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Abstract

This study evaluates the performance of Recur-
rent Neural Network (RNN) and Transformer
models in replicating cross-language structural
priming, a key indicator of abstract grammati-
cal representations in human language process-
ing. Focusing on Chinese-English priming,
which involves two typologically distinct lan-
guages, we examine how these models handle
the robust phenomenon of structural priming,
where exposure to a particular sentence struc-
ture increases the likelihood of selecting a sim-
ilar structure subsequently. Our findings indi-
cate that transformers outperformRNNs in gen-
erating primed sentence structures, with accu-
racy rates that exceed 25.84% to 33. 33%. This
challenges the conventional belief that human
sentence processing primarily involves recur-
rent and immediate processing and suggests a
role for cue-based retrieval mechanisms. This
work contributes to our understanding of how
computational models may reflect human cog-
nitive processes across diverse language fami-
lies.

1 Introduction

Structural priming refers to the phenomenonwhere
encountering a specific syntactic structure boosts
the probability of generating or understanding sen-
tences with a comparable structure (Pickering and
Ferreira, 2008). It serves as a valuable method for
exploring the capabilities of language models and
probing their internal states and their potential re-
lation to human sentence processing.

Studies show that Recurrent Neural Networks
(RNN), particularly Gated Recurrent Unit mod-
els (GRU), have been pivotal in modeling human
sentence processing, including structural priming
(Frank et al., 2019). Meanwhile, transformers also
demonstrate structural priming ability similar to
that of humans (Sinclair et al., 2022). This sug-
gests the representations learned by the models

Figure 1: Cross-language structure priming of human
participant: C denotes Chinese, E denotes English.

may capture not only sequential structure but also
some degree of hierarchical syntactic information.

That said, to our knowledge, no study has com-
pared these models’ ability to syntactically prime
across two typologically distant languages. In the
current study, we address this gap by comparing
the models’ ability to prime syntactically across
two languages from vastly different families.

Consider a case where a human participant reads
a passive Chinese (C) sentence and is then asked
to describe a separate picture in English (E) (see
Figure 1). Here, the passive sentence C influences
the structure of the target sentence E, leading the
participant to use passive voice in their description.

Our study explores structural priming in trans-
lation models, highlighting their ability to gener-
ate syntactically diverse English outputs from Chi-
nese inputs. A key contribution is a set of insights
into syntactic representation across typologically
distinct languages in computation models. We
demonstrate that transformers outperformRNNs in
generating primed sentence structures, challenging
the belief that human sentence processing relies
mainly on recurrent and immediate processing.

The next section reviews work on cross-
linguistic priming. Section 3 introduces our study,
exploring insights into syntactic representation
across typologically distinct languages in compu-
tational models. Section 4 introduces a newly de-
signed test set to evaluate our models. Section 5
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details the implementation and training of two dis-
tinct models. Section 6 discusses the design of our
experimental setup, followed by a comprehensive
analysis and interpretation of our results.

2 Related Work

This section focuses on work related to cross-
linguistic priming, as exemplified in Figure 1.
Prior experiments induce cross-linguistic struc-
tural priming by instructing bilingual participants
to use two languages: presenting primes in one lan-
guage and eliciting targets in another. These stud-
ies show that specific sentence structures in one
language can influence the use of similar structures
in the other language (Hartsuiker et al., 2004).

Computational modeling studies have shown
that RNNs exhibit structural priming effects akin
to those observed in human bilinguals (Frank,
2021). These models process sequential informa-
tion through recurrence, a feature thought to resem-
ble human cognitive processing. The emergence of
such priming effects in language models suggests
that they develop implicit syntactic representations
that resemble those employed by human language
systems (Linzen and Baroni, 2021).

However, the transformer model, which uses
self-attention mechanisms instead of recurrence,
challenges this notion. The transformer’s ability to
directly access past input information, regardless
of temporal distance, offers a fundamentally dif-
ferent approach from RNNs. The effectiveness of
transformers in various NLP tasks makes us won-
der if they can emulate RNNs in modeling cross-
language structural priming.

The current study is inspired by two prior stud-
ies. Merkx and Frank (2021) compare trans-
former and RNN models’ ability to account for
measures of monolingual (English) human read-
ing effort. They show that transformers outper-
form RNNs in explaining self-paced reading times
and neural activity during English sentence read-
ing, challenging the widely held idea that human
sentence processing relies on recurrent and imme-
diate processing. Their study is monolingual and
English-centric. Frank (2021) investigates cross-
language structural priming, finding that RNNs
trained on English-Dutch sentences account for
garden-path effects and are sensitive to structural
priming, within and between languages.

