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Abstract
Training Large Language Models (LLMs) with
Reinforcement Learning from AI Feedback
(RLAIF) aligns model outputs more closely
with human preferences. This involves an
evaluator model ranking multiple candidate re-
sponses to user prompts. However, the rankings
from popular evaluator models such as GPT-4
can be inconsistent.

We propose the Repeat Ranking method, in
which we evaluate the same responses multi-
ple times and train only on those responses
which are consistently ranked. Using 2,714
training prompts in 62 languages, we generated
responses from 7 top multilingual LLMs and
had GPT-4 rank them five times each. Evaluat-
ing on MT-Bench chat benchmarks in six lan-
guages, our method outperformed the standard
practice of training on all available prompts.

Our work highlights the quality versus quantity
trade-off in RLAIF dataset generation and of-
fers a stackable strategy for enhancing dataset
and thus model quality.

1 Introduction

Reinforcement learning has been shown to improve
large language model (LLM) performance signifi-
cantly (Yao et al., 2023; Havrilla et al., 2024), with
this form of learning instructing an LLM both how
to and how not to generate text.

This has come in the forms of Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) and Reinforcement Learning from Ar-
tificial Intelligence Feedback (RLAIF) (Bai et al.,
2022b; Lee et al., 2023), where a human or AI is
used, respectively, to determine the relative quality
of multiple responses to a given prompt. Based on
these quality rankings, high quality and low quality
responses are defined as “positive” and “negative”
and this preference dataset is then used to train an
LLM either with the help of a reward model or
by directly training using a method such as Prox-
imal Policy Optimisation (PPO) (Schulman et al.,

2017), Direct Policy Optimisation (DPO) (Rafailov
et al., 2024), or Odds Ratio Preference Optimisa-
tion (ORPO) (Hong et al., 2024). This style of train-
ing has lead to many of the improvements in recent
years in LLM training, with both GPT-3.5 (Ouyang
et al., 2022), trained with RLHF, and Starling (Zhu
et al., 2023), trained with RLAIF, demonstrating
gains upon previous state-of-the-art performance
across many evaluation benchmarks.

Most publicly available preference data is mono-
lingual, but we hypothesize that training a model
on multilingual preference data will improve the
resultant model’s multilingual capabilities. This
prompted us to create a multilingual preference
dataset.

We follow previous methods for creating HLAIF
preference datasets such as Nectar (Zhu et al.,
2023) by first sampling human generated prompts
from public datasets before generating various re-
sponses to each prompt using seven state-of-the-art
LLMs. We then use a state-of-the-art LLM, GPT-4,
to evaluate the relative ranking of each response.

However, we found that when the evaluation pro-
cess was repeated on the same responses, different
rankings were sometimes output by GPT-4. This
suggested that the definition of positive and nega-
tive labels in these instances had a lower confidence
than instances where GPT-4 would consistently out-
put the same ranking given a set of responses.

Therefore, we hypothesized that training only on
rankings that GPT-4 consistently outputs over mul-
tiple evaluations would lead to greater downstream
evaluation performance compared to training on
all rankings, both consistent and inconsistent. This
lead us to propose the Repeat Ranking method,
whereby responses are evaluated multiple times
and the consistency of the rankings is used as a fil-
ter for inclusion or exclusion from the training set.
A representation of our Repeated Ranking method
can be found in Fig. 1.

We conducted experiments in which 2,714 mul-
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Prompt 1:
What is the capital 
of France?

Model A:
Paris - the city of love

Model B:
The capital of France 
is Paris.

Model C:
Paris is the capital of 
France.

Prompt 2:
What was the 
world’s population 
in 2023?

Model A:
8 thousand

Model B:
8 billion

Model C:
5 billion

Evaluation 1.1:
B > C > D > A

Evaluation 1.2:
C > D > A > B

Evaluation 1.3:
D > A > B > C

Evaluation 2.1:
B > C > A > D

Evaluation 2.2:
B > A > C > D

Evaluation 2.3:
B > C > A > D

Model D:
Paris

Model D:
1 thousand

Kendall’s W of evaluation 
rankings = 0.111

Result:
Exclude from training data

Kendall’s W of evaluation 
rankings = 0.644

Result:
Use Model B as positive 
response and Model D as 
negative response in 
training data

Figure 1: A visual description of how we select our data for training. We use our Repeat Ranking method to repeat
the evaluations of the models multiple times and then only train on the best and worst responses which have a high
Kendall’s W, a measure of ranking agreement, associated with their ranking.

tilingual prompts were selected and 7 LLMs were
used to generate responses for each prompt. We
then evaluated each set of 7 responses 5 times us-
ing GPT-4. Finally, we propose a novel method for
filtering evaluated preferences by measuring the
consistency of the set of rankings for each evalua-
tion using Kendall’s W (Kendall and Smith, 1939).
We conducted experiments training an LLM us-
ing all rankings, as well as the 75%, 50%, and
25% most consistent rankings. We then evaluated
each trained model using the MT-Bench benchmark
across 6 languages.

