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Abstract

Despite the widespread availability of LLMs,
there remains a substantial gap in their capabil-
ities and availability across diverse languages.
One approach to address these issues has been
to take an existing pre-trained LLM and con-
tinue to train it on new languages. While prior
works have experimented with language adapta-
tion, many questions around best practices and
methodology have not been covered. In this
paper, we present a comprehensive investiga-
tion into the best practices for adapting LLMs
to new languages. Our study explores the key
components in this process, including vocab-
ulary extension and initialization of new to-
kens, direct preference optimization and the
data scarcity problem for human alignment in
low-resource languages. We scale these ex-
periments across 9 languages and 2 parameter
scales (7B and 70B). We compare our models
against Llama 2, Aya-101, XGLM, BLOOM
and existing language experts, outperforming
all prior published baselines. Additionally, all
evaluation code1 and checkpoints2 are made
public to facilitate future research.

1 Introduction

New state of the art large language models are be-
ing released at a breakneck speed, yet their training
data, tokenizer, and evaluations remain primarily
centered around a few popular languages such as
English, Chinese, French and Arabic. In principle,
the way to create large language models for specific
languages is to pre-train models from scratch (Sen-
gupta et al., 2023; Zhang et al., 2020). However,
it is difficult to obtain a large amount of compute
resources and a vast quantity of data in diverse lan-
guages. Researchers have tackled this problem by
training monolithic multi-lingual models that cover
a wide range of languages (Workshop et al., 2023;

1Fork of lm-evaluation-harness Gao et al., 2023 with new
multilingual benchmarks: lm-evaluation-harness

2All SambaLingo Checkpoints: SambaLingo Checkpoints

Lin et al., 2022; Shliazhko et al., 2023; Xue et al.,
2021). These models can still struggle to achieve
uniformly good results across all languages due to
various factors such as the curse of multilingual-
ity (Chang et al., 2023; Conneau et al., 2020) and
the scarcity of pre-training data in many languages
(Chung et al., 2023).

Recently, adapting English centric models to
new languages has gained prominence (Blevins
et al., 2024; Yong et al., 2023; Ebrahimi and
Kann, 2021; Pires et al., 2023; Pipatanakul et al.,
2023; Lin et al., 2024). The resulting models
can outperform large multilingual models and
even language specific models pre-trained from
scratch. Adaptation requires various design
choices around the tokenizer, data, alignment and
evaluation strategies. This paper aims to provide
a comprehensive study to help inform these
decisions, outlining a clear protocol to adapt a
pre-trained model to a new language. We show that
our methodology works by training models across
9 languages and 2 parameter scales (7B and 70B)
and comparing them against publicly available
models. Figure 1 and 2 show that our methodology
can lead to better models than existing state of the
art models in these languages.

The key studies and contributions include:

• Best practices for adapting existing LLMs to
new languages scaled across 9 typologically
and linguistically diverse languages including
Arabic, Bulgarian, Hungarian, Japanese, Rus-
sian, Serbian, Slovenian, Thai, and Turkish

– Expanding the vocabulary for the target
language improves the tokenizer fertil-
ity (12), but does not have a siginficant
impact on downstream accuracy (5.1.1)

– Various embedding initialization meth-
ods have minimal impact on accuracy,

1

https://github.com/sambanova/lm-evaluation-harness
https://huggingface.co/collections/sambanovasystems/sambalingo-65e25770f2037c85ad35ca77
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Figure 1: Evaluation perplexity on hold out dataset, we also evaluate perplexity over wikipedia and Mc4 in appendix
F. Open source expert baselines: Japanese - Swallow-7b-hf (TokyoTech, 2023), Thai: typhoon-7b (Pipatanakul et al.,
2023), Arabic: jais-13b (Sengupta et al., 2023), Hungarian: PULI-GPTrio (Yang et al., 2023), Russian: saiga-7b
(Gusev, 2023), Bulgarian: mGPT-bulgarian(Shliazhko et al., 2023). We could not find Serbian, Slovenian and
Turkish languages models with low enough perplexity that would fit the graph so we chose to omit them here to
ensure readability.

but sub word averaging accelerates train-
ing loss convergence (5.1.2)

– The quality of the base checkpoint on
English benchmarks can improve down-
stream language adaptation results (5.3)

• A recipe for human preference alignment in
any language using open source data

– Aligning the adapted model requires min-
imal data from the target language, re-
ducing the need of gathering expensive
alignment data (5.2.1)

– The choice of translated versus human
written alignment data does not have a
large impact on win rates (5.2.2)

• Open sourcing code and checkpoints to pro-
mote future research

– State of the art models adapted from
Llama 2 in 9 languages and 2 parame-
ter scales (7B, 70B)2

– Integration of FLORES-200, SIB-200,
EXAMS and multilingual perplexity
benchmarks with lm-eval-harness1 (Gao
et al., 2023)

2 Related Work

While prior work has explored adapting pre-trained
LLMs to new languages, they do not extensively
study the methodology to do so. None of these
works explore the design choices around aligning
models in new languages, for example the mixture

of data in the base models language and the new lan-
guage or the impact of translated data on qualitative
evaluation. Pires et al. (2023) and Cui et al. (2023b)
adapt Llama models to Portuguese and Chinese re-
spectively, but they do not explore the impact of
vocabulary extension and/or initialization. Blevins
et al. (2024) explores training language experts
to break the curse of multilinguality starting from
a pre-trained model, but they do not explore the
impact of vocabulary extension, initialization and
quality of the base model. Extension of vocabulary
was discussed in Zhao et al. (2024b); Tikhomirov
and Chernyshev (2023), however they do not ex-
plore token embedding initialization strategies or
impact of quality of base model. Lin et al. (2024)
studies simultaneous language adaptation to 500
languages. Nevertheless, they also do not answer
questions around alignment or token initialization
strategy. Ye et al. (2023) studies language adapta-
tion of a wide variety of English-centric and mul-
tilingual models, however they only focus on fine-
tuning XNLI tasks.

There has been a significant body of work around
open-source multi-lingual models (Workshop et al.,
2023; Lin et al., 2022; Shliazhko et al., 2023). Our
work differs from the aforementioned studies as we
solely focus on adapting pre-trained LLMs to new
languages and not on pre-training from scratch.
Notably, these multilingual open-source models
tend to be pretrained on significantly fewer tokens
than the base models we adapt from. As the models
in this work tend to outperform these multilingual
models, this presents a promising path forward for
obtaining the state of the art in new languages.

2



3 Adaptation Methodology

We present our methodology to adapt large lan-
guages models to a new language, with state of
the art results in 9 target languages: Arabic, Thai,
Turkish, Japanese, Hungarian, Russian, Bulgarian,
Serbian and Slovenian. We select these languages
because they provide a mix of high resource and
lower resources languages with diverse character
sets and linguistic patterns. We additionally limit
the scope of the languages studied in this paper to
languages with easily available text datasets from
CulturaX (Nguyen et al., 2023). See Section 4 for
evaluation results on the final checkpoints produced
by this methodology, and Section 5 for ablations
justifying our methods.

We use the term initial language to describe the
original language that the base model was trained
on (in this case, English) and the term target lan-
guage as the new language this model is being
adapted to.

3.1 Selecting a Base Model

Our methodology starts with an existing base
checkpoint instead of pre-training from scratch.
Previous work has shown that starting from an
existing checkpoint leads to faster training con-
vergence, better downstream evaluation accuracy
and lower compute/data requirements (Pires et al.,
2023; Lin et al., 2024; Csaki et al., 2023). Sec-
tion 5.3 demonstrates that it is important to select a
starting checkpoint with the best results for the ini-
tial language, as that will improve the downstream
results for the target language. Based on these ob-
servations, we chose Llama2 7B as our base model
to adapt to target languages, the best open source
model available at the time of the experiments.

We additionally scale this methodology to Llama
2 70B. Given compute restrictions, we only do this
for 3 languages - Arabic, Thai and Hungarian. See
Section 4.2 for in-depth comparisons of our 7B and
70B models.

3.2 Extending Model Vocabulary

Llama 2 (et al, 2023) was trained predominantly on
English text, and has poor tokenizer efficiency for
other languages (see Section 5.1). To address this
inefficiency, we chose to extend the vocabulary of
the Llama 2 tokenizer by adding non overlapping
tokens from the target language and initializing
them using sub-word embeddings from the original
tokenizer. See Section 5.1 for experiments that

justify our approach.

3.3 Continual Pre-training
We train each language independently on data that
consists of a 1:3 mixture of English and target lan-
guage web data biased towards the target language.
Pretraining data for all languages, including En-
glish, is sourced from CulturaX (Nguyen et al.,
2023). These decisions are grounded in results
from previous works: Zhao et al. (2024b); Csaki
et al. (2023) show that mixing in data from the
base model domain helps downstream accuracy
and training stability, Gupta et al. (2023) find that
including a higher proportion of data from the tar-
get distribution helps improve the convergence in
the target distribution, Almazrouei et al. (2023)
showed the importance of cleaned web data. Addi-
tionally, hyperparameters used for training can be
found in Appendix A.

3.4 Aligning To Human Preferences In Other
Languages

To train a chat-aligned version of the model, we
follow the two-stage approach from Tunstall et al.
(2023) - supervised finetuning (SFT) followed by
direct preference optimization (DPO). More details
about hyperparameters for each of these phases
used can be found in Appendix A.

• For SFT, we use ultrachat-200k (Tunstall
et al., 2023), in a 1:1 ratio with a Google trans-
lated version of ultrachat-200k.

• For human preference alignment, we use
the ultrafeedback (Cui et al., 2023a)
and cai-conversation-harmless dataset
(Huang et al., 2024). We mix these datasets
with a 10:1 ratio of English to machine trans-
lated data. Section 5.2.1 shows that this ra-
tio of data performs almost as well as other
ratios and section 5.2.2 shows that machine-
translated data can perform as well as human
written data.

4 Evaluation

4.1 Quantitative Evaluation
We use a wide variety of benchmarks to quanti-
tatively evaluate the performance of our models
and compare them to prior work. See Table 1 for
the full list of quantitative benchmarks. In sum-
mary, we evaluate language modeling with perplex-
ity on a holdout set of CulturaX (Nguyen et al.,

3



Datasets
Task
Category

Num
Few-Shot

Number Of
Languages

Metric

mc4 , Wikipedia Perplexity - 323 Perplexity
FLORES-200 Translation 8 200 CHRF
SIB-200 Text Classification 3 200 Accuracy
BELEBELE Question Answering 3 122 Accuracy
Exams Knowledge 3 11 Accuracy
XNLI
XStoryCloze
XCOPA
XWinograd
PAWS-X

Natural Language
Understanding

0 25+ Accuracy

Table 1: Multi-lingual evaluation suite
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Figure 2: Quantitative evaluation results. The “best open source experts” are the same as ones specified in Figure 1.
See Appendix F for the full breakdown.

2023), translation with CHRF (Popović, 2015) on
FLORES-200 (Goyal et al., 2021; Zhu et al., 2023),
text classification accuracy on SIB-200 (Adelani
et al., 2024; Lin et al., 2024), open-book ques-
tion answering on BELEBELE (Bandarkar et al.,
2023), closed-book question answering on EX-
AMS (Hardalov et al., 2020), and a variety of nat-
ural language understanding benchmarks (XNLI
(Conneau et al., 2018), XStoryCloze (Lin et al.,
2022), XCOPA (Ponti et al., 2020), XWinograd
(Emelin and Sennrich, 2021), and PAWS-X (Yang
et al., 2019)).

All quantitative evaluations are performed on
our adapted models after continuous pretraining,
but before the alignment stage. We evaluate each
checkpoint only on the language that it was trained
on. Note that not all of our target languages are
covered across all benchmarks. However, each lan-
guage we examine has evaluations in at least 4 of
these benchmarks. We ensured that perplexity mea-
surements were done on a held out set in the target
language, and verify that evaluating perplexity on
different domains of text such as Wikipedia and

MC4 (Raffel et al., 2019) have very similar results
in appendix F.

4.1.1 Quantitative Results
We compare our continuously pretrained models
against the best open source models available in
each target language and state of the art multilin-
gual models. Figure 1 shows that our SambaLingo
models have a lower perplexity across all exist-
ing baselines on a holdout set from our training
data. Perplexity on other domains also follows the
same trend as shown in appendix F. Figure 2 shows
the average evaluation score across the evaluation
benchmarks introduced in Section 4.1, where we
see our models outperform all other models in 7/9
languages.

4.2 Scaling to 70B

Scaling to 70B consistently leads to better results
as seen in table 2. The 70B models in the table
have trained on fewer tokens than the 7B models.

Additionally, we evaluate compute-matched
checkpoints of our 7B and 70B Llama 2 models

4



Language Checkpoint ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic 70B 1.44 54.25 65.60 0.78 0.69 0.33 0.68

7B 1.44 53.67 61.66 0.29 0.26 0.34 0.65
Hungarian 70B 1.57 58.81 64.03 0.82 0.64 - -

7B 1.63 52.70 58.31 0.33 0.25 - -

Table 2: This table compares compute matched 7B and 70B checkpoints. We look at intermediate checkpoint results
and compare 7B models trained for 40B tokens with 70B models trained for 4B tokens.
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Figure 3: GPT4 evaluation result

in table 2. The compute-matched 70B checkpoints
are trained for 10x fewer steps (4B tokens vs 40B
tokens) and perform as well as or better than 7B
variants trained over 40B tokens in every bench-
mark across Arabic and Hungarian.

4.3 Evaluating Human Aligned Checkpoints

4.3.1 GPT-4 as a Judge

To test our human aligned models’ ability to gen-
erate high quality responses to real user prompts,
we use GPT-4 (OpenAI and et al, 2024) as a judge.
This method was first introduced by Zheng et al.
(2023) to evaluate English models, and then used by
Üstün et al. (2024) as a method to evaluate multilin-
gual models. The resulting model generations are
shuffled and fit to the prompting style suggested by
(Zheng et al., 2023) before being fed to GPT-4. See
Appendix D for the manually collected prompts
and section 4.3.2 for the evaluation results.

GPT-4 as a judge has been widely accepted by
the community as a way to evaluate chat models
(Zheng et al., 2023; Verga et al., 2024), and we
extend this to multilingual models. To ensure that
GPT-4 is understanding the multilingual text we
have native speakers read through a few examples
of GPT-4 explaining its decision making process.
The native speakers unanimously agree that GPT-4
clearly understands the content in other languages.

In appendix D.2 we include example model gen-
erations along with GPT-4’s corresponding prefer-
ences and explanations. Further work is needed to
do a large scale study to see how GPT-4 preferences
align with human preferences in other languages.

4.3.2 Qualitative Results

Measuring win-rate using GPT-4 as a judge only
works in scenarios where a human aligned or in-
struction tuned model is available in a language.
Given this constraint, we were only able to find rele-
vant comparisons for Arabic, Japanese and Turkish,
and do not have qualitative evaluations for our mod-
els in the other 6 languages. We do not compare
to llama2-chat because we found that Llama2-chat
and other open source English foundation chat mod-
els reply in English when prompted in the target
language, instead of replying back in the target lan-
guage. The results of our evaluation are shown in
Figure 3. Our SambaLingo models consistently out-
perform other models in the same language. For
details about the native speaker-curated prompts,
see Appendix D. We additionally run evaluations
with Claude Opus (Anthropic, 2024) as a judge to
ensure that there is no bias by GPT-4 and find very
similar results in appendix D.1
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Added Tokens Hungarian Russian Turkish Bulgarian Arabic Japanese Thai
0 2.70 2.28 3.28 2.36 4.23 2.07 4.84
1000 2.52 2.25 2.56 2.19 2.11 1.75 2.10
4000 2.14 2.05 2.20 1.92 1.67 1.23 1.50
25000 1.78 1.78 1.77 1.66 1.26 0.93 1.10

Table 3: Number of added tokens vs fertility (average number of tokens per "word")

Language Tokenizer ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic Original 1.50 48.27 57.35 0.27 0.27 0.34 0.63

Expanded 1.46 52.66 61.05 0.32 0.35 0.34 0.64
Hungarian Original 1.61 52.70 58.31 0.33 0.26 - -

Expanded 1.63 51.82 57.12 0.30 0.34 - -
Serbian Original 1.403 56.15 64.89 0.32 0.59 - -

Expanded 1.435 58.30 66.35 0.37 0.52 - -

Table 4: Accuracy after training with expanded vocabulary vs original tokenizer

5 Ablations

In this section, we present ablations of our design
decisions in Section 3. Section 5.1 presents experi-
ments motivating the modifications we make to the
base model’s tokenizer and how we initialize its
new embeddings. Section 5.2 ablates the amount of
target language data and use of machine translated
data in the DPO phase of our methodology. Finally,
section 5.3 looks at the impact of the quality of the
base model.

5.1 Vocabulary Expansion

The Llama2 tokenizer is centered towards English.
While this tokenizer can encode characters in any
language, it will be very inefficient for non-English
text. In fact, the BPE tokenizer may tokenize
non-Latin characters as multiple independent bytes.
One way to mitigate this problem is to extend the
vocabulary of the base model by adding new tokens
that represent the target language to it, and start
adaptation training with this expanded vocabulary.
This method also helps improve the inference effi-
ciency in the target language. We explore different
sizes for the expanded vocabulary and their im-
pacts on fertility (Ács, 2019) in Table 3 and Figure
12. We chose to expand the vocabulary by 25,000
tokens for all languages as it yields the lowest fer-
tility for all languages and highest throughput on
the hardware platform.

5.1.1 Vocabulary Expansion vs Original
Tokenizer

To measure the impact of vocabulary expansion on
accuracy, we train two models—one using an ex-
panded vocabulary and the other using the original

vocabulary—across two three languages: Hungar-
ian, Arabic and Serbian. We find that expanding
the vocabulary does not have significant impact on
the downstream accuracy. Nonetheless, given the
benefit that the expanded vocabulary has for infer-
ence and sequence length utilization in the target
language, we chose to expand the vocabulary of
the base model.

5.1.2 Initializing new token embeddings
We experiment with 4 different token initialization
strategies for the new tokens added to the vocab-
ulary across 3 languages - Hungarian Arabic and
Thai. For each experiment, we train the model for
10 billion tokens and compare the loss values. Let
V be the set of tokens in the original vocabulary,
and E(t) the embedding vector of a token t ∈ V .
The four token initialization methods we consider
are as follows:

• gaussian: N (0, 0.02)

• xavier_uniform

• avg_all (Hewitt, 2021): For each new token
t′, initialize E(t′) = mean({E(t)∀t ∈ V })

• avg_subwords (Liu et al., 2024; Koto et al.,
2021): For each new token t′, let Lt′ =
[t1, ..., tk] be the list of k tokens that t′ would
have been tokenized as under the original to-
kenizer. Initialize the new embedding with
E(t′) = mean([E(t1), ..., E(tk)]).

Figure 4 shows that after continuous pretraining
for 10B tokens, all methods converge to similar loss
values, with avg_subwords showing faster conver-
gence. Table 5 shows the impact on downstream
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Figure 4: Training loss for different token initialization methods

Language Initialization Method ppl (↓) FLORES EN→X (↑) FLORES X→EN (↑) Belebele (↑) SIB-200 (↑) XNLI (↑) XStoryCloze (↑)
Arabic gaussian 1.50 48.48 57.31 0.34 0.25 0.34 0.61

xavier_uniform 1.49 50.46 58.90 0.36 0.26 0.33 0.62
avg_all 1.48 50.54 58.29 0.34 0.25 0.35 0.63
avg_subwords 1.48 50.87 59.62 0.38 0.27 0.34 0.64

Hungarian gaussian 1.65 51.42 56.92 0.32 0.50 - -
xavier_uniform 1.65 49.52 55.81 0.34 0.42 - -
avg_all 1.76 51.39 56.86 0.34 0.45 - -
avg_subwords 1.65 50.79 56.77 0.33 0.30 - -

Thai gaussian 1.31 51.50 52.95 0.33 0.53 0.44 -
xavier_uniform 1.31 52.88 55.34 0.32 0.30 0.38 -
avg_all 1.31 52.89 55.36 0.35 0.60 0.46 -
avg_subwords 1.30 53.34 55.36 0.37 0.35 0.46 -

Table 5: Multilingual evaluations across token embedding initialization methods

benchmarks. For Thai and Arabic, avg_subwords
achieves marginally better scores while for Hungar-
ian the results are mixed. These results show that
the choice of initialization has minimal impact on
the accuracy of end model when trained for 10 bil-
lion tokens. However avg_subwords gives faster
training loss convergence, so we chose to initialize
the new embeddings using avg_subwords.

5.2 Direct Preference Optimization

5.2.1 DPO Data Mixture
There is a lack of supervised finetuning and human
alignment data across different languages. Collect-
ing such data can be difficult and expensive. Given
that the models obtained from our methodology are
bilingual, we explore the question of how much of
the human alignment data can be English and how
much of it has to be from the target language. We
run DPO on data mixtures of the English/Target
language data ratio across 100:1, 10:1, 10:3 and
1:1, and observe the resulting win-rate in pairwise
comparisons with the model trained on a 1:1 data
ratio. For each experiment we keep the amount of
English data the same and downscale the target lan-
guage. We run these experiments on two languages:
Hungarian and Arabic, with results in Table 6. We

show that a 10:1 data ratio can perform almost as
well as 1:1 data ratio for Hungarian. For Arabic,
even a 10:3 data ratio still falls behind the perfor-
mance of 1:1. One hypothesis is that Hungarian is
more linguistically similar to English than Hungar-
ian so there is more language transfer during fine
tuning, but further research is needed to understand
how the language impacts optimal alignment data
mixture ratio.

5.2.2 Impact of Translated Human Preference
Data

Results in Table 6 are based on translated data from
the target language. Üstün et al. (2024) emphasized
the importance of human written prompt comple-
tion pairs and claim that translated data does not
perform as well. However, their work does not
start with a high quality pretrained base model, nor
do they use DPO. In order to understand whether
machine translated data is a viable option for hu-
man alignment, we explore the impact of alignment
using both approaches. We use Google translated
ultrafeedback-200k data for one run and human-
written data from Open Assistant Conversations
(OASST1) (Köpf et al., 2023) for the other. We
run this study on Russian, as it is has the most hu-
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Target Language: English Ratio 100:1 10:1 10:3 1:1
Arabic 30.39% 35.00% 34.62% 50.00%
Hungarian 39.29% 45.18% 45.78% 50.00%

Table 6: DPO data mixture result (win-rate compared with 1:1 data mixture)

Base Model ppl(↓) FLORES EN→X(↑) FLORES X→en(↑) Belebele(↑) SIB-200(↑)
GPT-13B 1.80 37.94 48.99 0.28 0.25
Llama-2-7b 1.61 53.72 58.65 0.34 0.25

Table 7: Performance of GPT-13B and Llama 2 7B on Hungarian benchmarks after adaptation

man written data from OASST1 (Köpf et al., 2023).
The model trained using translated data attains a
50.47% win rate compared to the model trained
with OASST1. This comparison does not control
for the diversity and quality of the question answer
pairs in the dataset because chat datasets with par-
allel human translated data in multiple languages.
so this comparison is not meant to illustrate that
translated data is as good or better than native data,
but rather to show that human written data is not a
silver bullet required to obtain good quality aligned
models in other languages.

5.3 Importance Of Base Model Quality

To explore the relationship between the quality of
the base model employed for language adaptation
and its subsequent impact on accuracy in the target
language, we ablate using two different base mod-
els - Llama 2 7B and GPT-13B (Srinivasan et al.,
2023). The GPT-13B model is trained on much
fewer tokens compared to llama2. We measure the
GPT-13B model on some commonly accepted En-
glish benchmarks instead of our multilingual eval-
uation suite because these benchmarks are used
more frequently to compare English checkpoints.
GPT-13B lags behind Llama 2 7B in every English
evaluation tasks we measured in Table 9.

We adapt both of these models to Hungarian.
Table 7 illustrates that using a higher quality base
model (Llama 2 7B) leads to better downstream
performance in the target language. These results
show that many of the benefits of training come
from the base model quality not just the continuous
training we do. This additionally indicates that
as newer higher quality models become available,
there is value in applying our proposed adaptation
methodology on new base models.

6 Limitations

Our work has several limitations, including the
need for extensive data from the target language,
which is often unavailable for many languages. We
study 9 diverse languages, but further research is
required to address multilingual data scarcity and
generalize our recipe. Due to compute and time
constraints, our ablation studies focus on around 3
languages each, assuming similar results for other
languages, although linguistic diversity and data
availability may affect this. Additionally, we evalu-
ate our chat-based model using GPT-4 as a judge,
and while this has been shown to strongly corre-
late with human preferences in English, we are
uncertain how well this works in other languages.
We acknowledge that publicly releasing LLMs is
risky because they can inadvertently generate harm-
ful or biased content, compromise privacy, and be
exploited for malicious purposes such as spread-
ing misinformation. Moreover, while our models
are adapted to other languages and cultures, the
English base model, data biases, and use of trans-
lation may prevent them from fully capturing the
nuances of cultures and languages from around the
world.

7 Conclusion

We present a methodology to adapt pretrained
LLMs to new languages. The methodology encom-
passes both continuous pretraining and alignment
to human preferences in the target language. We
present experimental results to justify our design
choices and scale our methodology to 9 typologi-
cally diverse languages and 2 parameter scales. We
make our evaluation scripts and final checkpoints
publically available to facilitate future research,
and we hope this work outlines a clearer path to-
wards attaining state of the art language models in
every language.
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A Hyperparameters

• Continuous Pre-training: We pack the pre-
training mixture into sequences of length 4096
and pretrain with document attention as de-
scribed in Section 3.2 of Iyer et al. (2022) to
ensure we only attend to tokens in the con-
text of the corresponding text document. We
train with a global batch size of 1024, se-
quence length of 4096, maximum learning
rate of 1e-4 with cosine decay, warm-up ra-
tio of 0.01 and a weight decay of 0.1. Each
expert is trained for a maximum of 4 epochs,
following (Muennighoff et al., 2023). Notably,
we train all model parameters, foregoing use
of PEFT methods such as LoRA (Hu et al.,
2022), which are known to be inferior to full
parameter training (Zhao et al., 2024a)(Sun
et al., 2023).

• Supervised Finetuning: We use a global
batch size of 512 and a maximum sequence
length of 2048 tokens. We used a linear decay
learning rate of 2e-5 with 10% warm up

• Direct Preference Optimization: We train
with a global batch size 32 for 3 epochs, a lin-
ear decay learning rate of 5e-7, 10% warmup
and β = 0.1 as the regularization factor for
DPO

B Language Experts vs Monolith
Multilingual Model

“The Curse Of Multilinguality” (Chang et al., 2023;
Conneau et al., 2020) is the idea that LLMs have
a fixed capacity with which to learn various lan-
guages. This theory claims that as one expands
the number of languages a model is trained on,
the various languages compete for the capacity of
the model, therefore degrading the models perfor-
mance across all languages. Blevins et al. (2024)
attempt to address this phenomenon by adapting
multiple small-scale language experts from XGLM-
1.7B (Lin et al., 2022), one for each language, and
show that each expert outperforms training a sin-
gle monolithic model trained simultaneously on
one language. We build on these results by scaling
this study to 7B parameters and use more com-
prehensive evaluation metrics than just perplexity.
We compare our 9 Llama 2 7B language experts
against a monolith Llama 2 7B model continuously
pretrained on all 9 languages. We ensure that each
language is represented equally in the monolith’s

training data and the vocabulary is expanded to
represent all 9 languages evenly.

For comparison’s sake, we select intermediate
model checkpoints such that each individual lan-
guage expert has used the same amount of com-
pute as the monolith multilingual model. This
means that the experts required 9x more compute
to train then the monolith. Table 8 averages the
evaluation results across all 9 languages and finds
that the monolith model and language experts have
very similar performance. This implies that if one
wants to adapt to many languages at once, it may
be more compute-efficient to continuously train
a multi-linugal model rather then independent ex-
perts. Further work is warranted to determine how
this result scales with an increasing number of tar-
get languages.

Benchmark Llama2-7b Multilingual Language
(Num Shots) Avg Monolith Avg Expert Avg

↓ Holdout PPL 1.75 1.55 1.50
↑ FLORES (8) 40.42% 50.69% 51.71%
↑ Belebele (3) 36.24% 33.36% 32.09%
↑ SIB-200(3) 26.67% 38.04% 33.43%
↑ XNLI (0) 39.00% 43.44% 43.04%
↑ XStoryCloze (0) 56.35% 65.75% 68.03%
↑ XWinograd (0) 69.48% 72.39% 71.97%
↑ PAWS-X (0) 51.00% 54.40% 53.50%
↑ MGSM (3) 5.40% 4.00% 4.20%

Table 8: Monolith multilingual continuous training vs
language experts, averaged over all 9 languages.
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C Base Model English Evaluation

HellaSwag(↑) OpenBookQA(↑) ARC-E(↑) ARC-C(↑) PiQA(↑) Winogrande(↑)
GPT-13B 0.60 0.36 0.53 0.30 0.76 0.60
Llama-2-7B 0.76 0.57 0.73 0.48 0.80 0.70

Table 9: Performance of GPT-13B and Llama-2-7B on
English NLU benchmarks
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D Qualitative Results

For Arabic, we compare our 7B arabic expert
with aya-101 (Üstün et al., 2024), Jais-13b-
chat (Sengupta et al., 2023), and Bloomchat-v1
(SambaNova Systems, 2023) and use prompts
from x-self-instruct-seed-32 (Systems, 2023a) and
xOA22 (Systems, 2023b). Our Arabic chat model
reaches 87.96% win rate compared to Jais-13B-
chat, 99.06% win rate compared to Aya101, and
68.52% compared to Bloomchat-v1. For Japanese,
we compare our Japanese chat model with ELYZA-
japanese-Llama-2-7b-instruct (Sasaki et al., 2023)
on 100 randomly sampled prompts aya dataset
(Üstün et al., 2024), reaching a win rate of 53.5%
For Turkish, we compare our Turkish chat model
against aya-101 (Üstün et al., 2024) using prompts
from the test set of aya dataset (Üstün et al., 2024),
leading to win-rate of 92.4%.

D.1 Evaluating Chat Models With Claude
We run evaluations using the same prompt as GPT-
4 as a judge, but use Claude Opus (Anthropic, 2024)
as a judge. Figure 5 shows the evaluations to be
in line with our previous results with GPT-4 as a
judge 3. This shows that there is no strong bias in
using GPT-4 as a judge.

Arabic

0% 25% 50% 75%

SambaLingo-Arabic-Chat Tie Jais-13b-chat

(a) SambaLingo vs Jais-13b-chat

Arabic

0% 25% 50% 75%

SambaLingo-Arabic-Chat Tie BloomChat-17B

(b) SambaLingo vs BloomChat-v1

Japanese

0% 25% 50% 75%

SambaLingo-Japanese-Chat Tie elyza-7b-instruct

(c) SambaLingo vs ELEYZA-7b-instruct

Figure 5: Claude Opus evalution results

D.2 GPT-4 As A Judge
Below are some examples of how GPT-4 judged
two candidate responses in Japanese, Arabic and
Turkish. See figures 6, 7, 8, 9, 10, 11
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Figure 6: Japanese Example 1

Figure 7: Japanese Example 2
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Figure 8: Arabic Example 1
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Figure 9: Arabic Example 2

Figure 10: Turkish Example 1
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Figure 11: Turkish Example 2
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E Expanded Vocabulary Tokenizer
Fertility

E.1 Expanded Vocabulary Tokenizer Fertility
In figure 12 We measure the fertility of the tok-
enizer as we expand the vocabulary, and see that
we can improve the fertility from about 4.8 to 1.1
on Thai. This is about a 4.35x improvement, im-
plies that inference speeds can improve up to 4.35x
compared to the Llama2 tokenizer.

Number Of Added Tokens

Fe
rti

lit
y

0

1

2

3

4

5

5000 10000 15000 20000 25000

Hungarian Russian Turkish Bulgarian Arabic Japanese Thai

Figure 12: Tokenizer Fertility: the average number of
tokens per "word" (Ács, 2019)
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F Main Results Details

See tables 13 and 14 for all evaluation results

Figure 13: Main results, evaluation benchmarks de-
scribed in 4.1.This data is averaged to create 2.
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Figure 14: Main results, evaluation benchmarks de-
scribed in 4.1.This data is averaged to create 2.
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Abstract

This paper investigates biases of Large Lan-
guage Models (LLMs) through the lens of
grammatical gender. Drawing inspiration from
seminal works in psycholinguistics, particu-
larly the study of gender’s influence on lan-
guage perception, we leverage multilingual
LLMs to revisit and expand upon the founda-
tional experiments of Boroditsky (2003). Em-
ploying LLMs as a novel method for examin-
ing psycholinguistic biases related to grammat-
ical gender, we prompt a model to describe
nouns with adjectives in various languages, fo-
cusing specifically on languages with grammat-
ical gender. In particular, we look at adjective
co-occurrences across gender and languages,
and train a binary classifier to predict gram-
matical gender given adjectives an LLM uses
to describe a noun. Surprisingly, we find that
a simple classifier can not only predict noun
gender above chance but also exhibit cross-
language transferability. We find a strong social
influence of language on the way multilingual
LLMs reason.

1 Introduction

The way we perceive the world is not only affected
by our culture (Oyserman and Lee, 2008; Ma-
suda et al., 2008), but also the language we speak
(Boroditsky et al., 2003; Boroditsky, 2001). The
relationship between cognition and language has
been of interest for a long time (Langacker, 1993),
especially through the lens of gender (Boroditsky
et al., 2003; Gygax et al., 2008). Recent advances
in Large Language Models (LLMs), that match
human performance on multiple tasks, provide an
exciting opportunity to study the relationship be-
tween the psycholinguistic biases of humans and
those of machines. While it is unclear whether
the latter relationship exists, it would be a more
scalable, affordable, and even ethical (Banyard and
Flanagan, 2013) alternative to human studies.

Figure 1: Probing the bias of multilingual LLMs. We
prompt a LLM to describe gendered nouns using adjec-
tives. This allows us to study psycholinguistic biases
of LLMs. For example, if the generated adjectives are
predictive of the nouns’s gender, we can, by training a
binary classifier, predict grammatical gender by only
looking at the adjectives a LLM uses to describe a word.

In this work, we revisit the study of (Boroditsky
et al., 2003) in the era of LLMs. To see how gram-
matical gender affects cognition, Boroditsky et al.
(2003) ask speakers of languages with grammati-
cal gender (where nouns have assigned genders)
to describe various objects, finding that the lan-
guage a person speaks affects the attribution of
masculine or feminine characteristics to objects.
For example, a Spanish speaker (where “bridge”
is masculine) might describe a bridge with words
like “strong” or "sturdy”, while a German speaker
(where “bridge” is feminine) might use terms like
“elegant” or “beautiful”. However, several subse-
quent studies fail to replicate such results (Haertlé;
Mickan et al., 2014; Samuel et al., 2019), which is
but a symptom of the replication crisis in psychol-
ogy (Wiggins and Christopherson, 2019; Shrout
and Rodgers, 2018; Maxwell et al., 2015). Sim-
ilarly, studies in the field of NLP that examine
the way gendered nouns are used in text corpora
(Williams et al., 2021; Kann, 2019), find conflicting
evidence on whether there is a relationship between
grammatical gender and cognition.

The existence of gender bias has been well stud-
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ied for word embeddings (Bolukbasi et al., 2016;
Basta et al., 2019; Caliskan et al., 2017), as well as
a range of NLP systems, such as ones for machine
translation (Stanovsky et al., 2019; Vanmassenhove
et al., 2018), image and video captioning (Tatman,
2017; Hall et al., 2023), or sentiment analysis (Kir-
itchenko and Mohammad, 2018). More recently,
the social biases of LLMs have been studied (Kirk
et al., 2021). While the multilingual capabilities of
LLMs have been extensively evaluated, showing
they perform well on machine translation (Hendy
et al., 2023; Jiao et al., 2023; Wang et al., 2023)
as well as various multilingual benchmarks (Ahuja
et al., 2023; Bang et al., 2023), the evaluation of
biases in the multilingual setting is less mature.
Contrary to recent work showing that multilingual
LLMs have different biases for different languages
Mukherjee et al. (2023), we find that when it comes
to gendered nouns, LLMs are biased in a similar
way, as the biases are predictive of each other.

In this paper, we loosely follow the protocol
of Boroditsky et al. (2003) and prompt LLMs to
describe nouns using adjectives in different lan-
guages. Specifically, we focus on open-sourced
LLMs (Llama-2 (Touvron et al., 2023) and Mis-
tral (Jiang et al., 2023)). We select 10 languages
that have grammatical gender (e.g, German and
Spanish), and use the LLMs to describe gendered
nouns using adjectives. This allows us to see how
adjectives co-occur across languages. Our most im-
portant findings are that (i) a simple classifier can
predict the gender of a noun using the adjectives
used to describe it, and (ii) such a classifier reliably
transfers across languages, suggesting LLMs are
biased similarly in different languages.

2 Method

In this work, we are interested in the adjectives a
multilingual LLM uses to describe gendered nouns
when asked in different languages. Here, we de-
scribe how we generate such adjectives, and how
we examine whether they are predictive of the
grammatical gender of the nouns.

2.1 Describing nouns in different languages

We show our pipeline for describing gendered
nouns with adjectives in Figure 1. More formally,
for a language l we have a database of K gen-
dered nouns N l = {nl

1, n
l
2, ..., n

l
K}, with corre-

sponding grammatical genders g(nl
i) = {f,m}

for feminine and masculine, respectively. We

prompt the LLM to describe a noun nl
k using ad-

jectives, which we parse into a list of M adjectives
A(nl

k) = {al1, al2, ..., alM}. For every noun n, we
repeat the prompting N times and compute the
frequencies f with which the adjectives appear:

f(ai) =

∑N
j=1 1(ai ∈ A(nj))

N
. (1)

Finally, we keep the adjectives with top-p frequen-
cies. In practice, we use N = 50 and p = 50.

2.2 Predicting gender from descriptions
To examine to what extent the adjectives an LLM
uses to describe a noun are predictive of its gram-
matical gender, we train a binary classifier Φ to
predict grammatical gender:

ĝ(nl
i) = Φ

(
p∑

i=1

f
(
ali

)
eg

(
ali

))
,

where the input to the classifier are GloVe (Pen-
nington et al., 2014) word embeddings eg of the
adjectives weighted by the adjectives frequencies f .
In practice, we use a modified version of f , where
f ′ = −30/ log(f) to give us a better scaling. The
classifier Φ is a 2-layer MLP and we train it with
binary cross-entropy loss.

As shown in Figure 1, we first translate the gen-
erated adjectives to English. We do this for two rea-
sons. Firstly, adjectives in some languages are also
gendered and that would help the classifier learn
this shortcut (e.g. pretty in Spanish is bonito and
bonita for masculine and feminine, respectively).
Adjectives in English are not gendered, so the clas-
sifier Φ has no way of inferring the gender of the
noun from the grammatical form. Secondly, this
allows for easy transfer of the classifier across lan-
guages – e.g. we can train Φ on words generated
in Hindi, and evaluate on Italian.

3 Experiments

3.1 Implementation details
Languages We conduct experiments on the lan-

guages Bulgarian, Czech, French, German, Greek,
Hindi, Italian, Latvian, Portuguese, and Spanish.

Nouns We automatically collect commonly used
nouns from every language, and their correspond-
ing grammatical gender. For details on the way
we collect those nouns, and the number of nouns
per language, please refer to the Appendix. We
exclude neuter nouns as such nouns do not exist
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Figure 2: Bias when describing gendered nouns. Here
we prompt an LLM in Spanish and for a random sample
of adjectives, show the percentage of masculine nouns
they were used for.

in every language. We subsample the feminine or
masculine nouns in each gender to ensure a uniform
distribution for each language.

LLMs In our experiments we use the open-
sourced Mistral-7B (Jiang et al., 2023) model, un-
less stated otherwise. We also repeat our experi-
ments with Llama2-7B (Touvron et al., 2023).

Prompts We prompt the LLM to describe the
given noun in the corresponding language using
comma-separated adjectives. In practice, we use
few-shot prompts, which we show in the Appendix.

Translation Where we translate nouns, adjec-
tives, or prompts, we use Google Translate 1.

3.2 Bias in generated adjectives

First, we look at adjectives that commonly occur
for masculine or feminine nouns.

For every adjective ai, we look at the ratio rm:

rm(ai) =

∑
n∈N ,g(n)=m 1(ai ∈ A(n)))
∑

n∈N 1(ai ∈ A(n)))
, (2)

which shows the proportion of masculine words
it was used to describe. We randomly sample ad-
jectives and show their rm in Figure 2. We see
that adjectives like intricate and desolate are as-
sociated with feminine nouns, whereas adjectives
like dedicated and brave are associated with mascu-
line nouns. We show more examples for different
languages in the Appendix.

3.3 Do languages show similar biases?

Next, we explore whether adjectives describing
masculine and feminine nouns tend to co-occur
in different languages. To this end, we compute
a gendered-adjective similarity score Spq for ev-
ery language pair of languages lp and lq. We

1Google Translate, https://translate.google.com/

Figure 3: Gendered adjective similarity sccores.

do that as follows. We take the set of N adjec-
tives a1, a2, ..., aN that are used to describe at least
15 nouns in both lp and lq. Then for both lan-
guages, we construct a gendered-adjective score
vector σ ∈ RN , where σ[i] = rm(ai). Now, σp
and σq contain the gender ratio for all N adjectives.
Finally, we define the gendered-adjective similarity
score Spq as the cosine similarity between σp and
σq.

In Figure 3 we show the score S for all language
pairs. We see that in Romance languages (Spanish,
Italian, French Portuguese), Slavic languages (Bul-
garian, Czech), and Germanic languages (German),
the LLM shows a high gendered-adjective simi-
larity score, meaning that the adjectives in these
languages tend to have similar value of rm. On the
other hand, Greek, Hindi and Latvian have a low
score between themselves and others.

3.4 Predicting the gendered nouns

Can we predict the gender of a noun in some lan-
guage given the adjectives used to describe it? Fol-
lowing Section 2.2, we train binary classifiers to
predict the grammatical gender of a noun from the
adjectives used to describe it (translated to English).
We train a separate classifier for each language. As
seen in Table 1, for all languages the classifier re-
liably does better than random – meaning that the
adjectives are predictive of gender.

3.5 Transfer between languages

If we train a grammatical gender classifier, like in
Section 3.4, can we predict the gender of a noun
in an unseen language? To answer this, where we
train grammatical gender classifiers on adjectives
from 9 languages (translated to English), and eval-
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Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.64 68.4% 72.4% 63.3%
Czech 0.52 59.0% 58.3% 60.2%
French 0.63 56.5% 55.8% 56.8%
German 0.60 60.0% 52.7% 69.4%
Greek 0.68 69.0% 62.7% 77.6%
Hindi 0.53 54.3% 57.5% 51.2%
Italian 0.46 68.2% 73.0% 54.3%
Latvian 0.64 62.6% 60.0% 65.0%
Portuguese 0.55 62.0% 62.7% 60.1 %
Spanish 0.62 63.3% 59.6% 68.0%

Table 1: Predicting grammatical gender. We train
a classifier to predict the gender of nouns given the
adjectives the LLM uses to describe them.

Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.56 62.5% 64.4% 59.8%
Czech 0.45 60.6% 70.6% 43.5%
French 0.62 54.8% 50.3% 57.3%
German 0.54 58.6% 73.1% 46.0%
Greek 0.64 60.6% 47.8% 75.3%
Hindi 0.53 48.8% 37.9% 60.2%
Italian 0.40 60.1% 61.6% 55.6%
Latvian 0.41 51.7% 81.2% 29.7%
Portuguese 0.55 62.8% 63.0% 62.4%
Spanish 0.59 58.8% 56.7% 60.1%

Table 2: Unseen Language Results. We train on all
other languages and predict the genders of nouns in
the given language. We train a separate leave-one-out
classifier for each language.

uate on the final language. As we see in Table 2,
such classifiers can reliably predict gender across
languages. Interestingly, they even work better than
random for Greek, Hindi and Latvian, despite the
results reported in Section 3.3. We suggest that
although the LLM uses different adjectives to de-
scribe masculine and feminine nouns in different
languages (hence low Spq), they are semantically
similar (hence high accuracy when evaluating the
classifier on an unseen language).

4 Discussion

4.1 Reproducibility
Studying the phenomena relating cognition to
grammatical gender in psychology has led to incon-
clusive results(Boroditsky, 2001; Haertlé; Mickan
et al., 2014; Samuel et al., 2019). These could be
explained by different experimental settings with
speakers of different languages, which are diffi-
cult to control in a human study. Similarly, prior
works that examine text corpora using NLP tech-
niques show conflicting results (Williams et al.,

LLM Eval F1
Accuracy

Overall Masc. Fem.

Mistral-7B Same 0.59 62.3% 61.5% 62.6%
Llama2-7B Same 0.59 64.6% 67.9% 59.9%

Mistral-7B Unseen 0.53 57.9% 60.7% 55.1%
Llama2-7B Unseen 0.54 59.1% 62.6% 54.9%

Table 3: Evaluating Llama-2. We compare grammat-
ical gender classifiers Llama-2 to Mistral when tested
on the same language (as in Section 3.4), or an unseen
language (as in Section 3.5). We show mean results
over all 10 languages. We see that we observe a similar
predictive performance on adjectives used by Llama-2
as those by Mistral.

2021; Kann, 2019). The results of these works
heavily depend on the text corpora analyzed, and
the methods used to identify adjective-noun pairs,
which might be subpar for languages other than En-
glish. Our method presents more consistent results
by ensuring consistent evaluation across languages.

4.2 Importance of our results

Our results are only valid for noun-adjective as-
sociations in LLMs. However, these associations
have been learnt through co-occurences of these
words in text corpora, which have been produced
by speakers of the respective languages. Future
work should study how well such biases in LLMs
are predictive of biases of humans.

The results we present suggest a consistent bias
that associates nouns with adjectives, depending
on their grammatical gender. This could be impor-
tant when LLMs are used to describe humans us-
ing objects, or vice versa (anthropomorphism, per-
sonification, metaphors, ...), where traits of these
objects are transferred to the human. Furthermore,
using LLMs to perform machine translation of such
phrases could lead to a loss of meaning or unex-
pected biases.

5 Conclusion

In this work, we revisit the psycholinguistic experi-
ments of Boroditsky et al. (2003), confirming the
hypothesis of their work applies to LLMs, where
different words are used to described masculine
and feminine nouns. Our most surprising finding is
that we can reliably zero-shot transfer a classifier
that predicts grammatical gender across languages.
This shows that while LLMs might think differently
on different languages, they are biased similarly
when it comes to grammatical gender. We hope
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this work inspires others to explore psycholonguis-
tic experiments applied to LLMs, and to drive a
discussion of whether such results can be useful to
inform or motivate human experiments.

6 Limitations

We only conducted experiments and observed
these effects for the opens-sourced Mistral-7B and
Llama2-7B models. It is not clear if similar effects
can be observed in larger LLMs, or commercial
LLMs such as GPT-4. While we ensured to cover
a wide range of languages, the ones we used are by
no means exhaustive and only cover indo-european
languages. Finally, we only explore the biases of
general-purpose, multilingual LLMs. Looking into
specialised LLMs, fine-tuned for the specific lan-
guage, might be more representative of what mod-
els would be used in practice.
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Appendix

A Collecting nouns

We collect words in German 2 and Spanish 3 from
a blog post that lists commonly used words in these
languages, and shows their grammatical gender.
For Bulgarian 4, Greek 5, Czech 6, French 7, Hindi
8, Italian 9, Latvian 10 and Portuguese 11, we take
a list of words and their grammatical gender from
Wikipedia. Following that, we only select words
whose English translation is in the list of commonly
used words in either German or Spanish.

Language Total Masc. Fem.

Bulgarian 1414 839 575
Czech 2383 1501 882
French 2763 996 1767
German 2031 952 1089
Greek 1257 670 587
Hindi 830 425 405
Italian 2919 2219 700
Latvian 1223 522 701
Portuguese 1766 1119 647
Spanish 1758 896 862

Table 4: Dataset Statistics. We present the number of
masculine and feminine words we consider for all 10
languages. The languages are sorted alphabetically.

We show the number of collected nouns per lan-
guage in Table 4. We use 90% of the nouns in each
language for training, and 10% for testing.

B Excluding animate nouns

Following prior works that look into grammatical
gender by looking at word co-occurrence in text
corpora (Williams et al., 2021), we exclude ani-
mate nouns from our datasets in all languages (e.g.

2https://frequencylists.blogspot.com/2016/01/
the-2980-most-frequently-used-german.html

3https://frequencylists.blogspot.com/2015/12/
the-2000-most-frequently-used-spanish.html

4https://en.wiktionary.org/wiki/Category:
Bulgarian_nouns_by_gender

5https://en.wiktionary.org/wiki/Category:
Greek_nouns_by_gender

6https://en.wiktionary.org/wiki/Category:
Czech_nouns_by_gender

7https://en.wiktionary.org/wiki/Category:
French_nouns_by_gender

8https://en.wiktionary.org/wiki/Category:
Hindi_nouns_by_gender

9https://en.wiktionary.org/wiki/Category:
Italian_nouns_by_gender

10https://en.wiktionary.org/wiki/Category:
Latvian_nouns_by_gender

11https://en.wiktionary.org/wiki/Category:
Portuguese_nouns_by_gender

LLM F1
Accuracy

Overall Male Female

Mistral-7B 0.57 55.0% 50.0% 60.0%
Llama2-7B 0.70 65.0% 50.0% 80.0%

Table 5: Evaluating the agreement with native En-
glish. We evaluate the agreement of our classifier
trained on 10 gendered languages to the perceived gram-
matical gender of native English speakers, which we
treat as ground truth.

“uncle”, “cashier”, “engineer”, etc.). We repeat the
experiments from Section 3.4 in Table 6, and see
that the inclusion of animate nouns does not affect
overall results.

Language F1 Accuracy
Overall Masc. Fem.

Bulgarian 0.70 71.1% 73.8% 68.3%
German 0.69 63.8% 63.1% 64.2%
Spanish 0.56 55.3% 56.2% 54.4%
Italian 0.51 65.2% 64.5% 67.1%
Czech 0.55 57.2% 54.3% 61.2%
Greek 0.68 69.5% 79.6% 60.1%
Portuguese 0.60 61.1% 56.7% 67.2%
Hindi 0.59 58.1% 67.7% 51.2%
Latvian 0.70 63.2% 60.0% 64.8%
French 0.60 57.0% 58.8% 55.8%

Table 6: Gendered Nouns Predictions. This table is for
the filtered dictionaries, i.e. without jobs/mother/father
etc.

C Gendered adjectives

We show more examples of adjectives that are pre-
dominantly used for masculine (or feminine) nouns
in Figure 4, similarly to Section 3.2.

D Promps

The prompt we use in English is as follows:
***Question***: Describe the word “bottle”

using comma-separated adjectives. ***Answer***:
glass, sleek, thin, brittle, elegant, transparent,
clear, tall, fragile, shiny
***Question***: Describe the word “stone” using
comma-separated adjectives. ***Answer***: round,
old, strong, cold, solid, ancient, sturdy, dense,
natural, durable
***Question***: Describe the word <> using
comma-separated adjectives. ***Answer***:

For the other languages we translate the prompt,
e.g. in Spanish we use:

***Pregunta***: Describe la palabra
“botella” usando adjetivos separados por
comas. ***Respuesta***: vidrio, liso, delgado,
quebradizo, elegante, transparente, claro, alto,
frágil, brillante
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Bulgarian

French

German

Figure 4: Bias when describing gendered nouns. Here
we prompt an LLM in Bulgarian, French, and German
and for a random sample of adjectives, show the per-
centage of masculine nouns they were used for.

***Pregunta***: Describe la palabra “piedra”
usando adjetivos separados por comas.
***Respuesta***: redondo, viejo, fuerte,
frío, sólido, antiguo, robusto, denso, natural,
duradero
***Pregunta***: Describe la palabra <> usando
adjetivos separados por comas. ***Respuesta***:
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Abstract

Despite advancements in English-dominant
generative large language models, further devel-
opment is needed for low-resource languages to
enhance global accessibility. The primary meth-
ods for representing these languages are mono-
lingual and multilingual pretraining. Mono-
lingual pretraining is expensive due to hard-
ware requirements, and multilingual models
often have uneven performance across lan-
guages. This study explores an alternative so-
lution by adapting large language models, pri-
marily trained on English, to low-resource lan-
guages. We assess various strategies, including
continual training, instruction fine-tuning, task-
specific fine-tuning, and vocabulary extension.
The results show that continual training im-
proves language comprehension, as reflected in
perplexity scores, and task-specific tuning gen-
erally enhances performance of downstream
tasks. However, extending the vocabulary
shows no substantial benefits. Additionally,
while larger models improve task performance
with few-shot tuning, multilingual models per-
form worse than their monolingual counterparts
when adapted.