Recent studies on structural priming in neural
language models have shown significant progress,

Figure 2: Example of Active, Passive, Propositional
Object (PO), and Double Object (DO). White high-
lighted sentence is original Chinese sentence, and yel-
low highlighted Sentence is word-to-word mapping be-
tween Chinese and English.

with researchers quantifying this phenomenon us-
ing various methods across different languages.
Prasad et al. (2019) demonstrate that LSTM lan-
guage models can hierarchically organize syntactic
representations in a manner that reflects abstract
sentence properties. Sinclair et al. (2022) show
that Transformermodels exhibit structural priming,
suggesting these models capture both sequential
and hierarchical syntactic information.

Michaelov et al. (2023) provide evidence that
large multilingual language models possess ab-
stract grammatical representations that influence
text generation similarly across different languages.
Together, these findings underscore the capacity of
neural models to develop and apply structural ab-
stractions, contributing to a deeper understanding
of language processing in AI.

3 The Current Study

Our study examines structural priming in transla-
tion models, demonstrating their capability to gen-
erate syntactically diverse English outputs from
Chinese inputs. This approach offers insights into
syntactic representations across typologically dis-
tinct languages in computational models.

To compare RNNs and transformers in their
ability to model cross-language structural priming,
we adopt a new approach. While Frank (2021)
trains models on comprehension, where a longer
response time indicates greater difficulty in under-
standing a new sentence and thus a weaker prim-
ing effect, the current study focuses on production.
Here, the structure of each generated sentence is
compared with that of the input sentence to assess
the presence of a priming effect.

As shown in Figure 2, Chinese has equiva-
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Figure 3: Example of test phase and evaluation process.

lents for structures that are passive (e.g., Many
trees were planted by them) and active (e.g., They
planted many trees). It also includes structures for
prepositional objects (e.g., The cowboy gave the
book to the sailor) and double objects (e.g., The
cowboy gave the sailor the book). In our study, the
input sentence is in Chinese and system output is
an English version of the sentence. BLEU scores
are calculated between the system-generated En-
glish sentence and both a “correct” English sen-
tence that shares the structure with the Chinese in-
putand an “incorrect” sentence. We then calculate
the difference between the two BLEU scores, as
depicted in Figure 3.

Another novel aspect of our study is the selec-
tion of two languages from vastly divergent lan-
guage families, challenging the models to develop
abstract representations for distinct structures.

4 Data Preparation
We select and process a Chinese-English corpus
which contains 5.2 million Chinese-English paral-
lel sentence pairs (Xu, 2019).1

We employ a DataLoader 2 to facilitate batch
processing, transforming text into token IDs suit-
able for model interpretation. We then use the
Helsinki-NLP tokenizer (Tiedemann and Thottin-

1The source can be found at https://drive.google.com/
file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/
view?pli=1

2Our Dataloader is supported by PyTorch, referencing its
license located at https://github.com/pytorch/pytorch/
blob/main/LICENSE

gal, 2020)3 to map Chinese to English, accommo-
dating over a thousandmodels for diverse language
pairs.

The tokenizer, by default, processes text based
on source language settings. To correctly encode
target language text, the context manager must be
set to use the target tokenizer. Without this, the
source language tokenizer would be incorrectly ap-
plied to the target text, leading to poor tokenization
results, such as improper word splitting for words
not recognized in the source language.

In sequence-to-sequence models, assigning a
value of -100 to padding tokens ensures they are
excluded from loss calculations. This setup is cru-
cial for effective model training, enabling precise
adjustment of model parameters based on the tok-
enized input and target sequences. Proper data for-
matting through this preprocessing step facilitates
optimal training outcomes.

We also design a test dataset, initially sam-
pling five sentences for each of the four sentence
structures (Active Voice, Passive Voice, Preposi-
tional Object, and Double Object) from the Cross-
language Structural Priming Corpus (Michaelov
et al., 2023). To augment the data, we employ a
LLM, ChatGPT 3.5 (OpenAI, 2024), By providing
a one-shot learning prompt, we expand each set to
30 sentences, resulting in a total of 120 sentences
for our test dataset:
Generate 30 sentences with the following struc-
ture: The cowboy gave the book to the sailor. Re-
place all the words while keeping the sentence
structure the same.