Our results show that training on the more consis-
tently ranked responses gives greater downstream
evaluation performance compared to training on all
data for a majority of languages tested.

Our findings inform the creation of future prefer-
ence datasets and offer a method of improving the
quality of existing preference datasets. This may
open up exciting new avenues for training LLMs
and highlights the importance of high quality posi-
tive and negative data when training using RLAIF.

We make our training data1, training code2, and

1https://huggingface.co/datasets/lightblue/
mitsu

2https://github.com/lightblue-tech/suzume/
tree/main/mitsu

trained models3 available online.

2 Related Work

LLM chat performance has been improved by train-
ing on RLHF datasets in multiple works within the
literature.

The RLHF dataset used to train InstructGPT was
created by having users and paid annotators evalu-
ate multiple responses to a given prompt and indi-
cating their preferred prompt (Ouyang et al., 2022).
This work stated that “most comparisons are only
labeled by 1 contractor for cost reasons” and that
“having examples labeled multiple times could help
identify areas where our contractors disagree, and
thus where a single model is unlikely to align to
all of them”, indicating the seeming importance
of having consistently similarly ranked preference
data when training with RLHF.

In contrast, the OpenAssistant Conversations
(OASST1) dataset (Köpf et al., 2024), contains
conversation prompts and responses that are writ-
ten by volunteers, with the responses evaluated by
multiple volunteers. While this is a large dataset of
more than 10,000 individual messages, over 70%
of these conversations are in either English or Span-
ish, reducing OASST1’s applicability to training a

3https://huggingface.co/lightblue/
suzume-llama-3-8B-multilingual-orpo-borda-half
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multilingual model.
Generating data using human labellers is also

costly, which is why several datasets have been
constructed for RLAIF.

Previous work includes the use of “Constitu-
tional AI” (Bai et al., 2022b) whereby an LLM
is prompted to respond to a prompt before being
tasked with revising that response to be less harm-
ful and in line with principles set by researchers.
The LLM then generates a less harmful response
and the original and revised responses are then used
to train another LLM using reinforcement learning.

Further work showed that training using RLAIF
can lead to similar human evaluation scores com-
pared to RLHF (Lee et al., 2023). This work
also showed that RLAIF by training directly on
response evaluation scores elicited from LLMs
achieves greater down-stream task performance
compared to the Constitutional AI approach of hav-
ing an LLM revise existing responses.

Nectar (Zhu et al., 2023) is a preference dataset
which first samples prompts from a variety of
open source datasets, before generating responses
based on these prompts using seven state-of-the-
art LLMs (GPT-4, GPT-3.5-turbo, GPT-3.5-turbo-
instruct, Command R+, Command R, LLama-2-7B-
chat, and Mistral-7B-Instruct). These responses are
then ranked once by GPT-4 and these rankings are
used to train the Starling Alpha and Beta models
using reinforcement learning. These prompts and
responses are also all in English, meaning that this
dataset is not suitable for training a multilingual
model.

Due to the paucity of high quality multilingual
models existing within the literature, we create one,
which we call Mitsu.

Previous work has also shown that filtering rein-
forcement learning data can lead to higher down-
stream task accuracy (Morimura et al., 2024). How-
ever, this approach relies on an external reward
model to choose which data to filter, limiting the
application of this approach to domains and lan-
guages that no existing reward model has been
trained on.

3 Method

The overall objective of this piece of work was to
create an LLM that was more proficient at multi-
lingual chat than previous LLMs. In the course of
creating such an LLM, we generated also insights
into the process of creating high quality preference

datasets. This section details how we used our
Repeated Ranking method to make our training
dataset named Mitsu, how we trained our model,
and finally how we evaluated our LLM.

3.1 Preference Dataset Creation with
Repeated Rankings

We create our Mitsu dataset by first following
the process of how Nectar (Zhu et al., 2023)
was developed by sampling human generated
prompts derived from open source datasets such
as the LMSYS-Chat-1M dataset (Zheng et al.,
2023). Specifically, we select the multilingual
stratified sample of prompts from the Tagengo
dataset (Devine, 2024), which consists of 76,338 di-
verse human generated prompts in 74 languages. In
order to reduce the costs of generating the dataset,
we further stratify by languages, randomly sam-
pling a maximum of 100 prompts per language.
For languages with less than 100 prompts in the
original dataset, we used all prompts for that lan-
guage. This resulted in 2,996 prompts in total being
selected.