1 Introduction

The performance of proprietary generative large
language models (LLMs) is better than open-source
ones in most cases as this article is written (Xu
et al., 2022; Sun et al., 2024), though there are
efforts to develop open-source generative LLMs
in terms of high performance and human ethics
alignment (Touvron et al., 2023a; Jiang et al., 2023;
Almazrouei et al., 2023).

The progress is more significant in the English
language compared to other languages as the afore-
mentioned open-source models are mostly trained
by English corpora (Wang et al., 2023; Zhang et al.,
2023a). To make natural language processing tech-
nology more inclusive and accessible globally, re-
search and development should be dedicated to the

          

Pretraining

Adaptation to low-resource language

Monolingual LLM

Pretraining

Multilingual LLM

          Continual
training

Vocabulary
extension

          Instruction
fine-tuning           Task-specific

fine-tuning

Monolingual
corpus

Multilingual
corpus

Figure 1: Adapting generative large language models
for low-resource languages.

techniques that improve the performance of large
language models in low-resource languages.

Monolingual (Yang et al., 2023b; Nagoudi et al.,
2023; Pires et al., 2023; Uludoğan et al., 2024;
Corrêa et al., 2024; Kesgin et al., 2024) and mul-
tilingual pretraining (Shliazhko et al., 2023; Scao
et al., 2022; Lin et al., 2024b; Blevins et al., 2024)
of generative LLMs are two main solutions for
representing low-resource languages. However,
monolingual pretraining is too costly due to hard-
ware requirements for generative LLMs (Zhao
et al., 2023a). On the other hand, multilingual
LLMs have uneven performance across different
languages mostly due to imbalanced training cor-
pus (Zhang et al., 2023a; Qin et al., 2024). Our
proposed solution is to adapt open-source genera-
tive LLMs for low-resource languages, illustrated
in Figure 1.

In this regard, this study examines how to adapt
open-source LLMs for low-resource languages in
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a systematic way. We focus on the benefits of us-
ing different methodologies, both individually and
together, including continual training, supervised
fine-tuning, and vocabulary extension, to adapt gen-
erative LLMs for low-resource languages.

For the sake of efficiency, we use Llama (Tou-
vron et al., 2023a) in the experiments. We select
the Turkish language as a low-resource language.
We therefore refer to the model family used in this
study as LlamaTurk. The model size and language
selection are affordable when the number of exper-
iments is considered in this study1. Also, Llama is
trained mostly with English data, which can pro-
vide better investigation for adapting non-English
languages. The Turkish language can be catego-
rized under low-resource languages when training
corpus of open-source generative LLMs are consid-
ered (Touvron et al., 2023a), yet the recipes given in
this study can also be used for other low-resource
languages since the methods are independent of
language itself.

We further examine adaptation in terms of two
more aspects: Model size and multilinguality.
Model size is important for scalability and perfor-
mance (Zhao et al., 2023a; Yang et al., 2023a). We
provide an analysis of the adaptation of Llama-7b
and 13b in this respect. Moreover, multilingual
LLMs, such as BLOOM (Scao et al., 2022), Yi (AI
et al., 2024), Aya (Üstün et al., 2024), and MaLA
(Lin et al., 2024a), can provide an opportunity to
adapt low-resource languages easier than English-
dominant ones due to multilingual corpus and vo-
cabulary. Since BLOOM and Yi do not involve
Turkish in training and Aya is larger than MaLA in
terms of model parameters, we use MaLA for an
analysis of multilingual LLMs.

The main contributions of this study can be sum-
marized as follows. We (i) analyze the adaptation
of generative LLMs for low-resource language sys-
tematically to understand advantages and disad-
vantages in terms of continual training, instruction
fine-tuning, task-specific fine-tuning, and vocabu-
lary extension, (ii) investigate model size and mul-
tilingual models for adaptation, and (iii) publish
all resources including source codes, datasets, and
generative models reported in the experiments2.

1Two NVIDIA RTX 2080Tis and four A4000s are em-
ployed in the experiments.

2https://github.com/metunlp/llamaturk

2 Related Work

Generative LLMs are either proprietary or open-
source. Although proprietary LLMs have currently
outstanding performance (Sun et al., 2024), there
are also efforts to develop competitive open-source
models (Touvron et al., 2023a; Jiang et al., 2023).

The majority language of open-source genera-
tive LLMs is English. Their pretraining text cor-
pus mostly includes text in the English language.
For adapting LLMs pretrained with English data
for low-resource languages, the following methods
are examined. (i) The training phase is contin-
ued using non-English raw data to learn the lan-
guage properties of the new language (Ebrahimi
and Kann, 2021; Larcher et al., 2023; Csaki et al.,
2023; Cui et al., 2024; Zhao et al., 2024; Acikgoz
et al., 2024). (ii) The knowledge of large language
model is transferred by supervised fine-tuning on a
non-English instruction or downstream-task dataset
(Santilli and Rodolà, 2023; Holmström and Doost-
mohammadi, 2023; Kohli et al., 2023; Csaki et al.,
2023; Zhao et al., 2024; Garcia et al., 2024; Kuul-
mets et al., 2024). (iii) The vocabulary of large
language model is extended to include non-English
tokens (Cui et al., 2023; Zhao et al., 2024).

These methods are employed in different studies
and languages, resulting in a lack of understanding
advantages and disadvantages of each in a con-
trolled experimental framework. Different from
these studies, we provide a comprehensive experi-
mental setup on the benefits of different methodolo-
gies for adapting generative LLMs for low-resource
languages. Moreover, we focus on model size and
multilingual models for adaptation.

3 Adaptation Methods

In this section, we explain the methods to adapt
open-source generative LLMs for low-resource lan-
guages in detail.

3.1 Continual Training

Continual training is the process of extending the
pretraining phase of LLMs by incorporating new
data corpus (Gupta et al., 2023). The main objec-
tive is to minimize the loss on this new data while
having relatively lower loss scores on previous data
since continual training is open to catastrophic for-
getting (French, 1999; Li and Lee, 2024). Contin-
ual training can therefore capture implicit language
structures and text semantics.
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Previous studies (Qin et al., 2022) show that
continual training improves the performance of
domain adaptation for BERT-like encoder-based
LLMs (Devlin et al., 2019). It is also used for
adapting decoder-based generative LLMs to low-
resource (Cui et al., 2023; Zhao et al., 2024), code-
mixed (Owen et al., 2024), non-Latin (Husain et al.,
2024), and multilingual (Lin et al., 2024a) settings.

In this study, similar to previous studies, we
employ Low-Rank Adaptation (LoRA) (Hu et al.,
2021) for efficient training due to limited resources.
We use a raw Wikipedia corpus3 from November
2023 with a size of 534,988 Turkish articles.

We set the input sequence length as 512 tokens
and the batch size as 128 instances. We use 32
gradient accumulation steps and 100 linear warmup
steps. We train with a learning rate of 3e-4 for a
single epoch. LoRA’s R is set to 8, alpha to 16, and
dropout to 0.05. Since continual training is costly
and the study has a limited budget, we employ
continual training for only Llama-7b4 with 8-bit
quantization. A single run of continual training
takes approximately 206 hours with these settings
using four NVIDIA RTX A4000s.

3.2 Instruction Fine-tuning
Instruction tuning is a supervised fine-tuning
method that improves the ability of LLMs to follow
instructions (Wei et al., 2021; Ouyang et al., 2022;
Zhang et al., 2024). During training, the model is
presented with many pairs of instructions and corre-
sponding responses. The main objective is to teach
the model to generate accurate responses based on
the given instructions, rather than continuing from
the previous text.

Different from previous instruction-tuning ef-
forts, Stanford’s Alpaca (Taori et al., 2023) is a
leading model that shows major improvements by
instruction fine-tuning an open-source generative
LLM, namely (Touvron et al., 2023a). While Al-
paca and similar models such as Vicuna (Chiang
et al., 2023) have an instruction set constructed by
prompting proprietary LLMs, other models such
as Dolly (Conover et al., 2023) employ human la-
bor for constructing a more reliable instruction set.
The majority of these efforts are for the English
language, yet there are instruction-tuned models to
adapt English-supported LLMs for low-resource
settings (Cui et al., 2023; Zhao et al., 2024; Azime
et al., 2024).

3https://huggingface.co/datasets/wikipedia
4https://huggingface.co/huggyllama/llama-7b

In this study, we construct an instruction set by
translating Alpaca’s 52k instructions from English
to Turkish by using Google Translate5. The qual-
ity of the translated set is inadequate for training
since we observe many issues such as translation
errors (e.g. missing letters and untranslated words),
keyword translations (e.g. reserved keywords spe-
cific to programming languages should not be trans-
lated), and semantic mismatching (e.g. original
instruction asks for a phrase with five words, but
correct translation has less than five words). We
therefore manually validate and correct the quality
of the instruction set. We publish our instruction
set6. We also provide a prompting example for
instruction fine-tuning in Appendix A.1.

We employ instruction tuning for all LLMs ex-
amined in this study, namely Llama-7b7, Llama-
13b8, and MaLA-10b9. We use 8-bit quantization
with LoRA (resulting in training 12.4% of LLM
parameters) and the same hyperparameters as in
continual training, except that we use a smaller in-
put sequence length (256 tokens) and train for two
epochs. A single run of instruction tuning takes
approximately 17.5 hours for Llama-7b with these
settings using two NVIDIA RTX 2080Tis.

3.3 Task-Specific Fine-tuning

Task-specific tuning is a type of instruction tuning,
where a fine-tuning set involves task-related instruc-
tions and ground-truth answers (Budzianowski and
Vulić, 2019; Wang et al., 2024), rather than adapt-
ing a general-purpose instruction set. Task-specific
tuning of generative LLMs is proven to be suc-
cessful in different domains including text editing
(Raheja et al., 2023), sentiment analysis (Inserte
et al., 2024), and machine translation (Zheng et al.,
2024). However, task-specific tuning have the po-
tential of deteriorating the language capabilities of
LLMs (Zhang et al., 2023b; Zhao et al., 2023b).

We follow instruction fine-tuning with a task-
specific dataset for the downstream task of senti-
ment analysis. We choose sentiment analysis since
it is a widely applicable task that represents a funda-
mental natural language processing capability (Liu,
2012). For this purpose, we create an instruction
set for sentiment analysis. To create a balanced
set, we downsample 2,500 instances for both neg-

5https://translate.google.com
6https://github.com/metunlp/llamaturk
7https://huggingface.co/huggyllama/llama-7b
8https://huggingface.co/huggyllama/llama-13b
9https://huggingface.co/MaLA-LM/mala-500-10b-v1
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Data Size Tokens
Continual training Wiki 535.0k 273.9m
Instruction tuning Alpaca 52.0k 13.3m
Task-specific tuning Sentiment 5.0k 1.3m
Vocabulary extension BPE 28.6k 28.6k

Table 1: Data statistics for adaptation methods. The
columns represent the type of data used (Data), the total
number of instances (Size), and the total number of
tokens (Tokens), respectively.

ative and positive sentiment classes, a total of 5k
instances from the TRSAv1 dataset (Aydoğan and
Kocaman, 2023). We then use a prompt manually
crafted for the task of sentiment analysis10. We
provide the prompt in Appendix A.2.

We employ task-specific tuning for all LLMs
examined in this study. We use all models in 8-
bit quantization. We also use LoRA (resulting in
training 12.4% of LLM parameters) and the same
hyperparameters as in instruction tuning. A single
run of task-specific tuning takes approximately 2.5
hours for Llama-7b with these settings using two
NVIDIA RTX 2080Tis.

3.4 Vocabulary Extension

Vocabulary embeddings are a major component
of how LLMs understand and process natural lan-
guage text by capturing semantic meanings and
relationships among subwords called tokens (Tora-
man et al., 2023). Vocabulary tokens are deter-
mined by tokenization algorithms such as Word-
Piece (Schuster and Nakajima, 2012) and Bype
Pair Encoding (BPE) (Sennrich et al., 2016).

Llama has a vocabulary size of 32k tokens based
on BPE tokenization (Touvron et al., 2023a). The
majority of tokens in its vocabulary are English.
The remaining small portion involves European
languages with Latin and Cyrillic symbols.

In this study, we extend Llama’s vocabulary
by merging with low-resource language tokens.
Specifically, we use the Turkish tokenizer with
28,600 tokens trained by BPE algorithm (Toraman
et al., 2023) (We publish the tokenizer6).

Merging the original Llama tokenizer with low-
resource vocabulary yields 59,773 tokens, meaning
that 827 tokens are overlapping. This results in
adding almost 228m new parameters to be trained
into the model due to the extended vocabulary em-
beddings. We employ vocabulary extension with

10We run prompts from existing resources (Bach et al.,
2022) but decided to use a manually crafted one by observing
better performance in preliminary experiments.

above-mentioned methods when Llama-7b is used
with LoRA due to limited resources.

3.5 Combinations
A summary of data statistics used for the adaptation
methods is given in Table 1. In addition to a single
examination of these methods, we also report the
results of using them in combination to leverage
better performance. We particularly employ the fol-
lowing combinations using Llama-7b with LoRA.
Hyperparameters are set the same as explained in
the previous subsections.

Continual Training with Instruction Fine-tuning:
We first obtain a model by continual training using
raw Wiki data as explained in Section 3.1. We
then apply instruction fine-tuning as explained in
Section 3.2. The motivation is to boost the potential
of instruction tuning when the backbone model is
trained with low-resource raw text beforehand.

Continual Training with Task-Specific Fine-
tuning: With a similar motivation to the previ-
ous approach, we first obtain a model by continual
training using raw Wiki data. We then apply task-
specific fine-tuning as explained in Section 3.3.

Continual Training with Instruction and Task-
Specific Fine-tuning: The motivation is to boost
the performance of task-specific tuning when the
model is trained by both raw text and instruction-
set in low-resource language beforehand. We first
obtain a model by continual training using raw
Wiki data. We then apply instruction tuning and
task-specific fine-tuning respectively.

Instruction and Task-Specific Fine-tuning: This
approach avoids continual training but examines
using both instruction and then task-specific tuning
respectively. The motivation is to boost the per-
formance of task-specific tuning when the model
is trained by only instruction-set in low-resource
language beforehand.

Vocabulary Extension with Instruction Fine-
tuning: We extend the vocabulary with low-
resource language tokens as explained in Section
3.4. We then apply instruction tuning to understand
the impact of vocabulary extension on instruction
tuning.

Vocabulary Extension with Task-Specific Fine-
tuning: With a similar motivation to the previ-
ous approach, we extend the vocabulary with low-
resource language tokens and then apply task-
specific tuning to understand the impact of vocabu-
lary extension on task-specific tuning.

Vocabulary Extension with Continual Training:
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xquad xquad dbricks dbricks
question context instruction response

Size 1.2k 1.2k 15.0k 15.0k
Chars 74.7k 965.4k 1.1m 5.4m
Tokens 37.4k 458.3k 549.8k 2.4m

Table 2: Dataset statistics for perplexity. The xquad
dataset has question and context subsets. The databricks
(dbricks) dataset has instruction and response subsets.

We extend the vocabulary with low-resource lan-
guage tokens and then apply continual training to
understand its impact on continual training.

4 Experiments

In this section, we evaluate the performance of dif-
ferent methods to adapt generative large language
models for low-resource language. We particularly
conduct both intrinsic and extrinsic evaluations in
order to understand the performance of both lan-
guage comprehension and downstream tasks. We
also run benchmark LLM evaluation by using ap-
propriate datasets. This section further involves the
results of using varying model sizes and applying
multilingual models for the adaptation.

4.1 Intrinsic Evaluation

Intrinsic evaluation of generative LLMs involves
a perplexity score that represents how well a lan-
guage model can predict the next word in a se-
quence of text (Jurafsky and Martin, 2009):

perplexity = 2−
1
N

∑N
i=1 log2 P (wi|w1,...,wi−1) (1)

where N is the total number of words and
P (wi|w1, w2, . . . , wi−1) is the probability as-
signed by the model to the i-th word given the
preceding text context.

A lower perplexity score indicates that language
model is better able to predict the next word, and
thus has a better understanding of the language.

We calculate the perplexity scores on differ-
ent data collections than the ones used in Sec-
tion 3. Specifically, we use the Turkish ques-
tion and context subsets of xquad (Artetxe et al.,
2019), and the instruction and response subsets of
databricks-dolly-15k (Conover et al., 2023) us-
ing a Turkish translated version11. The detailed
statistics of the data used for calculating perplex-
ity scores are given in Table 2. The reason for

11https://huggingface.co/datasets/atasoglu/databricks-
dolly-15k-tr

reporting the perplexity scores for different sub-
sets is that the characteristics of each subset can be
helpful to understand the applied method’s impact
on the adaptation. For instance, xquad-question
has instances of questions while xquad-context
has longer paragraphs of task descriptions. Sim-
ilarly, databricks-instruction has instruction-
type questions, while databricks-response has
answers or responses to those questions.

In Table 3, we provide the perplexity scores. The
main observations can be summarized as follows.

Continual training reduces perplexity scores.
In all cases, perplexity scores are improved by
continual training (LlamaTurk-7b-c). The low-
est perplexity scores are also obtained by continual
training in the majority of cases (three of four data
collections). A possible reason is that the model
could gradually accumulate language knowledge
as it is exposed to more raw text. This incremental
learning process can allow the model to become
more robust and adaptable.

Instruction tuning improves perplexity but not
task-specific tuning. Perplexity scores are im-
proved by instruction tuning (LlamaTurk-7b-i).
The only exception is xquad-context, yer instruc-
tion tuning has still a very close perplexity score
to the original Llama-7b. Our instruction-tuning
set is based on Alpaca, which has general-purpose
instructions and responses. On the other hand, task-
specific tuning (LlamaTurk-7b-t) deteriorates per-
plexity scores in all cases. We argue that, by train-
ing on task-specific instructions, generative LLMs
might become overly specialized and optimized for
those specific instructions, rather than maintaining
a more general understanding of language.

Combinations fail in most cases but depends on
data types. The combinations that include task-
specific tuning have poor perplexity scores. On
the other hand, continual training and instruction
tuning improve perplexity. We therefore expect
to have a better performance by using them to-
gether (LlamaTurk-7b-c-i) but perplexity scores
get worse than the case when they are applied alone.
However, when perplexity is measured on an in-
struction set (databricks-instruction), contin-
ual training together with instruction tuning has the
lowest perplexity score. This observation can sup-
port that generative LLMs adapt to different data
types, and one should consider target data type
before selecting adaptation method.
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Model Continual Instruction Task Vocabulary Data

Training Tuning Tuning Extension xquad xquad dbricks dbricks
question context instruction response

Llama-7b 6.6916 1.5487 9.5845 9.0259
LlamaTurk-7b-c 5.5088 1.5064 8.4364 7.0924
LlamaTurk-7b-i 6.3260 1.5674 8.3131 7.9351
LlamaTurk-7b-t 9.2267 1.7850 13.7173 13.2289
LlamaTurk-7b-c-i 7.0676 1.5978 8.2488 9.4570
LlamaTurk-7b-i-t 9.0380 1.8194 13.0113 11.8501
LlamaTurk-7b-c-t 7.7305 1.7181 12.5591 10.7188
LlamaTurk-7b-c-i-t 8.0855 1.6666 11.5441 10.6943
LlamaTurk-7b-v-i 18.6241 3.8897 22.1750 24.3312
LlamaTurk-7b-v-t 28.7707 5.8666 37.6394 43.7040
LlamaTurk-7b-v-c 17.3135 3.6807 23.9212 23.2612

Table 3: Perplexity scores. The models have different adaptation methods: Continual Training (c), Instruction
Tuning (i), Task-specific Tuning (t), and Vocabulary Extension (v). The xquad dataset has question and context
subsets. The databricks (dbricks) dataset has instruction and response subsets. The best (lowest) perplexity scores
for each dataset are given in bold.

Vocabulary extension has poor perplexity. In
all models where vocabulary extension is applied
(Llama-7b-v), perplexity scores get higher than
the original (Llama-7b). We argue that without suf-
ficient training data and fine-tuning, the model can
struggle to effectively incorporate the new vocab-
ulary into its internal representations and learning
processes. Similarly, (Zhao et al., 2024) observes
negative impact of vocabulary extension, and also
suggests that vocabulary extension might not be a
suitable choice for small-scale continual training
such as in our continual training with 0.2 billion
tokens of the training data. Another reason could
be the number of additional tokens in vocabulary
(28k tokens), merged with the original tokenizer
(32k tokens). More experimentation is needed to
understand if a different number of new tokens in
vocabulary works better in adaptation (Csaki et al.,
2023).

4.2 Extrinsic Evaluation

Generative LLMs employ human evaluations as
an evaluation method to align with human judg-
ments (Ouyang et al., 2022). However, human-
based evaluation is labor-intensive, making it costly
and less feasible for low-resource languages. On
the other hand, LLM evaluation benchmarks of-
fer reliable evaluation for downstream NLP tasks
such as GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019). Similarly, there are evaluation
frameworks and tools such as LM Evaluation Har-
ness (Gao et al., 2023) and MLflow12. However,
they mostly support English benchmark datasets.
Although multilingual datasets are published by

12https://github.com/mlflow/mlflow

Model 0-shot 1-shot 2-shot 3-shot
Llama-7b 0.00 0.50 0.53 0.50
LlamaTurk-7b-c 0.00 0.47 0.54 0.51
LlamaTurk-7b-i 0.06 0.48 0.48 0.56
LlamaTurk-7b-t 0.90• 0.84◦ 0.61 0.78
LlamaTurk-7b-c-i 0.10 0.52 0.50 0.54
LlamaTurk-7b-i-t 0.83◦ 0.90• 0.93• 0.89•
LlamaTurk-7b-c-t 0.82 0.60 0.62 0.86◦
LlamaTurk-7b-c-i-t 0.62 0.52 0.56 0.51
LlamaTurk-7b-v-i 0.35 0.44 0.49 0.53
LlamaTurk-7b-v-t 0.44 0.50 0.53 0.53

Table 4: Accuracy scores on sentiment analysis. The
darker cell color gets, the better task performance. The
symbol “•" indicates statistically significant difference
at a 95% interval in pairwise comparisons between the
highest performing method and others (except with “◦").

some benchmarks, either they do not include the
language used in this study, or the data size is small
for task-specific tuning. We therefore craft an eval-
uation on sentiment analysis in this subsection13.

For this purpose, we extract 100 instances (50
instances for both positive and negative classes)
from the Turkish sentiment analysis dataset used in
task-specific tuning (Aydoğan and Kocaman, 2023).
We avoid selecting from 5k instances used in task-
specific tuning explained in Section 3.3. Since
inference is time costly, we use a small subset of
this dataset for the evaluation. However, we take
the average of five different runs by using random
seeds. We thereby validate statistically significant
differences in the average performances with the
two-tailed paired t-test at a 95% interval.

We also craft inference prompts for different sce-
narios including zero-shot to few-shot prompts. We
check the generated text if it equals to positive or

13We also provide a benchmark evaluation for available
datasets from LLM benchmarks in Section 4.3.
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Model XCOPA Belebele
0-shot 1-shot 2-shot 3-shot 0-shot 1-shot 2-shot 3-shot

Llama-7b 0.53 0.51 0.48 0.52 0.23 0.23 0.23 0.24
LlamaTurk-7b-i 0.58 0.51 0.50 0.55 0.24 0.27 0.25 0.28
LlamaTurk-7b-c-i 0.52 0.52 0.53 0.50 0.24 0.25 0.23 0.27
LlamaTurk-7b-v-i 0.55 0.53 0.54 0.54 0.24 0.27 0.23 0.28

Table 5: Accuracy scores on benchmark datasets. The highest scores for each dataset are given in bold.

negative, and calculate the accuracy score accord-
ingly. We measure accuracy since the inference
dataset is fully balanced. We provide the inference
prompts in Appendix A.3.

During inference, we load the models with 8-bit
quantization due to limited hardware. Generation
configuration involves the following hyperparam-
eters. The temperature is set to 0.2. Beam search
is applied with four beams, and top-p is set to 0.75.
A single run of inference takes approximately from
six hours (zero-shot) to eight hours (3-shot) for
Llama-7b with these settings using two NVIDIA
RTX 2080Tis. In Table 4, we provide the accuracy
scores for all methods.

Task-specific tuning improves the performance
of downstream task. We find that task-specific
tuning cannot help improve perplexity scores pre-
viously. However, our extrinsic evaluation shows
that task-specific tuning improves the performance
of sentiment analysis. Specifically, we observe that
task-specific tuned model (LllamaTurk-7b-t) is
good at zero-shot inference, suggesting that task-
specific instructions provide sufficient knowledge
for zero-shot evaluation.

Instruction tuning boosts the performance of
downstream task when used together with task-
specific tuning. When instruction tuning is em-
ployed alone, it has no significant impact on the
performance of downstream task. However, the
highest accuracy is obtained when instruction and
task-specific tuning are together employed. More-
over, LllamaTurk-7b-i-t has a better few-shot
performance compared to other methods including
task-specific tuning.

Continual training can help task-tuning.
When continual training is employed alone
(LllamaTurk-7b-c), we observe no significant
improvement in the performance of downstream
task. However, the performance is promising
when it is used together with task-specific tuning
(LllamaTurk-7b-c-t). This suggests further ex-
amination of continual training with task-specific
tuning in different downstream tasks and datasets.

Vocabulary extension has poor downstream per-
formance. Similar to the perplexity experiments,
we observe that vocabulary extension has no im-
provement on the performance of downstream task.

4.3 Benchmark Evaluation

In this subsection, we report the performance re-
sults on benchmark datasets. Since LLM evaluation
benchmarks mostly include English datasets, we
examine multilingual datasets in available LLM
benchmarks. For this purpose, we use the Turkish
subsets of XCOPA (Ponti et al., 2020) and Belebele
(Bandarkar et al., 2023) datasets provided by LM
Evaluation Harness (Gao et al., 2023). XCOPA
is a benchmark to evaluate the ability of machine
learning models to transfer commonsense reason-
ing. Belebele is a multiple-choice machine reading
comprehension dataset, and each question has four
multiple-choice. We modify the default prompts
given in LM Evaluation Harness to align with our
instruction prompting. We provide the inference
prompts in Appendix A.4 and A.5.

Since the dataset sizes are small, we are not
able to apply task-specific tuning in these bench-
mark datasets. Specifically, we observe almost
no change in performance scores when XCOPA’s
600 and Belebele’s 900 instances are fine-tuned for
the Turkish language, while the performance is im-
proved in Section 4.2 with 5k instances. We thereby
report the results for instruction tuning and related
methods. Table 5 reports the accuracy scores on
the XCOPA and Belebele datasets.

The results show that instruction tuning
(LlamaTurk-7b-i) improves the performance of
downstream task in both datasets. However, con-
tinual training and vocabulary extension have no
significant benefits. The results thereby align with
the results reported in Section 4.2.

4.4 Model Size

We provide an analysis of the impact of model size
on adapting generative LLMs. For this purpose, we
employ Llama models with 7b and 13b parameters.
Figure 2 shows a histogram depicting the compari-
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(a) Perplexity of instruction
tuning (lower is better)

(b) Perplexity of task-specific
tuning (lower is better)

(c) Accuracy of instruction
tuning (higher is better)

(d) Accuracy of task-specific
tuning (higher is better)

Figure 2: Model size comparison for adaptation.

son between the fine-tuned models for instruction
tuning (LlamaTurk-7b-i and LlamaTurk-13b-i)
and task-specific tuning (LlamaTurk-7b-t and
LlamaTurk-13b-t).

Perplexity is improved by adapting a larger
model. In both cases of applying instruction or
task-specific tuning, we find that LlamaTurk-13b
improves perplexity scores in all cases. How-
ever, task-specific tuning (LlamaTurk-13b-t) is
still outperformed by the original Llama model
Llama-13b in most cases.

Task performance is improved by adapting a
larger model when few-shot tuning is applied.
We find that LlamaTurk-13b improves the perfor-
mance of downstream task when it is applied with
task-specific tuning and few-shot evaluation. On
the other hand, the adaptation of a larger model
with instruction tuning has no significant impact on
the performance of downstream task.

4.5 Multilingual Models

We also provide an analysis for the impact of
multilingual generative LLMs on adapting gen-
erative LLMs. For this purpose, we fine-tune a
multilingual model, MaLA-500 (Lin et al., 2024b).
MaLA is developed to cover 534 languages by us-
ing vocabulary extension and continual training
on Llama2 (Touvron et al., 2023b). Analyzing a
multilingual LLM with an enriched vocabulary can
provide more insights into LLM adaptation for low-
resource languages.

Figure 3 shows a histogram depicting the
comparison between the fine-tuned models
for instruction tuning (LlamaTurk-7b-i and

(a) Perplexity of instruction
tuning (lower is better).

(b) Perplexity of task-specific
tuning (lower is better).

(c) Accuracy of instruction
tuning (higher is better).

(d) Accuracy of task-specific
tuning (higher is better).

Figure 3: Multilingual comparison for adaptation.

MaLATurk-7b-i) and task-specific tuning
(LlamaTurk-7b-t and MaLATurk-7b-t).

Adapting multilingual LLM has no significant
improvements. Perplexity and accuracy scores
of the original MaLA-7b model are improved by
adapting MaLATurk-7b in both instruction and task-
specific tuning. However, the perplexity of adapt-
ing a monolingual model LlamaTurk-7b is still
better than adapting a multilingual model in all
cases. Similarly, monolingual adaptation has bet-
ter accuracy scores of task-specific tuning in most
cases. The only benefit of adapting multilingual
LLM is observed when instruction tuning is ap-
plied. Note that the results are obtained under the
assumption that the number of pretraining data in-
stances and their quality differ between Llama and
MaLA. Further investigations are needed to fully
understand the comparison between monolingual
and multilingual setups for adaptation.

5 Conclusion

This study examines different methods for adapt-
ing English-dominant generative large language
models to low-resource languages.

The results show that continual training with
raw text can improve perplexity. Vocabulary ex-
tension has no significant impact on adaptation
performance under a small scale of continual train-
ing set. Another factor can be 8-bit quantization
with LoRA that trains a subset of model weights
for new vocabulary token embeddings (Dobler and
de Melo, 2023).

We also find that the adaptation with general-
purpose instruction tuning has promising results in
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both perplexity and accuracy scores, while down-
stream task performance can be boosted by task-
specific tuning. Furthermore, adapting a larger
model with 13b parameters improves task perfor-
mance with few-shot tuning. However, we observe
no significant improvements by adapting a multi-
lingual model.

In future work, we plan to adapt other open-
source language models such as Llama2 (Touvron
et al., 2023b) and Gemini (Team et al., 2024) to
generalize our results to different models. Other
adaptation methods can also be studied such as
modification of model architecture since different
model layers and tokenization algorithms might
change the outcomes.

6 Limitations

This study employs a particular family of gener-
ative large language models (Llama and MaLA)
for adapting open-source generative monolingual
and multilingual LLMs to a low-resource language
using the 8-bit quantization with LoRA. Other gen-
erative models and non-quantization might have
different results in the experiments. Similarly, we
use Turkish language for the target of adaptation.
Other languages might have different experimen-
tal results depending on the tuning and inference
datasets with prompt examples. We therefore ac-
knowledge the effect of the instruction set and
prompting templates in the results.

Continual training is done by using Wikipedia
in this study. However, other data types can be
used such as comprehensive multilingual datasets
(Nguyen et al., 2024) and filtering methods can
also be applied for training corpus. Also, sequence
length is limited up to 512 tokens in this study
for the sake of efficiency but Llama supports up
to 2048 tokens. This might result in losing some
information specifically in continual training where
longer Wikipedia articles are used compared to the
prompts in instruction and task-specific sets.

The evaluation sets used for calculating perplex-
ity scores involve questions, instructions, and re-
sponses. Evaluation results might differ with other
raw data such as Common Crawl. Benchmark eval-
uation is limited to extracting Turkish subsets from
multilingual datasets in this study due to the un-
availability of benchmark datasets for the target
language14.

14After this study was submitted, a new Turkish benchmark
was published (Yüksel et al., 2024).

Moreover, we would like to emphasize the lim-
ited hardware resources the experiments were con-
ducted, which restricts using a variety of models
including larger sizes (higher than 13b) and dif-
ferent model types (rather than Llama), and larger
evaluation sets.

7 Ethical Concerns

This study employs a low-resource language, Turk-
ish, and our findings can guide to other researchers
studying low-resource languages. We also provide
performance evaluations that can be considered for
deploying generative LLMs in similar tasks.

To provide transparency, we explain all details
regarding text collections used in pretraining and
fine-tuning our generative language models. More-
over, we report the details of the models and con-
figurations with hyperparameters.

Since the training corpus of generative LLMs
involves a huge amount of raw text from different
resources including the world wide web, it is in-
evitable to observe a risk of cultural and ethical
bias towards different individuals and communities
in the generated text of the published models in
this study (Kasneci et al., 2023; Cetinkaya et al.,
2024). Moreover, training texts are contaminated
with more problematic biases and polluted with a
large amount of synthetic text generated by LLMs
(Denning and Rousse, 2024). Possible bias can be
removed by filtering the corpus, however, we leave
the study of such filtering to future work since it
would require a dedicated effort but the scope of
this study is to compare the adaptation methods of
generative LLMs for low-resource languages.

Lastly, we estimate the carbon footprint of our
study based on the energy usage of GPUs. We con-
sider execution time in hours and electrical energy
consumption in kWh, and assume that power con-
sumption during training is equal to the maximum
power drain of GPUs by operating at maximum
power utilization (0.25 MW for 2080Ti, and 0.14
MW for A4000). We assume that 1 MWh is equiva-
lent to 0.439 ton CO2eq15. Our estimation ignores
the carbon footprint of CPU utilization and the
manufacturing costs of the hardware.

Social carbon cost is approximately 50.64, 3.84,
and 0.55 kg CO2eq for a single run of continual
training, instruction tuning, and task-specific tun-
ing, respectively.

15https://enerji.gov.tr/evced-cevre-ve-iklim-elektrik-
uretim-tuketim-emisyon-faktorleri
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A Appendix

A.1 Instruction Fine-tuning Prompt
The prompt used in instruction tuning is given as
follows (translated prompt is given in parenthesis).

Aşağıda, daha geniş bir bağlam sağlayan
girdiyle birlikte bir görevi açıklayan
talimat bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below is an instruction explaining a task
with input that provides more context.
Write an output that satisfies
the instruction)

### Talimat (Instruction):
[INSTRUCTION]

### Girdi (Input):
[INPUT]

### Çıktı (Output):
[OUTPUT]

A.2 Task-Specific Fine-tuning Prompt
The prompt used in task-specific (sentiment anal-
ysis) fine-tuning is given as follows (translated
prompt is given in parenthesis).

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
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sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfying
the instruction)

### Talimat:
Lütfen verilen yorumun olumlu ya da
olumsuz olduğunu çıktı olarak belirtin.
(Please indicate whether the given comment
is positive or negative.)

### Yorum (Comment):
[INPUT]

### Çıktı (Output):
[OUTPUT]

A.3 Task-Specific Inference Prompt

For sentiment analysis, the prompt used in zero-
shot inference is the same as the prompt used for
task-specific fine-tuning given in A.2. Few-shot
prompting (one-shot for example) is given as fol-
lows (translated prompt is given in parenthesis).

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfies
the instruction)
### Talimat (Instruction):
Lütfen verilen yorumun olumlu ya da
olumsuz olduğunu çıktı olarak belirtin.
(Please indicate whether the given
comment is positive or negative.)

### Yorum (Comment):
çok güzel, sağlıklı, temiz, ferah
(very beautiful, healthy, clean,
spacious)

### Çıktı (Output):
olumlu
(positive)

### Talimat (Instruction):
Lütfen verilen yorumun olumlu ya da
olumsuz olduğunu çıktı olarak belirtin.
(Please indicate whether the given
comment is positive or negative.)

### Yorum (Comment):

[INPUT]

### Çıktı (Output):
[OUTPUT]

A.4 XCOPA Inference Prompt

Few-shot prompting (one-shot for example) is
given as follows (translated prompt is given in
parenthesis).

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfies
the instruction)

### Talimat (Instruction):
Verilen cümlenin sebebi nedir?
(What is the reason for the given
sentence?)
Kadın kötü bir ruh halindeydi bu yüzden
(The woman was in a bad mood so)

### Girdi (Input):
arkadaşıyla biraz konuştu.
(she talked to her friend for a while.)
arkadaşına onu yalnız bırakmasını söyledi.
(she told her friend to leave her alone.)

### Çıktı (Output):
Kadın kötü bir ruh halindeydi bu yüzden
arkadaşına onu yalnız bırakmasını söyledi.
(The woman was in a bad mood so she told
her friend to leave her alone.)

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfies
the instruction)

### Talimat (Instruction):
Verilen cümlenin sebebi nedir?
(What is the reason for the given
sentence?)
[INPUT]

### Girdi (Input):
[OPTION1]
[OPTION2]
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### Çıktı (Output):
Ürün balonlu naylonla paketlenmişti
bu yüzden [OUTPUT]
(The product was packaged with
bubble wrap so [OUTPUT])

A.5 Belebele Inference Prompt

Few-shot prompting (one-shot for example) is
given as follows (translated prompt is given in
parenthesis).

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfies
the instruction)

### Talimat (Instruction):
Tüm notalara doğru şekilde basmaya devam
ederken elinizin mümkün olduğu kadar
rahat olduğundan emin olun - aynı zamanda
parmaklarınızla fazladan hareketler
yapmamaya çalışın. Bu şekilde kendinizi
olabildiğince az yormuş olacaksınız.
Unutmayın ki piyanoda olduğu gibi daha
fazla ses için tuşlara çok güçlü
vurmanıza gerek yoktur. Akordeon
üzerinde, ekstra hacim elde etmek için
körüğü daha fazla basınç veya hızda
kullanırsınız. Akordeonu çalarken
aşağıdakilerden hangisi sesin
yükselmesini sağlar?
(Make sure your hand is as relaxed as
possible while still hitting all the
notes correctly - at the same time,
try not to make extra movements with
your fingers. This way, you will tire
yourself as little as possible.
Remember that you don't need to hit
the keys too hard to get more sound,
like on the piano. On the accordion,
you use the bellows with more pressure
or speed to get extra volume.
Which of the following makes the sound
rise when playing the accordion?)

### Girdi (Input):
A: Daha fazla hız (more speed)
B: Daha fazla güç (more power)
C: Daha az basınç (less pressure)

D: Daha az parmak hareketi
(less finger movement)

### Çıktı (Output):
A

Aşağıda bir görevi açıklayan talimat
bulunmaktadır. Talimatı yeterince
sağlayan bir çıktı yaz.
(Below are instructions describing a task.
Write an output that satisfies
the instruction)

### Talimat (Instruction):
Tüm notalara doğru şekilde basmaya
devam ederken elinizin mümkün olduğu
kadar rahat olduğundan emin olun -
aynı zamanda parmaklarınızla fazladan
hareketler yapmamaya çalışın. ...
Akordeonu çalarken aşağıdakilerden
hangisi sesin yükselmesini sağlar?
(Make sure your hand is as relaxed as
possible while still hitting all the
notes correctly - at the same time,
try not to make extra movements with
your fingers. ... Which of the
following makes the sound rise
when playing the accordion?)

### Girdi (Input):
[OPTION1]
[OPTION2]
[OPTION3]
[OPTION4]

### Çıktı (Output):
[OUTPUT]
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Abstract

The capacity and effectiveness of pre-trained
multilingual models (MLMs) for zero-shot
cross-lingual transfer is well established. How-
ever, phenomena of positive or negative trans-
fer, and the effect of language choice still need
to be fully understood, especially in the com-
plex setting of massively multilingual LMs. We
propose an efficient method to study transfer
language influence in zero-shot performance on
another target language. Unlike previous work,
our approach disentangles downstream tasks
from language, using dedicated adapter units.
Our findings suggest that some languages do
not largely affect others, while some languages,
especially ones unseen during pre-training, can
be extremely beneficial or detrimental for dif-
ferent target languages. We find that no transfer
language is beneficial for all target languages.
We do, curiously, observe languages previously
unseen by MLMs consistently benefit from
transfer from almost any language. We addi-
tionally use our modular approach to quantify
negative interference efficiently and categorize
languages accordingly. Furthermore, we pro-
vide a list of promising transfer-target language
configurations that consistently lead to target
language performance improvements. 1

1 Introduction

Pretrained Multilingual Models (MLMs) perform
surprisingly well in terms of zero-shot cross-lingual
transfer even though no explicit cross-lingual sig-
nal was present during pretraining. Subword fertil-
ity (Deshpande et al., 2022), token sharing (Dufter
and Schütze, 2020), script (Muller et al., 2021),
as well as balanced language representation (Rust
et al., 2021) contribute to this effectiveness. But,
by and large, the most important component seems
to be the combination of languages the model is
trained and evaluated on. It is important, hence, to

1Code and data are publicly available: https://github.
com/ffaisal93/neg_inf

Figure 1: Our approach uses efficient few-step contin-
ued tuning (left) and adapter modules (right) to disentan-
gle the effect of task and language to quantify the effect
of a transfer language for a given task and model. The
left panel depicts the framework for our cross-lingual
transfer, while the right panel represents the scenario of
multiple language interactions followed by quantifying
negative interference.

understand why and when cross-lingual transfer is
successful at the language level.

Previous attempts at studying cross-lingual trans-
fer fall into two categories. First, the most popular
approaches are those which, given a task and a
MLM, task-tune the MLM on annotated data from
a transfer language and then evaluate on a target
language (e.g. Lin et al., 2019). The problem with
such approaches is that (a) they do not disentangle
the effect of task and language, since they train di-
rectly on the task using annotated data in the trans-
fer language, and (b) it is expensive to task-tune the
whole model for all possible transfer languages.

Second, other approaches tackle the inefficiency
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problem by relying on bilingual approximations:
Malkin et al. (2022) for instance train bi-lingual
BERT (Devlin et al., 2019) models, task-tune them
on the transfer language and then evaluate on the
target one, and contrast this performance to a
monolingual target-language BERT. While this ap-
proach ignores the fact that language interactions
can be different in multilingual and bilingual mod-
els (Wang et al., 2020; Papadimitriou et al., 2022),
it does correlate decently with transfer performance
on multilingual models. However, it still does not
disentangle task from language and is quite ex-
pensive, as studying n languages requires training
n2 + n BERT models.

In this work, we propose an efficient approach
to study cross-lingual transfer, outlined in Figure 1,
that also disentangles the effect of task-tuning and
the effect of language, while operating within the
framework of the same MLM. Our approach relies
on learning a separate task adapter module to per-
form the downstream task, which needs to only be
trained once (hence it is efficient). We then per-
form unsupervised finetuning on unannotated trans-
fer language data for a minimal number of steps.
Comparing the performance of the model on the
target language with and without the previous step
results in a direct assessment of the effect of the
transfer language without changing the conditions
under which the downstream task was learned. In
addition, we extend this framework to quantify the
negative interference resulted from the interaction
of multiple languages (Figure 1(right)). With the
aid of adapter-fusion tuning (Pfeiffer et al., 2021),
we compare different combinations of language
adapters and compute the interference occurring
due to increased interactions.

We perform extensive analysis using this effi-
cient approach on five downstream tasks using
dozens of transfer and target languages (184 in
total) and devise a metric (which we dub transfer
score) to quantify which languages have/receive
positive or adverse effects on/from others. Last,
we focus our analysis on cross-lingual transfer for
languages unseen during the pre-training of the
MLM.

2 Methodology

Adapters (Pfeiffer et al., 2022) are light-weight
parameter-efficient modules that can be injected be-
tween the layers of pretrained models. In their typi-
cal usecase, the rest of the model is frozen and only

the adapter modules are trained, to adapt a model
to a new language, domain, or task. Importantly,
for our goals, these adapters are also composable:
one can stack an independently trained language
adapter and task adapter to achieve decent perfor-
mance for that language on that task. First we use
an adapter-based setting to perform our analysis
on cross-lingual transfer. Furthermore, we extend
our study to negative interference and language
interaction through another adapter-fusion-based
setting.

Cross-Lingual Transfer The composable prop-
erty of adapters allows us to disentangle learning a
task from the language representations (the process
is also outlined in Figure 1). In step 1, we first
train a task-specific adapter [T] (e.g. named entity
recognition), on data from as many languages as
possible. This module will be responsible for per-
forming the downstream task independently of in-
put language. We then (step 2) finetune the [base]
model (e.g. mBERT) on a transfer language α with
only a few steps (1, 10, or 100) using masked lan-
guage modeling, obtaining [baseα]. Now the lan-
guage representations of this finetuned model will
be (slightly) biased towards the transfer language.

Last, in step 3 we reinsert the task adapter in both
the finetuned and the original pretrained model,
and use both models to test and evaluate on target
language data β. The difference in performance
between these two models score(β ; [base+t]α)−
score(β ; [base+t]) will reveal whether transfer
language α benefits (if positive) or hurts (if nega-
tive) target language β.

An obvious caveat of our approach so far is that
a single update (or 10 or 100) with a randomly
sampled batch in any language does not allow for
any robust conclusions. To avoid this issue, we re-
peat the above process n=10 times for each transfer
language with different data and aggregate these
scores.

Our final transfer score ts(α → β ; base, t) for
a given model base and task t turns the difference
of the finetuned and original model into a percent-
age of the original baseline performance, for fairer
comparisons at different levels of performance:

ts(α → β ; base, t) =
∑10

1 score(β ;[base+t]α)
n − score(β ; [base+t])

score(β ; [base+t])

Negative Interference The typical definition
of negative interference describes it as the phe-

46



nomenon when batches in different languages pro-
duce opposite gradients during training. We in-
stead focus on downstream performance, in line
with most studies focusing on cross-lingual trans-
fer, assuming that a negative effect on performance
implies negative interference. Another reason is
that, in n dimensional spaces, there extremely high
probability of two random vectors being orthogo-
nal; hence any two gradient vectors could certainly
be orthogonal without necessarily impacting down-
stream performance.

To quantify negative interference, we fol-
low a modular-based approach depicted in Fig-
ure 1(right). Like before, we separate the task
and language, followed by performing interaction
among multiple languages. However, we use lan-
guage adapters at this time instead of continuously
finetuning the base model. This strategy allows us
to efficiently train multiple language sub-parts only
once (Step2) followed by mixing those modules
through adapter fusion (Pfeiffer et al., 2021). In
our experiments, we train a set of language adapters
and make either monolingual settings or a combi-
nation of bilingual/trilingual interactions (Step3).
Then we stack previously trained task adapter while
only changing the underlying language combina-
tion. Finally, we extract the interference score from
the difference between already computed multilin-
gual and monolingual counterparts (Step4).

Having these interference scores at hand, we
can tell whether a language actually gets benefits
or not while influencing the associated languages
in a positive/negative manner. For example, con-
sider language A interacting with language B. We
can easily quantify the interference of language A
by calculating the loss/gain of this bilingual inter-
action [AB]: a score increase for A compared to
its monolingual counterpart (i.e. +A = +[AB]−[A])
means positive interference for A in this particular
setting. We can further extend this to a trilingual
setting as well (i.e. +A = +[ABC]−[A]). Using these
scores, we can get different combinations of in-
terference scenarios by counting the co-occurred
positive/negative interference. We use |+ A,+B|
to denote the number of cases where A benefits
both itself and B, presenting all possible rules in
Table 1. Utilizing these rules, we can identify how
much language A actually gains or loses during
its bilingual/trilingual interactions while providing
substantial interference to other languages.

Moreover, we can use these interference combi-
nation counts to project languages in an interfer-

Notations (+: win, −: loss)

1. |+ A| = count( A gains in interaction [AB] or [ABC])
2. | − A| = count(A losses in interaction [AB] or [ABC])
3. |+ A,+B| = count(Both language gets benefit). In

other words, A gains. At the same time, B receives
benefits while interacting with A.

Bilingual Interactions Trilingual Interactions

| − A,−B| | − A,−B,−C| | − A,−B,+C|
| − A,+B| | − A,+B,−C| | − A,+B,+C|
|+ A,−B| |+ A,−B,−C| |+ A,−B,+C|
|+ A,+B| |+ A,+B,−C| |+ A,+B,+C|

Table 1: Interference calculation for language A. |+ A|
means the number of cases where A itself gets benefits.
If the setting is bilingual, then |+ A| =count(+[AB]−[A])

(i.e. if the evaluation score on task language A:
[AB]− [A] > 0 for the combination [AB], we get a +A.)

ence representation space. For example, consider a
2-D space of bilingual interaction where the X-axis
represents the negative/positive interference a lan-
guage receives from one such interaction and the
Y-axis is for the interference it provides to other
languages. We can project a language using the dot
product of counts (eg. |+ A,−B|) with its corre-
sponding quadrant identifier [1,−1]. As a result,
the projection coordinates (xA, yA) for language
A in a bilingual interaction could be obtained as
follows:

C =| − A,−B|+| − A,+B|+|+A,−B|
+|+A,+B|

(xA, yA) =
1

C
× (| − A,−B| · [−1,−1]

+| − A,+B| · [−1, 1]+|+A,−B| · [1,−1]
+|+A,+B| · [1, 1])

Using the above-mentioned projections, we visual-
ize a language in a way that represents how much
interference it provides as well as receives (see
example with each step of the calculation in Ap-
pendix §F). We can further extend this strategy to
the trilingual setting, but now we have to deal with
eight axes instead of four. In Figure 4 of the re-
sult section, we present the language interaction
visualizations for bilingual and trilingual scenarios.

3 Experimental Setup

We conduct our experiments in two different set-
tings targeted to perform two different analyses:
first understanding the language effect on cross-
lingual transfer and then, extending this to quantify
language-language interaction.
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Primarily, we use multilingual BERT as our base
model and report XLM-R results for comparative
model evaluation. We use a total of 38 transfer lan-
guages (11 unseen during pretraining) to finetune
the MLM using masked language modeling with
the process described above. Using these transfer
languages, we do monolingual finetuning on mBERT
for either 1, 10, 100, or 1000 steps and each experi-
ment is repeated for 10 times. At the sametime, we
trained multilingual task adapters followed by task
evaluation on the following tasks:
• Token-level: Dependency Parsing (DEP), Part-

of-Speech (POS) tagging and Named Entity
Recognition (NER). Parsing and POS tagging
are evaluated on a set of 114 languages from Uni-
versal Dependencies v2.11 (de Marneffe et al.,
2021). For NER, we use 125 languages from the
Wikiann (Pan et al., 2017) dataset.

• Sentence-level: Natural Language Inference
(NLI) evaluated on XNLI (Conneau et al., 2018)
and AmericasNLI (ANLI) (Ebrahimi et al., 2022)
datasets.

• Extractive Question Answering: Evaluated on
TyDiQA (Clark et al., 2020) gold task.
Additionally, we train 38 language adapters to

perform the experiment on language-to-language
interaction and negative interference. Here, we
stack the previously trained task adapter on top
of either one or a combination of double or triple
language adapters (Figure 1(b)) and then perform
the evaluation on the transfer languages having task
data available. All training and evaluation datasets,
implementation and hyper-parameter details are
provided in Appendices C-E (Table 24-29).

4 Results and Discussion

First, in 4.1, we present a comparative scenario in
between continuous training and language inter-
action in terms of performance improvement over
the baseline model. Then in 4.2, we discuss the
findings of continuous training in the context of
cross-lingual transfer. After that, in 4.3, we present
the representation of language interactions as well
as interference following the strategy discussed in
Section 2.

4.1 Continuous Training vs Language
Interaction

Here we present 8 sets of scores for each token-
level task. The baseline is where we stack the task
adapter on the base pretrained mBERT (i.e. zero-shot

Continious Steps Lang. Interaction
Lang. Base k=10 k=1000 [1A] [2A] [3A]

Parsing

pcm 81.1 79.1 77.9 79.3 79.5 79.5
wol 69.5 68.1 67.3 68.9 69.1 69.1
kmr 31.9 31.7 45.3 32.6 32.1 32.0
bam 29.9 30.9 38.1 30.8 30.8 30.8
gub 21.7 20.9 34.5 23.8 23.73 23.5

POS Tagging

pcm 92.9 92.2 91.2 92.3 92.5 92.6
wol 85.6 84.2 82.1 84.1 84.7 84.8
kmr 40.2 40.5 55.8 41.1 40.8 40.7
bam 30.3 30.8 49.5 30.7 30.5 30.5
gub 28.5 28.7 36.7 28.8 28.8 28.9

NER

ibo 61.1 57.2 55.4 57.5 57.8 57.7
pms 88.2 88.9 87.6 88.2 87.5 87.6
kin 72.4 71.8 68.5 70.5 71.1 71.9

Table 2: Task results for transfer languages unseen by
mBERT. base: zero-shot with task adapter [T]. Contin-
uous Steps: do k steps of finetuning on that language
plus [T]. Lang. Interaction: introducing language
adapters; [1A]: just 1 adapter (in language) and evalu-
ate on it; [2A]: 2 language adapters, the target lang. and
one test (the result is averaged for all transfer langs.);
[3A]: 3 lang. adapters (results are average again). The
highest obtained score for each language is bolded.

task on pretrained mBERT+ [T]). Then for all the
evaluation languages, we perform 4 sets of cross-
lingual transfers (i.e. 1, 10, 100, and 1000 steps of
continuous training). For the language-language
interaction experiment, we only perform the evalu-
ation on transfer languages where either 1, 2 or 3
language adapters are fused together before stack-
ing the task adapter (i.e. [1A], [2A], [3A]).