In our test set, each Chinese sentence is paired with
a correct and an incorrect English sentence.

Subsequently, a bilingual annotator proficient in
both Mandarin and English carefully reviews the
sentence outputs generated by the LLM, ensuring
that each triplet comprises translation equivalents.
The review also confirms that only the ‘correct’ an-
swer maintains syntactic alignment with the origi-
nal Chinese sentence.

5 Language Models
We implement both a transformer model and an
RNN model to handle sequence-to-sequence tasks
using the encoder-decoder architecture. (See Ex-
periment of Figure 4.) This architecture supports

3Helsinki-NLP is licensed under the MIT license.
For more details, see here: https://github.com/
Helsinki-NLP/Opus-MT/blob/master/LICENSE
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Figure 4: The workflow of the study includes PO (Propositional Object), DO (Double Object), Ac (Active), and
Pa (Passive). In the training phase, raw bilingual data are preprocessed to generate token pairs. In the experiment
phase, we employ transformer and RNN-based encoder-decoder architectures. In the testing phase, we evaluate the
model’s performance across four sentence structures using the BLEU metric.

the processing of both input sequences and output
sequences of varying lengths, which is crucial for
accommodating sentences with different structures
yet similar meanings. This section explores why
these language models can assist us identify struc-
tural priming. We train and test our RNN model
and transformer using AMD EPYC 75F3 8-Core
Processor and 1 NVIDIA A100 GPU.

5.1 Multi-head Attention in Transformer
In the transformer model, we use the self-attention
mechanism (AttModel) to capture sentence struc-
ture. This mechanism identifies dependencies
between different positions and adjusts the repre-
sentation of each word based on its relationship
with others, thus facilitating the learning of sen-
tence structure. Following Vaswani et al. (2017),

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (1)

where𝑄, 𝐾,𝑉 are obtained through linear transfor-
mations of an input sequence of text, each with its
own learnable weight matrix. In the encoder part
of model, 𝑄, 𝐾,𝑉 comes from the same source se-
quence, while in the decoder, 𝑄 comes from the
target sequence, and 𝐾 and 𝑉 come from the en-
coder’s output. Since the computation of𝑄, 𝐾 , and
𝑉 requires processing the entire input sentence, the
model can simultaneously focus on all positions
and capture the sentence’s structure.

In the decoder part of the transformer model,
multiple attention heads capture different levels of
sentence features, leading to a more comprehen-
sive representation of sentence structure. Each at-
tention head specializes in capturing specific se-

mantic relationships, such as word dependencies
and distance relationships.

This approach enhances the model’s ability to
comprehend the intricacies of sentence structure.
The equation is as follows:

MH(𝑄, 𝐾,𝑉) = Concat(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ) ·𝑊𝑂

(2)
where 𝑊𝑂 is the weight matrix to be trained, and
ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ, computed through equation 1,
represent the attention weights of each head (we
use 8 heads). Concat is the operation of joining
tensors along their last dimension.

We also prioritize the choice of positional encod-
ing method. While the common method involves
using sine and cosine functions, we opt for learn-
able positional embeddings. We believe this ap-
proach offers more advantages for learning struc-
tural priming, as it helps our model better under-
stand and encode the relative positions of words
within a sentence.

In contrast to the fixed positional encoding,
learnable positional embeddings assign different
weights to different positions, emphasizing the rel-
evant positional information that contributes to the
priming effect. This enables the model to capture
more intricate positional relationships and depen-
dencies specific to the task of structural priming.

5.2 GRU Encoder and GRU Decoder
Some studies (Zhou et al., 2018) show that
RNNs can preserve sentence structure and facil-
itate identification of structural priming environ-
ments. Their sequential nature allows them to pro-
cess input tokens based on the context of the en-
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tire sentence. As each token is processed, the
RNN’s hidden state is updated, retaining informa-
tion about preceding tokens and their contextual
relevance. This sequential processing enables the
model to capture word dependency relationships,
thereby preserving the structural integrity of the
sentence. Summarizing:
State(𝑑ℎ𝑖 , 𝑐𝑖), 𝑝 = 𝑓 (State(𝑑ℎ𝑖−1, 𝑐𝑖−1), 𝑚) (3)

The function 𝑓 refers to the hidden layer of the
RNN model, which is a neural network. It takes
the previous layer’s State i-1 and the output vector
from the previous time step𝑚 as input, and outputs
the next layer’s State i and prediction value 𝑝 until
it encounters the termination symbol. Here, 𝑑ℎ sig-
nifies the hidden state of the RNN unit in decoder,
tasked with capturing pertinent information from
the input sequence. In the initial decoder step, 𝑑ℎ
embodies the final output state of the encoder. In
subsequent decoder steps, 𝑑ℎ denotes the preced-
ing RNN unit’s output.