Following the method used in the creation of
the Nectar dataset, we used our sampled prompts
to generate responses from seven state-of-the-
art models. These were GPT-4 (gpt-4-0125-
preview) (Achiam et al., 2023), GPT-3.5 Turbo
(gpt-35-turbo-0301) (Ouyang et al., 2022), Com-
mand R (Gomez, 2024)4, Command R+ (Gomez,
2024)5, Qwen 1.5 32B Chat (Bai et al., 2023)6,
Qwen 1.5 72B Chat (Bai et al., 2023)7, Starling 7B
Beta (Zhu et al., 2023)8.

These models were all chosen for their ability
to output at least some multilingual text, which is
why we did not consider using high performing but
monolingual models such as Llama 3 (AI@Meta,
2024).

Our text generation settings were as follows. We
set the generation temperature to 0 for all models,
as some models such as Qwen have been shown
to require smaller generation temperatures due to
their larger vocabulary size and in order to make
the generation deterministic to some extend. Future
work could explore using more sophisticated tem-

4https://huggingface.co/CohereForAI/
c4ai-command-r-v01

5https://huggingface.co/CohereForAI/
c4ai-command-r-plus

6https://huggingface.co/Qwen/Qwen1.5-32B-Chat
7https://huggingface.co/Qwen/Qwen1.5-72B-Chat
8https://huggingface.co/Nexusflow/

Starling-LM-7B-beta
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perature set-ups per model, language, or prompt.
We set our maximum number of tokens to generate
as 2,048, and we discard any responses that have
not been completed within this token limit. This
was done to reduce both generation and evaluation
time and costs, but future work could explore using
longer generated sequences for a preference dataset.
We used the popular vLLM library (Kwon et al.,
2023) to generate responses with our local models,
which were all models except GPT-4 and GPT-3.5-
turbo. For GPT-4 and GPT-3.5-turbo, we generated
responses using the Azure OpenAI endpoint. This
resulted in 2,762 prompts having 7 full responses
(one from each model), which we then ranked.

Our response evaluation again was conducted
similarly to Nectar, where we used a similar sys-
tem message describing the criteria for evaluating
prompts as the original Nectar system message. We
added one additional evaluation criteria to the orig-
inal system message, which was “Is the response
written naturally and fluently in the language that
the prompter would expect?”. This was added to
make sure that highly rated responses were not cor-
rect but English responses to non-English prompts,
which can occur in some LLMs.

Aside from our response evaluation criteria, we
included a statement in the system message that
instructed GPT-4 to output both a short explana-
tion of the merits and drawbacks of each response,
before outputting a ranking of the responses. This
ranking consisted of responses labelled by alpha-
bet character, using greater than (’>’) and equals
(’=’) signs to determine which responses were eval-
uated as better and which were of equal quality.
To avoid a systematic bias in our evaluations, re-
sponses were input to GPT-4 in a randomised order,
with the responses being labelled A-G in order.
We also take inspiration from work in generating
the Nectar dataset in which randomised pairwise
comparisons were used by instructing GPT-4 to
write the explanation of the ranking in a dictated
randomised order. The system message that we
used in this work can be found in Figure 3 in the
Appendix.

This ranking was generated by using a gener-
ation temperature of 0 and a maximum number
of generated tokens as 1,024 with the gpt-4-0125-
preview version of GPT-4. This resulted in a rank-
ing for each set of 7 responses for each prompt.

Initial experiments investigating the reliability
of this ranking showed that the ranking was liable

to change significantly for some prompts. We ra-
tionalise this as follows. Imaging that a user asked
three models "What is the capital of France?", and
the responses were “Paris”, “Lyon”, and “Delhi”.
In this case, most human evaluators would be able
rank the “Paris” answer as being the best answer
and “Delhi” as being the worst answer. However, if
the responses were instead more indistinguishable
in terms of response quality, for example “Paris”,
“The capital city of France is Paris”, and “Paris is
the capital of France.”, then even human evalua-
tors may struggle to agree on which constituted
the best and worst answers given the prompt. We
hypothesize that for the same reason, AI evalua-
tors give inconsistent rankings when faced with
responses that are more indistinguishable from one
another. Reinforcement learning techniques such
as ORPO (Hong et al., 2024), which performs
monolithic preference optimization without a refer-
ence model, rely on sufficiently different positive
and negative training labels that an LLM can learn
the contrast between the two. Therefore, training
on too-similar positive and negative labels may re-
sult in a degeneracy of the model overall. Hence,
when we observed the lack of consistency in GPT-
4’s rankings for some responses, we hypothesized
that training on only the more consistently ranked
outputs would lead to a better evaluation perfor-
mance than training on all rankings. Therefore, we
repeat the ranking process five times, only chang-
ing the random order of the responses and the in-
structed random order of the ranking explanation
each time. We discarded any cases in which a
generation failed or where the ranking could not
be parsed from the generated evaluation, leaving
2,714 individual prompts. We found that only 8.4%
of all top responses were ranked top all 5 times,
and only 20.2% of bottom responses were ranked
bottom all 5 times, which again motivates our work
in generating multiple evaluations for each set of
responses per prompt.