Only Unseen Transfers In Table 2, we present
our token-level evaluation report for transfer lan-
guages unseen during the pretraining phase. For
the [2A] and [3A] language interaction results, we
compute and report the average score where the
evaluation language is also present in the [2A] or
[3A] adapter fusion. For tasks where word-to-word
relation plays a critical role (parsing and pos tag-
ging), we observe similar patterns of improvement
over baseline in both Cont. steps and lang. interac-
tion settings. Whereas, for a task like NER, we do
not observe any improvement over baseline both in
sustained cont. (k=1000) and interaction settings.
Even though we are evaluating the same language
after continuous masked language modeling (mlm)
or adapter fusion with another high-resource lan-
guage, there is no clear winning formula that can
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Figure 2: Average score improvement over baseline
across tasks for the transfer languages (evaluated on
itself). We observe a spike of over 33% positive score
at continuous training step 1. Among these, only
23.3% cases result in sustained improvement after 1000
steps (0% in NER). On the contrary, standard language
adapter interaction stays at 25% average improvement.

always serve the unseen low-resource languages.

Unseen+Seen Transfers On the other hand,
when we consider the case of both unseen and seen
languages together in token-level tasks, we see a
spike of 33% average improvement over baseline
with just 1 step of mlm training. However, this
improvement percentage gets down to a sustained
23.3% (except task NER) when we evaluate again
after having 1000 steps of training. Whereas, in lan-
guage interaction settings where we fuse standard
well-trained language adapters, we generally ob-
serve improvement for those languages which also
get benefited from continuous training. The im-
provement percentage averaged over all 38 transfer
languages is presented in Figure 2. In addition, we
present all the scores for all 38 transfer languages
and token-level tasks in App. Tables 7, 9, and 11.

4.2 Takeaways from Continuous Training
No Universal Donor First, we search for trans-
fer languages that can be used for positive transfer
for a large set of languages. However, we find
no language out of 38 that can positively influ-
ence almost all languages using mBERT as base
model. For this experiment, we rank the transfer
languages based on their averaged transfer score
(i.e. aggregated-transfer). In Table 3, we list
the top 5 ranked transfer languages with their trans-
fer score (base model: mBERT) and the percent-
age of target languages that do benefit from them
(more details in Appendix H). We observe, most
languages benefit within the range of 30-45% of
target languages across tasks except NLI. How-
ever, we did not receive any positive transfer for

Lang. ts +(%) Lang. ts +(%) Lang. ts +(%)

Parsing POS Tagging NER
1 mya 0.33 40.4 kin 0.41 35.1 zho 0.16 49.6
2 ell 0.15 31.6 kmr 0.36 36.9 tel 0.08 32.8
3 kmr 0.14 35.9 mos 0.27 34.2 hun 0.08 40.8
4 yor 0.14 33.3 hye 0.27 36.9 heb 0.04 34.4
5 pcm 0.13 31.6 cym 0.22 37.7 est 0.03 36.8

XNLI ANLI TyDiQA
1 hau -34.4 0.0 bam -15.0 0.0 zho 0.7 77.8
2 bam -34.9 0.0 hau -17.8 0.0 jpn 0.1 44.4
3 gub -36.4 0.0 gub -18.4 0.0 gle -0.1 44.4
4 ewe -36.7 0.0 deu -19.8 0.0 wol -0.1 44.4
5 hin -37.1 0.0 fin -19.9 0.0 cym -0.1 33.3

Table 3: Top 5 transfer languages per task ranked using
the aggregated transfer score (ts columns; see App. H
for computation). Unseen ones are bolded. +(%) is the
percentage of languages receiving positive transfer. No
transfer language helps all target languages. (Complete
rank with transfer scores: Table 15-18).

Parsing Pos NER XNLI ANLI TyDiQA
Tagging

mBERT 30.6 31.0 31.8 0 0 30.1
xlmr 20.5 33.2 41.1 44.4 41.6 17.0

Table 4: Average percentage of languages receiving
positive transfer (avg. +(%)) across models. Unlike
mBERT, xlmr provides positive transferring in NLI.

both of the two different NLI task datasets (XNLI
and ANLI). The maximum positive transfer per-
centage is from zho in both NER and TyDiQA.
Interestingly, low-resourced unseen languages per-
form well in general as transfer languages: 31.7%
(token-level) and 28.3% (sentence-level) of top 20
transfer languages are unseen languages.

Base Model and Task Matters To further in-
vestigate the discrepancy observed in NLI task,
we replace the base model mBERT with XLM-R
(Table 4). Unlike mBERT, XLM-R in NLI pro-
vides superior performance (XNLI: +44.4% and
ANLI: +41.6%). This signifies how the choice of
the base model in a setting with a disentangled
language-task effect could drastically change the
cross-lingual transfer performance of certain tasks.

Moreover, we observe the above-discussed rank-
ings of transfer languages vary across tasks. To
investigate the underlying similarity, we select a
large subset of languages (the common 62 target
languages across three token-level tasks) and rank
the transfer languages as before. We then compute
the Spearman rank correlation and statistical sig-
nificance (p<0.05) of their transfer scores tasks
(see Appendix Table 21). Only parsing and NER
are positively correlated (ρ=0.4) whereas POS tag-
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Rank Lang. ts Var. Type
# (max, min)

1 ibo (10, 10) 0.05 23.5 (+ and -)
3 bam (11, 15) 0.02 21.5 (+ and -)
6 mos (13, 2) 0.09 16.1 (+)
8 pcm (1, 11) 0.13 13.4 (-)
26 eng (0, 0) -0.22 6.4 neutral
36 ara (0, 0) -0.12 5.1 neutral

Table 5: Example of transfer languages ranked with
their aggregated-transfer (ts) score variance (task:
parsing). Unseen languages (bold font) exhibit high
variance. # (max) represents the language count receiv-
ing maximum positive transfer. (see Appendix L)

ging is negatively correlated with the other two
tasks. This is somewhat surprising, because we
use the same underlying dataset for the parsing and
POS tagging tasks. We find only a few transfer
languages could effectively provide positive trans-
fer simultaneously across tasks. The 5 common
languages in the top 20 across tasks are: yor, mos,
kin, hau, and tel. In sort, languages unseen by
mBERT (in boldface), exhibit similar ranking across
tasks (see Table 15-18), whereas others vary. For
example, zho is the lowest-ranked one in parsing
while being top-ranked in NER! Appendix Figure 6
shows the number of common languages across
tasks.

Unseen Languages Transfer with High Variance
We observe that transfer languages with high vari-
ance mainly fall into one of three categories:
1. (+ and -): boost performance for some lan-

guages while hurt significantly some others;
2. (+): mostly (small) positive transfer, signifi-

cantly hurts only a few languages;
3. (-): mostly (small) negative transfer, signifi-

cantly helps only a few languages.
See examples in Table 5 and Appendix L for details.
Though unseen languages perform well as transfer
languages, they usually exhibit the traits of high-
variance transfer. Around 90% of unseen transfer
languages are within top-20 languages sorted by
variance (see Appendix Figure 7).

Target Language Differences Unlike transfer
languages, we find target languages that are almost
universal recipients of positive cross-lingual trans-
fer, many of which are unseen by mBERT. On the
other hand, some languages do not receive any ben-
efit from the diverse set of transfer languages. In
Figure 3(a), we plot the target languages based on
the percentage of languages from which they re-
ceive positive or negative transfer (see additional

maps in Appendix Figure 5). We find around one-
third of target languages across three token-level
tasks never receive any positive transfer (parsing:
35.1%, POS: 28.1%, NER: 32.8%). Neverthe-
less, there are target languages (mostly unseen by
mBERT) that benefit from all transfer languages (eg.
nap, mpu in parsing). See Appendix I and Table 19
for additional results.

Seen vs Unseen Languages Transferring from ei-
ther seen or unseen languages to unseen languages
(i.e. transfer(seen/unseen→ unseen)) gener-
ally helps. For this experiment, we use the large
set of token-level task evaluation and 11 transfer
languages unseen during mBERT pertaining from
diverse families including Indo-European, Afro-
Asiatic, Mande, Niger-Congo and Tupian. We
observe, that transferring to a large and diverse
set of seen languages from unseen languages (i.e.
transfer(unseen→ seen)) does not provide any
substantial utility. Among the three tasks, we
get the average transfer as positive for unseen
transfer languages just once (dependency parsing,
transfer(unseen→ unseen)). See Figure 8 for
the difference of utility provided when the transfer-
/target languages are seen vs unseen.

Sustained Cross-Lingual Transfer Our ap-
proach limits step 2 (continued training on the trans-
fer language) to a minimal number of steps. For
this section, we extend this to 1000 steps. In the
vast majority of transfer-target language combina-
tions, this leads to (small) negative transfer under
our setting. We suspect this is due to the underly-
ing model undergoing the first steps of catastrophic
forgetting (McCloskey and Cohen, 1989).

There are some languages, though, mostly un-
seen ones (eg. nap, gun, tpn, aqz) that ben-
efit more from this extended setting. See Ap-
pendix J Table 20, where we report the target
language receiving the highest benefit from each
transfer language for each setting (1,10,100,1000
steps). All the max-utility recipients aside
from bar and nds are unseen languages. Fig-
ure 3(b) presents the training step progression
of aggregated-transfer scores for Mossi, one
of the most donating transfer languages, and Ap-
pendix N (Figures 9-18) shows the transfer progres-
sion graphs for all transfer languages. At the task
level, POS tagging always ends up having compara-
tively higher target language performance variance
with more training steps, while NER almost always
ends up with negative results with longer training.
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(a) Target languages mapped based on percentage of receiving
positive/negative transfers.

(b) Aggregated-transfer score line with
standard deviations through different training
steps for Mossi (mos) as transfer language.

Figure 3: (a) Some languages exhibit universal recipient nature (yellow) while some never receive positive transfer
(red). (b) Shown are the top and bottom two languages receiving maximum/minimum scores (eg. gun, tpn at 1000
steps) at each step, with total positive/negative transfers (in parenthesis) also shown. See Appendix N for other
transfer language score lines.

4.3 Takeaway from Language Interactions
We plot all the transfer languages in a 2d axis for
both two-language interactions and three-language
interactions as shown in Figure 4.

Bilingual Interactions First of all, we observe
most of the languages mainly fall into either one of
the two categories: (1) A(+), B(+): getting benefits
from interactions and helping others at the same
time, (2) A(-), B(+): Helping other languages but
do not get benefits from those languages. Secondly,
there are resemblances in how certain languages
from specific categories interfere across all 3 tasks.
For example, consider the case of zho, swe, spa
and fra. These languages fall to the lower right
part of all three graphs. However, there are lan-
guages like ara that do not uniformly get bene-
fits across three tasks while maintaining it’s posi-
tive interfering status. Although, there are debates
whether English (eng) is an appropriate "hub" lan-
guage or not (Anastasopoulos and Neubig, 2020),
eng maintains its status in the upper right quar-
ter making it a good transfer language in all Latin
script majority settings.

Trilingual Interactions Now we increase the
number of languages for a specific transfer lan-
guage to influence. When we compare the bilingual
settings with the trilingual ones (Figure 4 (2)), the
left-right categorization remains the same. How-
ever, many languages receive an uplifting position
meaning the strength of performing positive inter-
ference increases for those languages (eg. are in
dependency parsing, zho in NER). Moreover, we
observe an overall decrease in the lower-right cor-

ner for both dependency parsing and NER. How-
ever, there are languages like wol in POS tagging
that goes from upper-left to lower-left. Nonethe-
less, very few different colored points (i.e. negative
coordinate for 3rd language) signify the fact that a
multilingual setting is beneficial towards a larger
group of recipients.

5 Recommendations

Based on our above findings, we make a number
of recommendations in choosing the appropriate
transfer language and training scheme for a low-
resource setting.
1. There is no universal donor but having multiple

transfer languages in the training scheme helps
in terms of language interference.

2. For universal recipient languages (eg. Typologi-
cally diverse unseen ones), including almost any
language in the transfer scheme help.

3. Low resource unseen languages generally trans-
fer with high variance. A good idea is to include
them with other seen languages in the transfer
scheme to stabilize the transfer output across a
large number of target languages.

4. Only some of the unseen low-resource
ones show sustained transfer toward other
low-resource languages through continuous
thousand-step training. Usually, the deviation
happens during an early stage of training. So
just continuing pretraining for longer is not op-
timal for a scenario with mixed-category lan-
guages.

5. The patterns of receiving positive transfer are
similar when we use either one language small-
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(1) Bilingual interactions [AB]

(2) Trilingual interactions [ABC]

Figure 4: Language interaction representation for bilingual and trilingual settings. To identify the language
coordinates, we use two and three adapters (i.e. [2A], [3A]) jointly fused. In [3A] plots, we show the position only
for one interacted language B along with transfer/target language A. For the 3rd language C, we use color variation
(red/blue) to depict whether C receives positive transfer or not.

step continuous training or 2/3 standard adapter
fusion. So using a large set of trained language
adapters fused together according to the need is
a simpler way to deal with a large set of mixed-
category target languages.

6 Conclusion and Future Work

We devise an efficient approach to study cross-
lingual transfer in multilingual models for various
tasks that disentangles task and language effects.
We believe this disentanglement coupled with few-
step fine-tuning has the potential to uncover cur-
rently uncharted model behaviors (eg. NLI evalu-
ation). Our findings suggest languages unseen by
MLMs clearly exhibit different behavioral pattern
compared to other languages in general: they are
universal as target, exhibit high variance as transfer
language, and their behavior follows similar pat-
terns across tasks. In addition, we do not find a
universal donor (a language that benefits all oth-
ers). Last, we find that some languages consistently
benefit from settings that resemble "catastrophic

forgetting" for other languages, an observation we
believe merits a dedicated follow-up study.

We hope that our approach will allow for fur-
ther study of cross-lingual transfer for more lan-
guages and MLMs, and we plan to extend this
in future work, as our findings suggest interest-
ing differences in the behavior of languages used
in pre-training and unused ones. Eventually, we
hope that our study will also lead to guidelines for
selecting appropriate transfer languages, as well
as more informed methods for the adaptation of
MLMs to new under-served languages. While our
proposed approach being highly efficient to expand
the paradigm of cross-lingual transfer evaluation,
the findings shed light onto the easy adaptation of
MLMs for new languages in a low-resource setting.

Limitations

In this work, we primarily experiment with encoder
models like mBERT and XLM-R, token-level syn-
tactic tasks and two sentence-level tasks. In future,
we would expand this work to recent large language
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models and tasks involving natural language under-
standing. Moreover, our work only focus on low-
resource setting with small-scale training data and
parameter-efficient adapters. In future, instead of
monolingual finetuning we will use this parameter
efficient approach for multilingual finetuning thus
unfolding effective multilingual pretraining config-
urations. As the base-language model choice, we
only use mBERT. The evaluation of cross-lingual
transfer needed to be expand to decoder based lan-
guage models.
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A Related Works

Cross-Lingual Transfer Studying cross-lingual
transfer to prepare a better pretraining configura-
tion is a well-explored topic. Malkin et al. (2022)
propose a balanced-data approach to identify ef-
fective set of languages for model training through
constructing bilingual language graph. They for-
mulate the problem in terms of linguistic blood
bank where language can either play the role of
donor or receiver. This study comprises over a
large set of languages while training a large num-
ber of bilingual models. However, how a large
multilingual model (eg. mBERT) having a shared
representation space larger than bilingual models
perform in similar setting is not evaluated yet. Fu-
jinuma et al. (2022) points out it is always better
to have a diverse set of languages during pretrain-
ing for zero-shot adaptation. At the same-time,
language relatedness in pretraining configuration
always helps.

Adaptation to Unseen Languages The idea of
performing effective zero-shot transfer is highly
beneficial for model adaptation to new languages.
According to Muller et al. (2021), transfer learning
helps some new languages while some hard lan-
guages does not get the benefit mainly because of
the difference in writing systems. Transliterating
those languages to a more familiar form is a useful
approach in this case.

Parameter Efficiency Recently parameter-
efficient language modeling approaches are
becoming more and more popular and capable.
Adapter units (Pfeiffer et al., 2022) are such
modular units containing small trainable set of
parameters. Using adapters resolve the problem
of model-capacity and training bottleneck. In
addition, most of the parameters remain unchanged
thus preventing the problem of negative inter-
ference. The most important benefit of adapter
untis are it’s modular design. It is also possible
to train the adapters using language-phylogeny
information (Faisal and Anastasopoulos, 2022)
thus extending the base model capacity to unseen
new language in an informed manner.

B Terminologies

Transfer Language: The languages we use to
perform monolingual finetuning of the base lan-
guage model (mBERT) using masked language mod-
eling.

Target Language: The languages we use to eval-
uate both the pretrained as well as finetuned mBERT
on downstream tasks.

Negative Transfer: The scenario where lan-
guage model performance drops because of fine-
tuning it on a transfer language.

Cross-lingual Transfer: The established method
of finetuning a language model on one transfer
language and deploy it on another target language.

Unseen Languages Any language that were not
part of the original pretraining step.

C Dataset Details

C.1 Transfer Languages

We perform mono-lingual finetuning as well as
language adapter training on 38 transfer languages.
Each language dataset contains 10k lines of text.
We use texts from several corpus including OSCAR
(Abadji et al., 2022) and African News Translation
dataset (Adelani et al., 2022). 11 out of these 38
languages are unseen by mBERT during pretraining
steps. The list is provided in Table 24.

C.2 Adapter Training Dataset

Dependency Parsing We train a task adapter
for performing dependency parsing task. For this
step, we use Universal Dependency training dataset
v2.11 (de Marneffe et al., 2021). To keep the data
distribution balanced, we use not more than a thou-
sand examples per language. Combining all these
data together, we train a multilingual dependency
tagging task adapter. The complete list of data-
source languages for training this adapter is pre-
sented in Table 25.

Parts-of-Speech Tagging Here we also use
the Universal Dependency training dataset v2.11
(de Marneffe et al., 2021). The languages are also
the same ones used for dependency parsing previ-
ously.

Named Entity Recognition We use
Wikiann (Pan et al., 2017) dataset for train-
ing a NER task adapter. The complete language
lists are provided in Table 26.

Natural Language Inference We use
XNLI (Conneau et al., 2018) dataset for training a
NLI task adapter. The complete language lists are
provided in Table 27.
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Extractive Question Answering We use Ty-
DiQA (Clark et al., 2020) dataset for training an
Extractive Question Answering task adapter. The
complete language lists are provided in Table 28.

C.3 Evaluation Dataset
We use 125 languages for evaluating NER task
from Wikiann. For udp and pos-tagging tasks we
use 114 languages from Universal Dependency
dataset. There are 62 languages which are common
between these two sets of 125 and 114 languages.
For NLI evaluation, we use 15 languages from
XNLI (Conneau et al., 2018) dataset and 10 low-
resource South American indigenous languages
from Americas NLI (ANLI) (Ebrahimi et al., 2022)
dataset. For the question answering task, we take 9
languages from TydiQA (Clark et al., 2020) to eval-
uate. The complete list of 184 evaluation languages
are provided in Table 29.

D Implementation Details

For all of our experiments, we use as well
as modify the scripts from huggingface (Wolf
et al., 2020) and adapterhub (Pfeiffer et al.,
2020). For base language model, we use the
model bert-base-multilingua-uncased from
huggingface model repository.

E Hyper-parameters

Masked Language Modeling finetuning
• Train batch size: 8
• Evaluation batch size: 8
• Training Steps: 1, 10, 100 and 1000
• Learning Rate: 5e-5
• Maximum Sequence Length: 512

Language Adapter Training: Language Interac-
tion
• Train batch size: 8
• Evaluation batch size: 8
• Training Epochs: 3
• Learning Rate: 5e-4
• Maximum Sequence Length: 256
• Adapter Parameter Reduction Factor: 16

Task Adapter Training: Dependency Parsing
• Train batch size: 36
• Evaluation batch size: 8
• Training Epochs: 5
• Learning Rate: 5e-4
• Maximum Sequence Length: 256
• Adapter Parameter Reduction Factor: 16

Combination Count

| −A,−B| 1
| −A,+B| 1
|+A,−B| 3
|+A,+B| 2

Table 6: Bilingual interaction counts

Task Adapter Training: POS Tagging
• Train batch size: 36
• Evaluation batch size: 8
• Training Epochs: 5
• Learning Rate: 5e-4
• Maximum Sequence Length 256
• Adapter Parameter Reduction Factor: 16

Task Adapter Training: NER
• Train batch size: 36
• Evaluation batch size: 8
• Training Epochs: 5
• Learning Rate: 5e-4
• Maximum Sequence Length: 256
• Adapter Parameter Reduction Factor: 16

Task Adapter Training: NLI
• Train batch size: 32
• Evaluation batch size: 8
• Training Epochs: 5
• Learning Rate: 5e-5
• Maximum Sequence Length: 128
• Adapter Parameter Reduction Factor: 16

Task Adapter Training: Extractive QA
• Train batch size: 32
• Evaluation batch size: 8
• Training Epochs: 5
• Learning Rate: 3e-5
• Maximum Sequence Length: 384
• Document Stride: 128
• Adapter Parameter Reduction Factor: 16

F Language Interference Projection (an
example)

For example, consider the case of Arabic [A] that
interacts with Bengali [B] in a bilingual setting
[AB]. The count from pair combinations of positive
and negative interference counts are as follows:
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So for language A we get,

C =1 + 1 + 3 + 2

=7

(xA, yA) =
1

7
× (1 · [−1,−1] + 1 · [−1, 1]

+ 3 · [1,−1] + 2 · [1, 1])
=(0.43,−0.14)

Here, |+A,+B| = 2 means, in total two cases,
Arabic gets positive interference score while the
other associated language (Bengali) also gets posi-
tive interference. Similarly, |−A,−B| = 1 means,
for one language, both Arabic and Bengali get
negative interference scores. Now (XA, YA) =
(0.43,−0.14). So Arabic will be in the lower-right
quartile of the graph (+x, -y) means, Arabic gener-
ally gets positive interference but it does not equally
beneficial to other languages (gets penalized for
cases | −A,−B|, |+A,−B|). Here we consider
only Bengali as a language to interact with. In
practice, we use a set of other transfer languages
to compute the total count of each combination for
one specific language.

G Comparison

H Transfer Language Ranking

We rank the transfer languages by aggregating all
the transfer scores. For example, consider getting
transfer scores {ts1, ..tsi, ..tsn} for a set of n tar-
get languages Ltg where i ∈ Ltg and the transfer
language is tf . Then the aggregated transfer score
for tf would be:

aggregated− transfer(tf) =

∑n
i=1 tsi
n

The ranking of all transfer languages across three
tasks are presented in Table ??. In addition, we
report the percentage of positive transfers for each
transfer language. Both in parsing and POS tag-
ging, we observe significant presence of unseen
languages in high ranked positions (percentage of
unseen languages in top 10: parsing: 40%, POS
tagging: 40%, NER: 20%). At the sametime, they
provide positive scores similar to the cases of seen
languages. On the contrary, in NER, we observe
most of the unseen African languages are at the
lower ranked positions.

I Recipient Transfer Maps

In a similar manner of calculating the
aggregated-transfer, we calculate

aggregated-target. For example, if a tar-
get language tg receives scores {ts1, ..tsi, ..tsm}
from a set of m transfer languages Ltf where
i ∈ Ltf . Then the aggregated target score for tf
would be:

aggregated− target(tg) =

∑n
i=1 tsi
n

This way we identify how much a target lan-
guage get benefited from all the transfer languages.
In Figure 5, we present the Recipient Transfer
Maps across tasks. We plot the percentage of posi-
tive/negative aggregated-target scores and cor-
responding target languages. Now looking at these
maps, we observe the presence of universal tar-
get languages (2-5 %) which always receive pos-
itive transfer from all of the 38 source languages
in two out of three tasks (exception: POS tagging).
Wheres, around 28% languages in parsing and tag-
ging, 32.8% in NER never receive any positive
transfer. We observe out of 40 languages which
receive positive transfer in more than 90% times,
25 languages are unseen low resourced languages.
The complete list of target languages which never
receive and which almost always receive positive
transfer is presented in Table 19.

J Maximum Score Recipients are
low-resourced

In Table 20, we report all the recipients those re-
ceive maximum transfer scores at different steps
of mlm fine-tuning. From the results, it is evi-
dent that, a multilingual model almost always ben-
efits certain unseen, low-resource as well as en-
dangered languages largely. We observe out of
19 max-recipients, 17 are mBERT-unseen languages.
Moreover, the two other seen-languages: Bavarian
German and Low German are also low-resourced
languages.

K Task Matters

In Figure 6, we present the commonality graph
of transfer language ranking across all three tasks.
Spearman rank correlation with p value is presented
in Table 21.

L Transfer Languages with High
Variance

In Figure 7, we present the violin plots
for all the transfer languages sorted by their
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Dependency Parsing

mBERT Continious Steps Lang. Interaction Improvement
lang base 1 10 100 1000 [1A] [2A] [3A] Impc:1 Impc:1000 Impi

ell 92.82 92.73 92.39 92.09 91.46 91.97 91.91 91.98 no no no
tel 90.15 89.33 89.43 87.92 85.01 89.74 89.44 89.46 no no no
spa 90.02 89.87 89.42 89.00 88.16 89.09 89.20 89.24 no no no
hin 89.04 88.77 88.35 87.76 87.09 88.28 88.22 88.29 no no no
hun 87.20 87.14 86.49 85.65 85.06 86.25 86.29 86.36 no no no
heb 85.59 85.36 85.06 84.56 83.82 85.01 84.96 84.97 no no no
swe 85.45 85.32 85.03 84.88 84.30 84.76 84.81 84.88 no no no
tam 84.48 84.37 82.84 83.04 81.68 83.70 83.46 83.40 no no no
cym 83.26 83.15 82.58 82.45 81.95 83.11 83.06 83.10 no no no
hye 82.27 81.88 81.49 81.08 80.22 80.95 81.02 81.02 no no no
pcm 81.04 80.32 79.11 78.47 77.91 79.32 79.50 79.52 no no no
est 80.78 80.68 80.03 79.80 79.03 79.88 79.96 80.04 no no no
gle 79.65 79.21 79.03 78.66 78.99 79.09 79.09 79.14 no no no
zho 70.42 70.41 70.10 69.66 70.17 64.74 70.06 70.46 no no yes
wol 69.46 68.66 68.09 64.63 67.32 68.96 69.05 69.10 no no no
ara 31.25 31.15 31.29 30.99 29.97 30.45 30.38 30.37 no no no
fra 27.84 27.56 26.46 24.70 24.19 24.92 24.96 24.95 no no no
jpn 22.54 22.50 22.52 22.73 22.49 22.43 22.43 22.42 no no no
deu 89.37 89.40 88.67 88.39 87.43 89.10 89.28 89.35 yes no no
bul 89.32 89.32 89.01 89.01 89.09 89.12 89.18 89.21 yes no no
rus 88.09 88.14 87.96 87.53 87.03 87.82 87.88 87.94 yes no no
eng 79.62 79.76 79.56 79.39 78.86 80.18 80.18 80.24 yes no yes
ben 75.31 76.69 73.53 73.00 69.31 74.69 75.71 75.87 yes no yes
bre 70.79 71.90 69.82 71.04 72.12 73.58 73.76 73.86 yes yes yes
kor 64.02 64.33 64.31 63.76 65.02 64.33 64.35 64.43 yes yes yes
fin 63.54 64.58 63.45 63.26 63.84 64.22 64.37 64.45 yes yes yes
yor 40.92 42.80 40.40 42.17 47.59 42.55 42.84 42.93 yes yes yes
kmr 31.94 32.44 31.73 32.75 45.30 32.54 32.10 32.03 yes yes yes
bam 29.99 30.43 30.87 29.95 38.13 30.74 30.81 30.78 yes yes yes
gub 21.64 21.97 20.96 22.92 34.52 23.83 23.73 23.52 yes yes yes

Table 7: Dependency Parsing results. Improvement: Impc:1 cont. step 1-base. Impc:1000: cont. steps 1000-base.
Impi: improvement in language interactions ([1A]/[2A]/[3A]) versus baseline. Languages unseen by mBERT
are in bold font.
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Dependency Parsing (Model Comparison)

mBERT XLM-R

lang base 1 10 100 1000 base_x 1_x 10_x 100_x 1000_x

ell 92.82 92.73 92.39 92.09 91.46 93.33 93.27 93.01 92.59 92.86
tel 90.15 89.33 89.43 87.92 85.01 88.49 87.88 86.34 85.99 86.41
spa 90.02 89.87 89.42 89.00 88.16 89.66 89.70 89.38 88.92 89.26
deu 89.37 89.40 88.67 88.39 87.43 89.71 89.63 89.09 88.74 89.30
bul 89.32 89.32 89.01 89.01 89.09 90.19 90.31 90.22 89.73 90.19
hin 89.04 88.77 88.35 87.76 87.09 89.46 89.50 89.13 88.06 88.41
rus 88.09 88.14 87.96 87.53 87.03 88.72 88.76 88.62 88.16 88.45
hun 87.20 87.14 86.49 85.65 85.06 89.16 89.13 88.78 88.40 88.73
heb 85.59 85.36 85.06 84.56 83.82 86.22 86.14 85.87 85.54 85.69
swe 85.45 85.32 85.03 84.88 84.30 85.88 85.84 85.55 85.18 85.47
tam 84.48 84.37 82.84 83.04 81.68 84.59 84.66 84.32 84.35 85.35
cym 83.26 83.15 82.58 82.45 81.95 83.53 83.32 82.75 82.38 83.11
hye 82.27 81.88 81.49 81.08 80.22 84.61 84.54 84.18 83.79 84.28
pcm 81.04 80.32 79.11 78.47 77.91 79.58 79.38 78.48 77.87 79.37
est 80.78 80.68 80.03 79.80 79.03 83.96 83.96 83.52 83.20 83.55
gle 79.65 79.21 79.03 78.66 78.99 81.38 81.42 80.62 80.05 80.79
eng 79.62 79.76 79.56 79.39 78.86 78.99 78.77 78.42 77.86 78.27
ben 75.31 76.69 73.53 73.00 69.31 69.06 69.09 68.88 66.28 69.94
bre 70.79 71.90 69.82 71.04 72.12 63.88 63.51 62.70 61.99 65.45
zho 70.42 70.41 70.10 69.66 70.17 70.47 70.59 70.39 70.11 70.31
wol 69.46 68.66 68.09 64.63 67.32 67.95 67.78 66.51 64.33 64.88
kor 64.02 64.33 64.31 63.76 65.02 63.83 63.58 63.19 63.59 64.54
fin 63.54 64.58 63.45 63.26 63.84 69.12 68.73 68.07 68.63 69.62
yor 40.92 42.80 40.40 42.17 47.59 23.22 22.70 22.70 24.24 38.40
kmr 31.94 32.44 31.73 32.75 45.30 64.53 64.08 62.50 64.94 66.41
ara 31.25 31.15 31.29 30.99 29.97 9.42 9.54 10.04 9.84 8.82
bam 29.99 30.43 30.87 29.95 38.13 29.68 29.70 29.28 29.16 34.20
fra 27.84 27.56 26.46 24.70 24.19 19.59 19.99 18.49 16.18 19.34
jpn 22.54 22.50 22.52 22.73 22.49 7.87 7.65 7.84 7.30 6.91
gub 21.64 21.97 20.96 22.92 34.52 22.22 21.82 22.09 23.43 36.49

Avg. 69.26 69.34 68.67 68.37 69.24 68.28 68.17 67.70 67.36 69.16

Table 8: Dependency Parsing results comparison using mBERT and XLM-R (for languages present in both transfer
and target set.)
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POS Tagging

mBERT Continious Steps Lang. Interaction Improvement
lang base 1 10 100 1000 [1A] [2A] [3A] Impc:1 Impc:1000 Impi

spa 97.84 97.80 97.66 97.60 97.41 97.67 97.71 97.72 no no no
ell 97.25 97.16 97.17 96.99 96.87 97.02 97.09 97.10 no no no
heb 95.22 95.07 94.91 94.72 94.52 94.86 94.89 94.89 no no no
swe 95.17 95.04 95.00 94.92 94.90 94.97 95.01 95.02 no no no
hun 94.28 94.17 94.03 93.94 93.82 93.91 94.01 94.03 no no no
rus 94.10 94.08 94.03 93.84 93.59 93.89 93.92 93.94 no no no
pcm 92.98 92.77 92.17 91.84 91.23 92.25 92.46 92.55 no no no
hin 92.23 92.00 91.76 91.61 91.39 91.98 92.00 92.01 no no no
est 91.12 90.90 90.65 90.48 90.65 90.68 90.77 90.80 no no no
hye 91.08 90.78 90.50 90.13 89.58 90.74 90.86 90.89 no no no
cym 89.69 89.36 89.03 88.83 88.60 88.96 89.15 89.22 no no no
tel 88.60 88.42 88.46 87.83 87.81 87.94 87.95 87.93 no no no
gle 88.29 88.08 87.62 87.13 87.49 87.72 87.81 87.83 no no no
wol 85.58 84.85 84.16 82.06 82.08 84.11 84.64 84.82 no no no
eng 84.65 84.64 84.63 84.62 84.58 84.62 84.74 84.77 no no yes
tam 83.10 82.74 82.19 82.39 82.38 82.87 82.72 82.70 no no no
ben 80.34 79.35 78.56 79.29 79.56 81.10 80.43 80.39 no no yes
bam 30.30 30.27 30.74 33.92 49.49 30.65 30.51 30.45 no yes yes
gub 28.49 28.11 28.66 30.02 36.64 28.82 28.77 28.85 no yes yes
jpn 7.85 7.73 7.80 7.91 7.84 7.58 7.67 7.68 no no no
bul 96.12 96.13 96.07 96.08 96.12 96.05 96.01 96.01 yes no no
deu 90.55 90.56 90.47 90.13 90.22 90.68 90.69 90.70 yes no yes
zho 80.45 80.50 80.54 80.55 79.72 79.34 79.71 79.91 yes no no
fin 77.98 78.30 77.83 77.78 78.36 77.82 77.83 77.83 yes yes no
bre 66.91 67.28 67.67 68.15 70.26 68.02 67.79 67.72 yes yes yes
kor 56.28 56.42 56.49 56.61 57.72 56.59 56.58 56.57 yes yes yes
yor 45.91 48.22 46.73 51.24 57.28 45.71 45.45 45.45 yes yes no
kmr 40.16 40.35 40.49 42.76 55.82 41.04 40.79 40.64 yes yes yes
fra 16.35 16.47 16.66 16.63 16.24 16.77 16.79 16.79 yes no yes
ara 8.61 8.70 8.76 8.53 5.17 8.74 8.86 8.88 yes no yes

Table 9: POS Tagging results. Improvement: Impc:1 cont. step 1-base. Impc:1000: cont. steps 1000-base. Impi:
improvement in language interactions ([1A]/[2A]/[3A]) versus baseline. Languages unseen by mBERT are in
bold font.
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POS Tagging (Model Comparison)

mBERT XLM-R

lang base 1 10 100 1000 base_x 1_x 10_x 100_x 1000_x

spa 97.84 97.80 97.66 97.60 97.41 97.80 97.78 97.74 97.65 97.61
ell 97.25 97.16 97.17 96.99 96.87 97.51 97.50 97.47 97.43 97.45
bul 96.12 96.13 96.07 96.08 96.12 96.79 96.75 96.68 96.58 96.58
heb 95.22 95.07 94.91 94.72 94.52 96.41 96.30 96.16 96.16 96.24
swe 95.17 95.04 95.00 94.92 94.90 96.22 96.20 96.29 96.26 96.17
hun 94.28 94.17 94.03 93.94 93.82 95.53 95.57 95.51 95.24 95.17
rus 94.10 94.08 94.03 93.84 93.59 94.45 94.40 94.30 94.32 94.32
pcm 92.98 92.77 92.17 91.84 91.23 93.44 93.20 91.91 92.24 92.39
hin 92.23 92.00 91.76 91.61 91.39 93.47 93.42 93.31 92.96 93.12
est 91.12 90.90 90.65 90.48 90.65 93.46 93.42 93.30 93.16 93.35
hye 91.08 90.78 90.50 90.13 89.58 93.76 93.80 93.70 93.43 93.52
deu 90.55 90.56 90.47 90.13 90.22 90.04 90.03 90.01 90.00 90.00
cym 89.69 89.36 89.03 88.83 88.60 91.92 91.83 91.60 91.55 91.50
tel 88.60 88.42 88.46 87.83 87.81 91.58 91.78 91.17 90.91 91.38
gle 88.29 88.08 87.62 87.13 87.49 91.51 91.49 91.13 90.79 91.22
wol 85.58 84.85 84.16 82.06 82.08 84.14 83.84 83.21 81.84 81.99
eng 84.65 84.64 84.63 84.62 84.58 86.30 85.83 84.72 85.59 86.40
tam 83.10 82.74 82.19 82.39 82.38 85.55 85.71 85.79 85.76 85.73
zho 80.45 80.50 80.54 80.55 79.72 85.44 85.32 85.29 85.56 85.36
ben 80.34 79.35 78.56 79.29 79.56 83.65 83.36 83.37 83.35 84.36
fin 77.98 78.30 77.83 77.78 78.36 83.76 83.57 83.35 83.59 83.38
bre 66.91 67.28 67.67 68.15 70.26 61.11 60.97 61.72 61.73 64.70
kor 56.28 56.42 56.49 56.61 57.72 57.17 57.06 57.06 57.10 57.17
yor 45.91 48.22 46.73 51.24 57.28 26.88 26.41 26.37 27.63 45.90
kmr 40.16 40.35 40.49 42.76 55.82 74.85 74.96 75.78 76.26 76.95
bam 30.30 30.27 30.74 33.92 49.49 29.46 29.22 29.49 29.61 36.49
gub 28.49 28.11 28.66 30.02 36.64 29.97 30.17 31.05 31.48 41.21
fra 16.35 16.47 16.66 16.63 16.24 14.16 14.14 14.28 13.84 13.59
ara 8.61 8.70 8.76 8.53 5.17 8.15 8.27 8.36 8.38 7.03
jpn 7.85 7.73 7.80 7.91 7.84 7.61 7.60 7.44 7.46 7.34

Avg. 72.92 72.87 72.71 72.95 74.24 74.40 74.33 74.25 74.26 75.59

Table 10: POS Tagging results comparison using mBERT and XLM-R (for languages present in both transfer and
target set.)

61



NER

mBERT Continious Steps Lang. Interaction Improvement
lang base 1 10 100 1000 [1A] [2A] [3A] Impc:1 Impc:1000 Impi

spa 90.66 90.56 90.18 89.41 87.74 90.20 90.26 90.26 no no no
bul 89.40 89.28 89.07 88.62 87.54 89.09 89.09 89.10 no no no
fra 88.14 87.95 87.56 86.53 85.19 87.63 87.77 87.80 no no no
fin 87.63 87.60 87.44 87.15 86.43 87.54 87.46 87.46 no no no
est 87.40 87.27 86.93 86.28 85.36 86.92 87.04 87.10 no no no
ell 85.81 85.71 84.95 84.36 83.02 85.44 85.50 85.54 no no no
gle 83.97 82.50 81.96 80.24 80.10 81.84 82.40 82.58 no no no
ara 83.69 83.50 82.73 80.85 79.29 83.04 83.18 83.23 no no no
bre 83.20 83.10 82.00 80.45 79.60 82.50 82.71 82.74 no no no
hin 82.53 82.31 81.87 80.21 76.62 82.56 82.40 82.41 no no yes
kor 81.67 81.66 81.27 79.75 78.22 81.43 81.41 81.42 no no no
eng 79.43 79.33 79.03 78.52 74.96 79.07 79.18 79.20 no no no
nep 78.33 77.32 77.97 75.63 69.80 78.15 77.71 77.62 no no no
tam 78.10 77.42 77.11 74.53 72.03 77.20 77.00 77.04 no no no
heb 76.53 76.41 75.92 75.09 73.56 76.19 76.04 76.07 no no no
tel 76.04 75.37 75.12 70.86 68.86 75.54 75.06 75.03 no no no
mya 73.15 72.92 70.71 69.51 63.59 71.88 71.54 71.70 no no no
zho 72.07 71.94 71.62 69.65 64.61 62.44 69.03 70.95 no no no
ibo 61.06 57.30 57.21 53.72 55.40 57.52 57.76 57.70 no no no
jpn 59.85 59.59 58.38 56.79 53.38 58.93 58.65 58.68 no no no
swe 91.41 91.47 91.25 90.86 90.06 91.27 91.29 91.32 yes no no
hye 90.10 90.59 90.23 87.55 83.25 90.32 90.46 90.50 yes no yes
hun 88.42 88.49 88.30 87.49 86.78 88.40 88.35 88.37 yes no no
pms 88.22 89.09 88.90 88.25 87.59 88.15 87.47 87.61 yes no no
cym 85.75 85.91 85.23 83.19 81.81 85.25 85.34 85.39 yes no no
deu 85.53 85.62 85.38 84.67 83.32 85.07 85.25 85.32 yes no no
rus 84.76 84.78 84.38 83.56 80.82 84.51 84.49 84.51 yes no no
ben 84.75 84.85 83.32 80.53 72.14 83.12 83.62 83.73 yes no no
kin 72.38 72.74 71.76 68.79 68.50 70.48 71.11 71.85 yes no no
yor 67.53 70.33 72.11 69.40 51.34 79.11 77.58 76.04 yes no yes

Table 11: NER results. Improvement: Impc:1 cont. step 1-base. Impc:1000: cont. steps 1000-base. Impi:
improvement in language interactions ([1A]/[2A]/[3A]) versus baseline. Languages unseen by mBERT are in
bold font.
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NER (Model Comparison)

mBERT XLM-R

lang base 1 10 100 1000 base_x 1_x 10_x 100_x 1000_x

swe 91.41 91.47 91.25 90.86 90.06 89.83 89.91 89.96 89.71 89.61
spa 90.66 90.56 90.18 89.41 87.74 87.37 87.44 87.44 87.21 87.13
hye 90.10 90.59 90.23 87.55 83.25 89.85 89.77 89.56 89.98 89.88
bul 89.40 89.28 89.07 88.62 87.54 87.63 87.70 87.66 87.49 87.50
hun 88.42 88.49 88.30 87.49 86.78 86.59 86.58 86.26 86.29 86.07
pms 88.22 89.09 88.90 88.25 87.59 87.12 87.42 87.17 88.22 90.54
fra 88.14 87.95 87.56 86.53 85.19 84.54 84.53 84.28 84.18 84.20
fin 87.63 87.60 87.44 87.15 86.43 85.95 85.80 85.65 85.87 85.67
est 87.40 87.27 86.93 86.28 85.36 85.13 85.18 85.07 84.78 84.87
ell 85.81 85.71 84.95 84.36 83.02 84.16 84.25 84.09 84.07 83.96
cym 85.75 85.91 85.23 83.19 81.81 82.74 82.21 82.37 82.06 82.25
deu 85.53 85.62 85.38 84.67 83.32 83.08 83.17 83.33 82.81 82.78
rus 84.76 84.78 84.38 83.56 80.82 82.84 82.72 82.38 82.17 82.28
ben 84.75 84.85 83.32 80.53 72.14 81.42 81.82 81.52 80.14 80.20
gle 83.97 82.50 81.96 80.24 80.10 81.69 81.01 80.79 80.17 80.73
ara 83.69 83.50 82.73 80.85 79.29 80.97 80.91 80.56 80.23 80.24
bre 83.20 83.10 82.00 80.45 79.60 77.32 76.92 76.97 75.94 76.81
hin 82.53 82.31 81.87 80.21 76.62 80.92 80.76 81.66 81.33 80.86
kor 81.67 81.66 81.27 79.75 78.22 75.20 75.25 75.07 74.77 74.73
eng 79.43 79.33 79.03 78.52 74.96 76.56 76.56 76.82 76.21 75.35
nep 78.33 77.32 77.97 75.63 69.80 76.54 75.98 77.00 74.79 74.74
tam 78.10 77.42 77.11 74.53 72.03 76.35 76.24 76.25 75.92 75.79
heb 76.53 76.41 75.92 75.09 73.56 73.41 73.20 73.10 72.91 72.80
tel 76.04 75.37 75.12 70.86 68.86 76.07 76.27 75.78 74.77 74.09
mya 73.15 72.92 70.71 69.51 63.59 73.03 73.12 74.27 74.43 72.31
kin 72.38 72.74 71.76 68.79 68.50 71.23 72.72 72.00 67.94 63.44
zho 72.07 71.94 71.62 69.65 64.61 64.44 64.66 64.16 63.25 62.07
yor 67.53 70.33 72.11 69.40 51.34 72.10 72.07 74.73 68.77 76.73
ibo 61.06 57.30 57.21 53.72 55.40 63.68 63.15 60.89 57.25 61.05
jpn 59.85 59.59 58.38 56.79 53.38 54.92 54.80 54.31 53.07 52.81

Avg. 81.25 81.10 80.66 79.08 76.36 79.09 79.07 79.04 78.22 78.38

Table 12: NER results comparison using mBERT and XLM-R (for languages present in both transfer and target set.)
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XNLI

Continious Steps
lang base 1 10 100 1000

mBERT

eng 81.02 45.42 45.01 42.86 43.18
spa 77.33 46.59 47.52 44.87 40.96
deu 76.27 46.79 47.71 46.63 39.57
zho 75.43 46.45 44.74 43.23 40.07
bul 75.13 46.57 46.70 44.85 36.58
ell 73.89 44.51 44.38 44.21 36.28
rus 73.59 45.78 46.28 44.24 38.53
ara 71.36 42.82 41.44 41.37 39.34
hin 67.68 41.74 42.61 40.19 35.02

XLM-R

eng 84.03 83.91 83.87 83.38 83.54
spa 80.60 80.67 80.92 80.26 80.38
bul 80.24 80.24 80.16 79.72 80.45
deu 79.38 79.33 79.32 78.79 79.20
rus 78.10 78.20 78.43 78.05 78.05
ell 77.82 77.77 77.61 77.22 77.59
zho 77.41 77.44 77.33 77.49 77.37
ara 75.63 75.47 75.15 74.55 74.91
hin 74.81 74.67 74.35 74.02 74.55

Table 13: XNLI results for (continuous training) languages present in both transfer and target set.

