".

S: Named entity extraction: Wikipedia.
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No. 34 For the CoNLL2003 task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 4 entity types: Location, Miscellaneous,
Organization, Person. Then the output is like
"word1 <Location>word2 word3</Location>
word4 <Person>word5</Person>".

S: Named entity extraction: news.

No. 35 For the MTOP-slot task, we use the fol-
lowing task instructions:

F: The goal of this task is to copy the
given text by tagging attributes with XML
tags. There are 74 attribute types: AGE,
ALARM_NAME, ... Then the output is like
"word1 <AGE>word2 word3</AGE> word4
<CONTACT>word5</CONTACT>".

S: Attribute extraction.

No. 36 For the SNIPS-slot task, we use the fol-
lowing task instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 39 attribute types: album, artist,
best_rating, ... Then the output is like
"word1 <city>word2 word3</city> word4
<country>word5</country>".

S: Attribute extraction.

No. 37 For the ATIS-slot task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 79 attribute types: aircraft_code, air-
line_code, ... Then the output is like "word1
<airport_code>word2 word3</airport_code>
word4 word5".

S: Attribute extraction.

No. 38 For the SemRel task, we use the follow-
ing task instructions:

F: The goal of this task is to identify relation be-
tween the two entities marked by <e1></e1>
and <e2></e2>. The possible relations are
"e1:Cause e2:Effect", "e1:Effect e2:Cause", ...
If the relation type is not one of the above, the
output will be "Other".

S: Relation classification: e1 and e2.

No. 39 For the DDI2013 task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the relation
type of two drugs mentioned as @DRUG$ in
the text. There are 4 relation types: advise,
effect, int, mechanism. If there is no relation
between the drugs, the answer is false.

S: Relation extraction: @DRUG$ and
@DRUG$.

No. 40 For the ChemProt task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify the rela-
tion of @CHEMICAL$ and @GENE$ (or just
@CHEM-GENE$) in the text. The answer is
true or false.

S: Relation extraction: @CHEMICAL$ and
@GENE$ (or @CHEM-GENE$).

No. 41 For the WordSeg task, we use the follow-
ing task instructions:

F: The goal of this task is to segment the words
in the given characters. The output is like
"word_1 word_2 word_3".

S: Word segmentation.

No. 42 For the FixPunct task, we use the follow-
ing task instructions:

F: The goal of this task is to generate the input
text with punctuation.

S: Text punctuation.

No. 43 For the CoLA task, we use the following
task instructions:

F: The goal of this task is to identify if the input
text is linguistically acceptable or not. The
output is acceptable or unacceptable.

S: Linguistic acceptableness.

No. 44 For the CoNLL2000 task, we use the
following task instructions:

F: The goal of this task is to copy the given
text by tagging syntactic phrases with XML
tags. There are 11 phrase types: ADJP,
ADVP, CONJP, INTJ, LST, NP, PP, PRT,
SBAR, UCP, VP. Then the output is like
"word1 <VP>word2 word3</VP> word4
<NP>word5</NP>".

S: Syntactic phrase chunking.
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No. 45 For the Pronoun task, we use the follow-
ing task instructions:

F: The goal of this task is to identify what the
pronoun corresponds to, given the sentence.
The output is a phrase/entity in the sentence.

S: Coreference resolution: pronoun.

No. 46 For the WSC task, we use the following
task instructions:

F: The goal of this task is to identify if text1 and
text2 are the same in the given context. The
output is yes or no.

S: Text sense equivalence: text1 and text2 in
context.

No. 47 For the WinoGrande task, we use the
following task instructions:

F: The goal of this task is to select one of the
given options to complete the context.

S: Text completion.

No. 48 For the WiC task, we use the following
task instructions:

F: The goal of this task is to identify if the speci-
fied word has the same meaning in sentence1
and sentence2. The output is yes or no.

S: Word sense equivalence: word in sentence1
and sentence2.

No. 49–52 For the code summarization tasks, we
use the following task instructions:

F: The goal of this task is to write comment about
the [language] code.

S: Code summarization: [language].

No. 53 For the Gigaword task, we use the follow-
ing task instructions:

F: The goal of this task is to extract a text seg-
ment that summarizes the input text.

S: Text summarization.

No. 54 For the SAMSum task, we use the follow-
ing task instructions:

F: The goal of this task is to summarize the dia-
logue.

S: Dialogue summarization.

No. 55 For the iDebate task, we use the following
task instructions:

F: The goal of this task is to generate a claim
about the debate topic and the arguments.

S: Claim generation.

No. 56 For the MultiHateCheck task, we use the
following task instructions:

F: The goal of this task is to identify if the in-
put text is hateful or non-hateful, and its ac-
tivity type. The list of "hateful" types are
derog_dehum, derog_impl, ... The list of "non-
hateful" types are counter_quote, counter_ref,
... The output is "hateful:type" or "non-
hateful:type".

S: Hate speech detection.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for Multi-
HateCheck evaluation in any ways.