With these responses, we calculated the
Kendall’s W (Kendall and Smith, 1939) for each
set of rankings. According to Field, “Kendall’s
Coefficient of Concordance, W, is a measure of the
agreement between several judges who have rank
ordered a set of entities” (Field, 2005), and we use
it to determine how well the repeated evaluation
rankings agree. We justify using Kendall’s W as a
measure of inter-ranker agreement due to its previ-
ous use as a measure of ranking agreement within
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Model name Average Borda Count
GPT-3.5 Turbo 15.91
Starling 7B Beta 16.57
Qwen 1.5 32B 18.17
Command R 20.47
Qwen 1.5 72B 20.51
Command R + 21.54
GPT-4 26.78

Table 1: Average Borda count per model across 5 evalu-
ations.

the mathematical literature. However, since we ulti-
mately just use the top and bottom responses from
our rankings, we consider that comparing only the
rankings of those two responses directly could pos-
sibly be simpler and could potentially lead to better
results. We leave this for future work to explore
this avenue.

We use this W score to generate three train-
ing subsets of Mitsu, where we only trained on
responses with the top 25% (674 prompts), 50%
(1,350 prompts), 75% (2,018 prompts) of W scores.
We also trained a model using the entire Mitsu
dataset (2,714 prompts).

In order to train using ORPO, we selected pos-
itive and negative responses to prompts. These
effectively train a model to generate outputs simi-
lar to the positive responses and dissimilar to the
negative responses. We selected these responses by
calculating the Borda Count (Borda, 1781; Reilly,
2002) of each response over the 5 evaluations, and
then selecting the models with the highest and low-
est Borda counts for positive and negative, respec-
tively. We randomly sample in cases where there is
a tie in the Borda score between the multiple best
or worst scores.

Table 1 shows the average Borda score for each
model evaluated and Fig. 2 shows the amount of
times each model’s response was used as the posi-
tive and negative response.

We make the top 25%, top 50%, top 75%, and
full training datasets available online9.

3.2 Training

We train using our prepared datasets on Suzume 8B
Multilingual (Devine, 2024), a multilingual fine-
tune of Llama 3 (AI@Meta, 2024), using ORPO.

9Available at in
https://huggingface.co/collections/lightblue/
mitsu-datasets-67076f8293b57ae8b2c17293

We chose to train using ORPO due to its demon-
strated greater performance compared to the most
popular other current RLAIF method, DPO (Hong
et al., 2024). We trained using the ORPO settings
made available on the Axolotl LLM training pack-
age10 which uses the TRL (von Werra et al., 2020)
implementation of the ORPO algorithm. We chose
to train on the Suzume 8B Multilingual model as it
has the highest MT-Bench scores for a majority of
evaluation languages compared to other commer-
cially usable open source models under 10 billion
parameters. We train for one epoch for each dataset
with an ORPO alpha value set to 0.1, our maximum
token sequence length was set to 8,192, and our
learning rate was set to 8e-6. The full training con-
figuration for each model can be found on their
model cards11.

For convenience, we refer to the models trained
on the top 25%, 50%, 75%, and 100% of W score
subsets as Suzume-ORPO-25, Suzume-ORPO-50,
Suzume-ORPO-75, and Suzume-ORPO-100, re-
spectively.

3.3 Evaluation

We evaluate our models using the multilingual ver-
sion of the MT-Bench score over 6 languages (Chi-
nese, English, French, German, Japanese, and Rus-
sian). This evaluation tests a model’s ability to
perform tasks such as writing, roleplay, extraction,
reasoning, math, coding, STEM knowledge, and
humanities knowledge in a given language, using
GPT-4-Turbo as the evaluator of the model’s re-
sponses. Each category contains 10 prompts, with
each response being ranked out of 10, to give a
final average score over all prompts. We report the
2-turn scores on this benchmark. Note that we do
not report Russian performance on math, coding,
and reasoning questions as reference answers were
not available for these questions. We evaluate all
four of our ORPO trained models (Suzume-ORPO-
25, Suzume-ORPO-50, Suzume-ORPO-75, and
Suzume-ORPO-100), as well as our base model
(Suzume-Base) on the MT-Bench benchmark over
all 6 languages. As a further baseline, we also
evaluate the GPT-3.5-Turbo model (Ouyang et al.,
2022) on each language.