TyDiQA

Continious Steps
lang base 1 10 100 1000

mBERT

tel 58.45 58.19 57.53 56.55 56.50
eng 56.14 55.89 55.91 53.05 53.89
ara 54.83 54.73 54.40 49.28 50.99
rus 50.37 49.93 49.15 36.16 43.74
fin 50.13 50.09 50.45 44.16 46.85
kor 47.83 46.59 46.74 44.09 44.38
ben 45.13 46.11 48.05 45.13 44.78

XLM-R

tel 56.20 56.46 55.65 55.72 56.35
eng 52.50 52.82 53.18 52.89 52.70
ara 51.57 51.69 49.16 48.02 51.13
rus 47.41 47.32 45.04 44.19 46.26
fin 45.65 46.24 45.88 45.10 45.19
ben 44.25 42.39 43.27 40.97 43.45
kor 42.03 42.32 42.90 43.01 43.22

Table 14: TyDiQA results (continuous training)for languages present in both transfer and target set.
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Transfer Languages Ranking using mBERT (Token Classification)

Rank Parsing POS Tagging NER
Lang ts +(%) lang ts +(%) lang ts +(%)

1 mya 0.33 40.35 kin 0.41 35.09 zho 0.16 49.6
2 ell 0.15 31.58 kmr 0.36 36.84 tel 0.08 32.8
3 kmr 0.14 35.96 mos 0.27 34.21 hun 0.08 40.8
4 yor 0.14 33.33 hye 0.27 36.84 heb 0.04 34.4
5 pcm 0.13 31.58 cym 0.22 37.72 est 0.03 36.8
6 nep 0.12 35.96 jpn 0.18 37.72 cym 0.03 40.0
7 rus 0.11 32.46 mya 0.17 39.47 eng 0.02 38.4
8 mos 0.09 42.11 nep 0.12 31.58 mos 0.00 32.0
9 pms 0.09 30.70 pms 0.08 37.72 tam 0.00 35.2
10 heb 0.08 30.70 zho -0.04 34.21 hau -0.07 35.2
11 tel 0.05 26.32 kor -0.07 31.58 gle -0.07 32.8
12 ibo 0.05 31.58 ben -0.08 32.46 jpn -0.08 33.6
13 hau 0.04 37.72 bul -0.08 24.56 kor -0.09 35.2
14 gle 0.03 28.07 bam -0.12 30.70 swe -0.11 29.6
15 wol 0.03 35.96 ell -0.13 33.33 nep -0.13 31.2
16 bam 0.02 32.46 hin -0.13 32.46 mya -0.17 35.2
17 est 0.00 28.95 tam -0.14 32.46 hye -0.17 32.0
18 hye -0.03 31.58 ibo -0.14 32.46 bul -0.18 27.2
19 cym -0.03 28.95 wol -0.14 27.19 deu -0.20 32.8
20 ben -0.06 31.58 pcm -0.16 29.82 bre -0.23 35.2
21 kin -0.06 29.82 yor -0.16 36.84 spa -0.28 28.0
22 ewe -0.08 38.60 heb -0.26 30.70 fin -0.29 27.2
23 hin -0.10 32.46 rus -0.28 28.07 ell -0.29 34.4
24 ara -0.12 31.58 hun -0.29 25.44 pms -0.29 32.0
25 deu -0.13 31.58 ara -0.30 31.58 ara -0.32 30.4
26 gub -0.14 34.21 tel -0.31 28.95 yor -0.32 27.2
27 spa -0.18 30.70 hau -0.34 29.82 rus -0.34 26.4
28 jpn -0.19 27.19 gle -0.34 28.07 wol -0.41 32.8
29 bul -0.21 25.44 gub -0.34 23.68 ben -0.54 27.2
30 swe -0.21 28.95 fin -0.35 25.44 ibo -0.54 29.6
31 eng -0.22 27.19 eng -0.35 26.32 kin -0.56 31.2
32 bre -0.23 28.95 est -0.35 29.82 fra -0.59 29.6
33 hun -0.23 21.93 bre -0.39 31.58 kmr -0.61 25.6
34 tam -0.24 21.05 fra -0.41 28.95 pcm -0.69 25.6
35 fin -0.26 26.32 deu -0.44 26.32 bam -0.69 30.4
36 fra -0.37 24.56 spa -0.53 25.44 hin -0.72 21.6
37 kor -0.38 26.32 swe -0.66 27.19 ewe -0.76 24.8
38 zho -0.48 17.54 ewe -0.79 23.68 gub -0.98 24.8

Table 15: Transfer Languages ranked by aggregated transfer scores (ts) overall target languages across token
classification tasks using mBERT. Languages unseen by mBERT are in bold font.
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Transfer Languages Ranking using XLM-R (Token Classification)

Rank Parsing POS Tagging NER
Lang ts +(%) lang ts +(%) lang ts +(%)

1 nep 0.02 23.68 hin 0.18 39.47 rus 1.15 40.0
2 zho -0.00 34.21 ben 0.10 36.84 ell 1.04 41.6
3 mya -0.01 21.93 mya 0.04 34.21 tel 0.76 41.6
4 ben -0.08 26.32 nep 0.01 34.21 heb 0.70 46.4
5 hin -0.09 29.82 bul 0.01 40.35 ben 0.64 36.0
6 tam -0.09 27.19 eng -0.00 35.96 tam 0.48 44.0
7 bre -0.11 23.68 bre -0.01 42.11 hin 0.47 44.0
8 tel -0.13 20.18 ara -0.05 37.72 pms 0.44 40.8
9 deu -0.13 24.56 gle -0.12 36.84 bul 0.43 48.0
10 kor -0.21 21.93 cym -0.13 42.98 hye 0.36 40.0
11 est -0.25 24.56 rus -0.13 31.58 ara 0.33 43.2
12 swe -0.25 22.81 hye -0.16 36.84 swe 0.32 48.8
13 pms -0.25 31.58 tam -0.17 39.47 kmr 0.31 46.4
14 hye -0.29 21.05 heb -0.17 41.23 fra 0.27 44.0
15 jpn -0.34 21.93 zho -0.24 25.44 eng 0.25 51.2
16 fin -0.35 18.42 hau -0.24 38.60 cym 0.22 48.8
17 cym -0.36 18.42 fra -0.25 36.84 mya 0.22 45.6
18 heb -0.37 22.81 tel -0.26 40.35 gle 0.21 46.4
19 eng -0.39 23.68 ell -0.30 39.47 jpn 0.20 40.0
20 bul -0.42 19.30 deu -0.31 41.23 fin 0.18 40.0
21 rus -0.47 17.54 kor -0.31 42.11 hun 0.17 40.8
22 hau -0.50 16.67 swe -0.32 41.23 est 0.16 47.2
23 yor -0.50 14.91 spa -0.32 30.70 spa 0.16 44.8
24 ell -0.52 18.42 est -0.34 38.60 deu 0.15 42.4
25 kin -0.54 19.30 pms -0.43 29.82 nep 0.13 44.0
26 gle -0.55 16.67 fin -0.50 29.82 bre 0.13 40.0
27 fra -0.56 20.18 hun -0.54 28.07 hau 0.12 42.4
28 ara -0.57 19.30 kin -0.56 28.95 kor -0.02 44.0
29 spa -0.66 17.54 kmr -0.57 28.07 pcm -0.04 38.4
30 hun -0.66 14.91 pcm -0.70 16.67 wol -0.11 36.8
31 bam -0.74 15.79 jpn -0.72 32.46 ibo -0.12 36.0
32 kmr -0.85 19.30 mos -0.84 28.07 gub -0.17 36.0
33 mos -0.90 18.42 ewe -0.88 21.93 mos -0.19 32.0
34 gub -0.95 15.79 bam -0.89 20.18 zho -0.20 30.4
35 ibo -1.22 14.91 yor -0.90 26.32 yor -0.20 37.6
36 wol -1.40 14.91 wol -0.97 22.81 ewe -0.32 30.4
37 pcm -1.55 10.53 ibo -1.00 23.68 kin -0.34 29.6
38 ewe -1.83 14.04 gub -1.05 20.18 bam -0.41 32.0

Table 16: Transfer Languages ranked by aggregated transfer scores (ts) overall target languages across token
classification tasks using XLM-R. Languages unseen by mBERT are in bold font.
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Transfer Languages Ranking using mBERT (Sentence Classification & QA)

Rank XNLI ANLI TyDiQA
Lang ts +(%) lang ts +(%) lang ts +(%)

1 hau -34.42 0.0 bam -14.97 0.0 zho 0.67 77.78
2 bam -34.85 0.0 hau -17.82 0.0 jpn 0.08 44.44
3 gub -36.40 0.0 gub -18.35 0.0 gle -0.08 44.44
4 ewe -36.73 0.0 deu -19.79 0.0 wol -0.12 44.44
5 hin -37.08 0.0 fin -19.93 0.0 cym -0.14 33.33
6 deu -37.33 0.0 hun -20.01 0.0 mya -0.15 22.22
7 kor -37.86 0.0 kor -20.15 0.0 mos -0.15 44.44
8 spa -38.17 0.0 zho -20.20 0.0 hun -0.19 22.22
9 kmr -38.25 0.0 hin -20.27 0.0 fin -0.19 44.44
10 fin -38.32 0.0 pms -20.28 0.0 kin -0.22 33.33
11 rus -38.34 0.0 yor -20.37 0.0 est -0.25 33.33
12 pms -38.35 0.0 kin -20.63 0.0 hye -0.25 33.33
13 hun -38.57 0.0 spa -20.66 0.0 tel -0.26 33.33
14 heb -38.72 0.0 mya -20.68 0.0 eng -0.28 33.33
15 swe -38.86 0.0 heb -20.68 0.0 ell -0.29 22.22
16 est -38.86 0.0 ewe -20.74 0.0 ewe -0.30 33.33
17 gle -38.87 0.0 rus -20.74 0.0 yor -0.30 33.33
18 bul -38.90 0.0 est -20.91 0.0 heb -0.33 22.22
19 fra -38.91 0.0 swe -20.93 0.0 pms -0.34 22.22
20 yor -38.94 0.0 gle -20.99 0.0 tam -0.38 22.22
21 ell -39.24 0.0 bul -21.07 0.0 ben -0.39 22.22
22 kin -39.37 0.0 ell -21.10 0.0 bul -0.41 33.33
23 zho -39.44 0.0 ara -21.11 0.0 deu -0.41 22.22
24 ara -39.50 0.0 kmr -21.11 0.0 gub -0.42 22.22
25 mya -39.56 0.0 nep -21.17 0.0 nep -0.42 33.33
26 eng -39.74 0.0 fra -21.22 0.0 swe -0.43 33.33
27 hye -40.04 0.0 eng -21.28 0.0 kor -0.45 22.22
28 bre -40.07 0.0 cym -21.39 0.0 hin -0.47 22.22
29 cym -40.13 0.0 jpn -21.43 0.0 bre -0.48 11.11
30 nep -40.25 0.0 tam -21.45 0.0 ara -0.51 33.33
31 tel -40.31 0.0 tel -21.51 0.0 ibo -0.57 33.33
32 ben -40.31 0.0 hye -21.62 0.0 bam -0.61 22.22
33 jpn -40.53 0.0 bre -21.65 0.0 kmr -0.62 33.33
34 mos -41.04 0.0 mos -21.65 0.0 spa -0.66 22.22
35 tam -41.04 0.0 wol -22.23 0.0 rus -0.67 22.22
36 wol -42.67 0.0 pcm -22.24 0.0 hau -0.89 22.22
37 pcm -43.37 0.0 ibo -22.36 0.0 fra -1.04 11.11
38 ibo -44.78 0.0 ben -23.37 0.0 pcm -1.10 22.22

Table 17: Transfer Languages ranked by aggregated transfer scores (ts) overall target languages across Sentence
Classification & QA tasks using mBERT. Languages unseen by mBERT are in bold font.
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Transfer Languages Ranking using mBERT (Sentence Classification & QA)

Rank XNLI ANLI TyDiQA
Lang ts +(%) lang ts +(%) lang ts +(%)

1 ewe 0.44 93.33 hin 2.25 100.0 pcm -0.42 55.56
2 bre 0.36 93.33 ell 1.34 80.0 ell -0.44 22.22
3 bam 0.30 93.33 nep 1.33 100.0 fin -0.46 44.44
4 pcm 0.30 93.33 ara 1.31 80.0 zho -0.47 44.44
5 ibo 0.28 80.00 swe 1.31 100.0 heb -0.47 11.11
6 rus 0.22 73.33 tam 1.03 70.0 ewe -0.51 55.56
7 wol 0.20 80.00 bul 0.93 70.0 tam -0.52 11.11
8 hau 0.13 73.33 fra 0.73 70.0 eng -0.53 33.33
9 heb 0.08 66.67 hun 0.39 60.0 hin -0.55 22.22
10 kmr 0.08 66.67 cym 0.36 60.0 fra -0.56 33.33
11 pms 0.06 60.00 deu 0.25 60.0 tel -0.56 11.11
12 jpn 0.05 60.00 eng 0.17 70.0 deu -0.64 11.11
13 zho 0.05 60.00 tel 0.13 60.0 swe -0.67 11.11
14 bul 0.03 53.33 fin 0.10 40.0 nep -0.67 11.11
15 fra -0.00 53.33 spa -0.08 60.0 hun -0.69 11.11
16 spa -0.01 46.67 kor -0.10 50.0 est -0.70 22.22
17 mya -0.04 53.33 rus -0.10 50.0 kmr -0.71 44.44
18 kin -0.04 40.00 heb -0.10 50.0 rus -0.72 0.00
19 hye -0.05 53.33 est -0.14 60.0 gle -0.73 22.22
20 deu -0.09 33.33 mya -0.14 40.0 hau -0.77 22.22
21 eng -0.11 33.33 ben -0.19 50.0 ben -0.77 11.11
22 gle -0.11 26.67 gle -0.27 30.0 kor -0.78 0.00
23 est -0.11 33.33 hau -0.48 60.0 spa -0.79 0.00
24 mos -0.11 40.00 zho -1.00 0.0 bul -0.81 0.00
25 swe -0.12 33.33 kmr -1.07 30.0 hye -0.91 0.00
26 tel -0.13 40.00 hye -1.14 20.0 cym -0.92 22.22
27 cym -0.14 33.33 jpn -1.32 10.0 gub -1.02 11.11
28 ara -0.18 26.67 pcm -1.53 10.0 wol -1.02 11.11
29 ben -0.20 20.00 bre -2.10 0.0 ibo -1.03 33.33
30 gub -0.23 13.33 gub -2.19 20.0 ara -1.08 0.00
31 nep -0.23 20.00 pms -2.60 0.0 bam -1.12 11.11
32 kor -0.36 6.67 yor -2.88 0.0 mos -1.15 11.11
33 hin -0.39 6.67 kin -4.28 0.0 jpn -1.15 0.00
34 ell -0.45 0.00 mos -4.54 10.0 bre -1.19 11.11
35 yor -0.45 13.33 bam -4.87 0.0 pms -1.22 0.00
36 fin -0.46 6.67 wol -5.01 0.0 kin -1.30 11.11
37 tam -0.47 6.67 ewe -5.02 10.0 mya -1.49 0.00
38 hun -0.70 0.00 ibo -5.95 0.0 yor -1.57 11.11

Table 18: Transfer Languages ranked by aggregated transfer scores (ts) overall target languages across Sentence
Classification & QA tasks using XLM-R. Languages unseen by mBERT are in bold font.
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Figure 5: Recipient Transfer Map: we observe universal positive recipients as well as languages those never receive
positive transfer across tasks. Circle size represents the percentage of languages fall to a transfer range.
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Tasks Never Receives Positive Transfer (%)
(90-99]

Universal Recip-
ient

Dependency
Parsing

ell, isl, grc, mlt, fra, qtd, hrv,
lav, urb, fas, ukr, spa, cym,
tel, pcm, afr, swe, est, nor,
hsb, orv, cat, slv, chu, sme,
eus, slk, hye, gla, urd, hin,
fro, lit, lat, san, wol, lij, got,
srp, lzh

tpn, koi, glv, kor, krl,
mdf, jpn, amh, sqi

mpu, gun, nap

POS Tagging ell, nld, isl, grc, lav, fas, ukr,
spa, cym, hun, pcm, afr, swe,
est, nor, hsb, tam, cat, chu,
sme, eus, hye, urd, ben, ita,
ron, lit, lat, wol, got, srp, lzh

fra, eng, qhe, dan,
myu, glv, kor, tur, kaz,
akk, myv, nap

NER nld, ell, tgl, fra, ces, bul, zho,
msa, sun, lav, gle, fas, kat,
spa, heb, hbs, afr, est, yid,
eng, tam, bre, vie, jpn, cat,
tha, slv, ceb, tur, mlg, slk,
swa, ben, uzb, ita, ron, tat, pol,
zea, lin, ibo

ksh, pms, aze, mzn,
oci, tgk, roh, khm,
aym, csb

bak, ast, uig,
kaz, nds, amh

Table 19: We find 25 languages out of 40 which receives positive transfer from almost any transfer languages (i.e.
column 90-99% and 100%) are unseen by mbert. (language codes in bold font are the unseen ones)

Figure 6: Extent of commonality of top-transfer lan-
guages across task. Unseen languages perform gener-
ally well while the other language rankings mostly vary
across tasks.

aggregated-transfer score variance. We ob-
serve, the unseen languages (bold font) are the
ones having large amount of variances across all
three tasks. We find the languages with high
variance can provide superior transfer for some
languages but at the same time hurt significantly
some other languages. For example, if we con-
sider the case of depndency parsing, we find ibo
(rank-1) and bam (rank-3) are two languages with
high variance. They provide maximum amount
of positive transfer some universal low-resourced
target languages like akk, koi, apu, tpn from di-
verse families including afro-asiatic, uralic, tupian.
At the same time, ibo also hurts a large number
of languages (10) including fra, nyq, sme, san
etc providing minimum amount of negative trans-
fer. On the other hand, there can be languages
with high variance providing either mostly positive
aggregated-transfer scores like mos or mostly
negative score like pcm. Interestingly, if we look
at the aggregated-transfer score and variance
of pcm in Table 22, we find the transfer is pos-
itive overall. Nevertheless it provides minimum
negative scores to 11 languages thus making it a
transfer language with high variance. On the other
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Transfer Parsing POS Tagging NER
Language 1 10 100 1000 1 10 100 1000 1 10 100 1000

gub mpu mpu gun gub aqz nap nap nap amh amh amh bar
est nap tpn gun gun nap nap nap nap amh amh amh som
bre nap nap gun gun nap nap nap nap amh amh amh amh
eng nap mpu gun gun nap nap nap nap amh sin amh nds
ben nap nap nap gun cop nap nap nap amh sin amh amh
kmr nap mpu gun kmr urb nap nap nap amh amh amh amh
spa nap mpu gun gun nap nap nap nap amh amh amh roh
bul nap nap nap gun nap nap nap amh amh amh amh som
pms nap nap nap mpu nap nap nap nap amh amh amh amh
gle nap nap mpu gun aqz nap nap nap amh amh amh som
nep nap tpn gun gun aqz urb nap nap amh sin amh roh
cym nap nap gun gun nap nap nap amh amh sin amh som
fin nap nap tpn gun nap nap nap nap amh sin amh som
hye nap nap nap gun nap nap nap nap uig sin amh som
mya nap nap wbp gun aqz urb nap nap amh amh amh amh
hin nap tpn gun gun aqz aqz nap nap amh amh amh som
tel nap nap gun gun aqz nap nap amh amh sin amh roh
tam nap nap gun gun nap nap nap nap amh sin amh som
kor tpn mpu mpu tpn nap nap nap nap amh amh amh roh
ell nap tpn nap gun nap nap nap nap amh amh amh som
hun nap mpu gun gun nap nap nap nap amh amh amh som
heb nap nap nap gun nap nap nap nap amh amh amh som
zho tpn nap nap mpu nap nap nap nap amh amh amh amh
ara nap nap gun gun nap nap nap nap uig amh amh amh
swe nap nap gun gun nap nap nap nap amh sin amh som
jpn nap mpu mpu tpn nap nap nap nap amh amh amh amh
fra nap mpu gun gun nap nap nap nap amh amh amh som
deu tpn mpu gun gun nap nap nap nap amh amh amh som
rus nap nap gun gun nap nap nap nap amh sin amh roh
bam mpu wbp wbp gun nap nap amh bam amh uig amh amh
ewe nap gun tpn gun nap nap amh nap amh sin amh nds
hau mpu nap gun gun aqz nap nap amh amh sin amh amh
ibo tpn mpu gun gun aqz nap nap mpu sin amh amh amh
kin mpu nap nap tpn nap nap nap nap amh amh amh amh
mos mpu aqz gun gun nap nap amh nap sin sin amh amh
pcm nap nap wbp gun kfm nap nap nap amh amh amh amh
wol nap aqz gun gun nap nap nap amh amh sin amh nds
yor nap nap wbp gun nap nap nap nap amh amh amh som

Table 20: Only bar and nds are seen by mbert. All other languages receiving maximum benefits continuously
are unseen by mbert (kfm, urb, gun, aqz, cop, roh, bam, tpn, som, kmr, uig, mpu, amh, sin, wbp, gub, nap). The
maximum score across different steps of training are bolded.
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(a)

(b)

(c)

Figure 7: Violin plots of transfer languages sorted by transfer score variance. mBERT unseen languages are in red
color font.

DEP POS NER

DEP - (-0.34, 0.04) (0.40, 0.01)
POS Tagging (-0.34, 0.04) - (-0.15, 0.37)
NER (0.40, 0.01) (-0.15, 0.37) -)

Table 21: (Spearman Rank correlation, p value) for
correlation of transfer language ranking across token-
classification tasks. Statistically significant relations are
in bold font.

hand, low variance languages are the ones those do
not significantly affect any transfer languages like
arabic (rank 37). Though the overall transfer score
is negative (-0.12) for arabic, it fails to provide
maximum or minimum transfer score to any target
language making it neutral. So, overall it is evident
that, transfer languages with high variance are the

ones with either (i) mostly positive while signif-
icantly hurting a few, (ii) mostly negative while
significantly boosting performance for a few, or
(iii) Performing both (i) and (ii) concurrently being
highly influential as well as detrimental at the same
time. Languages unseen by mBERT during pretrain-
ing exhibit all three kinds of characteristics with
high intensity (see Table 23 for examples). In Table
22, we report the transfer score with variance as
well as the count of maximum/minimum transfer
score recipients for all transfer languages across
tasks.

M Seen vs Unseen Languages

In Figure 8, we report the aggregated and averaged
transfer scores we get for mBERT seen vs unseen
languages.
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Parsing POS Tagging NER
Rank Lang Transfer (Max, Min) Lang Transfer (Max, Min) Lang Transfer (Max, Min)

(Var.) # (Var.) # (Var.) #

1 ibo 0.05 (23.5) (10, 10) ewe -0.79 (120.4) (5, 31) yor -0.32 (44.4) (2, 6)
2 hau 0.04 (22.7) (2, 2) bam -0.12 (101.2) (5, 0) ibo -0.54 (42.0) (3, 18)
3 bam 0.02 (21.5) (11, 15) mos 0.27 (69.8) (4, 3) gub -0.98 (41.2) (3, 14)
4 kin -0.06 (21.4) (3, 1) kin 0.41 (69.1) (3, 0) zho 0.16 (32.7) (46, 3)
5 wol 0.03 (17.6) (5, 6) ibo -0.14 (68.0) (5, 10) wol -0.41 (32.4) (5, 6)
6 mos 0.09 (16.1) (13, 2) hau -0.34 (52.5) (1, 3) mos 0.0 (29.5) (2, 1)
7 ewe -0.08 (14.5) (4, 5) wol -0.14 (51.9) (8, 10) kmr -0.61 (25.6) (3, 8)
8 pcm 0.13 (13.4) (1, 11) zho -0.04 (45.6) (26, 7) spa -0.28 (24.5) (1, 1)
9 hin -0.1 (13.1) (4, 3) gub -0.34 (41.3) (3, 4) gle -0.07 (21.1) (1, 1)
10 spa -0.18 (11.5) (2, 3) spa -0.53 (39.6) (0, 2) heb 0.04 (21.1) (3, 0)
11 gub -0.14 (10.7) (5, 3) fra -0.41 (37.2) (2, 6) ewe -0.76 (19.0) (0, 5)
12 kmr 0.14 (10.2) (0, 1) tel -0.31 (36.6) (0, 1) hin -0.72 (18.6) (1, 12)
13 nep 0.12 (10.1) (8, 1) swe -0.66 (32.2) (1, 3) fin -0.29 (18.3) (0, 1)
14 swe -0.21 (10.0) (0, 2) bul -0.08 (28.9) (0, 0) rus -0.34 (17.4) (0, 1)
15 pms 0.09 (9.7) (3, 1) fin -0.35 (28.9) (0, 1) hau -0.07 (17.1) (7, 0)
16 fra -0.37 (9.1) (1, 8) deu -0.44 (26.0) (0, 0) ben -0.54 (17.0) (4, 3)
17 yor 0.14 (8.9) (3, 3) tam -0.14 (22.9) (0, 0) bam -0.69 (16.1) (4, 1)
18 tel 0.05 (8.7) (1, 2) pcm -0.16 (22.1) (3, 14) kin -0.56 (13.2) (1, 3)
19 fin -0.26 (8.6) (1, 1) bre -0.39 (21.4) (1, 0) ara -0.32 (13.1) (0, 1)
20 rus 0.11 (8.5) (0, 1) kmr 0.36 (21.2) (11, 6) hun 0.08 (12.2) (2, 0)
21 ell 0.15 (8.3) (1, 0) yor -0.16 (21.0) (1, 1) hye -0.17 (12.1) (0, 1)
22 bul -0.21 (6.9) (1, 1) ben -0.08 (20.6) (3, 2) pcm -0.69 (11.8) (6, 25)
23 zho -0.48 (6.9) (5, 10) hun -0.29 (20.4) (3, 1) swe -0.11 (10.1) (0, 0)
24 gle 0.03 (6.8) (1, 1) eng -0.35 (18.8) (2, 1) fra -0.59 (9.5) (0, 5)
25 tam -0.24 (6.7) (1, 3) heb -0.26 (17.3) (0, 1) bul -0.18 (9.0) (0, 1)
26 eng -0.22 (6.4) (0, 0) rus -0.28 (15.3) (0, 0) ell -0.29 (8.8) (1, 1)
27 est 0.0 (6.1) (1, 1) gle -0.34 (13.7) (0, 2) tel 0.08 (8.6) (1, 0)
28 ben -0.06 (6.0) (3, 1) jpn 0.18 (13.6) (11, 0) deu -0.2 (8.4) (0, 0)
29 hun -0.23 (5.9) (0, 2) hye 0.27 (12.8) (2, 0) nep -0.13 (8.1) (1, 1)
30 heb 0.08 (5.8) (0, 1) ara -0.3 (11.7) (0, 0) cym 0.03 (7.8) (2, 1)
31 deu -0.13 (5.7) (1, 4) ell -0.13 (11.1) (1, 0) est 0.03 (7.8) (0, 0)
32 bre -0.23 (5.7) (1, 1) est -0.35 (9.1) (1, 1) tam 0.0 (7.1) (3, 0)
33 mya 0.33 (5.6) (9, 0) pms 0.08 (8.8) (2, 0) bre -0.23 (5.6) (1, 0)
34 kor -0.38 (5.6) (0, 1) nep 0.12 (8.4) (6, 0) mya -0.17 (5.3) (5, 2)
35 hye -0.03 (5.4) (0, 2) cym 0.22 (6.7) (0, 0) jpn -0.08 (5.3) (4, 1)
36 ara -0.12 (5.1) (0, 0) hin -0.13 (6.4) (0, 3) eng 0.02 (5.1) (5, 1)
37 jpn -0.19 (3.9) (14, 2) kor -0.07 (5.8) (1, 0) pms -0.29 (5.0) (1, 0)
38 cym -0.03 (2.9) (1, 3) mya 0.17 (2.7) (3, 1) kor -0.09 (4.4) (7, 1)

Table 22: Transfer languages are sorted by transfer score variance (mBERT unseen languages are in bold font).
# Max Transfer and # Min Transfer denote the count of target languages which receive maximum and minimum
transfer from this particular transfer language.

N Transfer Progression Graphs

From Figure 9 to 18, we present the transfer pro-
gression graphs for all 38 transfer languages. We
observe POS tagging always have comparatively
larger deviation which increase with the progres-
sion of training steps. In addition, for different
time steps in each graph, we provide percentage of
positive/negative transfers and the top performing
target languages. This way, we observe top target
languages that can get continuous improvement
for each transfer language even after thousands of
steps.
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Type Transfer
Language

Variance max(+)→ min(-)→

(+ and -) ibo high aii, ajp, apu, arr, ces, gle,
gub, koi, krl, yor

grc, hsb, hye, kfm, otk,
san, sme, sqi, srp, urb

(+ and -) bam high bho, bam, bre, bxr, kfm,
kmr, kpv, mpu, rus, soj,
wbp

ajp, ara, chu, gla, got, krl,
lzh, nld, orv, qpm, qtd,
swl, tha, tgl, zho

(+) mos high aqz, bel, bul, eng, ind, ita,
kaz, lit, myv, pol, tam, tgl,
ukr

arr, wbp

(-) pcm high tha aii, bho, ell, eng, eus, hrv,
isl, lat, lit, nor, qhe

neutral eng low - -
neutral ara low - -

Table 23: Characteristics of example transfer languages with different intensity of variance derived from dependency
parsing task results. max(+)→ represents set of target language which receive maximum score for the specific
transfer language wheres, min(-)→ represents the complete oposite.

Figure 8: Transfer-Target Heatmap for mbert seen and unseen languages
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Language iso-639 Family Genus Script mBERT-seen?

Hebrew heb Afro-Asiatic Semitic Hebr
Arabic ara Afro-Asiatic Semitic Arab
Hausa hau Afro-Asiatic West Chadic Latn

Telugu tel Dravidian Dravidian Telu
Tamil tam Dravidian Dravidian Taml

Armenian hye Indo-European Armenian Armn
Breton bre Indo-European Celtic Latn
Irish gle Indo-European Celtic Latn
Welsh cym Indo-European Celtic Latn
English eng Indo-European Germanic Latn
Swedish swe Indo-European Germanic Latn
German deu Indo-European Germanic Latn
Modern Greek (1453-) ell Indo-European Greek Grek
Bengali ben Indo-European Indic Beng
Nepali (macrolanguage) nep Indo-European Indic Deva
Hindi hin Indo-European Indic Deva
Northern Kurdish kmr Indo-European Iranian Arab
French fra Indo-European Romance Latn
Spanish spa Indo-European Romance Latn
Piemontese pms Indo-European Romance Latn
Bulgarian bul Indo-European Slavic Cyrl
Russian rus Indo-European Slavic Cyrl

Japanese jpn Japanese Japanese Jpan

Korean kor Korean Korean Kore

Bambara bam Mande Western Mande Latn

Kinyarwanda kin Niger-Congo Bantu Latn
Yoruba yor Niger-Congo Defoid Latn
Ewe ewe Niger-Congo Gbe Latn
Igbo ibo Niger-Congo Igboid Latn
Mossi mos Niger-Congo Oti-Volta Latn
Wolof wol Niger-Congo Wolof Latn

Burmese mya Sino-Tibetan Burmese-Lolo Mon–Burmese
Chinese zho Sino-Tibetan Chinese Chinese

Guajajára gub Tupian Maweti-Guarani Latn

Estonian est Uralic Finnic Latn
Finnish fin Uralic Finnic Latn
Hungarian hun Uralic Ugric Latn

Nigerian Pidgin pcm other Creoles and Pidgins Latn

Table 24: Transfer Languages we use in our study for mBERT fine-tuning
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UDP and POS Tagging Task Adapter Training Dataset

Language iso-639 UD Identifier # Examples Family Genus Script

Coptic cop cop_scriptorium 403 Afro-Asiatic Egyptian-Coptic Coptic
Arabic ara ar_nyuad 1963 Afro-Asiatic Semitic Arab
Hebrew heb he_htb 491 Afro-Asiatic Semitic Hebr
Maltese mlt mt_mudt 518 Afro-Asiatic Semitic Latn
Kazakh kaz kk_ktb 1047 Altaic Turkic Cyrl
Turkish tur tr_gb 2880 Altaic Turkic Latn
Uighur uig ug_udt 900 Altaic Turkic Uighur
Vietnamese vie vi_vtb 800 Austro-Asiatic Vietic Latn
Indonesian ind id_pud 1000 Austronesian Malayo-Sumbawan Latn
Basque eus eu_bdt 1799 Basque Basque Latn
Turkish German qtd qtd_sagt 805 Code switching Code switching Latn
Tamil tam ta_mwtt 534 Dravidian Dravidian Taml
Telugu tel te_mtg 146 Dravidian Dravidian Telu
Armenian hye hy_armtdp 278 Indo-European Armenian Armn
Latvian lav lv_lvtb 1823 Indo-European Baltic Latn
Lithuanian lit lt_alksnis 684 Indo-European Baltic Latn
Welsh cym cy_ccg 953 Indo-European Celtic Latn
Scottish Gaelic gla gd_arcosg 538 Indo-European Celtic Latn
Irish gle ga_idt 454 Indo-European Celtic Latn
Gothic got got_proiel 1029 Indo-European Germanic Gothic
Afrikaans afr af_afribooms 425 Indo-European Germanic Latn
Danish dan da_ddt 565 Indo-European Germanic Latn
German deu de_hdt 18459 Indo-European Germanic Latn
English eng en_ewt 2077 Indo-European Germanic Latn
Faroese fao fo_oft 1208 Indo-European Germanic Latn
Icelandic isl is_icepahc 5157 Indo-European Germanic Latn
Dutch nld nl_lassysmall 875 Indo-European Germanic Latn
Norwegian nor no_bokmaal 1939 Indo-European Germanic Latn
Swedish swe sv_talbanken 1219 Indo-European Germanic Latn
Modern Greek (1453-) ell el_gdt 456 Indo-European Greek Grek
Ancient Greek (to 1453) grc grc_perseus 1306 Indo-European Greek Grek
Urdu urd ur_udtb 535 Indo-European Indic Arab
Sanskrit san sa_vedic 1473 Indo-European Indic Brahmi
Hindi hin hi_hdtb 1684 Indo-European Indic Deva
Marathi mar mr_ufal 47 Indo-European Indic Deva
Persian fas fa_perdt 1455 Indo-European Iranian Arab
Northern Kurdish kmr kmr_mg 734 Indo-European Iranian Arab
Latin lat la_ittb 2101 Indo-European Italic Latn
Catalan cat ca_ancora 1846 Indo-European Romance Latn
French fra fr_ftb 2541 Indo-European Romance Latn
Old French (842-ca. 1400) fro fro_srcmf 1927 Indo-European Romance Latn
Galician glg gl_ctg 861 Indo-European Romance Latn
Italian ita it_vit 1067 Indo-European Romance Latn
Portuguese por pt_gsd 1204 Indo-European Romance Latn
Romanian ron ro_nonstandard 1052 Indo-European Romance Latn
Spanish spa es_ancora 1721 Indo-European Romance Latn
Belarusian bel be_hse 889 Indo-European Slavic Cyrl
Bulgarian bul bg_btb 1116 Indo-European Slavic Cyrl
Old Russian orv orv_torot 1756 Indo-European Slavic Cyrl
Russian rus ru_syntagrus 6491 Indo-European Slavic Cyrl
Serbian srp sr_set 520 Indo-European Slavic Cyrl
Ukrainian ukr uk_iu 892 Indo-European Slavic Cyrl
Church Slavic chu cu_proiel 1141 Indo-European Slavic Glag+Latn
Czech ces cs_pdt 10148 Indo-European Slavic Latn
Croatian hrv hr_set 1136 Indo-European Slavic Latn
Upper Sorbian hsb hsb_ufal 623 Indo-European Slavic Latn
Polish pol pl_pdb 2215 Indo-European Slavic Latn
Pomak qpm qpm_philotis 635 Indo-European Slavic Latn
Slovak slk sk_snk 1061 Indo-European Slavic Latn
Slovenian slv sl_sst 1110 Indo-European Slavic Latn
Japanese jpn ja_bccwj 7871 Japanese Japanese Jpan
Korean kor ko_kaist 2287 Korean Korean Kore
Russia Buriat bxr bxr_bdt 908 Mongolic Altic Cyrl
Wolof wol wo_wtb 470 Niger-Congo Wolof Latn
Cusco Quechua qhe qhe_hiencs 225 Quechuan Quechuan Latn
Literary Chinese lzh lzh_kyoto 4469 Sino-Tibetan Chinese Chinese
Chinese zho zh_hk 1004 Sino-Tibetan Chinese Chinese
Estonian est et_edt 3214 Uralic Finnic Latn
Finnish fin fi_ood 2122 Uralic Finnic Latn
Livvi olo olo_kkpp 106 Uralic Finnic Latn
Northern Sami sme sme_giella 865 Uralic Saami Latn
Hungarian hun hu_szeged 449 Uralic Ugric Latn
Nigerian Pidgin pcm pcm_nsc 972 other Creoles and Pidgins Latn
Swedish Sign Language swl swl_sslc 34 other Sign Languages

Table 25: Task Adapter training dataset details (taken from Universal Dependency v2.11 (de Marneffe et al., 2021))
for dependency parsing and pos tagging.
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NER Task Adapter Training Dataset

Language iso-639 Family Genus Script

Somali som Afro-Asiatic Lowland East Cushitic Latn
Arabic ara Afro-Asiatic Semitic Arab
Amharic amh Afro-Asiatic Semitic Ethi
Hebrew heb Afro-Asiatic Semitic Hebr
Maltese mlt Afro-Asiatic Semitic Latn
Mongolian mon Altaic Mongolic Mongolian
Bashkir bak Altaic Turkic Cyrl
Chuvash chv Altaic Turkic Cyrl
Kazakh kaz Altaic Turkic Cyrl
Yakut sah Altaic Turkic Cyrl
Crimean Tatar crh Altaic Turkic Cyrl+Latn+Arab
Kirghiz kir Altaic Turkic Kyrgyz+Cyrl
Azerbaijani aze Altaic Turkic Latn
Tatar tat Altaic Turkic Latn
Turkmen tuk Altaic Turkic Latn
Turkish tur Altaic Turkic Latn
Uzbek uzb Altaic Turkic Latn
Uighur uig Altaic Turkic Uighur
Khmer khm Austro-Asiatic Khmer Khmer
Vietnamese vie Austro-Asiatic Vietic Latn
Malagasy mlg Austronesian Barito Latn
Cebuano ceb Austronesian Greater Central Philippine Latn
Tagalog tgl Austronesian Greater Central Philippine Latn
Waray (Philippines) war Austronesian Greater Central Philippine Latn
Javanese jav Austronesian Javanese Latn+Javanese
Achinese ace Austronesian Malayo-Sumbawan Latn
Malay (macrolanguage) msa Austronesian Malayo-Sumbawan Latn
Sundanese sun Austronesian Malayo-Sumbawan Latn
Iloko ilo Austronesian Northern Luzon Latn
Maori mri Austronesian Oceanic Latn
Aymara aym Aymaran Aymaran Latn
Basque eus Basque Basque Latn
Kannada kan Dravidian Dravidian Kannada
Malayalam mal Dravidian Dravidian Malayalam
Tamil tam Dravidian Dravidian Taml
Telugu tel Dravidian Dravidian Telu
Albanian sqi Indo-European Albanian Latn
Armenian hye Indo-European Armenian Armn
Latvian lav Indo-European Baltic Latn
Lithuanian lit Indo-European Baltic Latn
Breton bre Indo-European Celtic Latn
Welsh cym Indo-European Celtic Latn
Scottish Gaelic gla Indo-European Celtic Latn
Irish gle Indo-European Celtic Latn
Western Frisian fry Indo-European Germanic West Frisian
Afrikaans afr Indo-European Germanic Latn
Bavarian bar Indo-European Germanic Latn
Danish dan Indo-European Germanic Latn
German deu Indo-European Germanic Latn
English eng Indo-European Germanic Latn
Faroese fao Indo-European Germanic Latn
Northern Frisian frr Indo-European Germanic Latn
Icelandic isl Indo-European Germanic Latn
Kölsch ksh Indo-European Germanic Latn
Luxembourgish ltz Indo-European Germanic Latn
Low German nds Indo-European Germanic Latn
Dutch nld Indo-European Germanic Latn
Norwegian nor Indo-European Germanic Latn
Swedish swe Indo-European Germanic Latn
Yiddish yid Indo-European Germanic Latn
Zeeuws zea Indo-European Germanic Latn
Modern Greek (1453-) ell Indo-European Greek Grek
Sindhi snd Indo-European Indic Arab
Urdu urd Indo-European Indic Arab
Assamese asm Indo-European Indic Assamese
Bengali ben Indo-European Indic Beng
Hindi hin Indo-European Indic Deva
Marathi mar Indo-European Indic Deva
Nepali (macrolanguage) nep Indo-European Indic Deva
Gujarati guj Indo-European Indic Gujarati
Oriya (macrolanguage) ori Indo-European Indic Odia
Panjabi pan Indo-European Indic Shahmukh
Sinhala sin Indo-European Indic Sinhala
Dhivehi div Indo-European Indic Thaana
Persian fas Indo-European Iranian Arab
Ossetian oss Indo-European Iranian Cyrl
Tajik tgk Indo-European Iranian Cyrl+Latn
Kurdish kur Indo-European Iranian Latn+Sorani
Mazanderani mzn Indo-European Iranian Persian
Pushto pus Indo-European Iranian Pushto
Asturian ast Indo-European Romance Latn
Catalan cat Indo-European Romance Latn
French fra Indo-European Romance Latn
Galician glg Indo-European Romance Latn
Italian ita Indo-European Romance Latn
Ligurian lij Indo-European Romance Latn
Neapolitan nap Indo-European Romance Latn
Occitan (post 1500) oci Indo-European Romance Latn
Piemontese pms Indo-European Romance Latn
Portuguese por Indo-European Romance Latn
Romansh roh Indo-European Romance Latn
Romanian ron Indo-European Romance Latn
Spanish spa Indo-European Romance Latn
Belarusian bel Indo-European Slavic Cyrl
Bulgarian bul Indo-European Slavic Cyrl
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Macedonian mkd Indo-European Slavic Cyrl
Russian rus Indo-European Slavic Cyrl
Ukrainian ukr Indo-European Slavic Cyrl
Czech ces Indo-European Slavic Latn
Kashubian csb Indo-European Slavic Latn
Serbo-Croatian hbs Indo-European Slavic Latn
Upper Sorbian hsb Indo-European Slavic Latn
Polish pol Indo-European Slavic Latn
Slovak slk Indo-European Slavic Latn
Slovenian slv Indo-European Slavic Latn
Japanese jpn Japanese Japanese Jpan
Georgian kat Kartvelian Kartvelian Georgian
Mingrelian xmf Kartvelian Kartvelian Latn
Korean kor Korean Korean Kore
Chechen che Nakh-Daghestanian Nakh Cyrl
Kinyarwanda kin Niger-Congo Bantu Latn
Lingala lin Niger-Congo Bantu Latn
Swahili (macrolanguage) swa Niger-Congo Bantu Latn
Yoruba yor Niger-Congo Defoid Latn
Igbo ibo Niger-Congo Igboid Latn
Quechua que Quechuan Quechuan Latn
Tibetan bod Sino-Tibetan Bodic Tibetan
Burmese mya Sino-Tibetan Burmese-Lolo Mon–Burmese
Chinese zho Sino-Tibetan Chinese Chinese
Thai tha Tai-Kadai Kam-Tai Thai
Guarani grn Tupian Maweti-Guarani Latn
Estonian est Uralic Finnic Latn
Finnish fin Uralic Finnic Latn
Veps vep Uralic Finnic Latn
Hungarian hun Uralic Ugric Latn

Table 26: Task Adapter training dataset details (taken from Wikiann (Pan et al., 2017)) for Named Entity Recognition.

NLI Task Adapter Training Dataset

Language iso-639 Family Genus Script

Arabic ara Afro-Asiatic Semitic Arab
Turkish tur Altaic Turkic Latn
Vietnamese vie Austro-Asiatic Vietic Latn
German deu Indo-European Germanic Latn
English eng Indo-European Germanic Latn
Modern Greek (1453-) ell Indo-European Greek Grek
Urdu urd Indo-European Indic Arab
Hindi hin Indo-European Indic Deva
French fre Indo-European Romance Latn
Spanish spa Indo-European Romance Latn
Bulgarian bul Indo-European Slavic Cyrl
Russian rus Indo-European Slavic Cyrl
Swahili (macrolanguage) swa Niger-Congo Bantu Latn
Chinese zho Sino-Tibetan Chinese Chinese
Thai tha Tai-Kadai Kam-Tai Thai

Table 27: Task Adapter training dataset details (taken from XNLI (Conneau et al., 2018)) for Natural Language
Inference.

Extractive Question Answering Task Adapter Training Dataset

Language iso-639 Family Genus Script

Arabic ara Afro-Asiatic Semitic Arab
Indonesian idn Astronesian Malay Latn
Telugu tel Dravidian Dravidian Telu
English eng Indo-European Germanic Latn
Bengali ben Indo-European Indic Beng
Russian rus Indo-European Slavic Cyrl
Korean kor Korean Korean Kore
Swahili (macrolanguage) swa Niger-Congo Bantu Latn
Finnish fin Uralic Finnic Latn

Table 28: Task Adapter training dataset details (taken from TyDiQA (Clark et al., 2020)) for Extractive Question
Answering.
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Evaluation Languages

Language iso-639 NER UDP and POS XNLI ANLI TyDiQA

1 Achinese ace
2 Afrikaans afr
3 Assyrian Neo-Aramaic aii
4 South Levantine Arabic ajp
5 Akkadian akk
6 Amharic amh
7 Apurinã apu
8 Akuntsu aqz
9 Arabic ara
10 Karo (Brazil) arr
11 Assamese asm
12 Asturian ast
13 Aymara aym
14 Azerbaijani aze
15 Bashkir bak
16 Bambara bam
17 Bavarian bar
18 Belarusian bel
19 Bengali ben
20 Bhojpuri bho
21 Tibetan bod
22 Breton bre
23 Bulgarian bul
24 Russia Buriat bxr
25 Catalan cat
26 Cebuano ceb
27 Czech ces
28 Chechen che
29 Church Slavic chu
30 Chuvash chv
31 Chukot ckt
32 Coptic cop
33 Crimean Tatar crh
34 Kashubian csb
35 Welsh cym
36 Danish dan
37 German deu
38 Dhivehi div
39 Modern Greek (1453-) ell
40 English eng
41 Estonian est
42 Basque eus
43 Faroese fao
44 Persian fas
45 Finnish fin
46 French fra
47 Old French (842-ca. 1400) fro
48 Northern Frisian frr
49 Western Frisian fry
50 Scottish Gaelic gla
51 Irish gle
52 Galician glg
53 Manx glv
54 Gothic got
55 Ancient Greek (to 1453) grc
56 Guarani grn
57 Swiss German gsw
58 Guajajára gub
59 Gujarati guj
60 Mbyá Guaraní gun
61 Serbo-Croatian hbs
62 Hebrew heb
63 Hindi hin
64 Croatian hrv
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65 Upper Sorbian hsb
66 Hungarian hun
67 Armenian hye
68 Igbo ibo
69 Iloko ilo
70 Indonesian ind
71 Icelandic isl
72 Italian ita
73 Javanese jav
74 Japanese jpn
75 Kannada kan
76 Georgian kat
77 Kazakh kaz
78 Khunsari kfm
79 Khmer khm
80 Kinyarwanda kin
81 Kirghiz kir
82 Northern Kurdish kmr
83 Komi-Permyak koi
84 Korean kor
85 Komi-Zyrian kpv
86 Karelian krl
87 Kölsch ksh
88 Kurdish kur
89 Latin lat
90 Latvian lav
91 Ligurian lij
92 Lingala lin
93 Lithuanian lit
94 Luxembourgish ltz
95 Literary Chinese lzh
96 Malayalam mal
97 Marathi mar
98 Moksha mdf
99 Macedonian mkd
100 Malagasy mlg
101 Maltese mlt
102 Mongolian mon
103 Makuráp mpu
104 Maori mri
105 Malay (macrolanguage) msa
106 Burmese mya
107 Mundurukú myu
108 Erzya myv
109 Mazanderani mzn
110 Neapolitan nap
111 Low German nds
112 Nepali (macrolanguage) nep
113 Dutch nld
114 Norwegian nor
115 Nayini nyq
116 Occitan (post 1500) oci
117 Livvi olo
118 Oriya (macrolanguage) ori
119 Old Russian orv
120 Ossetian oss
121 Old Turkish otk
122 Panjabi pan
123 Nigerian Pidgin pcm
124 Piemontese pms
125 Polish pol
126 Portuguese por
127 Pushto pus
128 Cusco Quechua qhe
129 Pomak qpm
130 Turkish German qtd
131 Quechua que
132 Romansh roh
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133 Romanian ron
134 Russian rus
135 Yakut sah
136 Sanskrit san
137 Sinhala sin
138 Slovak slk
139 Slovenian slv
140 Northern Sami sme
141 Skolt Sami sms
142 Sindhi snd
143 Soi soj
144 Somali som
145 Spanish spa
146 Albanian sqi
147 Serbian srp
148 Sundanese sun
149 Swahili (macrolanguage) swa
150 Swedish swe
151 Swedish Sign Language swl
152 Tamil tam
153 Tatar tat
154 Telugu tel
155 Tajik tgk
156 Tagalog tgl
157 Thai tha
158 Tupinambá tpn
159 Turkmen tuk
160 Turkish tur
161 Uighur uig
162 Ukrainian ukr
163 Urubú-Kaapor urb
164 Urdu urd
165 Uzbek uzb
166 Veps vep
167 Vietnamese vie
168 Waray (Philippines) war
169 Warlpiri wbp
170 Wolof wol
171 Mingrelian xmf
172 Kangri xnr
173 Yiddish yid
174 Yoruba yor
175 Cantonese yue
176 Zeeuws zea
177 Chinese zho
178 Bribri bzc
179 Asháninka cni
180 Huichol hch
181 Nahuatl nah
182 Otomí oto
183 Shipibo-Konibo shp
184 Rarámuri tar

Table 29: Evaluation languages for all six tasks.
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O FAQ

1. What are the main contributions of this study
and the difference of our approach with other
methods?

• First, note that our paper introduces a
method for studying cross-lingual trans-
fer, not necessarily a method for im-
proving cross-lingual transfer. We de-
viate from this “standard” way of using
adapters for two reasons:
(a) Training a task adapter on many lan-

guages, as a preliminary step, allows
this component to learning the task,
regardless of language. This is nec-
essary for disentangling the effect of
task and language in our analysis.

(b) We then finetune the whole model
(and not introduce a new adapter) ex-
actly because we now want to study
the effect of the language. While
introducing a new language adapter
might have a similar effect, there’s
additional hurdles to do so: the lan-
guage adapter would need more data
to be trained, as it would be randomly
initialized; our approach instead can
work even with a single batch/update,
so it is applicable even for very, very
low-resource scenarios.

• Secondly, we propose a strategy to vi-
sually represent the language-language
interaction utilizing the adapter-based fu-
sion method. In general, training fully
bilingual or trilingual for a different com-
bination of languages are very expensive.
This is why, we opt to have trained lan-
guage adapter modules and then fuse to-
gether according to the need in an effi-
cient manner.

2. What is the reason for selecting the 38 trans-
fer languages, including the 11 unseen lan-
guages? Why why include the 11 unseen lan-
guages from pre-training?

• Language selection: No other particular
reasons except selecting a broader range
of transfer languages covering language
families and typological diversity. These
38 languages in total cover 10 language
families, 26 genus and 14 script varia-
tions.
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Figure 9: Aggregated Transfer Progression through training steps
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Figure 10: Aggregated Transfer Progression through training steps
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Figure 11: Aggregated Transfer Progression through training steps
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Figure 12: Aggregated Transfer Progression through training steps
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Figure 13: Aggregated Transfer Progression through training steps
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Figure 14: Aggregated Transfer Progression through training steps
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Figure 15: Aggregated Transfer Progression through training steps
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Figure 16: Aggregated Transfer Progression through training steps
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Figure 17: Aggregated Transfer Progression through training steps
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Figure 18: Aggregated Transfer Progression through training steps
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Abstract
Training Large Language Models (LLMs) with
Reinforcement Learning from AI Feedback
(RLAIF) aligns model outputs more closely
with human preferences. This involves an
evaluator model ranking multiple candidate re-
sponses to user prompts. However, the rankings
from popular evaluator models such as GPT-4
can be inconsistent.

We propose the Repeat Ranking method, in
which we evaluate the same responses multi-
ple times and train only on those responses
which are consistently ranked. Using 2,714
training prompts in 62 languages, we generated
responses from 7 top multilingual LLMs and
had GPT-4 rank them five times each. Evaluat-
ing on MT-Bench chat benchmarks in six lan-
guages, our method outperformed the standard
practice of training on all available prompts.

Our work highlights the quality versus quantity
trade-off in RLAIF dataset generation and of-
fers a stackable strategy for enhancing dataset
and thus model quality.

1 Introduction

Reinforcement learning has been shown to improve
large language model (LLM) performance signifi-
cantly (Yao et al., 2023; Havrilla et al., 2024), with
this form of learning instructing an LLM both how
to and how not to generate text.

This has come in the forms of Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) and Reinforcement Learning from Ar-
tificial Intelligence Feedback (RLAIF) (Bai et al.,
2022b; Lee et al., 2023), where a human or AI is
used, respectively, to determine the relative quality
of multiple responses to a given prompt. Based on
these quality rankings, high quality and low quality
responses are defined as “positive” and “negative”
and this preference dataset is then used to train an
LLM either with the help of a reward model or
by directly training using a method such as Prox-
imal Policy Optimisation (PPO) (Schulman et al.,

2017), Direct Policy Optimisation (DPO) (Rafailov
et al., 2024), or Odds Ratio Preference Optimisa-
tion (ORPO) (Hong et al., 2024). This style of train-
ing has lead to many of the improvements in recent
years in LLM training, with both GPT-3.5 (Ouyang
et al., 2022), trained with RLHF, and Starling (Zhu
et al., 2023), trained with RLAIF, demonstrating
gains upon previous state-of-the-art performance
across many evaluation benchmarks.

Most publicly available preference data is mono-
lingual, but we hypothesize that training a model
on multilingual preference data will improve the
resultant model’s multilingual capabilities. This
prompted us to create a multilingual preference
dataset.

We follow previous methods for creating HLAIF
preference datasets such as Nectar (Zhu et al.,
2023) by first sampling human generated prompts
from public datasets before generating various re-
sponses to each prompt using seven state-of-the-art
LLMs. We then use a state-of-the-art LLM, GPT-4,
to evaluate the relative ranking of each response.

However, we found that when the evaluation pro-
cess was repeated on the same responses, different
rankings were sometimes output by GPT-4. This
suggested that the definition of positive and nega-
tive labels in these instances had a lower confidence
than instances where GPT-4 would consistently out-
put the same ranking given a set of responses.

Therefore, we hypothesized that training only on
rankings that GPT-4 consistently outputs over mul-
tiple evaluations would lead to greater downstream
evaluation performance compared to training on
all rankings, both consistent and inconsistent. This
lead us to propose the Repeat Ranking method,
whereby responses are evaluated multiple times
and the consistency of the rankings is used as a fil-
ter for inclusion or exclusion from the training set.
A representation of our Repeated Ranking method
can be found in Fig. 1.

We conducted experiments in which 2,714 mul-
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Prompt 1:
What is the capital 
of France?

Model A:
Paris - the city of love

Model B:
The capital of France 
is Paris.

Model C:
Paris is the capital of 
France.

Prompt 2:
What was the 
world’s population 
in 2023?

Model A:
8 thousand

Model B:
8 billion

Model C:
5 billion

Evaluation 1.1:
B > C > D > A

Evaluation 1.2:
C > D > A > B

Evaluation 1.3:
D > A > B > C

Evaluation 2.1:
B > C > A > D

Evaluation 2.2:
B > A > C > D

Evaluation 2.3:
B > C > A > D

Model D:
Paris

Model D:
1 thousand

Kendall’s W of evaluation 
rankings = 0.111

Result:
Exclude from training data

Kendall’s W of evaluation 
rankings = 0.644

Result:
Use Model B as positive 
response and Model D as 
negative response in 
training data

Figure 1: A visual description of how we select our data for training. We use our Repeat Ranking method to repeat
the evaluations of the models multiple times and then only train on the best and worst responses which have a high
Kendall’s W, a measure of ranking agreement, associated with their ranking.

tilingual prompts were selected and 7 LLMs were
used to generate responses for each prompt. We
then evaluated each set of 7 responses 5 times us-
ing GPT-4. Finally, we propose a novel method for
filtering evaluated preferences by measuring the
consistency of the set of rankings for each evalua-
tion using Kendall’s W (Kendall and Smith, 1939).
We conducted experiments training an LLM us-
ing all rankings, as well as the 75%, 50%, and
25% most consistent rankings. We then evaluated
each trained model using the MT-Bench benchmark
across 6 languages.

Our results show that training on the more consis-
tently ranked responses gives greater downstream
evaluation performance compared to training on all
data for a majority of languages tested.

Our findings inform the creation of future prefer-
ence datasets and offer a method of improving the
quality of existing preference datasets. This may
open up exciting new avenues for training LLMs
and highlights the importance of high quality posi-
tive and negative data when training using RLAIF.

We make our training data1, training code2, and

1https://huggingface.co/datasets/lightblue/
mitsu

2https://github.com/lightblue-tech/suzume/
tree/main/mitsu

trained models3 available online.

2 Related Work

LLM chat performance has been improved by train-
ing on RLHF datasets in multiple works within the
literature.

The RLHF dataset used to train InstructGPT was
created by having users and paid annotators evalu-
ate multiple responses to a given prompt and indi-
cating their preferred prompt (Ouyang et al., 2022).
This work stated that “most comparisons are only
labeled by 1 contractor for cost reasons” and that
“having examples labeled multiple times could help
identify areas where our contractors disagree, and
thus where a single model is unlikely to align to
all of them”, indicating the seeming importance
of having consistently similarly ranked preference
data when training with RLHF.

In contrast, the OpenAssistant Conversations
(OASST1) dataset (Köpf et al., 2024), contains
conversation prompts and responses that are writ-
ten by volunteers, with the responses evaluated by
multiple volunteers. While this is a large dataset of
more than 10,000 individual messages, over 70%
of these conversations are in either English or Span-
ish, reducing OASST1’s applicability to training a

3https://huggingface.co/lightblue/
suzume-llama-3-8B-multilingual-orpo-borda-half
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multilingual model.
Generating data using human labellers is also

costly, which is why several datasets have been
constructed for RLAIF.

Previous work includes the use of “Constitu-
tional AI” (Bai et al., 2022b) whereby an LLM
is prompted to respond to a prompt before being
tasked with revising that response to be less harm-
ful and in line with principles set by researchers.
The LLM then generates a less harmful response
and the original and revised responses are then used
to train another LLM using reinforcement learning.

Further work showed that training using RLAIF
can lead to similar human evaluation scores com-
pared to RLHF (Lee et al., 2023). This work
also showed that RLAIF by training directly on
response evaluation scores elicited from LLMs
achieves greater down-stream task performance
compared to the Constitutional AI approach of hav-
ing an LLM revise existing responses.

Nectar (Zhu et al., 2023) is a preference dataset
which first samples prompts from a variety of
open source datasets, before generating responses
based on these prompts using seven state-of-the-
art LLMs (GPT-4, GPT-3.5-turbo, GPT-3.5-turbo-
instruct, Command R+, Command R, LLama-2-7B-
chat, and Mistral-7B-Instruct). These responses are
then ranked once by GPT-4 and these rankings are
used to train the Starling Alpha and Beta models
using reinforcement learning. These prompts and
responses are also all in English, meaning that this
dataset is not suitable for training a multilingual
model.