To address the challenge of not being able to
retain the entire sentence structure, we introduce
the attention mechanism. This feature of the RNN
model enables it to focus more on the parts of the
input sequence that are most relevant to the cur-
rent output, thereby enhancing prediction accuracy.
Its potential for predicting structural patterns stems
from the attention mechanism’s ability to capture
dependencies within sequential data and to lever-
age these for better predictions. As shown in equa-
tion 3, 𝑐 denotes the attention, and its calculation
is as follows:

𝛼𝑖 = 𝑔(𝑒ℎ𝑖 , 𝑑ℎ0) (4)

As before, 𝑑ℎ0 denotes the final state of the en-
coder and 𝑒ℎ signifies the hidden state of the each
RNN unit in the encoder. Function 𝑔 is used to cal-
culate the weight 𝛼𝑖 of 𝑒ℎ𝑖 in the final state 𝑑ℎ0.
As a result, the attention 𝑐 is obtained by combin-
ing all previous states:

𝑐𝑖 =
∑

(𝛼𝑖 ∗ 𝑑ℎ𝑖) (5)

calculated by summing the products of the weight
𝛼 and the decoder state 𝑑ℎ.

Our study utilizes a variant of RNNs known as
the Gated Recurrent Unit (GRU). The GRU en-
coder and decoder are gating mechanisms that ef-
fectively manage long-distance dependencies and
mitigate the vanishing gradient problem. Addition-
ally, GRUs possess fewer parameters and demon-
strate higher computational efficiency.

Following Dey and Salem (2017), we define the
gate mechanism in two parts:

• Update Gate: 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
The update gate 𝑧𝑡 in the encoder controls the
blending of the current input 𝑥𝑡 and the previous
hidden state ℎ𝑡−1. In the decoder, the update gate
regulates the interaction between the current in-
put and the previous decoder state, allowing the
model to selectively incorporate relevant informa-
tion from the input when generating the output.

• Reset Gate: 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 +𝑈𝑟 ℎ𝑡−1 + 𝑏𝑟 )
The reset gate 𝑟𝑡 in the encoder regulates the in-

teraction between the current input 𝑥𝑡 and the pre-
vious hidden state ℎ𝑡−1. In the decoder, the reset
gate governs how the current input interacts with
the previous decoder state. This allows the model
to selectively forget certain parts of the input in-
formation captured by the encoder. This helps the
decoder to generate outputs that are less influenced
by outdated information from the input sequence.

6 Experimental Setup
Since structural priming effects are sometimes
not symmetrical, our study only includes a struc-
tural priming experiment withMandarin to English
bilinguals, while existing literature strongly sup-
ports the presence of structural priming effects in
both language directions.

To assess the effectiveness of our model in
Chinese-English, we adopt the standard bilingual
evaluation understudy (BLEU) metric (Papineni
et al., 2002), which ranges from 0 to 1, indicating
the similarity of predicted text against target text:

BLEU = BP · exp

(
𝑁∑
𝑛=1

𝑤𝑛 log 𝑝𝑛

)

Here, 𝑁 is the maximum n-gram order (typically
4), 𝑤𝑛 is the weight assigned to each n-gram preci-
sion score (with

∑𝑁
𝑛=1 𝑤𝑛 = 1), 𝑝𝑛 is the precision

score for n-grams of order 𝑛, and BP is the brevity
penalty which penalizes shorter results.

After generating predicted outcomes and assem-
bling a test set, we analyze the relationship be-
tween predictions and four types of reference sen-
tences: (1) correct mappings with the same struc-
ture; (2) semantically similar but structurally differ-
ent sentences; (3) semantically different but struc-
turally identical sentences; and (4) sentences that
differ both semantically and structurally.
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Figure 5: BLEU Score for standard structural priming.
Comparison of ground truth datasets for testing and cal-
ibration.