As an additional evaluation, we evaluate over

10https://github.com/OpenAccess-AI-Collective/
axolotl

11Available at https://huggingface.
co/collections/lightblue/
orpo-experiments-6707702969a9340fa312405f
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(a) Positive responses (b) Negative responses

Figure 2: Plots of how often each model’s response was chosen as the positive/negative response for training using
the Borda count. We observe that a plurality but not a majority of our positive training data comes from GPT-4,
while the vast majority of our negative training data comes from responses by Starling and GPT-3.5-Turbo.

the Belebele benchmark, which is a log-probability
based benchmark which calculates the probabili-
ties for generating the correct answer tokens given
a prompt compared to the probabilities of gener-
ating three possible incorrect answers (Bandarkar
et al., 2023). We report the accuracy, which is the
percentage of test examples where the probability
of generating the correct answer from the prompt
was higher than the probability of outputting any of
the wrong answers. We apply this benchmark over
the 6 languages we use in our MT-Bench evalua-
tion, as well as 6 other languages that we selected
at random: Arabic, Azerbaijani, Bangla, Croatian,
Norwegian, and Thai. Note that this does not test
an LLM’s chat abilities, but rather tests an LLM’s
ability to output factual information.

4 Results

Table 2 presents the MT-Bench scores across 6
languages for our 4 ORPO subsets compared to the
base model and GPT-3.5-Turbo.

All ORPO models surpassed the base model
in nearly every language, underscoring the value
of ORPO training for enhancing chat capabil-
ities. Furthermore, Suzume-ORPO-50 outper-
formed Suzume-ORPO-100 in 5 out of 6 languages,
despite being trained on half the data. Suzume-
ORPO-25 and Suzume-ORPO-75 achieved the
highest scores in one language each, but Suzume-
ORPO-50 provided the best overall balance.

While the base model did not exceed GPT-3.5-
Turbo in any language, Suzume-ORPO-50 outper-
formed GPT-3.5-Turbo in 4 out of 6 languages,
demonstrating that ORPO training enables LLMs
match or surpass GPT-3.5-Turbo on chat bench-
marks. However, GPT-3.5-Turbo still led in En-
glish and Japanese.

We also conducted other small scale tests to fur-

ther probe the effects of ORPO training. One no-
table test (Suzume-ORPO-GPT on Table 4) was
training using all prompt responses from the mod-
els with the best and worst Borda scores, GPT-4 and
GPT-3.5 respectively, but we found that this lead
to a lower average MT-Bench scores compared to
the Suzume-ORPO-100 model. This indicates the
importance of model diversity and selecting appro-
priate responses when generating RLAIF datasets.

Another test (Llama-ORPO-50 on Table 4) we
conducted was directly ORPO training a Llama
3 8B Instruct model on the same dataset as
Suzume-ORPO-50, but we found that this model
had lower MT-Bench scores across all languages.
This demonstrates the continued necessity for fine-
tuning before conducting ORPO training.

The final small scale test (Suzume-ORPO-
random-50 on Table 4) we conducted was training
a model on a randomly selected half of the entire
Mitsu dataset. This allowed us to isolate the ef-
fects of example selection by using Kendall’s W,
as this model was trained on the same amount of
data as Suzume-ORPO-50. We find that Suzume-
ORPO-random-50 model has lower MT-Bench
scores across all languages compared to Suzume-
ORPO-50, indicating the importance of selecting
training prompts based on Kendall’s W score.

The Belebele scores for each of our trained mod-
els can be found in Table 3. We observe that
the base model exhibits greater or equal perfor-
mance on average on this benchmark compared to
Suzume-ORPO-100. This contrasts with our MT-
Bench scores which showed that ORPO training un-
ambiguously improved chat performance compared
to the base model. However, despite the observed
drop in Belebele score when performing full ORPO
training, we also observe that Suzume-ORPO-75
and Suzume-ORPO-25 are able to largely achieve
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Language GPT-3.5-
Turbo

Suzume-
Base

Suzume-
ORPO-100

Suzume-
ORPO-75

Suzume-
ORPO-50

Suzume-
ORPO-25

Chinese 7.55 7.11 7.65 7.77 7.74 7.44
English 8.26 7.73 7.98 7.94 7.98 8.22
French 7.74 7.66 7.84 7.46 7.78 7.81
German 7.68 7.26 7.28 7.64 7.70 7.71
Japanese 7.84 6.56 7.20 7.12 7.34 7.04
Russian 7.94 8.19 8.30 8.74 8.94 8.81