Due to the paucity of high quality multilingual
models existing within the literature, we create one,
which we call Mitsu.

Previous work has also shown that filtering rein-
forcement learning data can lead to higher down-
stream task accuracy (Morimura et al., 2024). How-
ever, this approach relies on an external reward
model to choose which data to filter, limiting the
application of this approach to domains and lan-
guages that no existing reward model has been
trained on.

3 Method

The overall objective of this piece of work was to
create an LLM that was more proficient at multi-
lingual chat than previous LLMs. In the course of
creating such an LLM, we generated also insights
into the process of creating high quality preference

datasets. This section details how we used our
Repeated Ranking method to make our training
dataset named Mitsu, how we trained our model,
and finally how we evaluated our LLM.

3.1 Preference Dataset Creation with
Repeated Rankings

We create our Mitsu dataset by first following
the process of how Nectar (Zhu et al., 2023)
was developed by sampling human generated
prompts derived from open source datasets such
as the LMSYS-Chat-1M dataset (Zheng et al.,
2023). Specifically, we select the multilingual
stratified sample of prompts from the Tagengo
dataset (Devine, 2024), which consists of 76,338 di-
verse human generated prompts in 74 languages. In
order to reduce the costs of generating the dataset,
we further stratify by languages, randomly sam-
pling a maximum of 100 prompts per language.
For languages with less than 100 prompts in the
original dataset, we used all prompts for that lan-
guage. This resulted in 2,996 prompts in total being
selected.

Following the method used in the creation of
the Nectar dataset, we used our sampled prompts
to generate responses from seven state-of-the-
art models. These were GPT-4 (gpt-4-0125-
preview) (Achiam et al., 2023), GPT-3.5 Turbo
(gpt-35-turbo-0301) (Ouyang et al., 2022), Com-
mand R (Gomez, 2024)4, Command R+ (Gomez,
2024)5, Qwen 1.5 32B Chat (Bai et al., 2023)6,
Qwen 1.5 72B Chat (Bai et al., 2023)7, Starling 7B
Beta (Zhu et al., 2023)8.

These models were all chosen for their ability
to output at least some multilingual text, which is
why we did not consider using high performing but
monolingual models such as Llama 3 (AI@Meta,
2024).

Our text generation settings were as follows. We
set the generation temperature to 0 for all models,
as some models such as Qwen have been shown
to require smaller generation temperatures due to
their larger vocabulary size and in order to make
the generation deterministic to some extend. Future
work could explore using more sophisticated tem-

4https://huggingface.co/CohereForAI/
c4ai-command-r-v01

5https://huggingface.co/CohereForAI/
c4ai-command-r-plus

6https://huggingface.co/Qwen/Qwen1.5-32B-Chat
7https://huggingface.co/Qwen/Qwen1.5-72B-Chat
8https://huggingface.co/Nexusflow/

Starling-LM-7B-beta
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perature set-ups per model, language, or prompt.
We set our maximum number of tokens to generate
as 2,048, and we discard any responses that have
not been completed within this token limit. This
was done to reduce both generation and evaluation
time and costs, but future work could explore using
longer generated sequences for a preference dataset.
We used the popular vLLM library (Kwon et al.,
2023) to generate responses with our local models,
which were all models except GPT-4 and GPT-3.5-
turbo. For GPT-4 and GPT-3.5-turbo, we generated
responses using the Azure OpenAI endpoint. This
resulted in 2,762 prompts having 7 full responses
(one from each model), which we then ranked.

Our response evaluation again was conducted
similarly to Nectar, where we used a similar sys-
tem message describing the criteria for evaluating
prompts as the original Nectar system message. We
added one additional evaluation criteria to the orig-
inal system message, which was “Is the response
written naturally and fluently in the language that
the prompter would expect?”. This was added to
make sure that highly rated responses were not cor-
rect but English responses to non-English prompts,
which can occur in some LLMs.

Aside from our response evaluation criteria, we
included a statement in the system message that
instructed GPT-4 to output both a short explana-
tion of the merits and drawbacks of each response,
before outputting a ranking of the responses. This
ranking consisted of responses labelled by alpha-
bet character, using greater than (’>’) and equals
(’=’) signs to determine which responses were eval-
uated as better and which were of equal quality.
To avoid a systematic bias in our evaluations, re-
sponses were input to GPT-4 in a randomised order,
with the responses being labelled A-G in order.
We also take inspiration from work in generating
the Nectar dataset in which randomised pairwise
comparisons were used by instructing GPT-4 to
write the explanation of the ranking in a dictated
randomised order. The system message that we
used in this work can be found in Figure 3 in the
Appendix.

This ranking was generated by using a gener-
ation temperature of 0 and a maximum number
of generated tokens as 1,024 with the gpt-4-0125-
preview version of GPT-4. This resulted in a rank-
ing for each set of 7 responses for each prompt.

Initial experiments investigating the reliability
of this ranking showed that the ranking was liable

to change significantly for some prompts. We ra-
tionalise this as follows. Imaging that a user asked
three models "What is the capital of France?", and
the responses were “Paris”, “Lyon”, and “Delhi”.
In this case, most human evaluators would be able
rank the “Paris” answer as being the best answer
and “Delhi” as being the worst answer. However, if
the responses were instead more indistinguishable
in terms of response quality, for example “Paris”,
“The capital city of France is Paris”, and “Paris is
the capital of France.”, then even human evalua-
tors may struggle to agree on which constituted
the best and worst answers given the prompt. We
hypothesize that for the same reason, AI evalua-
tors give inconsistent rankings when faced with
responses that are more indistinguishable from one
another. Reinforcement learning techniques such
as ORPO (Hong et al., 2024), which performs
monolithic preference optimization without a refer-
ence model, rely on sufficiently different positive
and negative training labels that an LLM can learn
the contrast between the two. Therefore, training
on too-similar positive and negative labels may re-
sult in a degeneracy of the model overall. Hence,
when we observed the lack of consistency in GPT-
4’s rankings for some responses, we hypothesized
that training on only the more consistently ranked
outputs would lead to a better evaluation perfor-
mance than training on all rankings. Therefore, we
repeat the ranking process five times, only chang-
ing the random order of the responses and the in-
structed random order of the ranking explanation
each time. We discarded any cases in which a
generation failed or where the ranking could not
be parsed from the generated evaluation, leaving
2,714 individual prompts. We found that only 8.4%
of all top responses were ranked top all 5 times,
and only 20.2% of bottom responses were ranked
bottom all 5 times, which again motivates our work
in generating multiple evaluations for each set of
responses per prompt.

With these responses, we calculated the
Kendall’s W (Kendall and Smith, 1939) for each
set of rankings. According to Field, “Kendall’s
Coefficient of Concordance, W, is a measure of the
agreement between several judges who have rank
ordered a set of entities” (Field, 2005), and we use
it to determine how well the repeated evaluation
rankings agree. We justify using Kendall’s W as a
measure of inter-ranker agreement due to its previ-
ous use as a measure of ranking agreement within
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Model name Average Borda Count
GPT-3.5 Turbo 15.91
Starling 7B Beta 16.57
Qwen 1.5 32B 18.17
Command R 20.47
Qwen 1.5 72B 20.51
Command R + 21.54
GPT-4 26.78

Table 1: Average Borda count per model across 5 evalu-
ations.

the mathematical literature. However, since we ulti-
mately just use the top and bottom responses from
our rankings, we consider that comparing only the
rankings of those two responses directly could pos-
sibly be simpler and could potentially lead to better
results. We leave this for future work to explore
this avenue.

We use this W score to generate three train-
ing subsets of Mitsu, where we only trained on
responses with the top 25% (674 prompts), 50%
(1,350 prompts), 75% (2,018 prompts) of W scores.
We also trained a model using the entire Mitsu
dataset (2,714 prompts).

In order to train using ORPO, we selected pos-
itive and negative responses to prompts. These
effectively train a model to generate outputs simi-
lar to the positive responses and dissimilar to the
negative responses. We selected these responses by
calculating the Borda Count (Borda, 1781; Reilly,
2002) of each response over the 5 evaluations, and
then selecting the models with the highest and low-
est Borda counts for positive and negative, respec-
tively. We randomly sample in cases where there is
a tie in the Borda score between the multiple best
or worst scores.

Table 1 shows the average Borda score for each
model evaluated and Fig. 2 shows the amount of
times each model’s response was used as the posi-
tive and negative response.

We make the top 25%, top 50%, top 75%, and
full training datasets available online9.

3.2 Training

We train using our prepared datasets on Suzume 8B
Multilingual (Devine, 2024), a multilingual fine-
tune of Llama 3 (AI@Meta, 2024), using ORPO.

9Available at in
https://huggingface.co/collections/lightblue/
mitsu-datasets-67076f8293b57ae8b2c17293

We chose to train using ORPO due to its demon-
strated greater performance compared to the most
popular other current RLAIF method, DPO (Hong
et al., 2024). We trained using the ORPO settings
made available on the Axolotl LLM training pack-
age10 which uses the TRL (von Werra et al., 2020)
implementation of the ORPO algorithm. We chose
to train on the Suzume 8B Multilingual model as it
has the highest MT-Bench scores for a majority of
evaluation languages compared to other commer-
cially usable open source models under 10 billion
parameters. We train for one epoch for each dataset
with an ORPO alpha value set to 0.1, our maximum
token sequence length was set to 8,192, and our
learning rate was set to 8e-6. The full training con-
figuration for each model can be found on their
model cards11.

For convenience, we refer to the models trained
on the top 25%, 50%, 75%, and 100% of W score
subsets as Suzume-ORPO-25, Suzume-ORPO-50,
Suzume-ORPO-75, and Suzume-ORPO-100, re-
spectively.

3.3 Evaluation

We evaluate our models using the multilingual ver-
sion of the MT-Bench score over 6 languages (Chi-
nese, English, French, German, Japanese, and Rus-
sian). This evaluation tests a model’s ability to
perform tasks such as writing, roleplay, extraction,
reasoning, math, coding, STEM knowledge, and
humanities knowledge in a given language, using
GPT-4-Turbo as the evaluator of the model’s re-
sponses. Each category contains 10 prompts, with
each response being ranked out of 10, to give a
final average score over all prompts. We report the
2-turn scores on this benchmark. Note that we do
not report Russian performance on math, coding,
and reasoning questions as reference answers were
not available for these questions. We evaluate all
four of our ORPO trained models (Suzume-ORPO-
25, Suzume-ORPO-50, Suzume-ORPO-75, and
Suzume-ORPO-100), as well as our base model
(Suzume-Base) on the MT-Bench benchmark over
all 6 languages. As a further baseline, we also
evaluate the GPT-3.5-Turbo model (Ouyang et al.,
2022) on each language.

As an additional evaluation, we evaluate over

10https://github.com/OpenAccess-AI-Collective/
axolotl

11Available at https://huggingface.
co/collections/lightblue/
orpo-experiments-6707702969a9340fa312405f
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(a) Positive responses (b) Negative responses

Figure 2: Plots of how often each model’s response was chosen as the positive/negative response for training using
the Borda count. We observe that a plurality but not a majority of our positive training data comes from GPT-4,
while the vast majority of our negative training data comes from responses by Starling and GPT-3.5-Turbo.

the Belebele benchmark, which is a log-probability
based benchmark which calculates the probabili-
ties for generating the correct answer tokens given
a prompt compared to the probabilities of gener-
ating three possible incorrect answers (Bandarkar
et al., 2023). We report the accuracy, which is the
percentage of test examples where the probability
of generating the correct answer from the prompt
was higher than the probability of outputting any of
the wrong answers. We apply this benchmark over
the 6 languages we use in our MT-Bench evalua-
tion, as well as 6 other languages that we selected
at random: Arabic, Azerbaijani, Bangla, Croatian,
Norwegian, and Thai. Note that this does not test
an LLM’s chat abilities, but rather tests an LLM’s
ability to output factual information.

4 Results

Table 2 presents the MT-Bench scores across 6
languages for our 4 ORPO subsets compared to the
base model and GPT-3.5-Turbo.

All ORPO models surpassed the base model
in nearly every language, underscoring the value
of ORPO training for enhancing chat capabil-
ities. Furthermore, Suzume-ORPO-50 outper-
formed Suzume-ORPO-100 in 5 out of 6 languages,
despite being trained on half the data. Suzume-
ORPO-25 and Suzume-ORPO-75 achieved the
highest scores in one language each, but Suzume-
ORPO-50 provided the best overall balance.

While the base model did not exceed GPT-3.5-
Turbo in any language, Suzume-ORPO-50 outper-
formed GPT-3.5-Turbo in 4 out of 6 languages,
demonstrating that ORPO training enables LLMs
match or surpass GPT-3.5-Turbo on chat bench-
marks. However, GPT-3.5-Turbo still led in En-
glish and Japanese.

We also conducted other small scale tests to fur-

ther probe the effects of ORPO training. One no-
table test (Suzume-ORPO-GPT on Table 4) was
training using all prompt responses from the mod-
els with the best and worst Borda scores, GPT-4 and
GPT-3.5 respectively, but we found that this lead
to a lower average MT-Bench scores compared to
the Suzume-ORPO-100 model. This indicates the
importance of model diversity and selecting appro-
priate responses when generating RLAIF datasets.

Another test (Llama-ORPO-50 on Table 4) we
conducted was directly ORPO training a Llama
3 8B Instruct model on the same dataset as
Suzume-ORPO-50, but we found that this model
had lower MT-Bench scores across all languages.
This demonstrates the continued necessity for fine-
tuning before conducting ORPO training.

The final small scale test (Suzume-ORPO-
random-50 on Table 4) we conducted was training
a model on a randomly selected half of the entire
Mitsu dataset. This allowed us to isolate the ef-
fects of example selection by using Kendall’s W,
as this model was trained on the same amount of
data as Suzume-ORPO-50. We find that Suzume-
ORPO-random-50 model has lower MT-Bench
scores across all languages compared to Suzume-
ORPO-50, indicating the importance of selecting
training prompts based on Kendall’s W score.

The Belebele scores for each of our trained mod-
els can be found in Table 3. We observe that
the base model exhibits greater or equal perfor-
mance on average on this benchmark compared to
Suzume-ORPO-100. This contrasts with our MT-
Bench scores which showed that ORPO training un-
ambiguously improved chat performance compared
to the base model. However, despite the observed
drop in Belebele score when performing full ORPO
training, we also observe that Suzume-ORPO-75
and Suzume-ORPO-25 are able to largely achieve
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Language GPT-3.5-
Turbo

Suzume-
Base

Suzume-
ORPO-100

Suzume-
ORPO-75

Suzume-
ORPO-50

Suzume-
ORPO-25

Chinese 7.55 7.11 7.65 7.77 7.74 7.44
English 8.26 7.73 7.98 7.94 7.98 8.22
French 7.74 7.66 7.84 7.46 7.78 7.81
German 7.68 7.26 7.28 7.64 7.70 7.71
Japanese 7.84 6.56 7.20 7.12 7.34 7.04
Russian 7.94 8.19 8.30 8.74 8.94 8.81

Mean 7.83 7.42 7.71 7.78 7.91 7.84

Table 2: The MT-Bench chat benchmark scores for each model evaluated across each language. Bolded values
are greatest in their row. We improve upon base model evaluation performance across all languages for nearly all
ORPO models. Interestingly, we find that training on the 50% most consistently evaluated prompts leads to greater
than or equal evaluation scores than training on all prompts for 5 of 6 languages evaluated.

comparable or better performance with the base
model on many languages in this benchmark. This
indicates that our ORPO training data selection cri-
teria may be beneficial to mitigating some of the
issues we demonstrate of lower performance on
log-probability based for ORPO trained models.

We also observe that Suzume Base performs
better on two languages (Chinese and Thai) than
any ORPO trained model. This may simply be
due to the fact that OPRO training, and particularly
naive ORPO training (i.e. Suzume ORPO-100),
seems to result in reduced performance in Belebele
and so even when selecting training examples using
Kendall’s W, the drop in performance is too large
to compensate for.

5 Discussion

Our results demonstrate the importance of ORPO
training in improving the chat abilities of finetuned
models. This, in turn, highlights the importance of
creating high quality preference datasets to train
LLMs using the ORPO method. Our results show-
ing that model trained on less, but more consis-
tently evaluated, preferences can achieve greater
chat benchmark performance than training on all
the data. This has the double benefits of increas-
ing performance while reducing training cost by as
much as four times for training on our 25% training
subset. However, the extra inference computation
required to rank responses multiple times is an in-
creased cost with this method of dataset creation.

This could benefit both current and future
datasets, with datasets such as Nectar (Zhu et al.,
2023) potentially being improved by re-evaluating
the dataset’s responses and filtering out less consis-

tently evaluated rows.
We theorize that the correct balance between

consistency and data volume (i.e. where the cut-off
for Kendall’s W would be) may vary between tasks,
but we have shown that for our multilingual chat
setting the benefit on evaluation performance of
having a threshold above which we keep our data.

Our results are also purely dataset-based, mean-
ing that they might be able to be stacked with
other recent LLM training methods such as
SimPO (Meng et al., 2024) and ExPO (Zheng et al.,
2024a).

6 Future Work

Our results suggest that the technique of repeated
evaluations on preference data and only keeping
the consistently evaluated prompts and responses
for training could be applied to other RLAIF and
RLHF datasets. Future work could include inves-
tigating whether training only using prompts and
responses with high agreement in the evaluations
from human annotators could lead to higher accu-
racy than training on all prompts and responses.

Another potential avenue for future work is us-
ing more than one evaluator model for ranking
responses. In this work, we only used GPT-4,
but there are other state-of-the-art LLMs such
as Claude 3 (Anthropic, 2024) and Gemini 1.5
Pro (Reid et al., 2024). We theorize that combining
the evaluations of multiple high performance LLMs
could serve to create more robust evaluations of re-
sponses and mitigate the demonstrated bias that
any one LLM exhibits (Feng et al., 2023; Cao et al.,
2023). The Mitsu dataset that we use to train our
model is single-turn, meaning that each example
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Suzume
Base

Suzume
ORPO-100

Suzume
ORPO-75

Suzume
ORPO-50

Suzume
ORPO-25

Arabic 64.3 52.6 65.3 54.7 64.6
Azerbaijani 50.3 37.6 52.3 45.3 52.1
Bangla 46.0 37.0 49.7 43.2 46.3
Chinese 78.0 64.4 76.1 70.0 75.7
Croatian 59.4 47.4 60.7 53.0 61.1
English 84.2 75.2 83.2 83.0 84.7
French 77.3 64.4 75.7 72.2 77.6
German 68.0 53.8 67.9 65.9 68.8
Japanese 66.7 57.1 63.7 58.2 68.0
Norwegian 67.0 52.4 67.2 62.2 67.7
Russian 71.6 51.9 71.4 57.3 72.9
Thai 63.3 47.9 61.3 57.1 63.0

Mean 66.4 53.5 66.2 60.2 66.9

Table 3: Belebele scores for each trained model across the 12 languages that we evaluate on. We observe that
full ORPO training leads to much lower Belebele scores compared to the base fine-tuned model. However, we
also observe that our method of selecting fewer ORPO training examples is able to marginally improve on the
performance of the base model for most languages.

consists of a single prompt-response pair for both
positive and negative responses. Future work could
expand on this to add multi-turn conversations, as
was done by Nectar (Zhu et al., 2023).

The Mitsu dataset also consists of prompts sam-
pled from the Tagengo dataset (Devine, 2024),
which are derived from users prompts to LLMs
hosted on a demo site. We theorize that these
prompts are a mixture of easy and difficult for an
LLM to answer. Training on tasks that LLMs are al-
ready highly proficient at might be a waste of train-
ing resources, so future work could filter prompts
based on their perceived difficulty for LLMs. We
believe that this may improve LLMs abilities on
these difficult tasks.

In our experiments, we chose to rank responses
5 times due to that being the financial limit of our
experiment. However, future work could empir-
ically find an optimal number of times to repeat
evaluations to obtain a reliable Kendall’s W score.

A slight limitation of the Repeated Ranking ap-
proach is the increased inference cost in evaluating
responses multiple times as an analogue for de-
termining the confidence of the ranking model in
the ranking. Future work could explore mitigating
this effect by evaluating the combined log proba-
bility of a single ranking output and training using
only the responses from rankings with the highest
probability.

Tools and agents have also been shown to aug-
ment the abilities of LLMs (Parisi et al., 2022; Gao
et al., 2023; Schick et al., 2024). Future work could
explore using tools or agents to enhance the eval-
uation abilities of the evaluator LLM when eval-
uating prompt responses. For example, a search
tool could determine the veracity of factual claims,
or a calculator tool would be able to confirm the
mathematical results of an LLM. We theorize that
this would lead to more accurate evaluation and
would ultimately lead to more accurate LLMs.

7 Conclusion

In this study, we explored the impact of repeated
rankings from an AI evaluator (GPT-4) on training
reinforcement learning from AI feedback (RLAIF)
models for multilingual chat capabilities. We found
that responses evaluated consistently by GPT-4 led
to higher downstream performance across multiple
languages, compared to training on all data regard-
less of evaluation consistency. Our findings indi-
cate that selective training based on evaluation con-
sistency can enhance chat performance and offer
a method to improve existing preference datasets.
This highlights the balance between quality and
quantity when constructing datasets for RLAIF.
Our work opens avenues for further optimizing
RLAIF datasets and refining training methodolo-
gies to develop more proficient multilingual LLMs.
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Limitations

One limitation of this work was the size of the data
that we trained upon. Our Mitsu dataset, in total,
consisted of less than 3k examples, whereas many
popular preference datasets such as Nectar (Zhu
et al., 2023) and the HH-RLHF (Bai et al., 2022a)
dataset consist of hundreds of thousands of exam-
ples. Therefore, we are yet to show whether our
proposed response selection technique extends to
datasets of that size.

Secondly, the differences in our results are rel-
atively small. While we show relatively consis-
tent improvement in chat performance in models
trained over our selected subsets (Suzume-ORPO-
25, Suzume-ORPO-50, Suzume-ORPO-75) over
the model trained on the whole dataset (Suzume-
ORPO-100), these differences are small in magni-
tude (largely <10% difference). It is nevertheless
notable that even demonstrating that chat perfor-
mance does not decrease with fewer training exam-
ples is a useful result that can inform more efficient
ORPO training in the future. Therefore, it remains
for future work to determine if the improvements
in chat ability increase with a larger training set.

Finally, a limitation of this research is that we
rely on GPT-4 for our evaluation using the MT-
Bench benchmark. This could bias the model as
GPT-4 has been shown to exhibit self-enhancement
bias (Zheng et al., 2024b), where it evaluates its
own responses higher compared to human eval-
uation, indicating that we may be overfitting to
GPT-4’s preferences rather than general human
ones. However, GPT-4 is the current state-of-the-
art for LLMs and has been shown to have very
high correlation with human preferences (Zheng
et al., 2024b). Moreover, our evaluations using
Belebele dataset do not use an LLM for evaluation
and again indicate that the accuracy of some of
our ORPO trained models over many languages
increases compared to the base model.

Ethics Statement

We have considered the ethical implications of re-
leasing both our training data and trained models.
There is the potential for LLMs and training data to
be misused, but since we demonstrate that our final
LLM is comparable to a publicly available LLM
(GPT-3.5-Turbo) that has since been superceded by
more recent LLMs (GPT-4, Llama 405B (Dubey
et al., 2024) etc.), we assume that the risk impact
of our sharing these models and data is minimal.
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You are an evaluator AI. Your task is to rank multiple responses to a given prompt from best to worst
You will first be given the original prompt, and then seven possible responses to that prompt,

,!labelled alphabetically.
You should first write a very brief (<40 words per model) explanation of the merits and drawbacks of

,!the responses, before giving the ranking itself.
This explanation of each response should be in a randomised order (go in the order of �{randomly

,!shuffled list of alphabet letters from A-G}�).
Make sure you explain and rank all responses, do not leave any out in your explanation or ranking.
The ranking should be a list of alphabet characters that describe the ranking, with �>� denoting the

,!left item is ranked higher than the right item and �=� denoting that the items are of equal
,!ranking (e.g. �Z>Y>X=W>V>U=T�).

The user input will look like this:

���
<<<PROMPT>>>
AN EXAMPLE USER PROMPT

<<<RESPONSE A>>>
EXAMPLE RESPONSE A

<<<RESPONSE B>>>
EXAMPLE RESPONSE B

<<<RESPONSE C>>>
EXAMPLE RESPONSE C

<<<RESPONSE D>>>
EXAMPLE RESPONSE D

<<<RESPONSE E>>>
EXAMPLE RESPONSE E

<<<RESPONSE F>>>
EXAMPLE RESPONSE F

<<<RESPONSE G>>>
EXAMPLE RESPONSE G
���

and your output should look like this:

���
<<<EXPLANATION>>>
[SHORT EXPLANATION OF THE RANKING]

<<<RANKING>>>
[SEPARATED LIST OF ALPHABET CHARACTERS THAT DESCRIBE THE RANKING]
���

The evaluation rubric is as follows:

* Is the response relevant? The response should be the best possible answer.
* Is the response truthful?
* Is the response accurate? The response should accurately fulfill the prompt�s request.
* If a creative answer is expected, is the response creative? If an analytical answer is expected, is

,! the response factual/objectively correct?
* Is the response written naturally and fluently in the language that the prompter would expect?
* Is the response detailed? The response should at minimum satisfy the full level of detail required

,!by the prompt.

Figure 3: System message for generating evaluations
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Abstract

Open source large language models (LLMs)
have shown great improvements in recent times.
However, many of these models are focused
solely on popular spoken languages.

We present a high quality dataset of more than
70k prompt-response pairs in 74 languages
which consist of human generated prompts and
synthetic responses. We use this dataset to train
a state-of-the-art open source English LLM to
chat multilingually.

We evaluate our model on MT-Bench chat
benchmarks in 6 languages, finding that our
multilingual model outperforms previous state-
of-the-art open source LLMs across each lan-
guage. We further find that training on more
multilingual data is beneficial to the perfor-
mance in a chosen target language (Japanese)
compared to simply training on only data in
that language.

These results indicate the necessity of training
on large amounts of high quality multilingual
data to make a more accessible LLM.

1 Introduction

Recently, open source large language models
(LLMs) have grown drastically in both popular-
ity and performance. Models such as Llama
3 (AI@Meta, 2024b) have exceeded the perfor-
mance of previous state-of-the-art proprietary mod-
els like GPT3.5 (Ouyang et al., 2022) on popular
robust benchmarks including the Chatbot Arena
leaderboard (Chiang et al., 2024). These open
source LLMs are also increasingly being used in
commercial AI chat products such as the Meta AI
assistant (AI@Meta, 2024a).

However, many current LLMs exhibit lower per-
formance on languages outside of English (Achiam
et al., 2023). Indeed, Llama 3 itself is currently
an English-only LLM, meaning that even when it
is prompted in a language besides English, it of-
ten replies in English. This limits the potential

user base of these LLMs due to the fact that less
than 1.5 billion of the world’s more than 8 billion
population can speak English (Central Intelligence
Agency, 2021; Eberhard et al., 2024). Therefore,
we set out to train a state-of-the-art open source
LLM (Llama 3) to be able to chat not only in En-
glish, but in many languages.

In order to make English-focused LLMs acces-
sible in other languages, previous work has fine-
tuned these models on non-English data (Sasaki
et al., 2023; Sengupta et al., 2023; Nguyen et al.,
2023).

Many multilingual chat datasets such as MultiAl-
paca (Wei et al., 2023) and Aya (Singh et al., 2024)
cover many languages and tasks but can also lack
natural prompts and high quality responses.

For this reason, we created a large, diverse, high
quality multilingual dataset using more than 70k
human generated prompts in 74 languages and
generated responses from these using state-of-the-
art proprietary chat models. We used this dataset
to train two models, a multilingual LLM and a
Japanese-only LLM, both supervised fine-tuned
models based on the Llama 3 8B Instruct model.

We found that our model achieved better evalua-
tion scores on multilingual chat benchmarks com-
pared to the similarly sized state-of-the-art open
source models, indicating the high quality and
diversity of our training dataset. We also find
that our multilingual-trained LLM performs bet-
ter on Japanese chat benchmarks compared to our
Japanese-only-trained LLM, indicating that trans-
fer learning from training on other languages is
beneficial for training even monolingual models
outside of English.

Our findings combine to inform the community
of exactly how to fine-tune monolingual LLMs to
create a strong multilingual model.

We make our training data (Tagengo)1, train-

1https://huggingface.co/datasets/lightblue/
tagengo-gpt4
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ing code2, evaluation benchmark (multilingual MT-
Bench)3, and trained models (Suzume)45 publicly
available for free use online.

Figure 1: Distribution of the languages found in the
Tagengo dataset

2 Related Work

In the literature, strong foundation models such as
Llama 2 (Touvron et al., 2023) and Gemma (Team
et al., 2024) have been subsequently fine-tuned on
data from a specific language or languages, includ-
ing Japanese (Sasaki et al., 2023), Arabic (Sen-
gupta et al., 2023), and South-East Asian lan-
guages (Nguyen et al., 2023). Fine-tuning has of-
ten shown to improve the accuracy of the resultant
LLM on tasks in that language. However, the train-
ing dataset of these models are often not shared,
making it difficult to create a truly multilingual
LLM across many languages.

Some multilingual chat datasets do exist that can
be used for training LLMs. MultiAlpaca (Wei et al.,
2023) is a multilingual dataset of 133K prompt-
response pairs covering 11 languages that were gen-
erated in a similar manner to Alpaca (Taori et al.,
2023). This dataset was created by generating syn-
thetic prompts from a small number of English seed
prompts and then answering these prompts using
an large-scale LLM, GPT3.5 (Ouyang et al., 2022).

2https://github.com/lightblue-tech/suzume/
tree/main/tagengo

3https://github.com/lightblue-tech/
multilingual-mt-bench

4https://huggingface.co/lightblue/
suzume-llama-3-8B-multilingual

5https://huggingface.co/lightblue/
suzume-llama-3-8B-japanese

Because these prompts are generated synthetically,
this data may not reflect the sorts of prompts that
real users may use with an LLM, potentially lim-
iting the ability of models trained on this data to
be used practically. Moreover, the prompts and
responses for this dataset were generated using
GPT3.5, meaning that the quality of the data may
not be as high as if a state-of-the-art LLM was used,
like GPT4 (Achiam et al., 2023).

xP3 (Crosslingual Public Pool of Prompts)
(Muennighoff et al., 2022) is a dataset of more than
78 million examples covering 46 languages. This
dataset was generated by templating other datasets
(e.g. translation datasets, classification datasets)
into a prompt-response format. While this dataset
is large, the templating process limits the useful-
ness of the dataset as it results in prompts that are
not necessarily similar to what an actual user of
an LLM would ask. The templating process can
also result in unnatural answers, with single word
answers being given where a fuller answer may be
more appropriate from an LLM.

Aya (Singh et al., 2024) is a dataset of 204k
human-annotated prompt-completion pairs cover-
ing 65 languages. The majority of this dataset
was generated by first translating and templating
datasets from various languages, which were then
corrected and annotated by human labellers. While
the human labelling process will prevent as many
unnatural utterances enter the dataset, the templat-
ing of datasets means that the prompts will still not
necessarily be the kind of prompts that an end-user
of LLMs would use. Hence, the usefulness of this
dataset in training multilingual LLMs is limited by
its data-generation process.

The ShareGPT dataset used by models such as
Vicuna (Chiang et al., 2023) and OpenChat (Wang
et al., 2023) contain approximately 70k open source
conversations between users and GPT3.5 (Ouyang
et al., 2022) and 6k conversations between users
and GPT4 (Achiam et al., 2023), meaning that the
prompts used in these datasets are often much more
naturalistic to a real LLM use-case. However, the
majority of these prompts are in English, mean-
ing that this dataset is limited in its use in training
multilingual models. Moreover, due to the fact
that that majority of this dataset contains data gen-
erated from GPT3.5, its usefulness in training is
limited as many other models have now surpassed
the performance of GPT3.5 in English (Zhu et al.,
2023; AI@Meta, 2024b). The amount of multi-
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lingual data in the higher quality GPT4 subset of
the ShareGPT dataset is small, meaning that its
usefulness in training is constrained by its size.

To address the shortcomings in existing public
datasets, we created a large, diverse, high quality
multilingual dataset using more than 70k human
generated prompts in 74 languages and generated
responses from these using state-of-the-art propri-
etary chat models.

3 Method

In this section, we detail how we generated our
training dataset, our training method, and finally
our evaluation techniques.

3.1 Tagengo Dataset Creation
First, to generate our dataset, we sampled
prompts from the million row LMSYS-Chat-1M
dataset (Zheng et al., 2023). These prompts were
collected from users speaking to one of 25 LLMs
on the Vicuna demo and Chatbot Arena website6.

We cleaned this dataset by first removing all
prompts which contain an OpenAI Moderation
Endpoint7 flag in order to remove explicit, sexual,
or illegal material.

We then removed all prompts which were listed
as a non-recognised or fictional language (un-
known, Klingon, xx, zp, and zzp).

We removed any prompts which contained the
string “name” when lower-cased, as NAME0,
NAME1 etc. was used as the placeholders for
anonymised material. Effectively, this removed
any anonymised prompts from our dataset.

We then removed any prompts which contained
the following keywords: “gpt”, “vicuna”, “alpaca”,
“llama”, “koala”, “claude”, “guanaco”. This was
done to remove prompts which referred explicitly
to the LLMs that were being tested in the Chat-
bot Arena as many prompts asked about the LLM
specifically, which we theorize is less useful in a
more general context.

We then used the FastText (Joulin et al., 2016)
LangDetect library8 to determine the confidence
level of classifying a particular language. We fil-
tered out all prompts in which the confidence level
of the language indicated in the original LMSYS-
Chat-1M paper was less than 80%. This was done

6https://chat.lmsys.org/
7https://platform.openai.com/docs/guides/

moderation
8https://github.com/zafercavdar/

fasttext-langdetect

to filter out ambiguous language examples, as we
later sample per-language.

Finally, we analysed the number of tokens of
both the first prompt and LLM response, and re-
moved any prompts in which the combined to-
ken total of the first prompt and LLM response
amounted to more than 512 tokens. This was done
to prevent very long prompts or prompts which
elicited very long responses being used in our
dataset in order to minimise costs when generating
data with these prompts using GPT4.

We then sampled a maximum of 25,000 prompts
from each language, which effectively meant we
sampled the English prompts in this dataset as only
English (380,138) had more than 25,000 exam-
ples, while the next most popular language Chinese
(21,057) had less than 25,000. This was done to
counteract the outweighed prevalence of English
within this dataset.

For each language, we then embedded each
prompt using the BGE M3 embedding model (Chen
et al., 2024), which is a state-of-the-art embedding
model that supports more than 100 languages. We
then compared the prompt embeddings pairwise us-
ing the dot product to obtain a similarity score for
each prompt pair. We perform fuzzy de-duplication
by removing one of any prompt pairs which have
a similarity score of greater than 0.8 in order to
bolster the diversity of our dataset. The amount
of data removed from each language varied widely
with languages such as Chinese having a very high
rate of de-duplication (∼75%) and other such as
Portuguese having a lower rate of de-duplication
(∼40%). This may be due to the biases of the
embedding model or due to the kind of prompts
submitted to the original dataset in different lan-
guages.

A table of the number of prompts filtered at each
stage of our cleaning process can be found in Ta-
ble 1.

We used these prompts to generate responses
using an Azure OpenAI deployment of a state-of-
the-art proprietary LLM, GPT4 (0125-Preview),
with the generation temperature set to 0 and setting
a maximum number of response tokens to be 2,048.

Due to the fact that generating high quality re-
sponses for all of these prompts manually for each
language would be prohibitively expensive, we de-
cided to generate these responses using a state-of-
the-art model. We hypothesize that using an LLM
much larger - rumoured to be 1.8 trillion parame-
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Stage Number of prompts
Start 1,000,000
OpenAI Moderation
check

964,464

Remove unknown
languages

936,468

Remove anonymised data 753,731
Remove references
to models

735,390

Language detection
confidence score >80%

556,368

Remove prompt plus
responses with more
than 512 tokens

513,011

Random sampling
of 25,000 prompts
per language

157,873

Fuzzy de-duplication 78,057
Remove uncompleted/
unanswered prompts

76,338

Table 1: Table describing the number of prompts after
each cleaning stage.

ters (Schreiner, 2023) - than nearly all other open
source models to generate responses will lead to
high quality responses that can then be used to im-
prove existing open source models. When viewed
in this way, this training can be viewed as a form
of model distillation (Buciluǎ et al., 2006; Hinton
et al., 2015).

We finally removed any responses which GPT4
did not answer or was not able to complete within
the 2,048 token limit. The number of prompts in
our resultant Tagengo dataset can be found in Ta-
ble 1 and a breakdown of the prompts by language
can be found in Fig 1.

We share our dataset creation code and training
dataset on Huggingface9.

3.2 Training
For training data, we add two more datasets to the
Tagengo dataset which we regard as high quality
chat datasets. The first is the Megagon Instruction
dataset (Hayashibe, 2023), a manually annotated
dataset of 669 Japanese prompt-response pairs. The
second is the 6k GPT4 subset of the ShareGPT
dataset10, which has a majority of prompts in En-

9https://huggingface.co/datasets/lightblue/
tagengo-gpt4

10https://huggingface.co/datasets/openchat/
openchat_sharegpt4_dataset/blob/main/sharegpt_

glish but also includes responses in other languages.
We combined and randomly shuffled these three
datasets to use as a 83,213 prompt-response pair
training dataset for the multilingual model.

We used our training data to train a Llama 3 8B
Instruct model11 with the Axolotl LLM training
package12. We trained for one epoch using full
fine tuning, using sample packing (Brown et al.,
2020) and a context length of 8,096. We name this
model Suzume 8B multilingual and the full training
configuration for this model can be found on our
model card13.

We also prepared a subset of the above three
datasets that only included Japanese data from
each dataset, which amounted to 3,318 prompt-
response pairs. This was prepared to isolate the
effect of monolingual training compared to multi-
lingual training on our data. We trained our model
in the same manner as the multilingual model with
the name Suzume 8B Japanese. Full details for
how the training was conducted can be found on
our model card14.

3.3 Evaluation

We tested our models by using a forked version
of the original MT-Bench evaluation suite (Zheng
et al., 2024). The MT-Bench evaluation benchmark
is a set of prompts and responses in English that
cover 8 broad categories of prompts: writing, role-
play, extraction, reasoning, math, coding, STEM
knowledge, and humanities knowledge. Responses
to these prompts are generated using an LLM, and
those responses are then evaluated using an evalua-
tion model such as GPT4.

We added publicly available translated versions
of the original MT-Bench dataset in Chinese,
French, German, Japanese, and Russian that had
been human-verified by a native speaker of that
language.

Note that the Russian translation did not contain
reference answers for the math, coding, and reason-
ing questions, so our evaluation does not include
math, coding, and reasoning problems in Russian.

Finally, we added the phrase “Your evaluation

gpt4.json
11https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
12https://github.com/OpenAccess-AI-Collective/

axolotl
13https://huggingface.co/lightblue/

suzume-llama-3-8B-multilingual
14https://huggingface.co/lightblue/

suzume-llama-3-8B-japanese
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Llama 3 8B
Instruct

Suzume 8B
multilingual

Suzume 8B
Japanese

Starling
7B beta

GPT3.5
Turbo

Chinese - 7.11 - 6.97 7.55
French - 7.66 - 7.29 7.74
German - 7.26 - 6.99 7.68
Japanese - 6.56 6.24 6.22 7.84
Russian - 8.19 - 8.28 7.94
English 7.98 7.73 - 7.92 8.26

Table 2: Average MT-Bench scores across 6 languages for each LLM evaluated.

should also consider whether the prompt responded
in the correct language and the fluency and nat-
uralness of this response.” to the original MT-
Bench evaluation criteria to ensure that the LLM
judge would not simply evaluate factually correct
responses in English to non-English prompts as
correct. We conducted these evaluations using
the “gpt-4-turbo model” from OpenAI as the judge
LLM.

We make our evaluation code freely available
online15.

As baselines, we also evaluate the original Llama
3 8B Instruct model (AI@Meta, 2024b), GPT3.5-
Turbo (Ouyang et al., 2022), and the Starling 7B
Beta (Zhu et al., 2023) which is the highest rated
similarly sized multilingual model on the Chat-
bot Arena leaderboard (Chiang et al., 2024) and
has been trained on the ShareGPT dataset amongst
other data.

4 Results

The MT-Bench scores for each model evaluated
can be found in Table 2.

We first found that we were able to train Llama
3 8B Instruct to output responses in the same lan-
guage as the prompt. This means that we achieved
our base objective of enabling a monolingual model
(Llama 3) to be able to output multilingual chat.

Secondly, English performance of the multilin-
gual trained model only dropped slightly compared
to the base Llama 3 8B Instruct model. This indi-
cates that English chat performance does not con-
siderably drop even when training on a majority of
non-English data.

Thirdly, we found that the multilingual trained
model performs better compared to the Starling
7B Beta across 5 out of 6 non-English languages

15https://github.com/lightblue-tech/
multilingual-mt-bench

tested. However, also we found that our multi-
lingual model achieved lower evaluation scores
compared to the proprietary GPT3.5 on 5 of 6 non-
English languages. This indicates that our model
has achieved state-of-the-art performance in multi-
lingual chat for open-source models of its size, but
has not achieved state-of-the-art performance more
generally.

Finally, the Suzume 8B multilingual model
achieves higher MT-Bench scores on the Japanese
benchmark compared to the Suzume 8B Japanese
model, indicating that transfer learning from train-
ing on other languages is beneficial for training
even monolingual models outside of English.

5 Discussion

Our results indicate the need for large, high quality,
multilingual datasets when training multilingual
models. We find that with such a dataset, we can
train a state-of-the-art monolingual model such as
Llama 3 to achieve state-of-the-art multilingual
performance.

We also found that training on additional non-
Japanese data improves the performance of our
LLM on Japanese benchmarks when compared to
training solely on Japanese data, indicating that
there is a collective improvement effect between
languages when training using multilingual data.
This adds to the body of work that indicates that
training on multiple languages enables the LLM to
better generalise to other languages (Nguyen and
Chiang, 2017; Schuster et al., 2018). This suggests
that generating an even larger, more diverse dataset
in the future could further aid the performance of
LLMs on low-resource languages.
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6 Future Work

Our work could be built upon and improved in the
following ways.

Our training dataset mainly consisted of single
prompt-response pairs, but many chats between
users and LLMs extend beyond a single conver-
sation turn. Therefore, future work could include
creating a dataset that contains multiple turns of
conversation, with the prompts either generated by
humans or by high quality LLMs.

Future work could also include adding more lan-
guages to our dataset. Our dataset only included
74 languages, and crucially omits any languages
in the Niger–Congo language family, one of the
most diverse language families in the world (Good,
2017). Therefore, future work could involve sam-
pling initial prompts from a wider range of sources
(possibly by advertising free chatbot access to peo-
ple in areas with many speakers of underrepre-
sented languages) and generating responses based
on these prompts. This would help to both im-
prove an LLMs linguistic understanding of these
low-resource languages as well as improve their un-
derstanding of the topics and questions that people
from that language and culture may ask.

Finally, future work could include generating
preference data, such as was done in English in
the Nectar dataset (Zhu et al., 2023), for use with
contrastive learning techniques such as Direct Pref-
erence Optimisation (Rafailov et al., 2024) and
Odds Ratio Preference Optimisation (Hong et al.,
2024). These techniques have been shown to fur-
ther improve the accuracy of LLMs, suggesting that
training using these techniques may also improve
the performance of LLMs in multilingual chat.

7 Conclusion

In this study, we successfully trained a state-of-
the-art monolingual Llama 3 LLM to chat multi-
lingually using a new, diverse dataset comprising
over 70k human-generated prompts in 74 languages
paired with high-quality synthetic responses.

Our multilingual model showcased superior per-
formance across multiple languages compared to
similar-sized open-source models on various chat
benchmarks.

Interestingly, training using a multilingual
dataset also enhanced the performance on spe-
cific monolingual tasks, implying beneficial cross-
linguistic transfer effects.

These outcomes underline the importance of us-
ing rich, diverse multilingual data for improving
the capabilities of LLMs in global, multilingual
applications.

Limitations

The three main limitations of this paper concern our
prompt diversity, our data generation methodology,
and our model evaluation methodology.

Firstly, as stated in Section 6, our training data
has a paucity of low-resource languages repre-
sented within it. While we try to focus on non-
English data in our work by sampling a maximum
of 25,000 prompts per language, this still does not
counteract the fact that the prompts in the LMSYS-
Chat-1M dataset (Zheng et al., 2023) are dispro-
portionately from a small set of languages. These
prompts are collected from users on the Chatbot
Arena LLM demo site, meaning that the speakers
of low-resource languages may be too few, unable,
unaware, or unwilling to talk to an LLM chatbot in
their native language. This means that current open
source LLMs will continue to have lower perfor-
mance on low-resource languages if this problem
is not resolved.

Secondly, we generate our responses to prompts
using GPT4, which means that all training data
will be in the worldview and within the domain
of knowledge that GPT4 exhibits. This biases the
model as many LLMs have been shown to have
both political (Feng et al., 2023) and cultural bi-
ases (Cao et al., 2023) in the text they generate,
meaning that what may be deemed acceptable by
one user may not be deemed acceptable by another.
Moreover, while GPT4 is state-of-the-art and has
been shown to generate more accurate informa-
tion compared to previous models (Achiam et al.,
2023), it is still capable of generating incorrect data
in response to a prompt, meaning that our training
data may contain incorrect statements or otherwise
inaccurate data.

Thirdly, we compare our Suzume model results
to the Starling LLM (Zhu et al., 2023), with the for-
mer being an 8 billion parameter model while the
latter is a 7 billion parameter model. This makes
for a somewhat unfair comparison as our model
is larger than previous open source multilingual
models. This was done as the 8 billion parameter
size of LLMs was somewhat novel at the time of
release, meaning that we did not have a perfect
comparison to previous state of the art open source
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models. However, future work could isolate the ef-
fect of training on the Tagengo dataset by training
an existing multilingual model and then comparing
the base model to the trained model.

Finally, our evaluation methodology is biased
by the fact that our 6 evaluation languages are all
within the top 10 most popular languages in our
training data. This means that our evaluation does
not consider the performance of our models on low
resource languages, limiting the usefulness of our
results to speakers of low resource languages.

Ethics Statement

Due to the potential for LLMs to be misused for un-
ethical purposes (Derner and Batistič, 2023; Zhuo
et al., 2023), we considered the ethical implications
of releasing both the training data and final trained
model of this work. However, since our training
data was made up of human-generated content that
was already publicly available, and the synthetic
parts of our dataset were generated using a readily
available LLM (GPT-4), we consider that the in-
crease in risk profile with our releasing this dataset
is marginal. Likewise, due to state-of-the-art mod-
els such as GPT-4 being readily available to the
public, we believe the increase in risk profile from
our model release is similarly minimal.
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Abstract

Parameter-efficient fine-tuning (PEFT) using
labeled task data can significantly improve the
performance of large language models (LLMs)
on the downstream task. However, there are
7000 languages in the world and many of these
languages lack labeled data for real-world lan-
guage generation tasks. In this paper, we pro-
pose to improve zero-shot cross-lingual trans-
fer by composing expert modules trained sep-
arately on language or task data. Our method
composes language and task PEFT adapters
via element-wise arithmetic operations to lever-
age unlabeled data and English labeled data.
We extend our approach to cases where labeled
data from more languages is available and pro-
pose to arithmetically compose PEFT adapters
trained on languages related to the target. Em-
pirical results on summarization demonstrate
that our method is a strategy that obtains con-
sistent gains using minimal training of PEFT
parameters.

1 Introduction

Large language models (LLM) have achieved im-
pressive performance on various real world appli-
cations in many different human languages (Xue
et al., 2021; Brown et al., 2020; Chowdhery et al.,
2022; Anil et al., 2023; Jiang et al., 2024). Sum-
marization (Nenkova and McKeown, 2011) is a
particularly interesting and useful task because it al-
lows users to quickly aggregate and access relevant
information from large amounts of textual data. De-
veloping a competitive text summarization system
for a language typically involves fine-tuning a pre-
trained model on labeled summarization data in the
given language. Standard supervised fine-tuning
of LLMs can be very expensive due to the large
model size. Parameter-efficient tuning (PEFT) is
an effective alternative that achieves competitive

∗ Work done during an internship at Google DeepMind.
Correspondence to alexandrachron@google.com

† Work done while working at Google

performance while incurring much less computa-
tional and memory cost (Hu et al., 2022; Lester
et al., 2021; Zhang et al., 2023b).

Despite the effectiveness of PEFT (Touvron
et al., 2023), it also has several limitations if we
want to develop competitive multilingual summa-
rization systems. First, current PEFT methods
generally require access to labeled task data in a
given language. While there are several existing
datasets in English to train competitive summariza-
tion systems (Hermann et al., 2015; Grusky et al.,
2018; Narayan et al., 2018), many languages in the
world with millions of speakers do not have such
resources (Giannakopoulos et al., 2015; Scialom
et al., 2020; Cao et al., 2020). Second, standard
PEFT methods optimize a separate set of param-
eters for each language, resulting in thousands of
fine-tuned checkpoints, which need to be stored
and deployed individually (Fifty et al., 2021). Fi-
nally, as the standard PEFT methods are fine-tuned
in isolation, they cannot leverage information from
related tasks.

In this paper, we want to improve zero-shot mul-
tilingual summarization with PEFT to better sup-
port languages that might lack labeled summariza-
tion data. To this end, we propose a simple yet
effective method that composes language and task
information stored in different trained PEFT param-
eters through element-wise operation. We leverage
unlabeled data to train language parameters with
PEFT, and perform element-wise arithmetic opera-
tions with pretrained task and language parameters
to construct new parameters for a language without
labeled summarization data. While several prior
works have studied methods that compose PEFT
methods for zero-shot cross-lingual transfer (Pfeif-
fer et al., 2020; Vu et al., 2022), these methods
generally incur an additional inference cost. Our
method provides a simpler and more flexible frame-
work to leverage many related languages at a fixed
inference cost.
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θPt;XLSum  =  λθEn;XLSum  + (1-λ)(θPt;LM  -  θEn;LM )

PaLM 2

Inputs: O fenómeno Taylor Swift está 
prestes a chegar a Portugal e, se 
calhar,
Targets: ninguém está preparado 
para o frenesim que irá gerar.

Breslin will play the lead role of Baby 
Houseman. Dirty Dancing is the song- 
and-dance love story about 17-year-old 
Baby, who falls for her working-class 
dance instructor, Johnny. … In 2011, 
Lionsgate announced plans to remake the 
film for the big screen.
Summary: The 1987 movie Dirty Dancing is 
to be remade for TV, by US network ABC.

Inputs: Tastes like 
strawberries on a summer 
evenin’
Targets: and it sounds just like 
a song

Pt LM

En 
XLSum

Nos Estados Unidos, o filme 
arrecadou US $9,8 milhões. O 
número é mais baixo do que o 
esperado por analistas. Ele não 
leva em conta, porém, o 
lançamento em importantes 
mercados, como o da 
Grã-Bretanha, onde o filme foi 
lançado na quinta-feira ...  
Summary: A versão de King Kong 
dirigida por Peter Jackson 
arrecadou US $18 milhões no seu 
primeiro dia de apresentação.

Inference timePt XLSum

En LM

PaLM 2

Te 
XLSum

Bn 
XLSum

Si 
XLSum

θSi;XLSum  =  θTe;XLSum  + θBn;XLSum

PaLM 2

En 
XLSum

Ja 
XLSum

Zh 
XLSum

θZh;XLSum  =  θEn;XLSum  + θKo;XLSum+ θJa;XLSum

Ko 
XLSum

a) Task-in-One-Language b) Task-in-Many-Languages

Inference time

Inference time

Figure 1: Illustration of our language and task arithmetic approach for zero-shot cross-lingual transfer using
LoRA parameters learned on top of PaLM 2. (a) We train a task adapter using the summarization objective in En
and language adapters using Prefix-LM in En and Pt. At inference time, a summary is generated in Pt, shown with
a dotted frame (Subsection 2.1). (b) We add the weights of task adapters trained for summarization in languages
similar to the target. We use the resulting vector for zero-shot summarization in the target language (Subsection 2.2).

Our method is inspired by the lottery ticket hy-
pothesis (Frankle and Carbin, 2019), which posits
that distinct models fine-tuned on the same dataset
follow linear trajectories while maintaining a con-
sistent loss (Frankle et al., 2020; Yunis et al., 2022).
This hypothesis implies that element-wise opera-
tions on different fine-tuned models can also re-
move biases of the pretrained model (Ilharco et al.,
2023), allowing the accumulation of information
from auxiliary tasks (Matena and Raffel, 2021),
or improve adaptation to unforeseen textual do-
mains (Li et al., 2022a; Chronopoulou et al., 2023a).
Our work is the first to extend this observation to
improve cross-lingual transfer by combining pre-
trained language and task parameters.