No. 57 For the Toxic task, we use the following
task instructions:

F: The goal of this task is to identify if the input
text is "toxic" or "not toxic".

S: Toxic conversation detection.

No. 58 For the Countfact task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the input
text is counterfactual or not-counterfactual.

S: Counterfactual review detection.

No. 59 For the Irony task, we use the following
task instructions:

F: The goal of this task is to identify if the input
tweet is irony or not. The output is Irony or
Non-irony.

S: Irony tweet detection.

No. 60 For the Offensive task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the in-
put tweet is offensive or not. The output is
Offensive or Non-offensive.

S: Offensive tweet detection.
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No. 61 For the Sarcasm task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if an input
text is sarcastic or non-sarcastic.

S: Sarcastic text detection.

No. 62 For the SQuAD2 task, we use the follow-
ing task instructions:

F: The goal of this task is to extract an answer
phrase from the context to answer the question.
If the question cannot be answered, then the
output is "unanswerable".

S: Question answering.

No. 63 For the BoolQ task, we use the following
task instructions:

F: The goal of this task is to answer the question,
given the title and text.

S: Question answering.

No. 64 For the DROP task, we use the following
task instructions:

F: The goal of this task is to answer the question,
given the context.

S: Question answering.

No. 65 For the OpenbookQA task, we use the
following task instructions:

F: The goal of this task is to answer the question
based on the fact. The output is one of the
given options.

S: Multiple-choice question answering.

No. 66 For the Cosmos task, we use the follow-
ing task instructions:

F: The goal of this task is to answer the question,
given the context. The output is one of the
given options.

S: Multiple-choice question answering.

No. 67 For the SciDocs task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the can-
didate title is topically "Relevant" or "Not rel-
evant" to the query title of a scientific docu-
ment.

S: Relevance: candidate title to query title.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for SciDocs
evaluation in any ways.

No. 68 For the HotpotQA task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify documents
that are relevant to answering the question
(QUESTION). The output is a #-separated list
of the document IDs like "DOC_2#DOC_4".

S: Relevance: document IDs to question.

No. 69–70 For the AI2 ARC tasks, we use the
following task instructions:

F: The goal of this task is to answer the question.
The output is one of the given options.

S: Multiple-choice question answering.

No. 71 For the TriviaQA task, we use the follow-
ing task instructions:

F: The goal of this task is to answer the question.

S: Question answering.

No. 72 For the Math task, we use the following
task instructions:

F: The goal of this task is to solve the math prob-
lem.

S: Math problem solution.

No. 73 For the CommonGen task, we use the
following task instructions:

F: The goal of this task is to generate a short text
by using all the words in the input text.

S: Text generation: using all words.

No. 74 For the SNLI-en task, we use the follow-
ing task instructions:

F: The goal of this task is to generate a text that
can be entailed by the input text.

S: Text generation: entailment.

No. 75 For the PIQA-qgen task, we use the fol-
lowing task instructions:

F: The goal of this task is to generate a query
that leads to the input text.

S: Query generation.
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No. 76 For the arXiv task, we use the following
task instructions:

F: The goal of this task is to identify all the cate-
gories about the arXiv article. There are 147
categories: astro-ph, astro-ph.CO, ... The out-
put is a list of the categories separated by #
like "category_1#category_2#category_3".

S: Multi-label category classification.

This task is based on a very large dataset, and we
used a part of it (train_0.jsonl.gz).

No. 77 For the medRxiv task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the cate-
gory of the medRxiv article. There are 51
categories: addiction medicine, allergy and
immunology, ...

S: Category classification.

No. 78 For the DBpedia task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the topic
of the input text. The output is one of the
14 topics: Company, Educational Institution,
Artist, Athlete, ...

S: Topic classification.

No. 79 For the Yahoo task, we use the following
task instructions:

F: The goal of this task is to identify the topic
about the community QA. The output is one
of the 10 topics: Society & Culture, Science
& Mathematics, Health, ...

S: Topic classification.

No. 80 For the AG news task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the topic of
the titled text. The output is one of the 4 topics:
World, Sports, Business, Science/Tech.

S: News topic classification.

No. 81 For the TREC task, we use the following
task instructions:

F: The goal of this task is to identify what type
of thing the question is asking about. The
output is one of the 6 types: description, entity,
abbreviation, human, numeric, location.

S: Question topic classification.

A.3 Multi-lingual Data Augmentation
We describe details about the data augmentation
presented in Section 5.4.

ANLI r1 The original input and output of this
task are formatted as follows:

x = context: "context" hypothesis: "hypothesis"

y = Yes

We apply the translation to context and hypothesis,
and keep the others in English. We set (a, b) =
(10, 20) for the target language sampling.

Tweet Sentiment Extraction The original input
and output of this task are formatted as follows:

x = text

y = neutral

We apply the translation to text, and keep the others
in English. We set (a, b) = (4, 8) for the target
language sampling.