Mean 7.83 7.42 7.71 7.78 7.91 7.84

Table 2: The MT-Bench chat benchmark scores for each model evaluated across each language. Bolded values
are greatest in their row. We improve upon base model evaluation performance across all languages for nearly all
ORPO models. Interestingly, we find that training on the 50% most consistently evaluated prompts leads to greater
than or equal evaluation scores than training on all prompts for 5 of 6 languages evaluated.

comparable or better performance with the base
model on many languages in this benchmark. This
indicates that our ORPO training data selection cri-
teria may be beneficial to mitigating some of the
issues we demonstrate of lower performance on
log-probability based for ORPO trained models.

We also observe that Suzume Base performs
better on two languages (Chinese and Thai) than
any ORPO trained model. This may simply be
due to the fact that OPRO training, and particularly
naive ORPO training (i.e. Suzume ORPO-100),
seems to result in reduced performance in Belebele
and so even when selecting training examples using
Kendall’s W, the drop in performance is too large
to compensate for.

5 Discussion

Our results demonstrate the importance of ORPO
training in improving the chat abilities of finetuned
models. This, in turn, highlights the importance of
creating high quality preference datasets to train
LLMs using the ORPO method. Our results show-
ing that model trained on less, but more consis-
tently evaluated, preferences can achieve greater
chat benchmark performance than training on all
the data. This has the double benefits of increas-
ing performance while reducing training cost by as
much as four times for training on our 25% training
subset. However, the extra inference computation
required to rank responses multiple times is an in-
creased cost with this method of dataset creation.

This could benefit both current and future
datasets, with datasets such as Nectar (Zhu et al.,
2023) potentially being improved by re-evaluating
the dataset’s responses and filtering out less consis-

tently evaluated rows.
We theorize that the correct balance between

consistency and data volume (i.e. where the cut-off
for Kendall’s W would be) may vary between tasks,
but we have shown that for our multilingual chat
setting the benefit on evaluation performance of
having a threshold above which we keep our data.

Our results are also purely dataset-based, mean-
ing that they might be able to be stacked with
other recent LLM training methods such as
SimPO (Meng et al., 2024) and ExPO (Zheng et al.,
2024a).

6 Future Work

Our results suggest that the technique of repeated
evaluations on preference data and only keeping
the consistently evaluated prompts and responses
for training could be applied to other RLAIF and
RLHF datasets. Future work could include inves-
tigating whether training only using prompts and
responses with high agreement in the evaluations
from human annotators could lead to higher accu-
racy than training on all prompts and responses.

Another potential avenue for future work is us-
ing more than one evaluator model for ranking
responses. In this work, we only used GPT-4,
but there are other state-of-the-art LLMs such
as Claude 3 (Anthropic, 2024) and Gemini 1.5
Pro (Reid et al., 2024). We theorize that combining
the evaluations of multiple high performance LLMs
could serve to create more robust evaluations of re-
sponses and mitigate the demonstrated bias that
any one LLM exhibits (Feng et al., 2023; Cao et al.,
2023). The Mitsu dataset that we use to train our
model is single-turn, meaning that each example
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Suzume
Base

Suzume
ORPO-100

Suzume
ORPO-75

Suzume
ORPO-50

Suzume
ORPO-25

Arabic 64.3 52.6 65.3 54.7 64.6
Azerbaijani 50.3 37.6 52.3 45.3 52.1
Bangla 46.0 37.0 49.7 43.2 46.3
Chinese 78.0 64.4 76.1 70.0 75.7
Croatian 59.4 47.4 60.7 53.0 61.1
English 84.2 75.2 83.2 83.0 84.7
French 77.3 64.4 75.7 72.2 77.6
German 68.0 53.8 67.9 65.9 68.8
Japanese 66.7 57.1 63.7 58.2 68.0
Norwegian 67.0 52.4 67.2 62.2 67.7
Russian 71.6 51.9 71.4 57.3 72.9
Thai 63.3 47.9 61.3 57.1 63.0

Mean 66.4 53.5 66.2 60.2 66.9

Table 3: Belebele scores for each trained model across the 12 languages that we evaluate on. We observe that
full ORPO training leads to much lower Belebele scores compared to the base fine-tuned model. However, we
also observe that our method of selecting fewer ORPO training examples is able to marginally improve on the
performance of the base model for most languages.

consists of a single prompt-response pair for both
positive and negative responses. Future work could
expand on this to add multi-turn conversations, as
was done by Nectar (Zhu et al., 2023).