Our contributions are the following:

1. Assuming we only have task data in En-
glish, we combine PEFT parameters trained
on English task data and unlabeled data in
other languages through element-wise com-
position. This setup, termed Task-in-One-
Language, improves the model’s summariza-
tion performance across all unseen target lan-
guages, as demonstrated on the XLSum bench-
mark (Hasan et al., 2021).

2. Extending our first approach, we consider sce-
narios with task data from multiple languages

(Task-in-Many-Languages). When labeled
task data for summarization are available in
various languages, we combine representa-
tions from languages most related to the target,
consistently improving performance over the
baselines using the XLSum benchmark.

3. We apply our language and task arithmetic
to a different PEFT method, the Kronecker
adapter (Edalati et al., 2022) and evaluate its
performance on XLSum and TyDi-QA (Clark
et al., 2020). We find that our approach is also
effective with these other methods and tasks.

2 Language and Task Arithmetic

Prior work has applied element-wise operations
to the weights of fine-tuned models (Matena and
Raffel, 2021; Wortsman et al., 2022; Ilharco et al.,
2023; Ainsworth et al., 2023; Yadav et al., 2023), or
PEFT modules (Chronopoulou et al., 2023a; Zhang
et al., 2023a). These studies demonstrate that inter-
polating the weights of fine-tuned models (or spe-
cific layers) effectively creates multi-task and multi-
domain models. We hypothesize that element-wise
operations can also be used to combine knowledge
acquired in different languages. Our work is the
first to propose the arithmetic composition of lan-
guage and task PEFT modules for cross-lingual
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natural language generation. Figure 1 illustrates an
overview of our approach. 1.

Our goal is to enable Large Language Models
(LLMs) to support summarization in an unseen tar-
get language (T ) for which we lack labeled data.
We assume access to labeled task data in other lan-
guages, as well as unlabeled monolingual data in
both the source language (S) and the target lan-
guage (T ). In particular, we can use either labeled
or unlabeled data to train small PEFT modules that
capture the attributes of a given task or language.
Task Adapter: We fine-tune an LLM using LoRA
adapters on labeled data from XLSum (Hasan et al.,
2021) in the source language S. We refer to the
fine-tuned model as Task Adapter.
Language Adapter: We fine-tune LoRA parame-
ters with LLMs on monolingual data in the source
or target language (S or T ). We refer to the fine-
tuned model as language adapter. We use the prefix-
LM pretraining objective from T5 (Raffel et al.,
2020) with mC4 data to train language adapters.

We propose to compose the language and task
vectors to better support summarization into the
target language T . Next, we introduce our method
under two different data settings.

2.1 Task-in-One-Language
First, we consider the zero-shot setting where the
source language S is English. We have labeled data
in S, and some amount of unlabeled data both in
the source language S and the target language T .

Composing via Language and Task Addition:
We want to encourage the model to generate in the
target language T and learn the task from the data
available in the source language S.

Let θLM;T be the LoRA parameters trained on
the monolingual data in the target language T , and
θtask;S be the LoRA parameters trained on the la-
beled task data in the source language S, we pro-
pose to calculate the zero-shot task module for the
target language T as:

θtask;T = λθtask;S + (1− λ)(θLM;T) (1)

The scaling term λ is determined using held-out
validation data. We refer to this approach as Lan-
guage and Task; Add.

Composing via Language and Task Addition
and Subtraction: We want to steer the model’s
ability to generate in the target language T , but
avoid generating in the source language S. Previ-
ous work showed that subtraction can be a method

of “unlearning” information (Ilharco et al., 2023;
Zhang et al., 2023a). We propose subtracting the
source language adapter from the target language
adapter. The intuition is that by negating the source
language adapter, we control the generation, mak-
ing the model “forget” the source language.

Our goal in this zero-shot transfer setup is to
obtain a model that has a strong summarization
ability (learned from the task adapter) in the cor-
rect target language (learned from the target lan-
guage adapter) while not generating in the source
language (unlearned from the source language
adapter).

Formally, let θLM;S be the LoRA parameters
trained on the monolingual data in the source lan-
guage S. We propose to calculate the zero-shot
task module for the target language T as:

θtask;T = λθtask;S + (1− λ)(θLM;T − θLM;S) (2)

where λ is a hyperparameter tuned in the same
way as in the previous setting. We refer to it as
Language and Task; Add and Subtract.

2.2 Task-in-Many-Languages
Subsection 2.1 presents language and task arith-
metic when we want to do zero-shot transfer from
a single source language S. However, in practice,
we sometimes have data in many different source
languages. In this subsection, we extend our lan-
guage and task arithmetic framework to the setting
where we utilize data in many different languages.

Composing via Task-only Addition: First, we
want to utilize labeled task data in various source
languages. Formally, given labeled task data for N
languages (S1, ..., SN ), we want to use the LLM to
support an unseen target language T , for which we
have no task data. To this end, given LoRA param-
eters (θtask;S1

, ..., θtask;SN
) trained on labeled task

data in (S1, ..., SN ), we propose to perform zero-
shot generation on the target language T using the
average of PEFT modules of its related languages:

θtask;T =
1

L

L∑

i=1

θtask;Si
(3)

where L <= N . If L = N , we essentially add the
weights of all available task adapters (we name this
method Task-only; Add all). To select a subset of
L languages that are most related to the target lan-
guage T , we use the URIEL language vectors (Lit-
tell et al., 2017). We retrieve the pre-computed
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syntactic and geographic distances between T and
each of the N languages of the training set using
an implementation of the toolkit lang2vec.1 We
refer to this approach as Task-only; Add related.

Composing via Language and Task Addition
and Subtraction: Similarly, if we have both la-
beled and unlabeled data in several source lan-
guages, we can modify Equation 2 to leverage both
types of data in many different languages:

θtask;T = λθ′task;S + (1− λ)(θLM;T − θ′LM;S) (4)

Where θ′task;S = 1
L

∑L
i=1 θtask;Si

(as computed
in Equation 3), i.e., it is the average of the re-
lated (to the target T ) task adapters, and θ′LM ;S =
1
L

∑L
i=1 θLM;Si

, i.e., it is the average of the related
language adapters according to URIEL. This ap-
proach is denoted as Language and Task; Add and
Subtract related.

3 Experimental Setup

3.1 Tasks and Datasets

Summarization: We use XLSum (Hasan et al.,
2021), a news summarization dataset of BBC ar-
ticles, where each article has a one-sentence sum-
mary. While prior work studies the zero-shot learn-
ing setting where only English labeled data is avail-
able (Vu et al., 2022), we utilize the available mul-
tilingual training data for a more realistic setting.
Specifically, we use a subset of XLSum as our train-
ing set, and specifically the articles and summaries
of the languages: Arabic (ar), Bengali (bn), English
(en), Japanese (ja), Korean (ko), Indonesian (id),
Swahili (sw), Russian (ru), Telugu (te), Thai (th),
and Turkish (tr). We refer to this set as XLSumseen.
Training dataset stats are shown in Table 7 of the
Appendix.

For zero-shot evaluation, we select 11 languages
from XLSum as unseen languages: Marathi (mr),
Gujarati (gu), Chinese simplified (zh), Nepali (ne),
Portuguese (pt), Sinhala (si), Somali (so), Viet-
namese (vi), Yoruba (yo), Ukrainian (uk), and Per-
sian (fa). We do not use training data from any
of these languages. We refer to this set of 11 lan-
guages as XLSumunseen.
Unlabeled data: We use unlabeled data from mC4
(Xue et al., 2021) with the prefix language model-
ing objective from T5 (Raffel et al., 2020). This

1https://github.com/antonisa/lang2vec

corpus has been created using a Common Crawl-
based dataset covering 101 languages. All lan-
guages considered in our experiments are covered
by mC4. For the language adapters, we fine-tune
the LLM using LoRA on prefix-LM for 5k steps in
each language.

3.2 Training and Implementation Details

We use PaLM 2-S (Anil et al., 2023), a state-of-
the-art, highly multilingual language model, as the
base LLM for all our experiments.

We add LoRA parameters of rank 4 to the Key,
Query, Value, Projection attention matrices. We
do not tune this hyperparameter. This results in
adding parameters that account for just 0.2% of
the parameters of PaLM 2 (we do not update the
weights of the pretrained model). We fine-tune
PaLM 2 on prefix-LM, XLSum using LoRA with
learning rate 2e− 4.

For XLSum, we report ROUGE-2 (Lin, 2004)
as the evaluation metric for En, and SentencePiece-
ROUGE-2 for all other languages. This is an exten-
sion of ROUGE that handles non-Latin character
using a SentencePiece tokenizer; in this work, we
use the mT5 tokenizer (Xue et al., 2021).

3.3 Baselines

TASK-IN-ONE-LANGUAGE: The baseline is com-
puted by fine-tuning PaLM 2 on En XLSum data
using LoRA parameters. During fine-tuning, only
the LoRA parameters are being updated, while the
underlying LLM remains frozen.
TASK-IN-MANY-LANGUAGES: The baseline is
computed by fine-tuning PaLM 2 on XLSum data
of each of the language in XLSumseen indepen-
dently using LoRA parameters. Then, the best-
performing model (per target language) is selected.
We denote this as baseline (best).

We also compute a multilingual baseline: we
simply concatenate the datasets of the different
languages of XLSumseen and we train the LLM
with LoRA on the entire dataset.2

4 Results and Discussion

4.1 Task-in-One-Language

Language and task arithmetic (Add and Sub-
tract) improves zero-shot cross-lingual transfer:
We present the main results of our language and

2We also ran the full fine-tuning baselines and we observed
that the gap to the PEFT baselines is small, results are shown
in the Appendix.
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Method Mr Gu Zh Ne Pt Si So Vi Yo Uk Fa Avg

Task-in-One-Language
Baseline 20.5 30.3 23.9 29.4 22.3 34.5 21.3 24.5 17.3 17.4 25.1 24.2

Language and Task (Add) 20.6 30.3 24.1 29.4 22.3 34.7 21.5 24.5 17.7 18.1 25.2 24.4
Language and Task (Add and Subtract) 20.7 30.6 24.6 29.6 22.5 35.4 21.8 24.6 18.5 20.9 25.8 25.0

Table 1: Language and task arithmetic improves zero-shot cross-lingual transfer on XLSum when we only
have task data in En. We show ROUGE-2 spm scores on XLSumunseen. We train the task adapter using En
XLSum data and the language adapter using Prefix-LM on mC4 data.

Method Mr Gu Zh Ne Pt Si So Vi Yo Uk Fa Avg

Task-in-Many-Languages
Baseline (best) 21.2 31.2 25.6 28.4 22.5 35.8 22.1 25.6 21.4 21.6 25.3 25.5
Baseline (multilingual) 21.4 31.2 26.4 28.8 22.8 35.4 22.4 25.7 20.2 21.5 25.5 25.6

Task-only (Add all) 21.4 31.3 25.6 28.6 22.8 35.4 22.0 25.5 20.4 21.3 25.5 25.4
Task-only (Add related) 21.1 31.5 25.4 30.2 23.1 36.3 22.9 25.1 22.9 21.8 25.7 26.0
Language and Task (Add and Subtract related) 21.2 31.5 25.4 30.4 23.0 36.4 22.8 25.0 22.9 21.7 25.7 26.0

Table 2: Addition of task adapters improves zero-shot cross-lingual transfer on XLSum when we have task
data in multiple languages. We show ROUGE-2 spm zero-shot scores on XLSumunseen.

task arithmetic approach in cross-lingual summa-
rization in Table 1. In the second row, we show
the results by composing the language and task
LoRA parameters via addition (language and task;
add). This approach provides only slight improve-
ments over the task adapter baseline in terms of
ROUGE-2. Our language and task arithmetic ap-
proach with addition and subtraction (third row)
consistently outperforms the baseline as well as the
simple addition of source task and target language
LoRA parameters. We highlight that the language
adapters are trained by fine-tuning PaLM 2 with
LoRA on prefix-LM for just 5k steps; even with
this minimal training, they provide knowledge that
is helpful to the pretrained model.
Why is subtracting the source language adapter
important? We hypothesize that since the task
adapter encodes information on summarizing arti-
cles in En (source), it is beneficial to add a language
adapter that encourages the LLM to generate in the
target language, but at the same time avoid gen-
erating in the source. Intuitively, negating the En
language adapter parameters likely reduces the bias
of the model towards En and enhances the ability
of the model to generate in the target language.

4.2 Task-in-Many-Languages

We present the results of our approach when task
data is available in different languages in Table
2. We compare the baselines with task-only; Add
all, which fine-tunes PaLM 2 with LoRA on each
language of the training set, and then computes the

weight average of all fine-tuned models.

Task-only (Add all) on par with multilingual
baseline: We observe that simply averaging all
task adapters is on par with the multilingual base-
line. This is intriguing, as it suggests that model
merging can be used to iteratively add new task
data to a petrained model. As soon as new task data
(for a previously unsupported language) become
available, one can simply train the corresponding
task vector on this data and add it to the model by
performing weight averaging. This alleviates the
need of training a new multilingual model for every
new batch of data.

Adding only related task adapters gives better
results for most languages: Our approach (task-
only; Add related) is presented in row 4. This
selective composition of task adapters clearly sur-
passes the baselines. Our hypothesis is that not all
task adapters are as important for a target language
T and the final model should only incorporate task
adapters trained in languages similar to the target.
To select the models that will be averaged, we do
not use any test data, but rely on linguistic infor-
mation. We query the URIEL database and use
the languages with the smallest distance to each
held-out language T . Our approach outperforms
the uniform weight average (task-only; Add all),
likely because our model avoids negative transfer
between task adapters learned on distant languages,
and leverages task information learned from similar
languages.

Arithmetically composing language and task
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Figure 2: Relative ROUGE-2 improvement of our lan-
guage & task arithmetic over the baseline (task adapter
only). Our approach yields consistent improvements for
most source-target language pairs.

adapters when task data is available in multiple
languages is not helpful: We present the results
we computed using Language and Task; Add and
Subtract related which leverages unlabeled data as
well as task data in the final row of Table 2. This
approach performs on par with the task-only; Add
related approach that uses only labeled data. Com-
posing language and task knowledge is beneficial
in the absence of enough task data. However, when
task data is available in multiple languages, com-
bining information from similar languages yields
strong results and unlabeled data does not provide
an additional benefit. Therefore, merging the two
methods does not provide improvements.

5 Analysis

5.1 Using task adapter in different languages
has consistent improvements

For our main language and task arithmetic results
with Task-in-One-Language, we trained the task
adapter on En labeled data and evaluated its perfor-
mance on XLSumunseen. For a more fine-grained
assessment of our model, we present its relative
performance when the task adapter is trained in
each language in XLSumseen (as opposed to just
En) against the corresponding baseline. The results
are shown in Figure 2. The third row (En) shows
the performance difference of Language and Task
(Add and Subtract) from the baseline (Table 1).

We observe consistent improvements using our
approach compared to the baseline across all lan-
guage pairs. Low-resource languages, such as Yo,

benefit more from the cross-lingual transfer setup
we propose. In addition, while learning the En
task adapter seems to provide higher gains for most
evaluation languages, Te, Ja and Ko task adapters
also lead to a large performance boost.

While PaLM 2 has been trained on vast multi-
lingual data, providing each language with indi-
vidual capacity using language modeling yields
across-the-board improvements. This suggests that
learning language-specific knowledge using PEFT
parameters has the potential to strengthen the zero-
shot cross-lingual transfer abilities of LLMs at a
very small computational cost.

5.2 Our method also works with other PEFT
parameters

We showed that composing task and language
LoRA weights by element-wise arithmetic brings
significant gains to cross-lingual transfer. In this
section, we examine whether our findings also gen-
eralize to parameter-efficient fine-tuning methods
other than LoRA.

One particularly interesting PEFT method is Kro-
necker adapter (Edalati et al., 2022). While LoRA
is based on the multiplication of two low-rank ma-
trices, Kronecker adapter is a matrix decomposi-
tion method which does not rely on the low-rank
assumption. Instead, it replaces the low-rank de-
composition in LoRA with the Kronecker prod-
uct decomposition. It has been shown that this
PEFT method achieves large improvements over
LoRA and full fine-tuning on the GLUE bench-
mark (Wang et al., 2018). We conduct language
and task arithmetic using Kronecker adapters as
the PEFT modules.3

Kronecker adapter: Formally, the Kronecker
product is defined as follows:

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB




where matrices A ∈m×n and B ∈ k
m
× d

n are the
input matrices, and W ∈k×d, k is the model di-
mension and d is the dimension per attention head
is the output matrix. We can tune hyperparameters
m and n while keeping the number of additional pa-
rameters fixed, which is more flexible than LoRA.

3Similar to LoRA tuning, we add Kronecker adapters for
the Key, Query, Value, Projection attention matrices of the
Transformer model while keeping the weights fixed.
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Method Mr Gu Zh Ne Pt Si So Vi Yo Uk Fa Avg

Task-in-Many-Languages
Baseline (best) 21.3 31.4 25.6 30.0 22.6 36.0 22.9 25.4 21.8 22.0 25.7 25.9
Baseline (multilingual) 21.2 31.5 26.1 30.8 23.2 36.7 23.1 25.5 21.5 22.0 25.9 26.1

Task-only (Add all) 20.9 31.3 25.6 30.5 22.8 35.9 22.7 25.2 20.8 21.9 25.7 25.7
Task-only (Add related) 21.1 32.2 26.2 31.4 24.0 36.6 22.9 25.7 21.9 22.3 26.6 26.4

Table 3: Adding related task adapters outperforms monolingual and multilingual baselines on XLSum using
Kronecker adapter. Rouge (ROUGE-2 spm) zero-shot scores on the XLSumunseen test set.

Experimental setting: We use PaLM 2 S model as
the pretrained LLM. We add a Kronecker adapter
with (m,n) = (32, 16). Similar to LoRA, this
PEFT method does not decrease inference speed
because the additional parameters are added back
to the original model weights.
Results: We run the task-only; Add experiments
using Kronecker adapter and show the results in
Table 3. We observe that the results follow a similar
pattern as with the LoRA adapter. Our method
(task-only; Add related) outperforms monolingual
and multilingual baselines. This demonstrates that
a selective combination of PEFT parameters at the
weight level improves the generalization ability
of a LLM to languages for which no task data is
available. This confirms our intuition that it is
possible to compose information learned about a
task in different languages by simply performing
point-wise operations.

5.3 Module subtraction is particularly helpful
for summarization

We proposed two composition approaches for lan-
guage and task arithmetic: Add or Add and Sub-
tract. To understand the different impact of these
two approaches, we compare their performance on
two datasets, TyDi QA and XLSum.
Experimental setting: Besides XLSum, we also
evaluate our language and task arithmetic approach
on TyDi QA (Clark et al., 2020), a multilingual
extractive question answering dataset of 8 typo-
logically diverse languages, based on Wikipedia
articles in Bengali (bn), English (en), Finnish (fi),
Indonesian (id), Korean (ko), Russian (ru), Swahili
(sw), and Telugu (te). We train our model on En
task data an evaluate on each of the other languages
in the dataset, simulating a zero-shot setup.
Results: We show the results in Table 4. We find
that using both addition and subtraction is more
beneficial than addition only for XLSum (+0.6
gains in ROUGE). However, we observe that for

the QA task, using addition and subtraction per-
forms on par with addition only. We hypothesize
that this is likely because TyDi QA is an extractive
QA task where the model simply needs to copy a
segment of correct answer from the context, while
XLSum requires more free-form language genera-
tion. Because of this inherent difference between
the tasks, discouraging the model from generating
in the source language (by negating the source lan-
guage adapter) is less essential to QA compared to
summarization.

Method TyDi QA XLSum

Baseline 83.0 24.2
Language and task arithmetic

- Add 83.3 24.4
- Add and Subtract 83.2 25.0

Table 4: Language and task arithmetic via addition
or addition and subtraction for TyDi QA and XLSum
using LoRA parameters. These are the average results
over the unseen languages. For TyDi QA, F1 is shown,
while for XLSum, we show ROUGE-2 spm.

5.4 Task adapters selected by lang2vec

When we have labeled data available in multiple
languages, our proposed task-only; Add related ap-
proach averages the weights of PEFT parameters
that are related to the target language. The relat-
edness is defined by lang2vec, a tool that queries
URIEL. To shed light on where the improved per-
formance of our model comes from, we present
in Table 5 the source languages that are selected
for each of the target languages based on linguistic
knowledge.

We witness that a different number of languages
is selected for each target language. We do not
explicitly control the number of models averaged,
we simply sort them using the syntactic and geo-
graphic distance. For a given target language T ,
we average the weights of the source languages
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Mr Gu Zh Ne Pt Si So Vi Yo Uk Fa

Bn Bn En Te En Te Ar Id En Ru Tr
Te Te Ko Ja Ru Bn Sw Th Ar En En
Tr Ja Tr Ar En Sw Ar

Id Ko
Th Ru

Bn

Table 5: Most similar languages to each of the eval-
uation languages (based on lang2vec) selected by our
task-only (Add related) approach.

S1, S2, .., SN that have a syntactic distance < 0.7
and a geographic distance < 0.3. We leave a more
fine-grained selection process to future work.

6 Related Work

LLMs have shown impressive performance in var-
ious natural language processing tasks (Radford
et al., 2019; Brown et al., 2020; Chung et al., 2022;
Touvron et al., 2023), often requiring no extra train-
ing to adapt to downstream tasks.

Numerous parameter-efficient methods have
been proposed, each addressing the challenge of en-
hancing efficiency . These methods can be catego-
rized as input composition, function composition,
and parameter composition (Pfeiffer et al., 2023).
Input composition methods, such as prompt tuning,
incorporate soft prompts into the input layers to
guide the model’s behavior (Li and Liang, 2021;
Lester et al., 2021). Function composition strate-
gies, like adapters (Rebuffi et al., 2017; Houlsby
et al., 2019), introduce non-linear functions within
pretrained layers to adapt the intermediate repre-
sentations of the model. Parameter composition
is exemplified by methods like LoRA (Hu et al.,
2022), which introduces a limited number of learn-
able low-rank matrices into each pretrained layer.

Recent work which is based on the linear mode
connectivity (Frankle et al., 2020) suggests averag-
ing the weights of pretrained models fine-tuned on
the same dataset with different hyperparameters to
improve downstream performance (Izmailov et al.,
2018; Gupta et al., 2020; Wortsman et al., 2022). It
has also been shown that averaging the weights of
models fine-tuned on different tasks improves out-
of-domain generalization without leaking informa-
tion about potentially private labeled datasets (Jin
et al., 2023). Composing weights of models fine-
tuned on tasks related to the target task is also ben-
eficial (Matena and Raffel, 2021). Ainsworth et al.
(2023); Ilharco et al. (2023); Yadav et al. (2023);

Huang et al. (2023); Ortiz-Jimenez et al. (2023)
show that a model can acquire multi-task learn-
ing abilities using model merging, while Daheim
et al. (2024) propose model merging by reducing
gradient mismatch. There is also work on averag-
ing domain-specific adapter layers (Chronopoulou
et al., 2023a) or domain-expert LMs (Li et al.,
2022b) with large gains for unseen domains. How-
ever, there is no work on PEFT cross-lingual trans-
fer using language and task arithmetic.

In a similar line of thought and to mitigate inter-
ference of different tasks during training, Pfeiffer
et al. (2021) train task PEFT modules and learn at-
tention parameters to select the most useful of them,
while Karimi Mahabadi et al. (2021) learn adapters
with hypernetworks. Asai et al. (2022) efficiently
integrate knowledge from multiple tasks with a mix
of trainable soft prompts. Ponti et al. (2023) pro-
pose Polytropon, which learns both adapters and
a binary task–module routing matrix, determining
which module should be active for each task; Cac-
cia et al. (2023) extend it to a more granular level
by mixing subsets of adapter dimensions.

Another research direction considers training
PEFT parameters and combining them for cross-
lingual transfer. MAD-X (Pfeiffer et al., 2020)
stacks task bottleneck adapters with language
adapters and using them for cross-lingual trans-
fer. Ansell et al. (2022) identify the parameters
that are most useful for a task and a language, and
compose them; this work is based on the lottery
ticket hypothesis (Frankle et al., 2020). Vu et al.
(2022) propose factorizing a prompt into a lan-
guage and task and training each part while keep-
ing the other frozen. Newly learned knowledge
is combined with the existing model using PEFT
modules to permit cross-lingual transfer in multiple
recent works (Bapna and Firat, 2019; Üstün et al.,
2020; Vidoni et al., 2020; Cooper Stickland et al.,
2021; Chronopoulou et al., 2023b). To the best
of our knowledge, our work is the first to propose
improving cross-lingual transfer of a LLM via a
combination of weights of PEFT parameters.

7 Conclusion

We present a new method to compose knowledge
from parameter-efficient modules using arithmetic
operations in order to improve zero-shot cross-
lingual transfer. Our experiments in summarization
on a wide set of languages using PaLM 2 as the
pretrained model show that our language and task
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arithmetic achieves consistent improvements over
the baselines and introduces a modular approach
that can be leveraged for improved generalization
of a LLM in languages that lack labeled data.
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Method Ar Bn En Id Ja Ko Ru Sw Te Th Tr Avg

LoRA 23.4 27.6 23.5 25.0 33.6 30.4 21.3 27.1 26.9 24.7 25.3 26.2
Multi-LoRA 23.0 27.8 22.5 24.6 34.0 30.4 20.8 27.1 27.8 25.1 24.9 26.2

Kronecker 23.4 27.7 23.1 24.8 34.6 31.2 21.6 27.1 27.4 24.8 25.2 26.4
Multi-Kronecker 22.8 27.5 22.5 24.9 34.7 31.2 20.8 27.5 27.6 24.8 25.2 26.3

Full fine-tuning 23.9 28.1 22.6 25.3 34.8 30.4 21.8 27.0 28.2 24.6 25.4 26.6

Table 6: Parameter-efficient fine-tuning vs Full fine-tuning. Rouge (ROUGE-2 spm) in-domain scores on the
XLSumseen test set.

A Appendix

A.1 Are PEFT methods competitive to full
fine-tuning of PaLM 2?

We present the performance of LoRA and Kro-
necker, two PEFT methods, when used to fine-tune
PaLM 2 on summarization in 11 languages of XL-
Sum in Table 6. We compare their performance to
full fine-tuning of PaLM 2.

Fine-tuning the model with LoRA results in sum-
marization scores that are only 0.4 ROUGE points
below full fine-tuning, while fine-tuning with Kro-
necker provides a performance similar to full fine-
tuning (i.e., just 0.2 points worse than full fine-
tuning). Based on this finding, we conclude that
using PEFT methods to fine-tuning PaLM 2, a state-
of-the-art LLM, is largely impactful, as in our ex-
periments LoRA for example trains only 0.2% of
the model’s parameters whereas fully tuning the
LLM requires updates on 100% of the model’s pa-
rameters.

A.2 XLSumseen Dataset
We are showing the dataset sizes of XLSumseen in
Table 7.

Language Lang code Dataset size

Arabic ar 38k
Bengali bn 8k
English en 306k
Indonesian id 38k
Japanese ja 7k
Korean ko 4k
Russian ru 62k
Swahili sw 8k
Telugu te 10k
Thai th 7k
Turkish tr 27k

Table 7: Languages in XLSum seen and dataset sizes
(training).
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Abstract

This study evaluates the performance of Recur-
rent Neural Network (RNN) and Transformer
models in replicating cross-language structural
priming, a key indicator of abstract grammati-
cal representations in human language process-
ing. Focusing on Chinese-English priming,
which involves two typologically distinct lan-
guages, we examine how these models handle
the robust phenomenon of structural priming,
where exposure to a particular sentence struc-
ture increases the likelihood of selecting a sim-
ilar structure subsequently. Our findings indi-
cate that transformers outperformRNNs in gen-
erating primed sentence structures, with accu-
racy rates that exceed 25.84% to 33. 33%. This
challenges the conventional belief that human
sentence processing primarily involves recur-
rent and immediate processing and suggests a
role for cue-based retrieval mechanisms. This
work contributes to our understanding of how
computational models may reflect human cog-
nitive processes across diverse language fami-
lies.

1 Introduction

Structural priming refers to the phenomenonwhere
encountering a specific syntactic structure boosts
the probability of generating or understanding sen-
tences with a comparable structure (Pickering and
Ferreira, 2008). It serves as a valuable method for
exploring the capabilities of language models and
probing their internal states and their potential re-
lation to human sentence processing.

Studies show that Recurrent Neural Networks
(RNN), particularly Gated Recurrent Unit mod-
els (GRU), have been pivotal in modeling human
sentence processing, including structural priming
(Frank et al., 2019). Meanwhile, transformers also
demonstrate structural priming ability similar to
that of humans (Sinclair et al., 2022). This sug-
gests the representations learned by the models

Figure 1: Cross-language structure priming of human
participant: C denotes Chinese, E denotes English.

may capture not only sequential structure but also
some degree of hierarchical syntactic information.

That said, to our knowledge, no study has com-
pared these models’ ability to syntactically prime
across two typologically distant languages. In the
current study, we address this gap by comparing
the models’ ability to prime syntactically across
two languages from vastly different families.

Consider a case where a human participant reads
a passive Chinese (C) sentence and is then asked
to describe a separate picture in English (E) (see
Figure 1). Here, the passive sentence C influences
the structure of the target sentence E, leading the
participant to use passive voice in their description.

Our study explores structural priming in trans-
lation models, highlighting their ability to gener-
ate syntactically diverse English outputs from Chi-
nese inputs. A key contribution is a set of insights
into syntactic representation across typologically
distinct languages in computation models. We
demonstrate that transformers outperformRNNs in
generating primed sentence structures, challenging
the belief that human sentence processing relies
mainly on recurrent and immediate processing.

The next section reviews work on cross-
linguistic priming. Section 3 introduces our study,
exploring insights into syntactic representation
across typologically distinct languages in compu-
tational models. Section 4 introduces a newly de-
signed test set to evaluate our models. Section 5
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details the implementation and training of two dis-
tinct models. Section 6 discusses the design of our
experimental setup, followed by a comprehensive
analysis and interpretation of our results.

2 Related Work

This section focuses on work related to cross-
linguistic priming, as exemplified in Figure 1.
Prior experiments induce cross-linguistic struc-
tural priming by instructing bilingual participants
to use two languages: presenting primes in one lan-
guage and eliciting targets in another. These stud-
ies show that specific sentence structures in one
language can influence the use of similar structures
in the other language (Hartsuiker et al., 2004).

Computational modeling studies have shown
that RNNs exhibit structural priming effects akin
to those observed in human bilinguals (Frank,
2021). These models process sequential informa-
tion through recurrence, a feature thought to resem-
ble human cognitive processing. The emergence of
such priming effects in language models suggests
that they develop implicit syntactic representations
that resemble those employed by human language
systems (Linzen and Baroni, 2021).

However, the transformer model, which uses
self-attention mechanisms instead of recurrence,
challenges this notion. The transformer’s ability to
directly access past input information, regardless
of temporal distance, offers a fundamentally dif-
ferent approach from RNNs. The effectiveness of
transformers in various NLP tasks makes us won-
der if they can emulate RNNs in modeling cross-
language structural priming.

The current study is inspired by two prior stud-
ies. Merkx and Frank (2021) compare trans-
former and RNN models’ ability to account for
measures of monolingual (English) human read-
ing effort. They show that transformers outper-
form RNNs in explaining self-paced reading times
and neural activity during English sentence read-
ing, challenging the widely held idea that human
sentence processing relies on recurrent and imme-
diate processing. Their study is monolingual and
English-centric. Frank (2021) investigates cross-
language structural priming, finding that RNNs
trained on English-Dutch sentences account for
garden-path effects and are sensitive to structural
priming, within and between languages.

Recent studies on structural priming in neural
language models have shown significant progress,

Figure 2: Example of Active, Passive, Propositional
Object (PO), and Double Object (DO). White high-
lighted sentence is original Chinese sentence, and yel-
low highlighted Sentence is word-to-word mapping be-
tween Chinese and English.

with researchers quantifying this phenomenon us-
ing various methods across different languages.
Prasad et al. (2019) demonstrate that LSTM lan-
guage models can hierarchically organize syntactic
representations in a manner that reflects abstract
sentence properties. Sinclair et al. (2022) show
that Transformermodels exhibit structural priming,
suggesting these models capture both sequential
and hierarchical syntactic information.

Michaelov et al. (2023) provide evidence that
large multilingual language models possess ab-
stract grammatical representations that influence
text generation similarly across different languages.
Together, these findings underscore the capacity of
neural models to develop and apply structural ab-
stractions, contributing to a deeper understanding
of language processing in AI.

3 The Current Study

Our study examines structural priming in transla-
tion models, demonstrating their capability to gen-
erate syntactically diverse English outputs from
Chinese inputs. This approach offers insights into
syntactic representations across typologically dis-
tinct languages in computational models.

To compare RNNs and transformers in their
ability to model cross-language structural priming,
we adopt a new approach. While Frank (2021)
trains models on comprehension, where a longer
response time indicates greater difficulty in under-
standing a new sentence and thus a weaker prim-
ing effect, the current study focuses on production.
Here, the structure of each generated sentence is
compared with that of the input sentence to assess
the presence of a priming effect.

As shown in Figure 2, Chinese has equiva-
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Figure 3: Example of test phase and evaluation process.

lents for structures that are passive (e.g., Many
trees were planted by them) and active (e.g., They
planted many trees). It also includes structures for
prepositional objects (e.g., The cowboy gave the
book to the sailor) and double objects (e.g., The
cowboy gave the sailor the book). In our study, the
input sentence is in Chinese and system output is
an English version of the sentence. BLEU scores
are calculated between the system-generated En-
glish sentence and both a “correct” English sen-
tence that shares the structure with the Chinese in-
putand an “incorrect” sentence. We then calculate
the difference between the two BLEU scores, as
depicted in Figure 3.

Another novel aspect of our study is the selec-
tion of two languages from vastly divergent lan-
guage families, challenging the models to develop
abstract representations for distinct structures.

4 Data Preparation
We select and process a Chinese-English corpus
which contains 5.2 million Chinese-English paral-
lel sentence pairs (Xu, 2019).1

We employ a DataLoader 2 to facilitate batch
processing, transforming text into token IDs suit-
able for model interpretation. We then use the
Helsinki-NLP tokenizer (Tiedemann and Thottin-

1The source can be found at https://drive.google.com/
file/d/1EX8eE5YWBxCaohBO8Fh4e2j3b9C2bTVQ/
view?pli=1

2Our Dataloader is supported by PyTorch, referencing its
license located at https://github.com/pytorch/pytorch/
blob/main/LICENSE

gal, 2020)3 to map Chinese to English, accommo-
dating over a thousandmodels for diverse language
pairs.

The tokenizer, by default, processes text based
on source language settings. To correctly encode
target language text, the context manager must be
set to use the target tokenizer. Without this, the
source language tokenizer would be incorrectly ap-
plied to the target text, leading to poor tokenization
results, such as improper word splitting for words
not recognized in the source language.

In sequence-to-sequence models, assigning a
value of -100 to padding tokens ensures they are
excluded from loss calculations. This setup is cru-
cial for effective model training, enabling precise
adjustment of model parameters based on the tok-
enized input and target sequences. Proper data for-
matting through this preprocessing step facilitates
optimal training outcomes.

We also design a test dataset, initially sam-
pling five sentences for each of the four sentence
structures (Active Voice, Passive Voice, Preposi-
tional Object, and Double Object) from the Cross-
language Structural Priming Corpus (Michaelov
et al., 2023). To augment the data, we employ a
LLM, ChatGPT 3.5 (OpenAI, 2024), By providing
a one-shot learning prompt, we expand each set to
30 sentences, resulting in a total of 120 sentences
for our test dataset:
Generate 30 sentences with the following struc-
ture: The cowboy gave the book to the sailor. Re-
place all the words while keeping the sentence
structure the same.

In our test set, each Chinese sentence is paired with
a correct and an incorrect English sentence.

Subsequently, a bilingual annotator proficient in
both Mandarin and English carefully reviews the
sentence outputs generated by the LLM, ensuring
that each triplet comprises translation equivalents.
The review also confirms that only the ‘correct’ an-
swer maintains syntactic alignment with the origi-
nal Chinese sentence.

5 Language Models
We implement both a transformer model and an
RNN model to handle sequence-to-sequence tasks
using the encoder-decoder architecture. (See Ex-
periment of Figure 4.) This architecture supports

3Helsinki-NLP is licensed under the MIT license.
For more details, see here: https://github.com/
Helsinki-NLP/Opus-MT/blob/master/LICENSE
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Figure 4: The workflow of the study includes PO (Propositional Object), DO (Double Object), Ac (Active), and
Pa (Passive). In the training phase, raw bilingual data are preprocessed to generate token pairs. In the experiment
phase, we employ transformer and RNN-based encoder-decoder architectures. In the testing phase, we evaluate the
model’s performance across four sentence structures using the BLEU metric.

the processing of both input sequences and output
sequences of varying lengths, which is crucial for
accommodating sentences with different structures
yet similar meanings. This section explores why
these language models can assist us identify struc-
tural priming. We train and test our RNN model
and transformer using AMD EPYC 75F3 8-Core
Processor and 1 NVIDIA A100 GPU.

5.1 Multi-head Attention in Transformer
In the transformer model, we use the self-attention
mechanism (AttModel) to capture sentence struc-
ture. This mechanism identifies dependencies
between different positions and adjusts the repre-
sentation of each word based on its relationship
with others, thus facilitating the learning of sen-
tence structure. Following Vaswani et al. (2017),

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (1)

where𝑄, 𝐾,𝑉 are obtained through linear transfor-
mations of an input sequence of text, each with its
own learnable weight matrix. In the encoder part
of model, 𝑄, 𝐾,𝑉 comes from the same source se-
quence, while in the decoder, 𝑄 comes from the
target sequence, and 𝐾 and 𝑉 come from the en-
coder’s output. Since the computation of𝑄, 𝐾 , and
𝑉 requires processing the entire input sentence, the
model can simultaneously focus on all positions
and capture the sentence’s structure.

In the decoder part of the transformer model,
multiple attention heads capture different levels of
sentence features, leading to a more comprehen-
sive representation of sentence structure. Each at-
tention head specializes in capturing specific se-

mantic relationships, such as word dependencies
and distance relationships.

This approach enhances the model’s ability to
comprehend the intricacies of sentence structure.
The equation is as follows:

MH(𝑄, 𝐾,𝑉) = Concat(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ) ·𝑊𝑂

(2)
where 𝑊𝑂 is the weight matrix to be trained, and
ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ, computed through equation 1,
represent the attention weights of each head (we
use 8 heads). Concat is the operation of joining
tensors along their last dimension.

We also prioritize the choice of positional encod-
ing method. While the common method involves
using sine and cosine functions, we opt for learn-
able positional embeddings. We believe this ap-
proach offers more advantages for learning struc-
tural priming, as it helps our model better under-
stand and encode the relative positions of words
within a sentence.

In contrast to the fixed positional encoding,
learnable positional embeddings assign different
weights to different positions, emphasizing the rel-
evant positional information that contributes to the
priming effect. This enables the model to capture
more intricate positional relationships and depen-
dencies specific to the task of structural priming.

5.2 GRU Encoder and GRU Decoder
Some studies (Zhou et al., 2018) show that
RNNs can preserve sentence structure and facil-
itate identification of structural priming environ-
ments. Their sequential nature allows them to pro-
cess input tokens based on the context of the en-
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tire sentence. As each token is processed, the
RNN’s hidden state is updated, retaining informa-
tion about preceding tokens and their contextual
relevance. This sequential processing enables the
model to capture word dependency relationships,
thereby preserving the structural integrity of the
sentence. Summarizing:
State(𝑑ℎ𝑖 , 𝑐𝑖), 𝑝 = 𝑓 (State(𝑑ℎ𝑖−1, 𝑐𝑖−1), 𝑚) (3)

The function 𝑓 refers to the hidden layer of the
RNN model, which is a neural network. It takes
the previous layer’s State i-1 and the output vector
from the previous time step𝑚 as input, and outputs
the next layer’s State i and prediction value 𝑝 until
it encounters the termination symbol. Here, 𝑑ℎ sig-
nifies the hidden state of the RNN unit in decoder,
tasked with capturing pertinent information from
the input sequence. In the initial decoder step, 𝑑ℎ
embodies the final output state of the encoder. In
subsequent decoder steps, 𝑑ℎ denotes the preced-
ing RNN unit’s output.

To address the challenge of not being able to
retain the entire sentence structure, we introduce
the attention mechanism. This feature of the RNN
model enables it to focus more on the parts of the
input sequence that are most relevant to the cur-
rent output, thereby enhancing prediction accuracy.
Its potential for predicting structural patterns stems
from the attention mechanism’s ability to capture
dependencies within sequential data and to lever-
age these for better predictions. As shown in equa-
tion 3, 𝑐 denotes the attention, and its calculation
is as follows:

𝛼𝑖 = 𝑔(𝑒ℎ𝑖 , 𝑑ℎ0) (4)

As before, 𝑑ℎ0 denotes the final state of the en-
coder and 𝑒ℎ signifies the hidden state of the each
RNN unit in the encoder. Function 𝑔 is used to cal-
culate the weight 𝛼𝑖 of 𝑒ℎ𝑖 in the final state 𝑑ℎ0.
As a result, the attention 𝑐 is obtained by combin-
ing all previous states:

𝑐𝑖 =
∑

(𝛼𝑖 ∗ 𝑑ℎ𝑖) (5)

calculated by summing the products of the weight
𝛼 and the decoder state 𝑑ℎ.

Our study utilizes a variant of RNNs known as
the Gated Recurrent Unit (GRU). The GRU en-
coder and decoder are gating mechanisms that ef-
fectively manage long-distance dependencies and
mitigate the vanishing gradient problem. Addition-
ally, GRUs possess fewer parameters and demon-
strate higher computational efficiency.

Following Dey and Salem (2017), we define the
gate mechanism in two parts:

• Update Gate: 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
The update gate 𝑧𝑡 in the encoder controls the
blending of the current input 𝑥𝑡 and the previous
hidden state ℎ𝑡−1. In the decoder, the update gate
regulates the interaction between the current in-
put and the previous decoder state, allowing the
model to selectively incorporate relevant informa-
tion from the input when generating the output.

• Reset Gate: 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 +𝑈𝑟 ℎ𝑡−1 + 𝑏𝑟 )
The reset gate 𝑟𝑡 in the encoder regulates the in-

teraction between the current input 𝑥𝑡 and the pre-
vious hidden state ℎ𝑡−1. In the decoder, the reset
gate governs how the current input interacts with
the previous decoder state. This allows the model
to selectively forget certain parts of the input in-
formation captured by the encoder. This helps the
decoder to generate outputs that are less influenced
by outdated information from the input sequence.

6 Experimental Setup
Since structural priming effects are sometimes
not symmetrical, our study only includes a struc-
tural priming experiment withMandarin to English
bilinguals, while existing literature strongly sup-
ports the presence of structural priming effects in
both language directions.

To assess the effectiveness of our model in
Chinese-English, we adopt the standard bilingual
evaluation understudy (BLEU) metric (Papineni
et al., 2002), which ranges from 0 to 1, indicating
the similarity of predicted text against target text:

BLEU = BP · exp

(
𝑁∑
𝑛=1

𝑤𝑛 log 𝑝𝑛

)

Here, 𝑁 is the maximum n-gram order (typically
4), 𝑤𝑛 is the weight assigned to each n-gram preci-
sion score (with

∑𝑁
𝑛=1 𝑤𝑛 = 1), 𝑝𝑛 is the precision

score for n-grams of order 𝑛, and BP is the brevity
penalty which penalizes shorter results.

After generating predicted outcomes and assem-
bling a test set, we analyze the relationship be-
tween predictions and four types of reference sen-
tences: (1) correct mappings with the same struc-
ture; (2) semantically similar but structurally differ-
ent sentences; (3) semantically different but struc-
turally identical sentences; and (4) sentences that
differ both semantically and structurally.
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Figure 5: BLEU Score for standard structural priming.
Comparison of ground truth datasets for testing and cal-
ibration.

We divide the comparisons into two groups
based on semantic similarity. In the first group
of sentences with identical meanings, we hypoth-
esize that effective structural priming would re-
sult in higher BLEU scores between the predicted
sentences and the reference sentences that share
the same structure, compared to those with differ-
ent structures. This comparison aims to establish
whether the model prefers to reproduce structures
that are syntactically alignedwith the ground truths
when the semantic content remains constant.

The second category, with sentences differing
in meaning, is crucial for demonstrating structural
priming, as it eliminates the influence of semantic
similarity. If sentences with identical structures
receive higher BLEU scores than those with dif-
ferent structures, it suggests the model’s predic-
tions are driven by structure, regardless of seman-
tic changes.

This methodology rigorously tests for structural
priming, offering insights into howmodels process
and replicate language structures.

7 Results and Analyses

We present the performance of the GRU-based
RNN and standard transformer model (Vaswani
et al., 2017) demonstrating their crosslingual struc-
tural priming effect in Chinese-English scenarios.

7.1 Structural Priming Performance
Our analysis reveals that, although both models
achieve competitive BLEU scores, the transformer
model shows a slight edge in handling complex
sentence structures. Figure 5 shows that, when
the training dataset is sufficiently large, both mod-

Figure 6: BLEU Score for wrong priming. Comparison
between predictions for cross-language priming via av-
erage BLEU Score.

Figure 7: BLEU Score for correct priming. Compar-
ison between predictions for opposite cross-language
priming via average BLEU Score.

els attain high predicted BLEU scores for sentence
segments. Figures 5–7 use BLEU scores, com-
mon in translation and relevant to structural prim-
ing, where identical structures yield higher scores
(Lopez, 2008).

7.2 Crosslingual Structural Priming Effect
Our crosslingual structural priming exploration re-
veals a noteworthy pattern: both models facilitate
the use of target-language syntactic structures influ-
enced by the source language. However, the trans-
former model displays a stronger priming effect,
suggesting a potential edge in mimicking human-
like syntactic adaptation in bilingual contexts.

Figure 6 and Figure 7 show BLEU scores for
machine-generated predictions with correct or op-
posite priming test sets. This representation al-
lows for a more direct comparison with the re-
sults from machine translation models, facilitat-
ing a broader discussion regarding language struc-
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ture in neural networks. From these we gain in-
sights into model performance by evaluating how
closely predictions align with the correct struc-
tures (e.g., Active-Active, DO-DO) versus op-
posite structures (e.g., Active-Passive, PO-DO).
Higher BLEU scores against the correct priming
sets indicate better structural alignment, whereas
higher scores against opposite priming sets sug-
gest deviations. For 1-gram and 2-gram compar-
isons, GRU and transformer models perform sim-
ilarly. However, as n-grams increase, the trans-
former shows higher BLEU scores, indicating a
closer alignment with incorrect structures. Over-
all, GRU outperforms the transformer in avoiding
opposite priming (see Figure 7).

These results show that, when evaluated against
the correct priming test sets, the transformer model
performs similarly to GRU (see Figure 6), with
slight improvements as the n-gram size increases.
However, GRU generally outperforms the trans-
former compared to opposite priming (see Fig-
ure 7). Given that this involves “incorrect” prim-
ing, GRU aligns more closely with the opposite
priming test set. Since the transformer shows a
larger gap between correct and incorrect BLEU
scores, We infer that it adheres more closely to the
appropriate structural priming.

In a previous study, Michaelov et al. (2023) ex-
amine the presence of structural priming by com-
paring the proportion of target sentences produced
after different types of priming statements. Sim-
ilarly, in our study, we prime the language model
with a specific sentence for each experimental item
and then calculate the normalized probabilities for
the two target sentences. These normalized proba-
bilities are computed as follows:

First, calculate the raw probability of each target
sentence given the priming sentence:

𝑃(DO Target|DO Prime)
𝑃(PO Target|PO Prime)
𝑃(DO Target|PO Prime)
𝑃(PO Target|DO Prime)

And the same method for:
𝑃(Active Target|Active Prime)

𝑃(Passive Target|Passive Prime)
𝑃(Active Target|Passive Prime)
𝑃(Passive Target|Active Prime)

These probabilities are then normalized to cal-
culate the conditional probability of the target sen-
tence, assuming the model outputs one of the two
target sentences. Taking DO | PO as example:

Figure 8: Priming Effect per Chunk: Proportion of cor-
rect cross-language priming chunks in the machine pre-
diction results.

𝑃𝑁 (Target |Prime) =
𝑃 (Target |Prime)

𝑃 (DO Target |Prime) + 𝑃 (PO Target |Prime)

Since the sum of the normalized probabilities
for the two target sentences is 1, we only need
to consider the probability of one target type
and compare it across different priming types.
The probability of another target type can be de-
rived from this, i.e. 𝑃𝑁 (Target|Prime) = 1 −
𝑃𝑁 (Target|Prime). By considering only one tar-
get type, we can directly compare the priming ef-
fects of the two priming types on the specific target,
which is a key aspect of structural priming analysis.
The quantitative findings depicted in Figure 8 indi-
cate that the transformer model generally outper-
forms GRU. Additionally, a horizontal analysis of
priming structural types reveals that machine pre-
dictions perform better with active/passive struc-
tures compared to PO/DO structures.

8 Summary and Conclusions
This study evaluates cross-language structural
priming effects in RNN and transformer models in
a Chinese-English context. The models are trained
on sentence pairs from both languages. Our re-
search aims to compare the structural priming abili-
ties of different models. Even when using the same
training set, which contains structurally primed
sentences, RNNs and transformers still exhibit dif-
ferences in their ability to achieve this effect. We
find evidence for abstract crosslingual grammati-
cal representations in these models, which operate
similarly to those found in prior research.

Our results show that BLEU scores decrease as
n-gram length increases, consistent with findings
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in sentence-similarity evaluation (He et al., 2022).
Longer n-grams (e.g., bigrams and trigrams) cap-
ture more specific contexts, making exact matches
less likely unless the target sentence is very precise.
Moreover, minor errors in word choice or sequence
can disrupt the alignment of these n-grams.

Importantly, our results indicate that transformer
models outperform RNNs in modeling Chinese-
English structural priming, a finding that is intrigu-
ing given prior research. Traditionally, RNNs have
been effective in modeling human sentence pro-
cessing, explaining garden-path effects and struc-
tural priming through their sequential processing
capabilities, which are thought to mirror aspects of
human cognitive processing (Frank, 2021).

Our results show that the transformer model is
more effective at preserving structural information
than the RNN. The standardized accuracy rates for
the transformer model exceed those of the RNN
by 25.84% for the PO structure and by 33.33%
for the active structure. This offers guidance for
selecting base models in future computational lin-
guistics research aimed at implementing or enhanc-
ing structural priming effects. This superiority of
transformers raises questions about the efficacy of
RNNs as human sentence processing models, es-
pecially if they are surpassed by a model consid-
ered less cognitively plausible. However, these re-
sults could also be seen as supporting the cognitive
plausibility of transformers, particularly due to the
attention mechanism.

While the concept of unlimited working mem-
ory in transformers seems implausible, some re-
searchers argue that human working memory ca-
pacity is much smaller than traditionally estimated,
limited to only two or three items. They sug-
gest that language processing involves rapid, direct-
access retrieval of items from memory (Lewis
et al., 2006), a process compatible with the atten-
tion mechanism in transformers. This mechanism
assigns weights to past inputs based on their rel-
evance to the current input, consistent with cue-
based retrieval theories, where memory retrieval
is influenced by the similarity of current cues to
stored information (Parker and Shvartsman, 2018).

Our study on translation models extends the tra-
ditional RNNandTransformer comparisons in cog-
nitive science, typically applied to language mod-
els for predictive coding. Michaelov et al. (2023)
have shown Transformers often better capture hu-
man language structure. While distinct from pure
language modeling, our translation-focused ap-

proach offers insights into structural representa-
tions in neural networks and lays groundwork for
refined language production models.

9 Future Directions

A promising future direction is to develop a model
that generates sentences based on new semantic
concepts and thematic roles before and after prim-
ing. While challenging, this approach could help
mitigate the lexical boost effect (see Limitations).

Shifting our focus from production to compre-
hension could also be fruitful. By measuring sur-
prisal levels in models, we can explore how struc-
tural priming influences comprehension, as sug-
gested in recent studies (Merkx and Frank, 2021).
Surprisal quantifies the unexpectedness of a word
in a given context, with lower values indicating
higher probability. Consistently lower surprisal
levels at structurally complex points in sentences
following priming. This would suggest effective
preparation by the priming process, offering a way
to explore the impact of structural priming on lan-
guage processing in model without the confound-
ing effects of repeated vocabulary.

Additionally, evidence suggests an inverse rela-
tionship between the frequency of linguistic con-
structions and the magnitude of priming effects ob-
servedwith those constructions (Jaeger and Snider,
2013; Kaschak et al., 2011). For example, the
double object (DO) construction is more common
in American English than the prepositional object
(PO) construction (Bock and Griffin, 2000). Stud-
ies have shown that the less frequent PO construc-
tion exhibits stronger priming effects than the more
frequent DO construction (Kaschak et al., 2011).
This aligns with theories of implicit learning in
structural priming, where more frequently encoun-
tered structures are less “surprising” and thus gen-
erate weaker priming effects.