We divide the comparisons into two groups
based on semantic similarity. In the first group
of sentences with identical meanings, we hypoth-
esize that effective structural priming would re-
sult in higher BLEU scores between the predicted
sentences and the reference sentences that share
the same structure, compared to those with differ-
ent structures. This comparison aims to establish
whether the model prefers to reproduce structures
that are syntactically alignedwith the ground truths
when the semantic content remains constant.

The second category, with sentences differing
in meaning, is crucial for demonstrating structural
priming, as it eliminates the influence of semantic
similarity. If sentences with identical structures
receive higher BLEU scores than those with dif-
ferent structures, it suggests the model’s predic-
tions are driven by structure, regardless of seman-
tic changes.

This methodology rigorously tests for structural
priming, offering insights into howmodels process
and replicate language structures.

7 Results and Analyses

We present the performance of the GRU-based
RNN and standard transformer model (Vaswani
et al., 2017) demonstrating their crosslingual struc-
tural priming effect in Chinese-English scenarios.

7.1 Structural Priming Performance
Our analysis reveals that, although both models
achieve competitive BLEU scores, the transformer
model shows a slight edge in handling complex
sentence structures. Figure 5 shows that, when
the training dataset is sufficiently large, both mod-

Figure 6: BLEU Score for wrong priming. Comparison
between predictions for cross-language priming via av-
erage BLEU Score.

Figure 7: BLEU Score for correct priming. Compar-
ison between predictions for opposite cross-language
priming via average BLEU Score.

els attain high predicted BLEU scores for sentence
segments. Figures 5–7 use BLEU scores, com-
mon in translation and relevant to structural prim-
ing, where identical structures yield higher scores
(Lopez, 2008).

7.2 Crosslingual Structural Priming Effect
Our crosslingual structural priming exploration re-
veals a noteworthy pattern: both models facilitate
the use of target-language syntactic structures influ-
enced by the source language. However, the trans-
former model displays a stronger priming effect,
suggesting a potential edge in mimicking human-
like syntactic adaptation in bilingual contexts.

Figure 6 and Figure 7 show BLEU scores for
machine-generated predictions with correct or op-
posite priming test sets. This representation al-
lows for a more direct comparison with the re-
sults from machine translation models, facilitat-
ing a broader discussion regarding language struc-
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ture in neural networks. From these we gain in-
sights into model performance by evaluating how
closely predictions align with the correct struc-
tures (e.g., Active-Active, DO-DO) versus op-
posite structures (e.g., Active-Passive, PO-DO).
Higher BLEU scores against the correct priming
sets indicate better structural alignment, whereas
higher scores against opposite priming sets sug-
gest deviations. For 1-gram and 2-gram compar-
isons, GRU and transformer models perform sim-
ilarly. However, as n-grams increase, the trans-
former shows higher BLEU scores, indicating a
closer alignment with incorrect structures. Over-
all, GRU outperforms the transformer in avoiding
opposite priming (see Figure 7).

These results show that, when evaluated against
the correct priming test sets, the transformer model
performs similarly to GRU (see Figure 6), with
slight improvements as the n-gram size increases.
However, GRU generally outperforms the trans-
former compared to opposite priming (see Fig-
ure 7). Given that this involves “incorrect” prim-
ing, GRU aligns more closely with the opposite
priming test set. Since the transformer shows a
larger gap between correct and incorrect BLEU
scores, We infer that it adheres more closely to the
appropriate structural priming.

In a previous study, Michaelov et al. (2023) ex-
amine the presence of structural priming by com-
paring the proportion of target sentences produced
after different types of priming statements. Sim-
ilarly, in our study, we prime the language model
with a specific sentence for each experimental item
and then calculate the normalized probabilities for
the two target sentences. These normalized proba-
bilities are computed as follows:

First, calculate the raw probability of each target
sentence given the priming sentence:

𝑃(DO Target|DO Prime)
𝑃(PO Target|PO Prime)
𝑃(DO Target|PO Prime)
𝑃(PO Target|DO Prime)

And the same method for:
𝑃(Active Target|Active Prime)

𝑃(Passive Target|Passive Prime)
𝑃(Active Target|Passive Prime)
𝑃(Passive Target|Active Prime)

These probabilities are then normalized to cal-
culate the conditional probability of the target sen-
tence, assuming the model outputs one of the two
target sentences. Taking DO | PO as example:

Figure 8: Priming Effect per Chunk: Proportion of cor-
rect cross-language priming chunks in the machine pre-
diction results.