The Mitsu dataset also consists of prompts sam-
pled from the Tagengo dataset (Devine, 2024),
which are derived from users prompts to LLMs
hosted on a demo site. We theorize that these
prompts are a mixture of easy and difficult for an
LLM to answer. Training on tasks that LLMs are al-
ready highly proficient at might be a waste of train-
ing resources, so future work could filter prompts
based on their perceived difficulty for LLMs. We
believe that this may improve LLMs abilities on
these difficult tasks.

In our experiments, we chose to rank responses
5 times due to that being the financial limit of our
experiment. However, future work could empir-
ically find an optimal number of times to repeat
evaluations to obtain a reliable Kendall’s W score.

A slight limitation of the Repeated Ranking ap-
proach is the increased inference cost in evaluating
responses multiple times as an analogue for de-
termining the confidence of the ranking model in
the ranking. Future work could explore mitigating
this effect by evaluating the combined log proba-
bility of a single ranking output and training using
only the responses from rankings with the highest
probability.

Tools and agents have also been shown to aug-
ment the abilities of LLMs (Parisi et al., 2022; Gao
et al., 2023; Schick et al., 2024). Future work could
explore using tools or agents to enhance the eval-
uation abilities of the evaluator LLM when eval-
uating prompt responses. For example, a search
tool could determine the veracity of factual claims,
or a calculator tool would be able to confirm the
mathematical results of an LLM. We theorize that
this would lead to more accurate evaluation and
would ultimately lead to more accurate LLMs.

7 Conclusion

In this study, we explored the impact of repeated
rankings from an AI evaluator (GPT-4) on training
reinforcement learning from AI feedback (RLAIF)
models for multilingual chat capabilities. We found
that responses evaluated consistently by GPT-4 led
to higher downstream performance across multiple
languages, compared to training on all data regard-
less of evaluation consistency. Our findings indi-
cate that selective training based on evaluation con-
sistency can enhance chat performance and offer
a method to improve existing preference datasets.
This highlights the balance between quality and
quantity when constructing datasets for RLAIF.
Our work opens avenues for further optimizing
RLAIF datasets and refining training methodolo-
gies to develop more proficient multilingual LLMs.
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Limitations

One limitation of this work was the size of the data
that we trained upon. Our Mitsu dataset, in total,
consisted of less than 3k examples, whereas many
popular preference datasets such as Nectar (Zhu
et al., 2023) and the HH-RLHF (Bai et al., 2022a)
dataset consist of hundreds of thousands of exam-
ples. Therefore, we are yet to show whether our
proposed response selection technique extends to
datasets of that size.

Secondly, the differences in our results are rel-
atively small. While we show relatively consis-
tent improvement in chat performance in models
trained over our selected subsets (Suzume-ORPO-
25, Suzume-ORPO-50, Suzume-ORPO-75) over
the model trained on the whole dataset (Suzume-
ORPO-100), these differences are small in magni-
tude (largely <10% difference). It is nevertheless
notable that even demonstrating that chat perfor-
mance does not decrease with fewer training exam-
ples is a useful result that can inform more efficient
ORPO training in the future. Therefore, it remains
for future work to determine if the improvements
in chat ability increase with a larger training set.

Finally, a limitation of this research is that we
rely on GPT-4 for our evaluation using the MT-
Bench benchmark. This could bias the model as
GPT-4 has been shown to exhibit self-enhancement
bias (Zheng et al., 2024b), where it evaluates its
own responses higher compared to human eval-
uation, indicating that we may be overfitting to
GPT-4’s preferences rather than general human
ones. However, GPT-4 is the current state-of-the-
art for LLMs and has been shown to have very
high correlation with human preferences (Zheng
et al., 2024b). Moreover, our evaluations using
Belebele dataset do not use an LLM for evaluation
and again indicate that the accuracy of some of
our ORPO trained models over many languages
increases compared to the base model.

Ethics Statement

We have considered the ethical implications of re-
leasing both our training data and trained models.
There is the potential for LLMs and training data to
be misused, but since we demonstrate that our final
LLM is comparable to a publicly available LLM
(GPT-3.5-Turbo) that has since been superceded by
more recent LLMs (GPT-4, Llama 405B (Dubey
et al., 2024) etc.), we assume that the risk impact
of our sharing these models and data is minimal.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

AI@Meta. 2024. Llama 3 model card.

AI Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2023. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. arXiv preprint arXiv:2308.16884.

J. Borda. 1781. Mémoire sur les élections au scrutin.
Histoire de L’Académie Royale des Sciences, Paris.

Yong Cao, Li Zhou, Seolhwa Lee, Laura Cabello, Min
Chen, and Daniel Hershcovich. 2023. Assessing
cross-cultural alignment between chatgpt and hu-
man societies: An empirical study. arXiv preprint
arXiv:2303.17466.