To explore this further, training models on cor-
pora of American versus British English, which
differ in their construction frequencies, could re-
veal whether a similar inverse frequency effect
is observed in computational models. This ap-
proach could shed light on the dependency of
structural priming on construction frequency, of-
fering deeper insights into how implicit learning
processes are modeled computationally.

Additionally, exploring crowdsourcing as a
method to enhance the sensitivity and grammati-
cality judgments of the test dataset could be valu-

134



able. By leveraging a diverse pool of contributors,
this approach may provide a wider range of evalu-
ations and insights, potentially refining our assess-
ments and leading to more robust results.

Limitations
A limitation of the current study is that the
Chinese-English priming effects observed in the
models have not been directly compared with hu-
man data. Although existing evidence indicates a
strong Chinese-English structural priming effect in
both production and comprehension (Hsieh, 2017;
Chen et al., 2013), equating the models’ability
to replicate cross-language priming with the struc-
tural “correctness” of their outputs may be some-
what simplistic. This underscores the need for fu-
ture research that could involve using the same
stimuli withMandarin-English bilinguals and mak-
ing direct comparisons to human priming data.
Such an approach would provide a more accurate
assessment of the models’alignment with human
language processing.

Another limitation is that ourmodels cannot gen-
erate sentences based on novel word concepts and
thematic roles, such as the picture naming task in
Figure 1. Consequently, some critics may argue
that what our models essentially do is translate
from Chinese to English without generating new
semantic content, as the semantic information re-
mains consistent from the priming sentence to the
output sentence. However, we maintain that the
current study design validly assesses the priming
effect, as the models must choose which sentence
structure to use from among various structures that
share the same semantic content—a choice influ-
enced by the priming effect.

Nevertheless, we acknowledge that our design
is susceptible to the “lexical boost” effect, where
the structural priming effect is intensified when the
same lexical head is repeated in both the prime and
target sentences (Pickering and Branigan, 1998).
For instance, if the target sentence is Alice gave
Bob a book, the priming effect is more pronounced
if the prime sentence is Carl gave Danis a letter
rather than Alice showed Bob a book. Given that
the semantic content remains constant across the
prime and output sentences in our study, the ob-
served priming effect may be artificially strength-
ened compared to what might be observed in a pure
priming task.

Previous studies suggest that crosslingual struc-
tural priming might be affected by the asymme-

try of training sources in certain language pairs
(Michaelov et al., 2023). By measuring the prob-
ability shifts for source and target sentences, we
find such multilingual auto-regressive transformer
models display evidence of abstract structural
priming effects, although their performance varies
across different scenarios.

Ethical Statement

The current study adheres to the ethical standards
set forth in the ACL Code of Ethics. The training
dataset used in this research is open, publicly avail-
able, and does not include demographic or identity
characteristics (Xu, 2019).

Potential risks stem from the fact that transla-
tions in the training data (a Chinese-English par-
allel sentence pair dataset) may not always be per-
fectly equivalent. Some words may carry cultural
nuances that differ between Chinese and English.
For example, the terms “和尚” (heshang) and “尼
姑” (nígū), translated as “monk” and “nun,” have
specific cultural connotations in Chinese that differ
from the perception of a “monk” in Western con-
texts, which is typically associated with Christian
monasticism. These roles in Chinese Buddhism
embody cultural and social aspects not fully cap-
tured by the Western terms, potentially leading to
a loss of cultural meaning in translation.

Furthermore, while ChatGPT has been used to
expand the test dataset, the authors have manu-
ally verified the output to ensure it remains unbi-
ased. The potential risk of misuse of the computa-
tional model is low, as the encoders and decoders
are designed to perform straightforward translation
tasks and do not have the capability to self-generate
harmful content.
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Abstract

POS tagging plays a fundamental role in numer-
ous applications. While POS taggers are highly
accurate in well-resourced settings, they lag
behind in cases of limited or missing training
data. This paper focuses on POS tagging for
languages with limited data. We seek to iden-
tify the characteristics of datasets that make
them favourable for training POS tagging mod-
els without using any labelled training data
from the target language. This is a zero-shot
approach. We compare the accuracies of a
multilingual large language model (mBERT)
fine-tuned on one or more languages related
to the target language. Additionally, we com-
pare these results with models trained directly
on the target language itself. We do this for
three target low-resource languages. Our re-
search highlights the importance of accurate
dataset selection for effective zero-shot POS
tagging. Particularly, a strong linguistic rela-
tionship and high-quality datasets ensure opti-
mal results. For extremely low-resource lan-
guages, zero-shot models prove to be a viable
option.

1 Introduction

In recent years, a lot of progress has been made
in Natural Language Processing (NLP). However,
certain fundamental technologies such as Part-of-
Speech (POS) tagging or dependency parsing are
still only available for a small part of the world’s
languages. This is mostly for languages with sig-
nificant amounts of available data. For languages
with limited or no available data (low-resource lan-
guages), these technologies are highly inaccurate
or sometimes even nonexistent (Joshi et al., 2020).
Advancements in multilingual language models
have shown impressive cross-lingual transfer abili-
ties (Wu and Dredze, 2019). In this paper, we build
on these advancements to explore zero-shot POS
tagging for low-resource languages.

We investigate two questions:

RQ1 What are the essential characteristics of
datasets for effectively fine-tuning zero-shot
POS tagging models for low-resource lan-
guages?

RQ2 Are zero-shot models useful in realistic low-
resource settings when compared to models
fine-tuned with target language data?

We explore these questions by fine-tuning a
multilingual pretrained language model for zero-
shot POS tagging, using related languages (which
we call support languages) to the target language.
We start by fine-tuning POS tagging models for
Afrikaans, using Dutch, German, and English
as support languages. We test the models on
Afrikaans and compare the results in an attempt
to identify the characteristics of the datasets that
affect the performance of the models. We then
experiment with two additional target languages:
Faroese (supported by Icelandic, Danish, Norwe-
gian and Swedish) and Upper Sorbian (supported
by Czech, Polish and Slovak). We aim to determine
whether our findings for Afrikaans also apply to
these languages.

In relation to RQ1, we find that when mul-
tiple supporting languages are available, high-
quality datasets (Kulmizev and Nivre, 2023) that
are closely related to the target language result in
better performance. Using the most closely related
language leads to consistently better accuracy, espe-
cially with a limited number of training sentences.
For an optimal training dataset size, using between
100 and 5000 sentences helps to avoid under- or
overfitting.

Regarding RQ2, we find that zero-shot POS
tagging models can certainly be a viable option
for low-resource languages. Nevertheless, models
trained on annotated data from the low-resource tar-
get language itself remain superior, similarly to pre-
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vious findings in the literature (Meechan-Maddon
and Nivre, 2019).

As we will discuss in the conclusion, these find-
ings can be translated into concrete guidelines for
different scenarios.

This paper starts with background information
on low-resource zero-shot POS tagging. We then
discuss the technical components and methodology
used. Finally, we present the results and attempt
to answer the previously mentioned research ques-
tions.

2 Background

Part-of-Speech tagging with Universal
Dependencies

Part-of-Speech tagging is an essential application
within NLP. It is used in machine translation, word
meaning disambiguation, parsing, among other ap-
plications (Chiche and Yitagesu, 2022). It is a
highly researched task for which there are many
annotated datasets, in many languages. Universal
Dependencies (UD; de Marneffe et al., 2021) is a
collection of treebanks which include POS tags for
hundreds of languages, with a unified POS tagging
scheme. UD distinguishes between 17 different
tags, called the Universal POS tags (Zeman et al.,
2023). This unified annotation scheme allows the
development and comparative evaluation of POS
taggers across the languages included in UD. In
addition, UD makes it possible to build multilin-
gual POS taggers and dependency parsers which
can deal with multiple languages within a single
model (e.g. Kondratyuk and Straka, 2019), and
this enables cross-lingual transfer. A limitation of
UD is that the annotation quality varies consider-
ably across treebanks (Kulmizev and Nivre, 2023).
This may negatively impact cross-lingual transfer,
a question we investigate in this paper.

Zero-shot learning

A zero-shot model is a learning model that can per-
form a task without having seen examples or data
of that task during the fine-tuning phase. In the con-
text of this paper, a zero-shot POS tagging model
refers to a model that is trained to POS tag sen-
tences in one or more support training languages.
The performance of this model is then evaluated
on data from a different language, also known as
the target language. Importantly, the model does
not encounter the data of this target language dur-
ing the fine-tuning phase (although it may have

seen target language data during pre-training). One
could compare it to a student who has an Afrikaans
exam scheduled but is only allowed to prepare by
studying, for instance, Dutch and German. This
approach is useful in NLP to fill gaps in the avail-
ability or correctness of data for a target language.
Thus, for extremely low-resource languages, or es-
pecially languages for which no annotated data is
available, POS tagging could be performed using a
zero-shot model trained on related languages.

We use the zero-shot strategy here because we
are interested in scenarios where no data is avail-
able for certain languages. This provides a better
understanding of the situation because all models
developed for this purpose would, by definition, be
zero-shot.

Low-resource languages

While there is no general definition of the term low-
resource, researchers have attempted to define it
(Joshi et al., 2020). However, this definition has
not yet been widely adopted. We consider a dataset,
and thus a language, to be low-resource if it con-
tains fewer than 50,000 tokens in UD. This mainly
concerns indigenous languages, but can also in-
clude languages that are more broadly used. In
UD, a token is a syntactic word used for analysis,
which might differ from orthographic or phonolog-
ical words (de Marneffe et al., 2021).

3 Methodology

Through our experiments, we hope to gain insights
into the characteristics of datasets that contribute to
the performance of zero-shot POS tagging models
for low-resource languages.

Our experiments focus on fine-tuning POS tag-
ging models based on mBERT, a large language
model (LLM; Devlin et al., 2019). This process
involves fine-tuning the model on annotated tree-
banks to enable it to perform POS tagging. The
model’s performance is then evaluated on a test
dataset. We specifically chose mBERT because of
its multilingual capabilities. Additionally, mBERT
has shown good results in zero-shot scenarios
(Pires et al., 2019).

The fine-tuning of mBERT is done using the tool
MaChAmp (van der Goot et al., 2021). MaChAmp
is a user-friendly tool that enables the fine-tuning of
LLMs on various NLP tasks from diverse datasets
and languages. The latter functionality in partic-
ular is valuable for our research. This enables us
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Language Treebank # Sents Rank
Afrikaans AfriBooms 1.5k 46
Dutch Alpino 12k 29
German GSD 15k 19
English EWT 16k 23
Faroese FarPaHC 1.6k 62
Icelandic Modern 3.5k 34
Danish DDT 5.5k 53
Norwegian Bokmaal 20k 14
Swedish Talbanken 6.0k 57
Upper Sorbian UFAL 0.6k
Czech FicTree 12.7k 24
Polish LFG 17.2k 20
Slovak SNK 10.6k 42

Table 1: Languages with corresponding treebanks (UD
v2.13) ranked according to their relatedness to the target
language, including the number of sentences (# Sents)
in each treebank and their respective quality rankings
(Rank; Kulmizev and Nivre, 2023).

to jointly train POS tagging models on multiple
languages.

Languages and treebanks
We select three different groups from Universal
Dependencies v2.13 (Zeman et al., 2023). These
groups are shown in Table 1. For each group, we
select one low-resource language and a few related
languages for which larger treebanks are available.

Our focus is primarily on Afrikaans. For this,
we use the AfriBooms treebank (Augustinus et al.,
2016). The supporting languages are Dutch, Ger-
man, and English. To verify our observations of
Afrikaans, we use two other clusters. One cluster
includes Scandinavian languages, with Faroese as
the low-resource language. The related languages
are Icelandic, Danish, Norwegian, and Swedish.
We also use a West Slavic cluster, with Upper Sor-
bian as the low-resource language, supported by
Czech, Polish, and Slovak.

Characteristics
To answer RQ1 (What are the essential characteris-
tics of datasets for effectively fine-tuning zero-shot
POS tagging models for low-resource languages?),
we consider two main characteristics: the linguistic
relatedness between languages and the quality of
the treebank. The relevance of the linguistic relat-
edness is already evident from previous work (see
section 5), but the treebank quality has not been
taken into consideration before in spite of being a

clear differentiating factor between UD treebanks
(see section 2 & 5). Firstly, we take a look at the
linguistic relatedness. The support languages are
consistently chosen to be of the same genus as the
target language. This results in an intrinsic related-
ness. In the first cluster, Dutch shows the closest
relatedness to Afrikaans (van Zaanen et al., 2014).
In the Scandinavian cluster, Faroese is most closely
related to Icelandic (Snæbjarnarson et al., 2023).
In the West Slavic cluster, Upper Sorbian is most
closely related to Czech (Howson, 2017), followed
by Polish.

For the second characteristic of the treebanks,
we rely on a ranking developed by Kulmizev and
Nivre (2023). This ranking is based on three crite-
ria: how difficult or easy the treebanks are to parse,
how much information they contain that is actually
usable by a parser, and how sample efficient they
are. We report the rank of the languages considered
in this work in Table 1. The supporting languages
for Afrikaans, for example, can be ranked as fol-
lows: German > English > Dutch. Throughout
this paper, we refer to this as the ‘quality’ of a
treebank.

As an additional characteristic, we use the size
of the dataset. With this, we investigate whether
overfitting might occur and determine the optimal
number of sentences a model should use.

Experimental setup

We train zero-shot models for each of the three
clusters. We fine-tune these models in several ways.
First, we fine-tune separate zero-shot models for
each distinct supporting language. Then, we fine-
tune models based on different combinations of
these languages. We repeat this process for the
different clusters.

We conduct learning curve experiments to dis-
play the performance of the models as they are fine-
tuned on increasingly more data. The fine-tuning
starts with five sentences and gradually reaches the
maximum available number of sentences from the
treebanks. For each cluster and each model within
the cluster, we repeat this process three times. Dur-
ing each iteration, the sentences of the training
dataset of each language are shuffled. This allows
for random selection of sentences, which is crucial
for ensuring generalisability.

We determine the accuracy of each model using
the F1-score, a common metric for assessing the
performance of classifiers such as POS tagging
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models (Jurafsky and Martin, 2009). The results of
these experiments and the associated observations
are discussed in the following section.

Finally, we also look at monolingual non-zero-
shot models that are fine-tuned on the respective
target languages themselves. This means that we
fine-tune three distinct models, each using only
Afrikaans, Faroese, or Upper Sorbian. This can
then provide us with an answer to our second ques-
tion (RQ2): Are zero-shot models useful in realis-
tic low-resource settings compared to monolingual
non-zero-shot models in terms of accuracy?

4 Results and discussion

First, we analyse the learning curves of all clusters
to identify which characteristics of datasets seem
to have the most impact on the results and could
therefore be more suitable for a zero-shot model.
Then, we evaluate the effective usability of our
models and results to determine whether the zero-
shot approach is effective.

4.1 RQ1: Dataset characteristics

Afrikaans
First and foremost, we take a look at the accura-
cies of the models that have Afrikaans as the target
language and that were trained on one supporting
language. This can be seen in Figure 1. It can
be clearly seen that when fine-tuning the zero-shot
model using a language more closely related to the
target language, the initial accuracies are higher.
Initial accuracies are the accuracies that occur with
a smaller number of training sentences. A one-
to-one correspondence can be seen between how
closely related the training language is to the tar-
get language and how accurate the corresponding
model is for a very small subset of the dataset.

As more sentences are added to the training
dataset of the models, it can be seen that the accu-
racies of the three models converge. This is most
likely due to the fact that the supporting languages
are all Germanic languages and there is a high sim-
ilarity to the target language. However, it can be
seen that the Dutch model performs better overall
and also achieves the best accuracy of the three
models. The model that performs the worst overall
is the English model. This is not surprising, as
English is least closely related to Afrikaans among
the three supporting languages, and its quality falls
in the middle range.

Next, we add the models that were trained with
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Figure 1: Accuracy of fine-tuned models on Afrikaans,
represented through learning curves.
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Figure 2: Accuracy of fine-tuned models on Afrikaans,
represented through learning curves.

combinations of supporting languages and analyse
these separately. This can be seen in Figure 2. It
is immediately noticeable that the added models
using the most closely related language initially
achieve higher accuracies. The model with the
highest initial accuracy here is the Dutch-German
model. This seems logical since Dutch and German
follow each other as most related to Afrikaans. In
second place is the Dutch-English model, again be-
cause Dutch is in the training dataset and has a sig-
nificant influence. The worst-performing model is
the German-English model. This is not surprising
since German and English are the two languages
that are least related to Afrikaans.

As the size of the training datasets of the mod-
els increases, there is a greater shift between the
accuracies of the different models. The model that
performs best overall is the German-English model.
This is unexpected, given that Dutch is the closest
language to Afrikaans (Heeringa et al., 2015). One
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explanation for this might be that when a model
is trained on more than one language, the quality
of the datasets becomes more important than the
language relatedness. The Dutch-German model
performs slightly better across the board than the
Dutch-English model, which suggests that relat-
edness still plays a role. When we look at all the
models in Figure 2 globally, we can make several
observations:

If a model has a language in the training dataset
that is more closely related to the target language,
the model has a higher initial accuracy. When mul-
tiple closely related languages are used, such as the
Dutch-German model, this accuracy increases even
further.

The most performant model is one trained on
multiple languages. In the case of Afrikaans, this is
the German-English model. This can be attributed
to the quality of the datasets used. This model
quickly achieves better results and consistently
maintains a high accuracy.

There seems to be a plateau at which all mod-
els achieve accuracies that neither increase nor de-
crease, usually between 100 and 5000 sentences.
What is also notable is that within this interval, the
Dutch model generally performs the best, while the
German-English model achieved the highest peak
accuracy prior to this interval.

Faroese
Secondly, we take a look at all the models we have
fine-tuned that have Faroese as the target language.
This can be seen in Figure 3. What stands out im-
mediately is that all models that contain the most
related language - Icelandic - consistently achieve
the best results. This results in two distinct groups:
one group with models containing Icelandic, and a
second group with the other models. Just as with
Afrikaans, it can also be seen here that the mod-
els that contain a more related language achieve a
higher initial accuracy.

Regarding dataset quality, the model fine-
tuned using the highest-quality datasets (Icelandic-
Norwegian) ranks among the best performing mod-
els, while the model trained on the lowest-quality
datasets (Danish-Swedish) ranks among the worst.
Interestingly, the model that achieves the overall
peak accuracy is the Icelandic-Danish model, again
highlighting the importance of language related-
ness, not only for lower training sizes, but through-
out the entire process.

Here, a plateau between about 100 and 5000
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Figure 3: Accuracy of fine-tuned models on Faroese,
represented through learning curves.

sentences can also be clearly seen. This is espe-
cially noticeable in the accuracies of the models
that do not include Icelandic. The curves start with
an increase, followed by a stagnation and then a
decline in accuracy. This is particularly noticeable
in the models trained on Swedish and Norwegian.
In the case of Swedish, this is not surprising as the
treebank is of relatively low quality and not very
closely related to Faroese. Norwegian, on the other
hand, is closely related and of high quality, which
makes this trend all the more striking.

Some further observations also become clear
here. As more sentences are added to the training
dataset of the models, the accuracies of the models
converge. This again highlights the idea of intrinsic
relatedness between languages within the same lan-
guage family. Furthermore, it can be seen that the
best performing model is one that is fine-tuned on
multiple supporting languages, although the model
solely fine-tuned on Icelandic is also among the
better performing models.

Upper Sorbian
Lastly, we look at the accuracies of models whose
target language is Upper Sorbian. This can be seen
in Figure 4. Here, largely the same trends are seen
as in the two previous clusters. The initial accura-
cies of models trained with the most closely related
language (Czech) are higher, although Polish takes
the lead when the model is trained on a single sup-
porting language. The statement holds true for
models trained on multiple supporting languages:
the greater the relatedness and the higher the qual-
ity, the better the model performs. In addition, the
trend between 100 and 5000 sentences can be seen
again here, although it is slightly less pronounced.
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Figure 4: Accuracy of fine-tuned models on Upper Sor-
bian, represented through learning curves.

Language Zero-shot Non-zero-shot
Afrikaans 90.9 98.5
Faroese 78.2 97.3

Upper Sorbian 79.7 70.7

Table 2: Peak accuracies of zero-shot & non-zero-shot
models.

4.2 RQ2: Usefulness of zero-shot models in
realistic settings

In order to answer RQ2, we compare our zero-
shot models with those that have been fine-tuned
directly on the respective target languages (non-
zero-shot).

Comparing zero-shot and non-zero-shot
performance
Firstly, we examine the practical relevance of zero-
shot models in the context of low-resource lan-
guages. The peak accuracies for both our zero-shot
and non-zero-shot models can be seen in Table 2.
For Afrikaans and Faroese, we observe that the
non-zero-shot models outperform their zero-shot
counterparts, with the Faroese model showing a
nearly 20 percentage point improvement over the
zero-shot model. This suggests that, given enough
training data, fine-tuning on the target language can
lead to substantially better results, as also discussed
by Meechan-Maddon and Nivre (2019).

However, when we take a look at Upper Sor-
bian, an extremely low-resource language with
only 23 training sentences, we observe a different
trend. Here, the zero-shot model actually surpasses
the non-zero-shot model by 9 percentage points,
achieving a peak accuracy of 79.7% compared to
the non-zero-shot model’s 70.7%. This result sug-

101 102 103

# Sentences

55

60

65

70

75

80

85

90

95

100

A
c
c
u
ra

c
y
 (

%
)

Accuracy of monolingual models on target languages

AFR

FAR

SOR

ZERO AFR

ZERO FAR

ZERO SOR

Figure 5: Accuracy of models fine-tuned on the target
languages Afrikaans, Faroese, and Upper Sorbian, rep-
resented through learning curves accompanied by the
peak accuracies of the respective zero-shot models.

gests that our zero-shot models are certainly a vi-
able option for extremely low-resource languages
or languages for which no data is available.

Upper Sorbian is not a unique case; we counted
82 languages in UD v2.14 that have fewer than
23 training sentences. This widespread scarcity
highlights the importance of zero-shot models in
real-world applications where data is often hard to
come by.

Amount of annotated data needed to surpass
zero-shot performance
Secondly, we take a look at how much annotated
data is necessary to improve upon zero-shot per-
formance through monolingual fine-tuning (non-
zero-shot). In Figure 5, the accuracies of the POS
tagging models are shown when they are fine-tuned
on the respective target languages, alongside the
peak accuracies of the respective zero-shot models.
Using these lines, and the intersection they make
with the learning curves of the non-zero-shot mod-
els, we can estimate when a non-zero-shot model
becomes strictly better than a zero-shot model for
the same target language.

For Afrikaans, the intersection occurs between
50 and 60 training sentences, indicating that at
least this amount is necessary for the non-zero-
shot model to outperform the zero-shot model.
Similarly, for Faroese, the intersection point is
around 40 sentences, suggesting a slightly lower
data requirement to achieve better performance.
Again, the Upper Sorbian models are slightly dif-
ferent. The learning curve for the non-zero-shot
model does not intersect with the peak accuracy of
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the zero-shot model, simply because there is not
enough targeted data available.

Meechan-Maddon and Nivre (2019) made sim-
ilar observations in a similar context. They com-
pared dependency parsers trained on treebanks
from several support languages (akin to our zero-
shot setting) with those trained solely on target lan-
guage data (similar to our non-zero-shot setting).
They found that the non-zero-shot models required
between 100 and 200 sentences to reach the perfor-
mance of the zero-shot models. This is higher than
what we found, but can likely be explained by the
fact that they do not make any use of pretraining
and use a BiLSTM instead of a transformer. We use
mBERT, which has a greater number of parameters
than a BiLSTM and which already has acquired
cross-lingual transfer capabilities by virtue of be-
ing trained on multilingual data. This may reduce
the need for annotated target language data. This
should be verified in future research, however.

5 Related work

Dealing with the limited availability of training
data for low-resource languages is an active area of
research within NLP. Thanks to the UD treebanks,
a large collection of data in numerous languages
with varying data sizes, POS tagging and depen-
dency parsing have become highly researched top-
ics within this context

Closest to our work, de Vries et al. (2021) inves-
tigated zero-shot transfer for two target languages:
Gronings and West Frisian. They also fine-tuned
mBERT on related languages, as well as monolin-
gual language models in related languages. They
found the latter to be superior to the former. Relat-
edly, de Vries et al. (2022) did an extensive evalu-
ation of zero-shot POS tagging across 105 target
languages. They fine-tuned mBERT using 65 dif-
ferent support languages, testing all possible com-
binations of support and target languages, with one
support language used each time. They found that
related languages are generally the best support
languages.

Our work is complementary to these by consid-
ering a number of target languages that is in be-
tween these two extremes (2 versus 105). It allows
a targeted evaluation, looking at learning curves
and trying multiple support languages in different
combinations, while still providing results that gen-
eralize to more than two closely related languages.
We confirm that, among related languages, the ones

that are the most closely related to the target lan-
guage are the best support languages. This finding
is consistent with many other earlier works in POS
tagging and dependency parsing using different
types of models (Smith et al., 2018; Pires et al.,
2019; Lauscher et al., 2020).

Our learning curve experiments take inspira-
tion from earlier work in dependency parsing by
Meechan-Maddon and Nivre (2019). They investi-
gated zero- and few-shot learning of multilingual
parsers to find out how much can be gained from
cross-lingual transfer versus annotating target lan-
guage data. They use a BiLSTM parser trained only
on treebank data, in multiple languages, including
and excluding target language data. Their results
showed that the zero-shot approach is inferior to
the other approaches, provided at least 200 training
sentences are available from the target language.
We confirm this finding in the context of fine-tuning
a multilingual transformer model, although we find
that fewer training sentences are necessary in this
context.

Finally, a dataset property which has not yet been
investigated in the context of cross-lingual trans-
fer (to our knowledge) is data quality. Kulmizev
and Nivre (2023) thoroughly evaluated the quality
of UD treebanks using three different metrics and
found that the quality varies considerably across
treebanks. They found some treebanks to perform
consistently low across metrics, making them prac-
tically unusable. This raises the question of how
this quality impacts results in cross-lingual transfer:
a low-quality treebank may be too noisy to use for
cross-lingual transfer. We investigated this ques-
tion and found a subtle link between the quality of
the UD Treebanks and the peak accuracies of the
corresponding zero-shot models. Of course, more
research is needed to confirm this by investigating
a larger set of treebanks.

6 Conclusion

Initially, we can conclude that developing zero-
shot POS tagging models is a viable option for
low-resource languages. Nevertheless, using the
low-resource dataset of a specific language remains
superior for constructing a POS tagging model for
that language, similar to what Meechan-Maddon
and Nivre (2019) found in the context of depen-
dency parsing. If the amount of data for a language
is so scarce and/or a zero-shot model is still desired,
the following guidelines can be followed:
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One language can be used as a support language.
In this case, always use the language that is most
closely related to the target language. This gener-
ally gives better accuracies with a low number of
training sentences. Even with larger numbers of
training sentences, these models tend to perform
well. The quality plays a lesser role here.

Multiple support languages can be used. In this
case, use as many languages as possible that are
closely related to the target language and are of
high quality. High relatedness gives the best results
with a limited number of training sentences, and
high quality generally gives the best results with
higher numbers of training sentences.

What is the most suitable number of training
sentences? If enough data is available from the
support languages, preferably use a training num-
ber of 100 to 5000 sentences. Below 100 sentences,
the models are often ‘underfitted’. Above 5000 sen-
tences, the models can overfit and the accuracies
may decrease.

7 Limitations

This work considered only three target languages,
each paired with three to four related source lan-
guages, selected somewhat arbitrarily. While this
restricted number allowed in-depth analysis, our
findings need to be verified using more languages
with various degrees of relatedness. To keep the
number of languages manageable while ensuring
generalizability of the results, a sample of typolog-
ically diverse languages could be selected using
the recently proposed framework by Ploeger et al.
(2024).

Additionally, we relied on the linguistic litera-
ture to describe the degree of relatedness between
the languages considered. It would be informative
to quantitatively define language distances, as done
by Ploeger et al. (2024).

Finally, we only evaluated one pretrained lan-
guage model, mBERT. Our findings should be veri-
fied with other models.
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Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Maria Levina, Lauren Levine, Cheuk Ying Li,
Josie Li, Keying Li, Yixuan Li, Yuan Li, KyungTae
Lim, Bruna Lima Padovani, Yi-Ju Jessica Lin, Kris-
ter Lindén, Yang Janet Liu, Nikola Ljubešić, Irina
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Abstract

While machine translation (MT) systems have
seen significant improvements, it is still com-
mon for translations to reflect societal biases,
such as gender bias. Decoder-only language
models (LLMs) have demonstrated potential in
MT, albeit with performance slightly lagging
behind traditional encoder-decoder neural ma-
chine translation (NMT) systems. However,
LLMs offer a unique advantage: the ability
to control the properties of the output through
prompting. In this study, we leverage this flexi-
bility to explore Llama’s capability to produce
gender-specific translations. Our results indi-
cate that Llama can generate gender-specific
translations with translation quality and gender
bias comparable to NLLB, a state-of-the-art
multilingual NMT system.

1 Introduction

Over the last few years, machine translation (MT)
systems have seen significant improvements with
the introduction of Neural Machine Translation
(NMT). Despite these advances, MT can reflect
societal biases, such as gender bias. A prominent
instance of this problem occurs when the target
language marks the grammatical gender, but the
source language does not (Fig. 1b). In such in-
stances, translating into either gender can be cor-
rect, but MT systems tend to pick the gender that
corresponds to stereotypical associations (e.g., as-
sociating certain professions to males and others
to females (Escudé Font and Costa-jussà, 2019)).
Instead, it would be preferable to generate both
options, and/or let the user control the gender.

Decoder-only Large Language Models (LLMs)
have shown MT capabilities inferior to but compet-
itive with encoder-decoder Neural Machine Trans-
lation (NMT) systems (Chowdhery et al., 2022;
Agrawal et al., 2023; Zhang et al., 2023; Bawden
and Yvon, 2023; Zhu et al., 2023; Jiao et al., 2023;
Hendy et al., 2023). However, LLMs have been

Translate the following English sentences into Spanish. 
 
[English] I have friends who are Hispanic people. 
[Spanish] Tengo amigos que son personas hispanas. 
 
[English] What do you think about ginger children? 
[Spanish] ¿Qué piensas de las niñas pelirrojas? 
 
[English] I have friends who are orphans. 
[Spanish] Tengo amigos huérfanos. 

(a) Standard MT template.

Translate the following English sentences into both 
grammatical genders of Spanish. Provide two Spanish 
sentences for each English source sentence. 
 
[English] I have friends who are Hispanic people.  
[Spanish] Tengo amigos que son personas hispanas.  
[Spanish] Tengo amigas que son personas hispanas.  
  
[English] What do you think about ginger children?  
[Spanish] ¿Qué piensas de los niños pelirrojos?  
[Spanish] ¿Qué piensas de las niñas pelirrojas?  
  
[English] I have friends who are orphans. 
[Spanish] Tengo amigos huérfanos.  
[Spanish] Tengo amigas huérfanas. 

(b) Gender-specific template.

Figure 1: Prompt templates employed. Languages like
Spanish (displayed here) present morphological dif-
ferences between masculine (red) and female (purple)
grammatical genders.

proven to allow for more control over the properties
of the output (Garcia et al., 2023; Moslem et al.,
2023; Pilault et al., 2023). While NMT models are
trained to accept a single sequence and output its
translation, LLMs make it possible to condition the
output format with a prompt.

The task of inferring gender-specific translations
from a gender-neutral source has been addressed
mainly through post-editing, the most popular solu-
tion being Google Translate’s post-translation gen-
der rewriter (Johnson, 2020). The proposed system
produces a single sentence that is then switched
into the opposite gender using a second language-
specific model. This approach is limited by having
to train language-specific gender-switching models
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Lang Source Sentence Masculine Feminine Neutral/Generic

est What do you think about
Hasidic children?

- - Mida arvate lastest, kes on
hassiidid?

spa What do you think about
Hasidic children?

¿Qué piensas de los niños
judíos jasídicos?

¿Qué piensas de las niñas
judías jasídicas?

-

kat What do you think about
Hasidic children?

- - ras pikrob sasid
bav˝vebze? (ras pikrob

sasid bavshvebze?)

Table 1: Example of entries in the full MULTILINGUALHOLISTICBIAS dataset. From the 50 languages present in
MULTILINGUALHOLISTICBIAS, we selected those that exhibit grammatical gender differences, like Spanish (spa).
The sentence in Georgian (kat) has been transcribed into Latin script by the authors.

and the breadth of patterns it can cover.
Given the flexibility of prompting, we explore

the capacity of LLMs to produce gender-specific
translations for languages with grammatical gen-
der from gender-neutral sources without significant
losses in translation quality or increases in gender
bias.

We use in-context examples (ICEs) to elicit the
task of translation from a gender-neutral source to
two gender-specific targets (Figure 1b). Addition-
ally, we evaluate the quality of the gender-specific
translations on two aspects: gender bias (measured
against coreference resolution accuracy) and trans-
lation quality (measured in BLEU).

We show that it is possible to generate gender-
specific translations with translation quality and
gender bias competitive with NLLB, with a slightly
better performance than Llama for masculine/both
references evaluation and over 10 BLEU points for
the feminine reference. We also demonstrate the
reliance on coreference resolution of the gender-
specific translation method, showing steep de-
creases in performance when using the opposite
gender as an evaluation reference in a gender-
focused dataset (MULTILINGUALHOLISTICBIAS),
but exhibiting lesser variance in a general transla-
tion dataset (FLoRes).

2 Related Work

MT and controlled output with LLMs A few
papers have evaluated the quality of MT using dif-
ferent models and GPT-based commercial products,
such as PALM (Chowdhery et al., 2022), XGLM
(Agrawal et al., 2023), GLM (Zhang et al., 2023),
BLOOM (Bawden and Yvon, 2023), OPT (Zhu
et al., 2023) or ChatGPT (Jiao et al., 2023; Hendy
et al., 2023). They conclude that the translation
quality comes close but remains behind the per-

formance of NMTs (Kocmi et al., 2023). Using
LLMs can, however, allow for more control over
the properties of the output without further finetun-
ing, such as specifying the language variety and
style of the translation (Garcia et al., 2023), produc-
ing terminology-constrained translations (Moslem
et al., 2023) or using an iterative prompting pro-
cess to clarify ambiguities in the source sentence
(Pilault et al., 2023). Challenges persist in the area
of hallucinations (Zhang et al., 2023; Guerreiro
et al., 2023) and in performance in low-resource
languages (Bawden and Yvon, 2023; Zhu et al.,
2023). This work revisits these ideas, taking gen-
der specificity as a controllable feature.

Gender Bias in MT Some authors have worked
in analyzing and mitigating gender bias in MT.
Prates et al. (2018) studied the bias of the com-
mercial translation system Google Translate and
found that it yields male defaults much more fre-
quently than what would be expected from US de-
mographic data. Costa-jussà et al. (2022) inves-
tigate the role of model architecture in the level
of gender bias, while Měchura (2022) looks at the
source sentences and elaborates a taxonomy of the
features that induce gender bias into the transla-
tions. Others have looked more closely at the chal-
lenge of gender bias mitigation. Stafanovičs et al.
(2020) assume that it’s not always possible to in-
fer all the necessary information from the source
sentence alone and a method that uses word-level
annotations containing information about the sub-
ject’s gender to decouple the task of performing
an unbiased translation from the task of acquiring
gender-specific information. Saunders and Byrne
(2020) treat the mitigation as a domain adaptation
problem, using transfer learning on a small set of
trusted, gender-balanced examples to achieve con-
siderable gains with a fraction of the from-scratch
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cat deu fra ita nld por rus spa swe ukr avg

nllb 45.81 43.38 53.43 36.34 33.96 53.05 38.40 32.99 47.58 36.31 42.13
unsp. 46.05 41.79 52.24 34.70 32.54 51.76 36.17 31.34 47.74 36.02 41.04
masc. 46.06 42.18 52.05 34.46 32.36 51.68 36.23 31.25 47.90 36.05 41.02
fem. 43.83 41.02 50.25 33.25 31.43 49.29 34.57 29.72 47.63 35.38 39.64
∆F 2.23 1.16 1.80 1.21 0.93 2.39 1.66 1.53 0.27 0.67 1.39

Table 2: BLEU scores for each output of Llama’s gender-specific translation on FLoRes’s testset. ∆F denotes the
difference between male and female translations. Since FLoRes’s sentences are not expected to contain a high rate
of ambiguity, a correct translation should tend to be identical in both outputs.

training costs. Fleisig and Fellbaum (2022) develop
a framework to make NMT systems suitable for
gender bias mitigation through adversarial learning,
adjusting the training objective at fine-tuning time.
Finally, Wang et al. (2022) focus on existing biases
in person name translation, applying a data augmen-
tation technique consisting of randomly switching
entities, obtaining satisfactory results. Given this
work’s focus area, we aim not only at producing
accurate gender-specific translations, but also at en-
suring selecting an output gender does not increase
reproduction of underlying gender biases.

3 Experimental Framework

Data For our main experiments, we use the MUL-
TILINGUALHOLISTICBIAS dataset (Costa-jussà
et al., 2023), a multilingual subset of Holistic Bias
(Smith et al., 2022) with separate translations for
each noun class or grammatical gender for those
languages that make use of them1. An example
of an entry of the dataset can be found in Table
1. We also filtered out the languages which are
not explicitly present in the Llama-2 pre-training
set (Touvron et al., 2023). Since MHB was cre-
ated translating a limited number of templates, we
exclude entries with a similar template when per-
forming ICL. A complete list of languages used
from the MULTILINGUALHOLISTICBIAS dataset
can be found in Appendix A. Additionally, we use
a subset of BUG’s (Levy et al., 2021) gold (human-
annotated) set for gender bias analysis and the FLo-
Res (NLLB Team et al., 2022; Goyal et al., 2021a;
Guzmán et al., 2019) devtest set to reproduce our
results in the general domain.

1For this study, we selected the subset of languages that
make use of grammatical genders or noun classes and for
which there is correlation between grammatical gender and
natural gender, allowing us to establish a relationship between
gender bias and the accuracy of coreference resolution in a
model.

Models We use Llama-2 (Touvron et al., 2023),
a decoder-only model, and NLLB (NLLB Team
et al., 2022), an encoder-decoder model. We use
the NLLB-200 version with 3 billion parameters.
For Llama-2 we use the 70 billion parameter ver-
sion. We prompt Llama-2 with ICEs (Figure 1b)
to elicit the gender-specific translation task. To fa-
cilitate comparisons, we also prompt Llama-2 with
a standard MT in-context learning (ICL) prompt
template (Figure 1a).

Evaluation Following the work of Costa-jussà
et al. (2023), we use the sacrebleu implementa-
tion of spBLEU (Goyal et al., 2021b) to compute
the translation quality with ‘add-k = 1’ smooth-
ing. We also provide evaluations in chrF (Popović,
2015), COMET (Rei et al., 2020), BLEURT (Sel-
lam et al., 2020) and BLASER (Chen et al., 2023)
as alternative metrics. For gender bias evaluation,
we use Stanovsky et al. (2019)’s reference-less
coreference resolution metric.

Experimental Setup We investigate the capabil-
ity of Llama to produce gender-specific transla-
tions. We prompt Llama with 8 ICEs comprised by
source, masculine and feminine translations from
MULTILINGUALHOLISTICBIAS (Fig. 1b). We
also prompt Llama with a standard MT template,
randomly selecting among the available transla-
tions when there’s more than one option (Fig. 1a).
Hereinafter all experiments are performed with
these settings. For NLLB, we calculate three BLEU
scores on the output: one with the masculine refer-
ence, one with the feminine reference and one with
both. In the case of Llama, we calculate two BLEU
scores for each gender-specific output: one with
the corresponding gender’s reference and one with
both references, for a total of four BLEU scores
per generation.
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masc fem both

NLLB unsp 40.07 28.67 40.41

Llama
unsp 41.57 30.92 42.43
masc 41.63 30.12 42.08
fem 31.84 39.55 43.37

Table 3: BLEU scores of the unspecified, masculine
and feminine outputs of NLLB and Llama evaluated on
masculine, feminine, and both references of MULTILIN-
GUALHOLISTICBIAS

4 Results

Gender-specific MT results in MULTILINGUAL-
HOLISTICBIAS As Table 3 shows, on average
Llama outperforms NLLB on all three references.
While the differences between masculine/both ref-
erences are moderate (Figs. 2a & 2c), Llama out-
performs NLLB by an average of over 10 BLEU
points for the feminine reference (Fig. 2b), high-
lighting the capacity of gender-specific MT to pro-
vide comparable results for masculine and feminine
outputs. Some of the most common errors encoun-
tered while generating gender-specific translations
can be found in Figure 3.

(a) Masculine reference (b) Feminine reference

(c) Both references

Figure 2: BLEU scores of the unspecified, masculine
and feminine outputs of NLLB and Llama-2 evaluated
on masculine, feminine, and both references of MULTI-
LINGUALHOLISTICBIAS.

We also assessed the capacity of the BLEU
evaluation metric to capture gender nuances. We
inverted masculine and feminine references and
found steep decreases, indicating the effectiveness

Source: I have friends who are Hispanic people.

Masc: Tengo amigos que son personas hispanas.

Fem: Tengo amigos que son personas hispanos.

(a) Error generating Spanish language.

Source: I have friends who are American-born people.

Masc: J'ai des amis qui sont des Américains nés aux États-Unis.

Fem: J'ai des amis qui sont des Américaines nées aux États-Unis.

(b) Error generating French language.

Figure 3: Two examples of the sort of errors encoun-
tered while generating gender-specific translations. In
some cases, masculine gender marker is used in both
outputs, particularly when there’s already a female gen-
der marker in another part of the sentence. In other
cases, agreement errors are encountered in the feminine
gender output.

of our approach in specifying the grammatical gen-
der. We provide evaluations in chrF, COMET,
BLEURT and BLASER, which show consistency
with BLEU scores. Full results can be found in Ap-
pendix B. Additionally, we included a comparison
of results between LLama-2 and GPT-4o to vali-
date whether our results are model-specific or can
be generalized. We also find satisfactory results for
GPT-4o (Table 4).

Gender bias MT results in BUG Besides trans-
lation accuracy, we’re interested in verifying the
incidence of gender bias in gender-specific trans-
lations with respect to unspecified translation. We
translate BUG’s gold set, reusing MULTILINGUAL-
HOLISTICBIAS examples for ICL. BUG’s gold
set is made of English sentences that require un-
ambiguous coreference resolution or grammatical
gender utilization to produce correct translations,
regardless of stereotypical associations. To en-
sure fairness in our analysis, we sampled four sub-
sets of 90 sentences from BUG gold, each sub-
set corresponding to a combination of stereotypi-
cal/antistereotypical correferences and male/female
nouns. Stanovsky et al. (2019) and Levy et al.
(2021) found that several (encoder-decoder) NMTs
are significantly prone to translate based on gen-
der stereotypes rather than more meaningful con-
text. We verify to which degree these errors are
reproduced by Llama in gender-specific transla-
tions. When performing the translation of BUG,
we noticed that the phenomenon of empty or in-
complete outputs occasionally occurs (i.e., either
only one output or no output at all is produced).
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Language Llama GPT-4o

cat Masc. 53.36 58.44
Fem. 58.56 60.63

ces Masc. 23.85 21.83
Fem. 23.88 30.54

deu Masc. 22.04 35.93
Fem. 16.88 36.89

fra Masc. 56.69 57.52
Fem. 51.76 58.82

ita Masc. 42.16 39.61
Fem. 44.86 40.45

ron Masc. 36.85 34.92
Fem. 35.96 35.17

rus Masc. 41.81 42.49
Fem. 36.67 43.82

slv Masc. 37.07 38.55
Fem. 27.98 35.42

spa Masc. 59.94 61.84
Fem. 59.36 62.61

avg Masc. 41.53 43.46
Fem. 39.55 44.93

Table 4: BLEU score comparison between LLama-2 and
GPT-4o. Results remain competitive, further supporting
the potential of LLMs to produce gender-specific trans-
lations.

NLLB Llama

unsp unsp masc fem

acc.(↑) ∆B(↓) acc.(↑) ∆B(↓) acc. ∆B(↓) acc.(↑) ∆B (↓)

ces 59.3 6.5 57.2 11.3 61.7 10.1 48.4 8.8
deu 66.4 11.8 67.8 10.8 70.6 9.5 52.4 8.6
ita 46.2 12.5 45.4 13.7 46.5 14.4 38.9 14.2
spa 52.5 10.1 50.0 11.4 49.4 14.4 34.2 29.4
rus 36.6 25.0 39.5 23.8 38.1 27.5 36.9 16.7
ukr 41.2 11.1 42.1 10.1 43.2 8.8 39.0 1.0

Table 5: Noun gender prediction accuracy on the subset
of BUG’s gold dataset’s fully generated gender-specific
translations with Llama, compared to NLLB’s predic-
tion accuracy. Llama results are presented for male (m.),
female (f.), and unspecified (unsp.) genders. We also
show the differences in accuracy between male nouns
and female nouns for each case (∆B)

Since a gender bias analysis is not defined over an
empty sentence, for each language we evaluate all
models in the subset that has been correctly gen-
erated by Llama both in the unspecified and the
gender-specific modalities.

Table 5 shows that Llama’s masculine out-
put’s noun gender prediction accuracy outperforms
NLLB’s for almost every language, but underper-

forms NLLB for feminine outputs. Difference of
accuracy between genders for the same type of
output (∆B) is comparable across models.

General domain MT results in FLoRes A pos-
sible concern about previous results is that they are
produced by the system forcing a specific gender
instead of performing coreference resolution to de-
termine the correct gender. To study whether this
is the case, we assess the difference in performance
for each produced gender when there aren’t major
gender ambiguities to translate. In this case, a ro-
bust model should not have significant differences
between both genders. We translate FLoRes’s de-
vtest set into ten languages included in Llama’s
training corpus. Given that FLoRes is a general
domain dataset, ambiguities should not be preva-
lent and both outputs should tend to converge. We
use MULTILINGUALHOLISTICBIAS as ICEs and
compare the BLEU scores of both outputs. The list
of languages we translate into for this experiment
can be found in Table 6 (Appendix A).

The results show minor differences between both
genders, suggesting a coreference resolution-based
gender-specific generation rather than on mechan-
ically switching the grammatical gender of the
words of the sentence.

5 Conclusions

In this paper, we explored the capabilities and lim-
itations a decoder-only LLM to produce gender-
specific translations. We observed that Llama’s
gender-specific translations’ accuracy is consis-
tently above NLLB’s. We also showed that Llama’s
gender-specific translations’ gender bias is compa-
rable to NLLB’s. These results indicate that it is
possible to use LLMs to produce gender-specific
translations without compromising on lower trans-
lation accuracy or higher gender bias. Our ex-
periments also reveal that Llama’s translations
rely on coreference resolution to determine gender,
showing significant performance drops when eval-
uated against opposite-gender references in gender-
ambiguous datasets, but maintaining consistency
in less ambiguous contexts.

While these results are promising indicator of
the flexibility of the output in the task of MT for lan-
guages present in Llama’s training set, the limited
multilinguality of currently available LLMs limits
the application of this approach to a subset of the
languages present in state-of-the-art NMT models.
More work is needed to bring LLMs’ multilingual
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capabilities on par with NMTs.

Limitations

Even though we performed a diverse set of experi-
ments, some limitations arise due to the vastness of
the research space we’re dealing with. The study
heavily relies on the effectiveness of prompt en-
gineering, specifically in providing accurate ICEs.
The conclusions drawn are thus constrained by the
quality and relevance of the prompts used. Vari-
ations in prompt structure or content could yield
different results. Moreover, the study focuses on
a particular model, Llama-2, leaving out an explo-
ration of alternative LLMs that could yield different
results.

MULTILINGUALHOLISTICBIAS’s small number
of templates and their simplicity limit the scope of
our results. An exploration with a more diverse
dataset could bring additional insights to our con-
clusions.

Ethics Statement

The understanding of nuanced gender contexts is
intricate and can be challenging even for humans.
The study tends to approach gender in a binary
manner, which might not account for social percep-
tions among some of the users of these languages.
This limitation is inherent in the current state of
the field and warrants future investigations into bet-
ter representation and handling of gender-related
nuances.

Furthermore, the stereotypical and non-
stereotypical datasets were built based on the US
Department of Labor data. Since we work with a
variety of world languages, the proportions stated
on these datasets might not reflect the realities of
the users of the wide range of languages employed
in this study.
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A Languages

Language code Name Script MULTILINGUALHOLISTICBIAS BUG FLoRes
arb Modern Standard Arabic Arabic D
cat Catalan Latin D D
ces Czech Latin D D
deu German Latin D D D
fra French Latin D D
ita Italian Latin D D D
nld Dutch Latin D
por Portugese Latin D
ron Romanian Latin D
rus Russian Cyrillic D D D
slv Slovenian Latin D
spa Spanish Latin D D D
swe Swedish Latin D
ukr Ukrainian Cyrillic D D

Table 6: List of languages analyzed in this work by dataset

B Full Results

Reference

Language Model Type masc fem both

cat

NLLB unsp 49.13 28.14 49.14

Llama
unsp 52.86 31.08 53.56
masc 53.36 30.59 53.52
fem 33.07 58.56 62.44

ces

NLLB unsp 25.41 24.32 26.05

Llama
unsp 24.74 23.53 26.00
masc 23.85 21.11 24.44
fem 20.23 23.88 24.38

deu

NLLB unsp 22.40 16.05 22.63

Llama
unsp 21.03 14.24 21.35
masc 22.04 15.74 22.29
fem 20.37 16.88 22.20

fra

NLLB unsp 57.79 45.47 57.90

Llama
unsp 61.56 50.47 61.78
masc 56.69 45.44 56.77
fem 49.68 51.76 56.99

ita

NLLB unsp 38.87 24.37 38.38

Llama
unsp 41.88 29.39 42.99
masc 42.16 29.03 43.10
fem 26.74 44.86 45.68

Reference

Language Model Type masc fem both

ron

NLLB unsp 28.61 24.23 30.47

Llama
unsp 35.04 29.38 37.39
masc 36.85 29.89 38.62
fem 26.27 35.96 37.47

rus

NLLB unsp 36.48 31.75 36.78

Llama
unsp 40.71 35.80 40.71
masc 41.81 36.88 41.80
fem 35.72 36.67 39.12

slv

NLLB unsp 34.53 22.66 35.51

Llama
unsp 37.55 24.58 38.57
masc 37.07 23.26 37.66
fem 33.07 27.98 38.17

spa

NLLB unsp 67.46 41.00 66.87

Llama
unsp 58.72 39.83 59.56
masc 59.94 39.13 60.50
fem 41.42 59.36 62.98

avg

NLLB unsp 40.07 28.67 40.41

Llama
unsp 41.57 30.92 42.43
masc 41.63 30.12 42.08
fem 31.84 39.55 43.37

Table 7: BLEU scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.
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Reference

Language Model Type masc fem both

cat

NLLB unsp 68.76 57.33 68.85

Llama
unsp 71.08 59.62 71.40
masc 71.24 59.41 71.44
fem 62.11 72.81 72.98

ces

NLLB unsp 50.21 48.72 50.54

Llama
unsp 49.68 47.95 50.15
masc 48.44 46.09 48.60
fem 47.28 47.83 48.86

deu

NLLB unsp 50.14 43.45 50.25

Llama
unsp 50.17 43.37 50.30
masc 51.63 44.88 51.77
fem 50.65 46.16 51.08

fra

NLLB unsp 69.68 65.81 69.79

Llama
unsp 76.77 72.81 76.85
masc 73.63 69.64 73.66
fem 71.77 71.95 73.68

ita

NLLB unsp 62.34 53.45 62.65

Llama
unsp 65.55 57.44 66.17
masc 64.76 56.55 65.29
fem 55.70 66.39 66.71

Reference

Language Model Type masc fem both

ron

NLLB unsp 61.24 57.88 61.60

Llama
unsp 63.98 60.50 64.51
masc 64.82 61.14 65.22
fem 61.27 63.75 64.56

rus

NLLB unsp 55.58 50.59 55.78

Llama
unsp 58.32 53.07 58.43
masc 58.94 53.66 59.06
fem 53.53 52.83 55.79

slv

NLLB unsp 56.80 51.33 57.35

Llama
unsp 57.01 50.88 57.33
masc 56.66 50.37 56.88
fem 54.81 51.93 55.80

spa

NLLB unsp 79.81 68.44 79.84

Llama
unsp 76.36 65.66 76.61
masc 77.21 66.03 77.33
fem 67.91 75.55 77.26

avg

NLLB unsp 61.62 55.22 61.85

Llama
unsp 63.21 56.81 63.53
masc 63.04 56.42 63.25
fem 58.34 61.02 62.97

Table 8: chrF scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.