𝑃𝑁 (Target |Prime) =
𝑃 (Target |Prime)

𝑃 (DO Target |Prime) + 𝑃 (PO Target |Prime)

Since the sum of the normalized probabilities
for the two target sentences is 1, we only need
to consider the probability of one target type
and compare it across different priming types.
The probability of another target type can be de-
rived from this, i.e. 𝑃𝑁 (Target|Prime) = 1 −
𝑃𝑁 (Target|Prime). By considering only one tar-
get type, we can directly compare the priming ef-
fects of the two priming types on the specific target,
which is a key aspect of structural priming analysis.
The quantitative findings depicted in Figure 8 indi-
cate that the transformer model generally outper-
forms GRU. Additionally, a horizontal analysis of
priming structural types reveals that machine pre-
dictions perform better with active/passive struc-
tures compared to PO/DO structures.

8 Summary and Conclusions
This study evaluates cross-language structural
priming effects in RNN and transformer models in
a Chinese-English context. The models are trained
on sentence pairs from both languages. Our re-
search aims to compare the structural priming abili-
ties of different models. Even when using the same
training set, which contains structurally primed
sentences, RNNs and transformers still exhibit dif-
ferences in their ability to achieve this effect. We
find evidence for abstract crosslingual grammati-
cal representations in these models, which operate
similarly to those found in prior research.

Our results show that BLEU scores decrease as
n-gram length increases, consistent with findings
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in sentence-similarity evaluation (He et al., 2022).
Longer n-grams (e.g., bigrams and trigrams) cap-
ture more specific contexts, making exact matches
less likely unless the target sentence is very precise.
Moreover, minor errors in word choice or sequence
can disrupt the alignment of these n-grams.

Importantly, our results indicate that transformer
models outperform RNNs in modeling Chinese-
English structural priming, a finding that is intrigu-
ing given prior research. Traditionally, RNNs have
been effective in modeling human sentence pro-
cessing, explaining garden-path effects and struc-
tural priming through their sequential processing
capabilities, which are thought to mirror aspects of
human cognitive processing (Frank, 2021).

Our results show that the transformer model is
more effective at preserving structural information
than the RNN. The standardized accuracy rates for
the transformer model exceed those of the RNN
by 25.84% for the PO structure and by 33.33%
for the active structure. This offers guidance for
selecting base models in future computational lin-
guistics research aimed at implementing or enhanc-
ing structural priming effects. This superiority of
transformers raises questions about the efficacy of
RNNs as human sentence processing models, es-
pecially if they are surpassed by a model consid-
ered less cognitively plausible. However, these re-
sults could also be seen as supporting the cognitive
plausibility of transformers, particularly due to the
attention mechanism.

While the concept of unlimited working mem-
ory in transformers seems implausible, some re-
searchers argue that human working memory ca-
pacity is much smaller than traditionally estimated,
limited to only two or three items. They sug-
gest that language processing involves rapid, direct-
access retrieval of items from memory (Lewis
et al., 2006), a process compatible with the atten-
tion mechanism in transformers. This mechanism
assigns weights to past inputs based on their rel-
evance to the current input, consistent with cue-
based retrieval theories, where memory retrieval
is influenced by the similarity of current cues to
stored information (Parker and Shvartsman, 2018).

Our study on translation models extends the tra-
ditional RNNandTransformer comparisons in cog-
nitive science, typically applied to language mod-
els for predictive coding. Michaelov et al. (2023)
have shown Transformers often better capture hu-
man language structure. While distinct from pure
language modeling, our translation-focused ap-

proach offers insights into structural representa-
tions in neural networks and lays groundwork for
refined language production models.

9 Future Directions

A promising future direction is to develop a model
that generates sentences based on new semantic
concepts and thematic roles before and after prim-
ing. While challenging, this approach could help
mitigate the lexical boost effect (see Limitations).

Shifting our focus from production to compre-
hension could also be fruitful. By measuring sur-
prisal levels in models, we can explore how struc-
tural priming influences comprehension, as sug-
gested in recent studies (Merkx and Frank, 2021).
Surprisal quantifies the unexpectedness of a word
in a given context, with lower values indicating
higher probability. Consistently lower surprisal
levels at structurally complex points in sentences
following priming. This would suggest effective
preparation by the priming process, offering a way
to explore the impact of structural priming on lan-
guage processing in model without the confound-
ing effects of repeated vocabulary.

