@inproceedings{hammerl-etal-2024-cuni,
title = "{CUNI} and {LMU} Submission to the {MRL} 2024 Shared Task on Multi-lingual Multi-task Information Retrieval",
author = {H{\"a}mmerl, Katharina and
Manea, Andrei-Alexandru and
Vico, Gianluca and
Helcl, Jind{\v{r}}ich and
Libovick{\'y}, Jind{\v{r}}ich},
editor = {S{\"a}lev{\"a}, Jonne and
Owodunni, Abraham},
booktitle = "Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.mrl-1.29",
pages = "357--364",
abstract = "We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval.The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering.Our solutions to the subtasks are based on data acquisition and model adaptation.We compare the performance of our submitted systems with the translate-test approachwhich proved to be the most useful in the previous edition of the shared task.Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.Our code is available at https://github.com/ufal/mrl2024-multilingual-ir-shared-task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hammerl-etal-2024-cuni">
<titleInfo>
<title>CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katharina</namePart>
<namePart type="family">Hämmerl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrei-Alexandru</namePart>
<namePart type="family">Manea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gianluca</namePart>
<namePart type="family">Vico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jindřich</namePart>
<namePart type="family">Helcl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jindřich</namePart>
<namePart type="family">Libovický</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonne</namePart>
<namePart type="family">Sälevä</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="family">Owodunni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval.The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering.Our solutions to the subtasks are based on data acquisition and model adaptation.We compare the performance of our submitted systems with the translate-test approachwhich proved to be the most useful in the previous edition of the shared task.Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.Our code is available at https://github.com/ufal/mrl2024-multilingual-ir-shared-task.</abstract>
<identifier type="citekey">hammerl-etal-2024-cuni</identifier>
<location>
<url>https://aclanthology.org/2024.mrl-1.29</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>357</start>
<end>364</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
%A Hämmerl, Katharina
%A Manea, Andrei-Alexandru
%A Vico, Gianluca
%A Helcl, Jindřich
%A Libovický, Jindřich
%Y Sälevä, Jonne
%Y Owodunni, Abraham
%S Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F hammerl-etal-2024-cuni
%X We present the joint CUNI and LMU submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval.The shared task objective was to explore how we can deploy modern methods in NLP in multi-lingual low-resource settings, tested on two sub-tasks: Named-entity recognition and question answering.Our solutions to the subtasks are based on data acquisition and model adaptation.We compare the performance of our submitted systems with the translate-test approachwhich proved to be the most useful in the previous edition of the shared task.Our results show that using more data as well as fine-tuning recent multilingual pre-trained models leads to considerable improvements over the translate-test baseline.Our code is available at https://github.com/ufal/mrl2024-multilingual-ir-shared-task.
%U https://aclanthology.org/2024.mrl-1.29
%P 357-364
Markdown (Informal)
[CUNI and LMU Submission to the MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval](https://aclanthology.org/2024.mrl-1.29) (Hämmerl et al., MRL 2024)
ACL