SemRel The original input and output of this task
are formatted as follows:

x = ... <e1>...</e1> ... <e2>...</e2> ...

y = e1:Effect e2:Cause

We apply the translation to ... <e1>...</e1> ...
<e2>...</e2> ..., and keep the others in English.
We filter out translated examples that result in not
having the entity markers of e1 and e2. We set
(a, b) = (10, 20) for the target language sampling.

iDebate The original input and output of this task
are formatted as follows:

x = debate topic: "debate topic" arguments: "ar-
guments"

y = claim

We apply the translation to debate topic, arguments,
and claim, and keep the others in English. We set
(a, b) = (20, 80) for the target language sampling.

BoolQ The original input and output of this task
are formatted as follows:

x = title: "title" text: "text" question: "question"

y = answer

We apply the translation to title, text, question, and
answer, and keep the others in English. We set
(a, b) = (10, 20) for the target language sampling.
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PIQA-qgen The original input and output of this
task are formatted as follows:

x = text

y = query

We apply the translation to text and query, and keep
the others in English. We set (a, b) = (10, 20) for
the target language sampling.

DBpedia The original input and output of this
task are formatted as follows:

x = text

y = Educational Institution

We apply the translation to text, and keep the others
in English. We set (a, b) = (10, 20) for the target
language sampling.

TREC The original input and output of this task
are formatted as follows:

x = text

y = human

We apply the translation to text, and keep the others
in English. We set (a, b) = (20, 40) for the target
language sampling.

B Unseen Tasks

Table 2 summarized the unseen tasks we used in
our experiments, and in this section we provide
further details of the tasks.

AfriSenti Zero For this task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the senti-
ment label of the tweet. The output is positive,
negative, or neutral.

S: Sentiment classification.

These are identical to those of the AfriSenti task.

GoEmotions For this task, we use the following
task instructions:

F: The goal of this task is to identify emotions in
the text from admiration, amusement, anger,
... If multiple emotions are identified, the
output will be a #-separated string: emo-
tion_1#emotion_2#emotion_3.

S: Multi-label emotion classification.

CLINC150 For this task, we use the following
task instructions:

F: The goal of this task is to identify an in-
tent given a user input. There are 150 in-
tents: "current_location" "oil_change_when"
"oil_change_how" ... Then the output is an
intent label.

S: User input intent classification.

Unlike the previous work (Zhang et al., 2020;
Hashimoto et al., 2024), we excluded all the out-of-
scope examples from this task, and soley focus on
the intent classification aspect.

Orcas-I For this task, we use the following task
instructions:

F: The goal of this task is to identify the intent
of the query with the search results (titles and
URLs). The output is one of the 5 labels:
Abstain, Factual, Transactional, Navigational,
Instrumental.

S: Query intent classification.

MIT-R For this task, we use the following task
instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 8 attribute types: Amenity, Cuisine,
Dish, Hours, Location, Price, Rating, Restau-
rant_Name. Then the output is like "word1
<Rating>word2 word3</Rating> word4 <Lo-
cation>word5</Location>".

S: Attribute extraction.

SSENT For this task, we use the following task
instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 2 attribute types: Positive and Neg-
ative. Then the output is like "word1 <Nega-
tive>word2 word3</Negative> word4 <Posi-
tive>word5</Positive>".

S: Attribute extraction.

XML-MT For this task, we use the following
task instructions:
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F: The goal of this task is to translate an XML-
tagged text from English to [target language]
by preserving the XML structure. Both the in-
put and output are like "word1 <tag-A>word2
word3</tag-A> word4 <tag-B>word5</tag-
B>".

S: Translation: English to [target language].

C Evaluation Metrics

This section describes the evaluation metric used
for each task in our evaluation. All the scores are
in the range of [0, 100].

C.1 Seen Tasks
AfriSenti We use the label matching accuracy
for this task.

DDI13 We use an F1 score based on precision
and recall of the non-false classes.

ATIS-intent We use a corpus-level F1 score for
the multi-label classification task.

MTOP-intent We use the label matching accu-
racy for this task.

Countfact We use a corpus-level F1 score based
on precision and recall of the “counterfactual”
class.

Offensive We use a corpus-level F1 score based
on precision and recall of the “Offensive” class.

BC5CDR We use a corpus-level F1 score based
on precision and recall of the labeled entities.

PHP We use a corpus-level BLEU (Papineni
et al., 2002) score for this text generation task.

C.2 Unseen Tasks
AfriSenti Zero We use the label matching accu-
racy for this task.

GoEmotions We use a corpus-level F1 score for
the multi-label classification task.

CLINC150 We use the label matching accuracy
for this task.

Orcas-I We use the label matching accuracy for
this task.

MIT-R We use a corpus-level F1 score based on
precision and recall of the labeled attributes.

SSENT We use a corpus-level F1 score based on
precision and recall of the labeled attributes.

XML-MT We use the structured BLEU met-
ric (Hashimoto et al., 2019).
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