Additionally, evidence suggests an inverse rela-
tionship between the frequency of linguistic con-
structions and the magnitude of priming effects ob-
servedwith those constructions (Jaeger and Snider,
2013; Kaschak et al., 2011). For example, the
double object (DO) construction is more common
in American English than the prepositional object
(PO) construction (Bock and Griffin, 2000). Stud-
ies have shown that the less frequent PO construc-
tion exhibits stronger priming effects than the more
frequent DO construction (Kaschak et al., 2011).
This aligns with theories of implicit learning in
structural priming, where more frequently encoun-
tered structures are less “surprising” and thus gen-
erate weaker priming effects.

To explore this further, training models on cor-
pora of American versus British English, which
differ in their construction frequencies, could re-
veal whether a similar inverse frequency effect
is observed in computational models. This ap-
proach could shed light on the dependency of
structural priming on construction frequency, of-
fering deeper insights into how implicit learning
processes are modeled computationally.

Additionally, exploring crowdsourcing as a
method to enhance the sensitivity and grammati-
cality judgments of the test dataset could be valu-
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able. By leveraging a diverse pool of contributors,
this approach may provide a wider range of evalu-
ations and insights, potentially refining our assess-
ments and leading to more robust results.

Limitations
A limitation of the current study is that the
Chinese-English priming effects observed in the
models have not been directly compared with hu-
man data. Although existing evidence indicates a
strong Chinese-English structural priming effect in
both production and comprehension (Hsieh, 2017;
Chen et al., 2013), equating the models’ability
to replicate cross-language priming with the struc-
tural “correctness” of their outputs may be some-
what simplistic. This underscores the need for fu-
ture research that could involve using the same
stimuli withMandarin-English bilinguals and mak-
ing direct comparisons to human priming data.
Such an approach would provide a more accurate
assessment of the models’alignment with human
language processing.

Another limitation is that ourmodels cannot gen-
erate sentences based on novel word concepts and
thematic roles, such as the picture naming task in
Figure 1. Consequently, some critics may argue
that what our models essentially do is translate
from Chinese to English without generating new
semantic content, as the semantic information re-
mains consistent from the priming sentence to the
output sentence. However, we maintain that the
current study design validly assesses the priming
effect, as the models must choose which sentence
structure to use from among various structures that
share the same semantic content—a choice influ-
enced by the priming effect.

Nevertheless, we acknowledge that our design
is susceptible to the “lexical boost” effect, where
the structural priming effect is intensified when the
same lexical head is repeated in both the prime and
target sentences (Pickering and Branigan, 1998).
For instance, if the target sentence is Alice gave
Bob a book, the priming effect is more pronounced
if the prime sentence is Carl gave Danis a letter
rather than Alice showed Bob a book. Given that
the semantic content remains constant across the
prime and output sentences in our study, the ob-
served priming effect may be artificially strength-
ened compared to what might be observed in a pure
priming task.

Previous studies suggest that crosslingual struc-
tural priming might be affected by the asymme-

try of training sources in certain language pairs
(Michaelov et al., 2023). By measuring the prob-
ability shifts for source and target sentences, we
find such multilingual auto-regressive transformer
models display evidence of abstract structural
priming effects, although their performance varies
across different scenarios.

Ethical Statement

The current study adheres to the ethical standards
set forth in the ACL Code of Ethics. The training
dataset used in this research is open, publicly avail-
able, and does not include demographic or identity
characteristics (Xu, 2019).

Potential risks stem from the fact that transla-
tions in the training data (a Chinese-English par-
allel sentence pair dataset) may not always be per-
fectly equivalent. Some words may carry cultural
nuances that differ between Chinese and English.
For example, the terms “和尚” (heshang) and “尼
姑” (nígū), translated as “monk” and “nun,” have
specific cultural connotations in Chinese that differ
from the perception of a “monk” in Western con-
texts, which is typically associated with Christian
monasticism. These roles in Chinese Buddhism
embody cultural and social aspects not fully cap-
tured by the Western terms, potentially leading to
a loss of cultural meaning in translation.

Furthermore, while ChatGPT has been used to
expand the test dataset, the authors have manu-
ally verified the output to ensure it remains unbi-
ased. The potential risk of misuse of the computa-
tional model is low, as the encoders and decoders
are designed to perform straightforward translation
tasks and do not have the capability to self-generate
harmful content.
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