Peter Devine. 2024. Tagengo: A multilingual chat
dataset. arXiv preprint arXiv:2405.12612.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

101



Shangbin Feng, Chan Young Park, Yuhan Liu, and Yulia
Tsvetkov. 2023. From pretraining data to language
models to downstream tasks: Tracking the trails of
political biases leading to unfair nlp models. arXiv
preprint arXiv:2305.08283.

Andy P Field. 2005. Kendall’s coefficient of concor-
dance. Encyclopedia of statistics in behavioral sci-
ence, 2:1010–11.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Aidan Gomez. 2024. Command R: Retrieval-
Augmented Generation at Production Scale.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024. Teaching large lan-
guage models to reason with reinforcement learning.
arXiv preprint arXiv:2403.04642.

Jiwoo Hong, Noah Lee, and James Thorne. 2024.
Reference-free monolithic preference optimization
with odds ratio. arXiv preprint arXiv:2403.07691.

Maurice G Kendall and B Babington Smith. 1939. The
problem of m rankings. The annals of mathematical
statistics, 10(3):275–287.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richárd Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Ken-
shi Abe, and Kaito Air. 2024. Filtered direct prefer-
ence optimization. arXiv preprint arXiv:2404.13846.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Benjamin Reilly. 2002. Social choice in the south seas:
Electoral innovation and the borda count in the pa-
cific island countries. International Political Science
Review, 23(4):355–372.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Leandro von Werra, Younes Belkada, Lewis Tun-
stall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Trans-
former reinforcement learning. https://github.
com/huggingface/trl.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji
Ruwase, Samyam Rajbhandari, Xiaoxia Wu, Am-
mar Ahmad Awan, Jeff Rasley, Minjia Zhang, Cong-
long Li, Connor Holmes, et al. 2023. Deepspeed-
chat: Easy, fast and affordable rlhf training of
chatgpt-like models at all scales. arXiv preprint
arXiv:2308.01320.

Chujie Zheng, Ziqi Wang, Heng Ji, Minlie Huang,
and Nanyun Peng. 2024a. Weak-to-strong ex-
trapolation expedites alignment. arXiv preprint
arXiv:2404.16792.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez,
Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-1m:
A large-scale real-world llm conversation dataset.

102



Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024b.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and
Jiantao Jiao. 2023. Starling-7b: Improving llm help-
fulness & harmlessness with rlaif.

103



You are an evaluator AI. Your task is to rank multiple responses to a given prompt from best to worst
You will first be given the original prompt, and then seven possible responses to that prompt,

,!labelled alphabetically.
You should first write a very brief (<40 words per model) explanation of the merits and drawbacks of

,!the responses, before giving the ranking itself.
This explanation of each response should be in a randomised order (go in the order of �{randomly

,!shuffled list of alphabet letters from A-G}�).
Make sure you explain and rank all responses, do not leave any out in your explanation or ranking.
The ranking should be a list of alphabet characters that describe the ranking, with �>� denoting the

,!left item is ranked higher than the right item and �=� denoting that the items are of equal
,!ranking (e.g. �Z>Y>X=W>V>U=T�).

The user input will look like this:

���
<<<PROMPT>>>
AN EXAMPLE USER PROMPT

<<<RESPONSE A>>>
EXAMPLE RESPONSE A

<<<RESPONSE B>>>
EXAMPLE RESPONSE B

<<<RESPONSE C>>>
EXAMPLE RESPONSE C

<<<RESPONSE D>>>
EXAMPLE RESPONSE D

<<<RESPONSE E>>>
EXAMPLE RESPONSE E

<<<RESPONSE F>>>
EXAMPLE RESPONSE F

<<<RESPONSE G>>>
EXAMPLE RESPONSE G
���

and your output should look like this:

���
<<<EXPLANATION>>>
[SHORT EXPLANATION OF THE RANKING]

<<<RANKING>>>
[SEPARATED LIST OF ALPHABET CHARACTERS THAT DESCRIBE THE RANKING]
���

The evaluation rubric is as follows:

* Is the response relevant? The response should be the best possible answer.
* Is the response truthful?
* Is the response accurate? The response should accurately fulfill the prompt�s request.
* If a creative answer is expected, is the response creative? If an analytical answer is expected, is

,! the response factual/objectively correct?
* Is the response written naturally and fluently in the language that the prompter would expect?
* Is the response detailed? The response should at minimum satisfy the full level of detail required

,!by the prompt.

Figure 3: System message for generating evaluations
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