Reference

Language Model Type masc fem both

cat

NLLB unsp 0.87 0.85 -

Llama
unsp 0.88 0.86 -
masc 0.89 0.87 -
fem 0.86 0.88 -

ces

NLLB unsp 0.88 0.86 -

Llama
unsp 0.88 0.87 -
masc 0.88 0.86 -
fem 0.84 0.84 -

deu

NLLB unsp 0.72 0.71 -

Llama
unsp 0.72 0.70 -
masc 0.72 0.71 -
fem 0.71 0.71 -

fra

NLLB unsp 0.87 0.85 -

Llama
unsp 0.89 0.88 -
masc 0.88 0.87 -
fem 0.87 0.87 -

ita

NLLB unsp 0.86 0.82 -

Llama
unsp 0.88 0.84 -
masc 0.88 0.84 -
fem 0.83 0.85 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 0.89 0.87 -

Llama
unsp 0.89 0.87 -
masc 0.89 0.87 -
fem 0.86 0.88 -

rus

NLLB unsp 0.88 0.87 -

Llama
unsp 0.88 0.86 -
masc 0.89 0.87 -
fem 0.86 0.88 -

slv

NLLB unsp 0.85 0.84 -

Llama
unsp 0.85 0.83 -
masc 0.85 0.83 -
fem 0.81 0.82 -

spa

NLLB unsp 0.91 0.88 -

Llama
unsp 0.91 0.88 -
masc 0.91 0.88 -
fem 0.88 0.90 -

avg

NLLB unsp 0.86 0.84 -

Llama
unsp 0.86 0.84 -
masc 0.87 0.84 -
fem 0.84 0.85 -

Table 9: COMET scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.
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Reference

Language Model Type masc fem both

cat

NLLB unsp 0.83 0.77 -

Llama
unsp 0.84 0.78 -
masc 0.85 0.79 -
fem 0.77 0.82 -

ces

NLLB unsp 0.81 0.80 -

Llama
unsp 0.81 0.80 -
masc 0.81 0.78 -
fem 0.76 0.79 -

deu

NLLB unsp 0.54 0.53 -

Llama
unsp 0.54 0.53 -
masc 0.54 0.53 -
fem 0.52 0.52 -

fra

NLLB unsp 0.77 0.75 -

Llama
unsp 0.80 0.78 -
masc 0.78 0.76 -
fem 0.76 0.76 -

ita

NLLB unsp 0.79 0.76 -

Llama
unsp 0.81 0.78 -
masc 0.81 0.78 -
fem 0.76 0.81 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 0.80 0.79 -

Llama
unsp 0.82 0.81 -
masc 0.83 0.81 -
fem 0.77 0.80 -

rus

NLLB unsp 0.77 0.76 -

Llama
unsp 0.78 0.76 -
masc 0.78 0.77 -
fem 0.73 0.74 -

slv

NLLB unsp 0.76 0.76 -

Llama
unsp 0.77 0.75 -
masc 0.77 0.76 -
fem 0.73 0.76 -

spa

NLLB unsp 0.85 0.79 -

Llama
unsp 0.85 0.80 -
masc 0.86 0.80 -
fem 0.80 0.84 -

avg

NLLB unsp 0.77 0.75 -

Llama
unsp 0.78 0.75 -
masc 0.78 0.75 -
fem 0.73 0.76 -

Table 10: BLEURT scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.

Reference

Language Model Type masc fem both

cat

NLLB unsp 4.32 4.27 -

Llama
unsp 4.35 4.30 -
masc 4.36 4.30 -
fem 4.27 4.30 -

ces

NLLB unsp 4.31 4.27 -

Llama
unsp 4.24 4.20 -
masc 4.24 4.20 -
fem 4.20 4.18 -

deu

NLLB unsp 4.15 4.11 -

Llama
unsp 4.14 4.10 -
masc 4.14 4.10 -
fem 4.11 4.08 -

fra

NLLB unsp 4.44 4.41 -

Llama
unsp 4.48 4.45 -
masc 4.48 4.10 -
fem 4.11 4.08 -

ita

NLLB unsp 4.46 4.39 -

Llama
unsp 4.48 4.42 -
masc 4.48 4.41 -
fem 4.35 4.38 -

Reference

Language Model Type masc fem both

ron

NLLB unsp 4.38 4.34 -

Llama
unsp 4.35 4.30 -
masc 4.34 4.29 -
fem 4.28 4.28 -

rus

NLLB unsp 4.47 4.43 -

Llama
unsp 4.33 4.30 -
masc 4.39 4.35 -
fem 4.29 4.28 -

slv

NLLB unsp 4.14 4.08 -

Llama
unsp 4.08 4.02 -
masc 4.08 4.01 -
fem 4.04 4.01 -

spa

NLLB unsp 4.56 4.47 -

Llama
unsp 4.53 4.45 -
masc 4.56 4.48 -
fem 4.43 4.46 -

avg

NLLB unsp 4.36 4.31 -

Llama
unsp 4.33 4.28 -
masc 4.34 4.25 -
fem 4.23 4.22 -

Table 11: BLASER scores on MULTILINGUALHOLISTICBIAS with masculine, feminine, and both references.
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Abstract

Multi-vector dense models, such as ColBERT,
have proven highly effective in information
retrieval. ColBERT’s late interaction scoring
approximates the joint query-document attention
seen in cross-encoders while maintaining inference
efficiency closer to traditional dense retrieval mod-
els, thanks to its bi-encoder architecture and recent
optimizations in indexing and search. In this work
we propose a number of incremental improvements
to the ColBERT model architecture and training
pipeline, using methods shown to work in the more
mature single-vector embedding model training
paradigm, particularly those that apply to hetero-
geneous multilingual data or boost efficiency with
little tradeoff. Our new model, Jina-ColBERT-v2,
demonstrates strong performance across a range
of English and multilingual retrieval tasks.

1 Introduction

Neural retrieval has gained popularity in recent years
following the arrival of capable pre-trained language
models (PLMs) (Devlin et al., 2019; Liu et al., 2019;
Clark et al., 2020). Two types of approaches have been
employed to apply PLMs to retrieval. Sparse neural
retrieval systems, such as SPLADE (Formal et al.,
2021), represent texts as weighted bags of words that
are interpreted as sparse high-dimensional vectors for
maximum inner product search (MIPS). Dense retriev-
ers similarly encode queries and documents as dense
vectors, capturing relevance signals through spatial
relationships extending beyond exact term matching.

Most dense retrievers encode a query or document as
a single vector, commonly the result of mean-pooling or
the [CLS]-embedding over the transformer’s final layer
token embeddings. In contrast, recent multi-vector
retrievers like ColBERT (Khattab and Zaharia, 2020)
generalize this embedding process to maintain an
embedding for each token, computing relevance scores
as a function of the similarities of query and document
tokens instead. To make the ColBERT usable in
practice, the output dimensionality is restricted to be
much smaller than the single-vector models. This

∗ Work done while at Jina AI.

approach has the benefit of remaining compatible with
much of the vector similarity infrastructure that makes
single-vector methods efficient, but requires more
space to store even a smaller embedding per token and
compute at inference time to aggregate token interac-
tions into a single score. This late interaction over token
embeddings achieves greater in-domain performance
and tends to be more robust out-of-domain than
single-vector similarity. While ColBERTv2 is trained
only on English MSMARCO triplets (Bajaj et al.,
2016) and has a monolingual BERT backbone, making
it incapable of multilingual retrieval, some previous
works extend the model to multilingual retrieval.

ColBERT-XM (Louis et al., 2024) does this by using
parameter extensions for each additional language, and
(Lawrie et al., 2023) trains solely on machine-translated
English MSMARCO data to get effective heteroge-
neous multilingual performance. These approaches,
however, come with trade-offs in terms of model
usability and training data diversity. Other multilingual
multi-vector models like BGE-M3 (Chen et al., 2024)
produce extremely large token representations that
limit their practical utility for first-stage retrieval.

In this work, we propose Jina-ColBERT-v2, which
introduces an improved training recipe for ColBERT
models with the following features:

Training with diverse weakly-supervised data:
We additionally pretrain our modified PLM with
rotary position embedding and train on large-scale
unlabeled text pairs from various corpus with
a weakly-supervised single-vector contrastive
objective. A second-stage of ColBERT finetuning
with labeled triplet data and supervised distillation is
used to further boost its performance.

General multilingual performance: We train with
data from a variety of high- and low-resource
languages using both labeled and unlabeled
data, including human- and machine-translated
training data, and show that this improves even
out-of-domain multilingual performance.

Inference-agnostic efficiency: We introduce
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multiple sizes of linear projection heads, jointly
trained using the non-weight tying variant of
Matryoshka Representation Loss (Kusupati
et al., 2022), enabling the selection of token
embedding size at inference time with minimal
performance degradation. We demonstrate that
reducing the embedding dimensionality in half
from 128 to 64 yields only a minor performance
tradeoff. Additionally, our flash-attention optimized
backbone, Jina-XLM-RoBERTa provides fur-
ther free performance improvement during inference.

Our experimental results show competitive retrieval
performance across both English and multilingual
benchmarks. We also present controlled experiments
demonstrating the benefits, or lack thereof, of the
training modifications we consider in developing our
training recipe.

2 Related Work

In this section, we discuss related work in single-
and multi-vector retrieval, as well as the non-English
late-interaction retrievers from which our training
recipe draws inspiration.

2.1 Single-Vector Retrieval
Single-vector encoder models have demonstrated their
potential as general-purpose embedding models across
a number of downstream tasks (Muennighoff et al.,
2023). When used in a bi-encoder retrieval model, they
asymmetrically encode queries and documents as sepa-
rate dense vectors, and measure their pairwise relevance
as the cosine similarity between the vectors. Owing to
their strong in-domain performance and straightforward
inference scheme, there has been a growing focus
on improving their training. Studies demonstrate that
large-scale unsupervised pair training utilizing in-batch
negatives, followed by a small-scale triplet finetuning
stage, significantly improves performance compared
to a dense retriever trained solely on triplet data (Li
et al., 2023; Günther et al., 2023). Other works have
incorporated asymmetric task-specific instructions for
queries and documents to further enhance performance
(Wang et al., 2024) and demonstrated the efficacy of
using synthetically generated training data, including
using diverse task instructions and machine translations,
to further improve model representations. (Wang et al.,
2023; Lee et al., 2024)

2.2 Multi-Vector Retrieval
Multi-vector retrievers like ColBERT also employ
a bi-encoder structure, but queries and passages
are represented by a collection of smaller token
embeddings rather than one large vector. As such,

ColBERTv2’s training uses many of the same
techniques as state-of-the-art single-vector models:
cross-encoder distillation, multiple negatives per query,
and self-mined hard negatives. Recent models have
continued to improve on this training recipe, particu-
larly for multilingual or non-English training. BGE-M3
(Chen et al., 2024) adopts the two-stage pairs-to-triplets
training pipeline, and does self-knowledge distillation,
treating the combination of its sparse, dense, and
multi-vector scores as the teacher score.

2.3 Multilingual Retrieval
Owing to the quality of English-based pre-trained
models (BERT) and annotated data (MSMARCO),
many advances in neural retrieval have been applied
first to the monolingual English setting (Karpukhin
et al., 2020; Xiong et al., 2020; Khattab and Zaharia,
2020). Researchers, however, have also made advances
in non-English capabilities.

On the modeling front, multilingual PLMs like
mBERT (Devlin et al., 2019) and later XLM-RoBERTa
(Conneau et al., 2020) have expanded pre-training to
include text in up to 100 languages, including in cross-
language contexts. For multilingual retrieval data, there
are two approaches: natural and translated. Datasets
like Mr-Tydi and MIRACL (Zhang et al., 2021, 2023b)
are built from human-generated and annotated queries,
whereas mMARCO (Bonifacio et al., 2022) is a collec-
tion of machine-translated copies of MSMARCO which
inherit their judgments from the original dataset. The
former method tends to be of higher quality and lacks
the subtle distributional/idiomatic errors, dubbed "trans-
lationese", that the latter sometimes exhibits. Naturally,
however, human generation costs more per example.

Recent multi-vector work has also proposed further
modifications along the dimensions of architecture and
data. ColBERT-XM (Louis et al., 2024) addresses the
so-called curse of multilinguality (Conneau et al., 2020),
the performance degradation of models pre-trained
on too many tasks, with shared- and per-language pa-
rameters that allow for more robust zero-shot language
transfer and post-hoc language extension. On the data
approach, ColBERT-X (Nair et al., 2022; Lawrie et al.,
2023; Yang et al., 2024) uses language-mixed batches of
machine-translated English data, and BGE-M3 (Chen
et al., 2024) curates unsupervised and high-quality
supervised corpora of diverse multilingual training data.

3 Training Overview

Jina-ColBERT-v2’s training paradigm has three parts:
1. Modified Encoder Architecture: We use

a modified encoder backbone, derived from
XLM-RoBERTa with improvements made to its
architecture and pre-training regime. We further
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extend ColBERT’s linear projection head by jointly
training a collection of different-size heads for
embedding size reduction.

2. Pair Training: To learn from the semantic structure
of large quantities of diverse data in many languages,
we first train our encoder model on weakly super-
vised text pairs from a variety of embedding datasets.

3. Triplet Training: Our model is further finetuned
using retrieval examples in many languages with
both positives and hard negatives, supervised by a
highly-capable multilingual cross-encoder.
The following sections describe our experiments on

these three components of training Jina-ColBERT-v2.

4 Architecture

4.1 Backbone Improvements
Following many prior single- and multi-vector mul-
tilingual training efforts, we adopted XLM-RoBERTa
as our backbone model due to its strong performance
across various downstream tasks (Nair et al., 2022;
Louis et al., 2024; Chen et al., 2024). To improve
the efficiency, we enhance the XLM-RoBERTa
architecture with flash attention (Dao, 2024).

We replace the absolute positional embeddings with
rotary positional embeddings (RoPE, Su et al. (2023)),
which are empirically understood to be better. They
also have the advantage of supporting context lengths
far longer than 512 tokens, although we do not explic-
itly focus on long-context in this work. To warm up its
new positional embeddings, we continued pre-training
the modified backbone with the same masked language
modeling objective for 160,000 steps on the Refined-
Web dataset (Penedo et al., 2023), a modern, high-
quality corpus, under the masked language modeling ob-
jective. During this pre-training phase, we set the maxi-
mum sequence length to 8,192 tokens with a rotary base
of 10,000 and employed whole-word-masking (Devlin
et al., 2019), masking out 30% of the tokens. We call
this modified language model Jina-XLM-RoBERTa.

4.2 Multiple Linear Heads
To reduce index sizes, ColBERT includes a linear
head that projects its token embeddings from the
hidden dimension of its language model down to a
lower dimension (768→128). As a notable exception,
BGE-M3’s multi-vector retrieval does not take this step,
keeping its token embeddings at a full 1024 dimensions.

We jointly train six linear heads with dimensions
d∈{64,96,128,256,512,768} using Matryoshka Rep-
resentation Loss (MRL, Kusupati et al. (2022)). This
allows users to choose greater or lesser space efficiency,
with an associated performance trade-off. Figure 1
quantifies this tradeoff, showing the strong performance
preservation of our reduced-dimension linear heads.

Halving the token dimension (128→64) only causes its
nDCG@10 to drop by 0.01 (1.59%). We unfortunately
find that MRL’s weight-tying efficient variant (MRL-E),
where losses are computed on truncations of the same
token vector does not preserve performance well, which
we hypothesize is a consequence of the already-low pro-
jected dimension of the original ColBERT formulation.

Figure 1: nDCG@10 scores for BEIR datasets using 64-,
96-, and 128-dimension linear projection heads for token
embeddings.

5 Pair Training

To leverage an abundance of text pairs with varying
richness of semantic structure, we draw inspiration
from common practices in single-vector embedding
model training and begin with training on these text
pairs, focusing on optimizing the embedding model’s
performance on general semantic similarity and related-
ness tasks. This weakly-supervised stage is in contrast
to previous ColBERT works, which typically start
directly from a PLM like BERT with triplet training
on 32-way or 64-way retrieval triplets consisting of a
query, a positive passage, and multiple mined negatives.

5.1 Data Composition

Our pair training data consists of a broad range of
weakly supervised datasets harvested from the web. We
adjusted sampling rates across different languages and
domains based on intuition, resulting in a set of 450
million weakly supervised, semantically related sen-
tence pairs, question-answer pairs, and query-document
pairs. Of these 450 million pairs, 50.0% are in English.
Our non-English pair-wise datasets contain a diverse
collection of 29 major languages, including 3.0% code
data, with 4.3% representing cross-lingual data.

5.2 Contrastive Loss

We utilize the same single-vector pair-training loss func-
tion as described in (Günther et al., 2023). Due to the
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often symmetric nature of our text pairs, the loss is cal-
culated in both directions. During the pair training stage,
we set the temperature τ=0.02 and used a peak learn-
ing rate of 5×10−5 with a warm-up period of 1,000
steps. The model was trained using the Adam optimizer
for 100,000 steps with a global batch size of 16,384.

6 Triplet Training

6.1 Data Composition
Our triplet dataset consists of 1) high-quality, human-
annotated research datasets such as MSMARCO,
DuReader, and MIRACL (Bajaj et al., 2016; He et al.,
2018; Zhang et al., 2023b) with diversely mined
negatives 2) high-quality datasets like MSMARCO
and NQ translated from English into Chinese, French,
German, Japanese, Russian and Spanish, following our
previous work (Mohr et al., 2024) and 3) synthetically
generated datasets to address common failure modes
of dense vector models such as negation and to cover
niche domains like legal IR.

The triplet dataset covers 14 widely used languages,
with a strong emphasis on Arabic, Chinese, English,
French, German, Japanese, Russian, and Spanish. We
sample the datasets to create a language distribution
similar to that used in pair training. English accounts
for 45.9% of the triplets, with 52.1% roughly evenly
split between the mentioned high-resource non-English
languages and a small 2.0% share for lower-resource
languages.

Notably, owing to the limitations of our various
sources of data, we train on triplets with only 7
negatives per example, in contrast to the 32- or 64-way
triplets of ColBERTv2.

6.2 Supervision Loss
Following ColBERTv2, we finetune our pair-trained
checkpoint on samples with hard negatives using a
KL divergence loss function to distill soft labels from
the teacher model. For the teacher model, we use
jina-reranker-v2-base-multilingual1, a highly
capable multilingual cross encoder.

This stage trains for 100,000 steps with a batch
size of 32 and a cosine decay learning rate schedule
with 5% warm-up that peaks at 1×10−5. We use pure
BFLOAT-16 precision, and apply magnitude-based
gradient clipping with a threshold of 1 for stability.

7 Results

We evaluate Jina-ColBERT-v2 on four widely used
benchmarks, BEIR, LoTTE, and MIRACL and
mMARCO. For general English performance, we

1https://huggingface.co/jinaai/
jina-reranker-v2-base-multilingual

use the same subset of 14 retrieval and text-similarity
tasks from the BEIR benchmark as in Santhanam et al.
(2022). Additionally, we assess performance on the
LoTTE benchmark, which focuses on long-tail queries,
and the MIRACL and mMARCO benchmarks (Zhang
et al., 2023b; Bonifacio et al., 2022), which assess non-
English retrieval performance. We report nDCG@10
for the BEIR and MIRACL collections, MRR@10 for
mMARCO, and Success@5 for LoTTE. Scores are
reported on the test split for BEIR, development split
for MIRACL and mMARCO, and search test split for
LoTTE. We use the same maximum query/document
lengths as reported in Santhanam et al. (2022), and use
the default (32/300) for MIRACL and mMARCO.

Table 1 shows Jina-ColBERT-v2’s strong English
performance compared to ColBERTv2, while still trail-
ing the monolingual answerai-colbert-small-v1. No-
tably, however, we perform well below ColBERTv2 on
ArguAna (ar), which we might attribute to either its un-
usual task: counterargument retrieval being at odds with
our retrieval-heavy triplet training data distribution, or as
an indication of the limitation of our stronger augmenta-
tion attention (discussed in Section 8.4) when applied to
much longer (300 token) queries. Similarly for LoTTE,
we see in Table 2 an improvement over ColBERTv2.

Table 3 compares Jina-ColBERT-v2 to BM25,
mDPR, and BGE-M3. While we handily outperform
BM25 and zero-shot mDPR (Zhang et al., 2023b) as
expected, our model is slightly outperformed by the
finetuned mDPR (Zhang et al., 2023a). For context,
each mDPR-FT is only tuned on one language, rather
than many like ours which may suffer to some extent
from the curse of multilinguality.

Finally, comparing against ColBERT-XM’s
zero-shot evaluation on mMARCO in Table 4, we see
a strong improvement across the board, including on
languages whose mMARCO training set does not occur
in our pair or triplet training data (dt, hi, id, it, pt, vi).

8 Ablation Studies

In this section we present short ablation studies on
modifications to three various aspects of ColBERT
modeling and training.

8.1 Efficient Evaluation
Due to the compute and time costs of indexing corpora
containing tens of millions of documents, evaluating
every model checkpoint and ablation on every task
is not feasible. Therefore, we follow recent works
(Clavié, 2024; Merrick et al., 2024) by comparing
models’ quality on smaller sampled-corpus versions
of HotpotQA, NQ, MS MARCO, and MIRACL
(Chinese, French, German, Japanese, Spanish). These
sampled corpora are constructed by combining the
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BEIR avg nf fi tc ar qu sd sf to db fe cf hp nq

BM25 44.0 32.5 23.6 65.6 31.5 78.9 15.8 66.5 36.7 31.3 75.3 21.3 60.3 32.9
ColBERTv2 49.6 33.7 35.4 72.6 46.5 85.5 15.4 68.9 26.0 45.2 78.5 17.6 67.5 52.4
answerai-v1 55.7 37.3 41.2 84.6 50.1 87.7 18.4 74.8 25.7 45.6 91.0 33.1 76.1 59.1

Ours 53.1 34.6 40.8 83.4 36.6 88.7 18.6 67.8 27.4 47.1 80.5 23.9 76.6 64.0

Table 1: Comparison of nDCG@10 scores between BM25, ColBERTv2, answer-colbert-small and Jina-ColBERT-v1 and
Jina-ColBERT-v2 on the BEIR test set. nf for NFCorpus, fi for FIQA (Fact In Question Answering), tc for TREC-COVID
(Text Retrieval Conference COVID), ar for Arguana, qu for Quora, sd for SciDocs, sf for SciFact, to for Webis-Touche,
db for DBpedia-Entity, fe for FEVER (Fact Extraction and Verification), cf for Climate-FEVER, hp for HotpotQA, and
nq for Natural Questions

LoTTE avg Life. Rec. Wri. Sci. Tech.

BM25 67.8 80.2 68.5 74.7 53.6 61.9
ColBERTv2 72.0 84.7 72.3 80.1 56.7 66.1

Ours 76.4 87.0 77.6 83.8 60.5 73.0

Table 2: Comparison of Success@5 of various models
across different LoTTE search query subsets.

top 250 BM25-retrieved2 passages with all judged
passages. We observe good agreement between the
sampled-corpus evaluation scores and the full-fidelity
ones when used to make binary or ranking-based
model comparisons, but we leave a more rigorous
analysis of this observation to future work. We only use
the sampled corpora for ablation studies. For the final
model, we evaluate on the full version of every dataset.

8.2 Task Instructions
Inspired by the use of instruction prefixes in single-
vector works like Su et al. (2022), we experimented
with adding task-specific natural language instructions
for retrieval (RET), and question answering (QA), and
semantic text similarity (STS). However, results in
Table 5 show a generally negative effect across most
BEIR datasets. We hypothesize that this is because
instructions are not well-suited for late interaction mod-
els, which operate at the token level. Any embedding
conditioning that the instructions might provide likely
becomes less effective when aggregated at the token
similarity level. Furthermore, these instructions occupy
valuable space within the system’s fixed token capacity.

8.3 Score Normalization
Recently, Clavié (2024) applied min-max normalization
to both the student and teacher scores before computing
the KL loss. This adjustment brings the score
distributions of the ColBERT model and its CE teacher
into closer alignment, as the original score distribution
for ColBERT theoretically ranges from zero to the

2We use the standard pre-built Lucene indices in Pyserini
(Lin et al., 2021) for MIRACL found at https://github.com/
castorini/pyserini, and use BM25s (Lù, 2024) for BEIR.

number of query tokens, and is model-dependent for
the teacher CE. Our experiment presented in Table
6, however, shows this method to have inconclusive
benefit to nDCG@10 on the BEIR and MIRACL
datasets when applied to our model. We consider this
result to be understandable given Clavié (2024)’s very
small observed effect.

8.4 Query Augmentation Attention
An important feature of ColBERT’s implementation is
its query augmentation mechanism. By padding queries
with [MASK] tokens to a uniform length, ColBERT
uses BERT’s masked language modeling ability to
produce additional soft term embeddings which interact
with document token embeddings during MaxSim scor-
ing. However, prior ColBERT models do not modify
the attention mask to allow query tokens to attend to
the mask tokens, which some hypothesize might harm
generalization by making this augmentation feature too
integral to the embedding process. Our controlled triplet
training experiment in Table 7, however, demonstrates
a positive effect across a variety of tasks, with particular
benefit to non-English tasks in MIRACL. We therefore
allow this attention in our training and inference.

9 Conclusion

This work presents Jina-ColBERT-v2, a capable mul-
tilingual ColBERT model that is the result of improve-
ments to its architecture and training process. We imple-
ment modifications to the model architecture that yield
efficiency gains with effectively no downside, and sub-
sequently train it on a heterogeneous mix of data of vary-
ing tasks, languages, and supervision structures in order
to bolster its performance as a general purpose retriever.
Our ablation experiments demonstrate the sensitivity
of ColBERT to modifications to its representations.

We hope that our work will support future
multilingual ColBERT development, and prompt
further exploration into the properties and optimal
configuration of its query augmentation mechanism.
We are also encouraged by the many inference-only
optimization works on ColBERT representations, and
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MIRACL avg ar bn de es en fa fi fr hi id ja ko ru sw te th yo zh

BM25 38.5 48.1 50.8 22.6 31.9 35.1 33.3 55.1 18.3 45.8 44.9 36.9 41.9 33.4 38.3 49.4 48.4 40.6 18.0
mDPR-ZS 41.8 49.9 44.3 49.0 47.8 39.4 48.0 47.2 43.5 38.3 27.2 43.9 41.9 40.7 29.9 35.6 35.8 39.6 51.2
mDPR-FT 62.7 72.5 68.4 - 48.8 56.5 59.3 71.4 58.9 51.6 49.6 64.2 59.0 59.7 68.5 80.4 69.5 - 65.0

Ours 62.3 75.3 75.0 50.4 53.8 57.0 56.3 74.0 54.1 60.0 54.7 63.2 67.1 64.3 49.9 74.2 77.2 62.3 52.3

Table 3: Comparison of nDCG@10 scores for BM25, mDPR-ZeroShot (ZS), mDPR-FineTuned (FT), and Jina-ColBERT-v2
models on the MIRACL dev set across various languages.

mMARCO avg ar de nl es fr hi id it ja pt ru vi zh

BM-25 13.9 11.1 13.6 14.0 15.8 15.5 13.4 14.9 15.3 14.1 15.2 12.4 13.6 11.6
ColBERT-XM 25.4 19.5 27.0 27.5 28.5 26.9 23.8 26.3 26.5 24.1 27.6 25.1 22.6 24.6

Ours 31.3 27.2 33.1 33.0 34.1 33.5 30.9 31.9 33.7 27.6 33.7 29.8 28.7 30.2

Table 4: Comparison of mRR@10 scores between BM25, ColBERT-XM and Jina-ColBERT-v2 models on the mMARCO
dev set across various languages.

RET QA STS

nf tc sf to db fe cf ms* fq hp* nq* ar qu sd

Mark. 32.4 59.3 67.9 19.3 35.3 67.1 18.3 34.4 37.5 25.9 40.8 37.5 86.1 18.4
Inst. 32.9 63.2 67.5 18.8 33.9 64.4 16.7 34.0 37.1 24.9 42.9 34.2 86.0 17.9

Table 5: nDCG@10 scores on BEIR datasets, grouped by task type (retrieval, question answering, and semantic text
similarity) when using natural language instructions versus query/document marker tokens (default). Datasets marked with
a * use the BM25-sampled corpus technique discussed in Section 8.1.

BEIR MIRACL

tc hp nq ms de es fr ja zh

Baseline 78.7 36.6 58.0 45.4 57.3 40.6 50.7 63.4 63.2
+ Score Norm. 80.1 36.4 56.6 45.1 57.7 39.3 51.3 61.8 62.5

Table 6: nDCG@10 scores with and without score normalization on a retrieval-oriented subset of BEIR and MIRACL
tasks. Results are performed on the BM25-sampled versions of all datasets presented except TREC-COVID (tc).

BEIR MIRACL

tc hp nq ms de es fr ja zh

Baseline 77.2 70.4 54.6 37.6 33.3 40.3 35.9 54.9 34.4
+ [MASK] attn. 80.2 71.5 58.8 44.3 45.6 49.8 44.8 58.8 52.9

Table 7: nDCG@10 scores with and without query augmentation [MASK] token attention on a retrieval-oriented subset
of BEIR and MIRACL tasks. Results report full-fidelity scores.

suggest further effort be invested in tying these methods
more closely with the models training objective.
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Abstract

This study investigates the potential of cross-
lingual transfer learning for Named Entity
Recognition (NER) between Hindi and Nepali,
two languages that, despite their linguistic sim-
ilarities, face significant disparities in avail-
able resources. By leveraging multilingual
BERT models, including RemBERT, BERT
Multilingual, MuRIL, and DistilBERT Mul-
tilingual, the research examines whether pre-
training them on a resource-rich language like
Hindi can enhance NER performance in a
resource-constrained language like Nepali and
vice versa. The study conducts experiments
in both monolingual and cross-lingual settings
to evaluate the models’ effectiveness in trans-
ferring linguistic knowledge between the two
languages. The findings reveal that while Rem-
BERT and MuRIL perform well in monolin-
gual contexts—RemBERT excelling in Hindi
and MuRIL in Nepali—BERT Multilingual per-
forms comparatively best in cross-lingual sce-
narios, in generalizing features across the lan-
guages. Although DistilBERT Multilingual
demonstrates slightly lower performance in
cross-lingual tasks, it balances efficiency with
competitive results. The study underscores the
importance of model selection based on linguis-
tic and resource-specific contexts, highlighting
that general-purpose models like BERT Mul-
tilingual are particularly well-suited for cross-
lingual applications.

1 Introduction

Cross-lingual transfer learning has emerged as a
crucial area in natural language processing (NLP),
especially for languages with limited resources
(Kim et al., 2017; Schuster et al., 2019). This
approach leverages the strengths of resource-rich
languages to enhance model performance in under-
resourced languages, making it a valuable tool
in the global effort to improve NLP applications
across diverse linguistic contexts (Wang, 2021; Het-
tiarachchi et al., 2023; Jafari et al., 2021). In this

context, Hindi and Nepali present an interesting
case study due to their linguistic similarities cou-
pled with significant disparities in NLP resources
(Michailovsky, 2008; Murthy et al., 2022; Beaufils,
2015–2024).

Hindi, with over 600 million speakers, benefits
from comparatively extensive datasets and well-
developed NLP tools (Kamble and Shrivastava,
2023; Desai and Dabhi, 2021; Eberhard et al.,
2024). In contrast, Nepali, spoken by around 30
million people, faces significant challenges due
to the limited availability of resources and tools
(Sharma et al., 2023; Eberhard et al., 2024). Given
the shared linguistic heritage between Hindi and
Nepali, cross-lingual transfer learning between
these two languages could offer a promising av-
enue for improving NER performance in Nepali
by leveraging pre-trained Hindi models and vice
versa.

This research evaluates the effectiveness of pre-
trained multilingual BERT models—RemBERT
(Chung et al., 2021), BERT Multilingual (Devlin
et al., 2019), MuRIL (Khanuja et al., 2021), and
DistilBERT Multilingual (Sanh et al., 2019)—for
cross-lingual transfer learning in NER tasks be-
tween Hindi and Nepali. By fine-tuning these mod-
els on individual language datasets and evaluating
their performance in monolingual and cross-lingual
settings, this research provides insights into the fea-
sibility and potential of transfer learning in low-
resource language contexts. Furthermore, the study
compares the models’ performance in NER tasks
for Hindi and Nepali without cross-lingual transfer
learning.

2 Related Work

Named Entity Recognition is a foundational task
in NLP, focusing on identifying and classifying
named entities within text (Jurafsky and Martin,
2008). NER methodologies have evolved from
traditional rule-based approaches to more sophis-
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ticated machine learning techniques and, recently,
to Large Language Models (LLMs) (Li et al.,
2022; Hu et al., 2024). Among these, models like
BERT have significantly advanced the state of the
art in NER by leveraging contextual embeddings
and transformer-based architectures (Taillé et al.,
2020).

In the context of Hindi NER, research has
spanned both traditional and LLM-based meth-
ods, with resources like HiNER contributing to
notable advancements (Murthy et al., 2022; Desh-
mukh et al., 2024). Although Nepali NER has been
less extensively studied, recent efforts have focused
on applying LLMs to address the language’s low-
resource status, with specialized datasets and algo-
rithms playing a critical role in these developments
(Timilsina et al., 2022; Subedi et al., 2024; Singh
et al., 2019).

Cross-lingual transfer learning has shown signif-
icant promise in enhancing NER performance, par-
ticularly for low-resource languages (Wang, 2021).
Multilingual BERT models, such as mBERT (De-
vlin et al., 2019) and XLM-Roberta (Conneau et al.,
2020), have demonstrated success across various
NLP tasks by enabling the transfer of semantic
properties across languages (Conneau et al., 2020).
To the best of our knowledge, this study is the
first to investigate cross-lingual transfer learning
between Hindi and Nepali, leveraging their linguis-
tic similarities—a relationship that has not been
explored in previous research.

3 Methodology

This section is structured into three primary sub-
sections, each providing a comprehensive under-
standing of the research approach. First, an
overview of the linguistic characteristics of Hindi
and Nepali is provided, emphasizing the similar-
ities and distinctions between the two languages.
Second, the datasets utilized in this study are dis-
cussed, detailing their sources, statistical attributes,
and the preprocessing techniques employed to en-
sure consistency across languages. Lastly, the ex-
perimental setup is described, focusing on fine-
tuning pre-trained multilingual BERT models for
the monolingual and cross-lingual NER task.

3.1 Hindi and Nepali Languages

Hindi and Nepali, both members of the Indo-Aryan
language family, share a common linguistic her-
itage and the Devanagari script, as illustrated in

Figures 2 and 3 (Kopparapu and Lajish, 2014;
Iancu, 2024; Eberhard et al., 2024). Hindi is pre-
dominantly spoken in northern India, while Nepali
serves as the official language of Nepal and is also
spoken in regions of Bhutan and India (Eberhard
et al., 2024). According to a statistical context
analysis, the genetic proximity between Hindi and
Nepali is 19.9, where a value of 0 represents the
closest relationship between languages and 100 the
most dissimilar (Beaufils and Tomin, 2020; Beau-
fils, 2015–2024). The linguistic proximity between
these languages, also illustrated by examples in Fig-
ure 1, underscores their suitability for cross-lingual
transfer learning.

3.2 Datasets

The datasets used in this study include the collapsed
version of the Hindi NER dataset from the HiNER
project (Murthy et al., 2022), and the stemmed
version-2 Nepali NER dataset curated by Singh et
al. (Singh et al., 2019). Both datasets are formatted
according to the CoNLL-2003 standard, categoriz-
ing entities into PERSON, LOCATION, and OR-
GANIZATION, with additional information on Be-
ginning (B), Inside (I), and Outside (O) of named
entities (Tjong Kim Sang and De Meulder, 2003).
Examples of NER-tagged data from both datasets
are provided in Figure 4.

Tables 2 and 3 provide detailed statistics for the
datasets used in the Nepali and Hindi NER tasks,
respectively. The Hindi dataset contains a total of
108,335 sentences, while the Nepali dataset con-
sists of 6,602 sentences. The Nepali dataset is
sentence-wise more than 16 times smaller than
its Hindi counterpart, reflecting the disparity in
resource availability between the two languages.
This imbalance is a critical factor in evaluating the
effectiveness of cross-lingual transfer learning. To
maintain consistency, the NER tags in the Nepali
dataset were aligned with those in the Hindi, as
outlined in Table 1.

3.3 Models

This study leverages multilingual BERT models
pre-trained in both Hindi and Nepali, making them
particularly suitable for cross-lingual transfer learn-
ing in NER tasks.

BERT Multilingual base model (cased) is a
transformer model trained on unlabeled Wikipedia
1 data in 104 languages, retaining letter casing,

1https://www.wikipedia.org/
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Figure 1: Examples of the same sentences in English, Hindi, and Nepali illustrating the linguistic parallels between
Hindi and Nepali, highlighting their shared script and related vocabulary.

Figure 2: Indo-Aryan language tree, illustrating the close linguistic ties between Hindi and Nepali as members of
the same family with shared heritage (Iancu, 2024).

which is crucial for languages where case influ-
ences meaning. It follows the original BERT ar-

chitecture, with 12 transformer layers, 768 hidden
units, and 12 attention heads, making it effective
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Figure 3: Devanagari script, the shared writing system
of Nepali and Hindi (Kopparapu and Lajish, 2014).

Figure 4: NER-tagged examples from the datasets.

for multilingual NLP tasks. (Devlin et al., 2019)
DistilBERT Multilingual (cased), a distilled

version of BERT Multilingual Cased, offers a more
efficient alternative by reducing the number of
transformer layers from 12 to 6 while maintain-
ing the same number of hidden units and attention
heads. Despite being 25% smaller than the Mul-
tilingual BERT model, it achieves 92% of its per-
formance on XNLI (Conneau et al., 2018) while
processing at double the speed. This makes it an
ideal choice for resource-constrained environments.
(Sanh et al., 2019)

RemBERT (Rebalanced multilingual BERT) is
a transformer model trained on large unlabeled
Wikipedia and Common Crawl 2 data in over 110
languages, including Hindi and Nepali. The model
comprises 32 layers with 1152 dimensions and 18
attention heads per layer. It is optimized for multi-
lingual tasks through decoupled input and output
embeddings, offering robust performance across
languages. (Chung et al., 2021)

MuRIL (Multilingual Representations for In-
dian Languages) is a transformer-based model
trained on the Common Crawl OSCAR corpus

2https://commoncrawl.org/

Original Tag Mapped Tag

B-LOC B-LOCATION
B-ORG B-ORGANIZATION
B-PER B-PERSON
I-LOC I-LOCATION
I-ORG I-ORGANIZATION
I-PER I-PERSON
O O

Table 1: Alignment of Nepali NER tags to Hindi.

3, Wikipedia, and PMIndia (Haddow and Kirefu,
2020) data in 17 Indian languages, including Hindi
and Nepali. It incorporates transliterated text dur-
ing training, essential for handling code-switching
prevalent in Indian contexts, making it particularly
suitable for this study. (Khanuja et al., 2021)

4 Experiments

This study first pre-trains and evaluates the models
on a single language dataset for the NER task. It is
followed by fine-tuning and evaluating them on the
second language dataset, as shown in Figure 5.

Initially, a multilingual base model from Hug-
ging Face (Wolf et al., 2020) is pre-trained on
the Hindi language training dataset for NER, and
the model’s performance is evaluated on the test
dataset in the same language using the F1 score
(Powers, 2011) as the evaluation metric, which is
the harmonic mean of precision and recall scores.
The pre-trained model is then fine-tuned on the
Nepali language training dataset, and its perfor-
mance is evaluated on the Nepali test dataset using
the F1 score. The same experiment is repeated
by pre-training and evaluating base models first
on the Nepali training and test dataset, then fine-
tuning and evaluating on the Hindi training and
test dataset, and finally evaluating on the Hindi test
dataset for cross-lingual NER.

These experiments are conducted for all four
mentioned BERT-based models. The hyperparame-
ters used in the experiments are detailed in Table 4.
The source code and implementation of the men-
tioned experiments are available on GitHub4.
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Entity Train Test Validation

B-LOCATION 3275 (70.41%) 916 (19.69%) 460 (9.89%)
B-ORGANIZATION 4103 (70.15%) 1177 (20.12%) 569 (9.73%)
B-PERSON 5252 (70.02%) 1518 (20.24%) 731 (9.75%)
I-LOCATION 371 (72.46%) 86 (16.8%) 55 (10.74%)
I-ORGANIZATION 3994 (70.45%) 1142 (20.14%) 533 (9.4%)
I-PERSON 4292 (69.56%) 1255 (20.34%) 623 (10.1%)
O 112541 (70.17%) 32100 (20.01%) 15747 (9.82%)

Table 2: Number of samples and percentage distribution of entities of the whole Nepali dataset.

Entity Train Test Validation

B-LOCATION 137633 (69.59%) 40072 (20.26%) 20062 (10.14%)
B-ORGANIZATION 18504 (69.83%) 5351 (20.19%) 2644 (9.98%)
B-PERSON 26242 (69.97%) 7495 (19.99%) 3765 (10.04%)
I-LOCATION 16243 (69.81%) 4731 (20.33%) 2292 (9.85%)
I-ORGANIZATION 13231 (69.69%) 3849 (20.27%) 1905 (10.03%)
I-PERSON 19144 (69.87%) 5488 (20.03%) 2768 (10.1%)
O 1313841 (70.0%) 375467 (20.0%) 187600 (10.0%)

Table 3: Number of samples and percentage distribution of entities of the whole Hindi dataset.

Figure 5: Diagram depicting the conducted experiments.

5 Results and Discussion

The results of the experiments are presented in
Table 5.

In monolingual tasks, RemBERT achieved the
highest F1 score for Hindi at 0.937, emphasizing
its strong capability in managing languages with
relatively rich resources. Its deep architecture, cou-
pled with rebalanced training data across 110 lan-
guages, enables it to capture subtle patterns within
Hindi, resulting in better performance. On the other
hand, MuRIL slightly outperformed other models
in the Nepali NER task, achieving an F1 score of

3https://oscar-project.org/
4https://github.com/

DataScienceLab-HGW/
Cross-Lingual-NER-Hindi-Nepali

0.979, thereby demonstrating its effectiveness in
contexts where resources are limited. The design
of MuRIL, which specifically focuses on Indian
languages and incorporates transliterated text to
address code-switching, renders it particularly suit-
able for Nepali. Both BERT Multilingual and Dis-
tilBERT Multilingual displayed competitive per-
formance, with DistilBERT Multilingual achieving
a marginally higher score in Hindi (0.928) com-
pared to Nepali (0.972) despite its smaller and
more efficient architecture. BERT Multilingual,
with F1 scores of 0.922 for Hindi and 0.974 for
Nepali, highlighted its versatility and balanced per-
formance across both languages.

In cross-lingual scenarios, BERT Multilingual
showed the most notable improvements, with F1
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Hyperparameter Value

Learning Rate Optimized using optuna (Akiba et al., 2019), range: 1e−5 to 5e−4

Batch Size 16 for training, 8 for evaluation
Number of Epochs 30 epochs, validation F1 score-based early stopping
Optimizer AdamW
Weight Decay 0.01
Warmup Ratio 0.1
Evaluation Strategy End of each epoch
Save Strategy End of each epoch
Metric for Best Model F1 score

Table 4: Hyperparameters and configurations used in the experiments.

Model Hindi Nepali Hin-Nep Nep-Hin

MuRIL 0.923 0.979 0.973 0.923
BERT Multilingual 0.922 0.974 0.977 0.929
DistilBERT Multilingual 0.928 0.972 0.969 0.921
RemBERT 0.937 0.973 0.968 0.934

Table 5: F1 Scores of the four Multilingual BERT models on Hindi and Nepali datasets, including monolingual and
cross-lingual NER.

scores improving to 0.977 for Hindi-to-Nepali and
0.929 for Nepali-to-Hindi transfers, indicating that
its architecture is well-suited for generalizing lin-
guistic features across languages. While MuRIL
excelled in the monolingual Nepali task, it did not
show improvement in cross-lingual performance,
with F1 scores of 0.973 for Hindi-to-Nepali and
0.923 for Nepali-to-Hindi, suggesting that its de-
sign may be more tailored to specific languages
rather than cross-lingual tasks. DistilBERT Mul-
tilingual experienced a slight decrease in cross-
lingual performance, with F1 scores of 0.969 for
Hindi-to-Nepali and 0.921 for Nepali-to-Hindi, in-
dicating that its reduced size and complexity might
limit its capability in transferring knowledge across
languages. Despite its strong monolingual perfor-
mance in Hindi, RemBERT’s cross-lingual perfor-
mance was marginally lower, with F1 scores of
0.968 for Hindi-to-Nepali and 0.934 for Nepali-to-
Hindi, which suggests that while RemBERT excels
in monolingual contexts, it may be more optimized
for achieving balanced performance across mul-
tiple languages rather than excelling in specific
cross-lingual tasks.

6 Conclusion

This study investigated the effectiveness of cross-
lingual transfer learning for Named Entity Recog-

nition between Hindi and Nepali by employing
several multilingual BERT models, including Rem-
BERT, BERT Multilingual, MuRIL, and Distil-
BERT Multilingual. The results indicated that
while RemBERT and MuRIL excelled in mono-
lingual tasks—RemBERT in Hindi and MuRIL in
Nepali—BERT Multilingual emerged as the most
effective in cross-lingual scenarios, successfully
transferring knowledge between the two languages.
DistilBERT Multilingual, though slightly less effec-
tive in cross-lingual transfer, offered a commend-
able balance between performance and computa-
tional efficiency. These findings emphasize the
critical role of model selection based on the task’s
specific linguistic and resource conditions, suggest-
ing that general-purpose models like BERT Multi-
lingual are particularly well-suited for cross-lingual
applications.

Limitations

This study has several limitations that should be
acknowledged. The reliance on existing datasets,
where Nepali is much smaller than Hindi, may af-
fect the generalizability of the results. The focus
has been on specific pre-trained multilingual BERT
models; hence, other potentially more effective
architectures and cross-lingual transfer methods,
such as self-training or domain adaptation, could
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be explored. Additionally, focusing on the Hindi-
Nepali language pair means the findings may not
apply to other languages, especially those with less
linguistic similarity. Resource constraints also lim-
ited the extent of hyperparameter optimization and
experimentation, which could influence the results.
Finally, while the F1 score was the primary evalua-
tion metric, other metrics paired with a qualitative
analysis of predictions could provide additional in-
sights into model performance, suggesting avenues
for future research.

Ethics Statement

This research adheres to the ACL Ethics Policy,
focusing on enhancing Named Entity Recognition
(NER) for low-resource languages like Hindi and
Nepali through cross-lingual transfer learning. No
personal data was collected, as the data used in
the research was from open-source. We encourage
ongoing ethical evaluation, particularly when de-
ploying NLP technologies in low-resource settings.
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Abstract
Automatic speech recognition (ASR) for low-
resource languages remains a challenge due to
the scarcity of labeled training data. Parameter-
efficient fine-tuning and text-only adaptation
are two popular methods that have been used
to address such low-resource settings. In this
work, we investigate how these techniques
can be effectively combined using a multi-
lingual multimodal model like SeamlessM4T.
Multimodal models are able to leverage un-
labeled text via text-only adaptation with fur-
ther parameter-efficient ASR fine-tuning, thus
boosting ASR performance. We also show
cross-lingual transfer from a high-resource lan-
guage, achieving up to a relative 17% WER
reduction over a baseline in a zero-shot setting
without any labeled speech.

1 Introduction
Across the languages of the world, the automa-
tion of various speech and text tasks has led to
the creation of massive multilingual datasets such
as Multilingual LibriSpeech (Pratap et al., 2020),
that contain speech, text, and other metadata for a
number of different languages. This large-scale col-
lection has catalyzed the emergence of large multi-
lingual automatic speech recognition (ASR) mod-
els (Yadav and Sitaram, 2022), which utilize the
structural similarities between different languages
to learn language-invariant features and boost accu-
racy. Subsequently, multimodal multilingual mod-
els, such as M3P (Ni et al., 2021), that bridge the
gap between speech and text using joint representa-
tion spaces, have also emerged. These models are
trained using large amounts of multilingual speech
and text data.

However, less-spoken languages, especially
those from developing countries, do not have
such large data corpora available (Magueresse
et al., 2020), thus hurting model performance for
extremely low-resource languages (Chang et al.,

*These authors contributed equally to this work.

2023). Thus, creating targeted models for severely
low-resource languages has become crucial. One
efficient way to do this is by adapting existing mod-
els to the target language using limited amounts
of labeled data. Such adaptation has to be done
carefully so as to not overfit to the target language
characteristics.

Parameter-efficient fine-tuning (PEFT) (Han
et al., 2024) techniques have gained wide accep-
tance where only relevant parts of a model are
identified and fine-tuned for a specific downstream
task. Text-only adaptation is another sub-area that
is gaining popularity for low-resource ASR (Bataev
et al., 2023; Vuong et al., 2023). Multimodal mod-
els have training pathways for both speech and
text data, offering a good framework to combine
both approaches. Multilingual models, on the other
hand, allow for cross-lingual transfer (Khare et al.,
2021), i.e., using a higher resource language to im-
prove performance on a lower resource language.

In this work, we have leveraged the multimodal
nature of Meta’s SeamlessM4T (Communication
et al., 2023) to explore the benefits of speech-based
adapter fine-tuning and text-only adaptation. These
techniques have been used both in isolation and in
combination to identify the best strategy to improve
low-resource ASR for a number of Indic languages.
We have also exploited the multilingual nature of
the model to use higher-resource languages to im-
prove low-resource ASR. Thus, our main contri-
butions include: (a) identifying how to combine
speech-based parameter-efficient fine-tuning and
text-only adaptation to boost low-resource ASR,
(b) identifying a cross-lingual transfer technique
that can give more than 17% relative reduction in
WER for a low-resource language without using
any speech of that language, (c) the use of small
amounts of available data to boost the performance
of SeamlessM4T (Communication et al., 2023) on
six Indic languages, Bengali, Gujarati, Kannada,
Maithili, Malayalam and Odia.
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Figure 1: Parameter-efficient Adaptations for SeamlessM4T: A multimodal ASR model such as SeamlessM4T
can be fine-tuned in a parameter-efficient manner through either speech-based adaptations or text-only adaptation.

2 Related Work

One of the key challenges in current ASR research
is enabling systems to handle multilingual inputs
(Yadav and Sitaram, 2022; Kannan et al., 2019)
while minimizing resource requirements in terms
of training, inference, and storage costs. Currently,
the most popular paradigm using multilingual mod-
els are to initially pre-train the models in a self-
supervised manner on a large multilingual dataset
(Babu et al., 2021) before being fine-tuned on a
set of target languages (Toshniwal et al., 2018; Bai
et al., 2022). A general way of performing such
model fine-tuning is by updating all the weights
or some specific model components while training.
These kinds of methods are parameter inefficient
and often cause catastrophic forgetting (Kessler
et al., 2021), for all non-target languages. Also,
training and storage costs for such methods in-
crease linearly with both the model size and the
number of languages.

To mitigate these limitations, recent literature
on NLP has introduced several parameter-efficient
fine-tuning methods (Xu et al., 2023; Tomanek
et al., 2021; Hu et al., 2021), often involving train-
able modules called adapters (Houlsby et al., 2019),
whose weights are updated while freezing the orig-
inal backbone. Significant efforts are being made
to develop better adapter architectures and efficient
training methods (Yu et al., 2023) to utilize con-
trastive learning (Zhang and Ré, 2024) and meta-
learning (Hou et al., 2021). These modules can
also be used to adapt multilingual ASR models
for a low-resource setting, with Simadapter (Hou
et al., 2022) being one of the first models to utilize
adapters to leverage cross-lingual features.

In the context of speech recognition, a low-
resource setting could refer to any scenario with
insufficient training data. This includes challenges
such as recognizing atypical speech (Tomanek
et al., 2021) or processing less commonly spoken
languages. A recent work (Mainzinger and Levow,
2024) demonstrated the benefits of using adapters
for very low-resource languages with less than five
hours of training data. For the low-resource situ-
ation, task- or language-specific adapter modules
showcase superior performance (Hu et al., 2024)
compared to fine-tuning the model components, but
even such approaches are constrained by inherent
limitations of the base model.

Over the past few years, considerable effort has
gone into developing multilingual ASR founda-
tional models with more generalizable features.
These models offer a stronger starting point for
low-resource adaptations and enable the use of
cross-lingual transfer learning. The exponential
growth in computing power has led to the creation
of increasingly large language models, which are
now used for a wide range of tasks, including as
backbones for multimodal ASR models (Ruben-
stein et al., 2023; Zhang et al., 2023; Chang et al.,
2023). For such models, the foundational backbone
is expanded using audio tokens generated using
techniques like wav2vec (Schneider et al., 2019)
and Hubert (Hsu et al., 2021) in order to learn a
joint representation in a multimodal space; the to-
ken vocabulary is expanded to encompass both text
and audio. Note that models with joint multimodal
representations are not only useful for ASR but
can also be integrated with a vocoder for TTS or
conversational chatbots (Zhang et al., 2023).

Multimodal models can be trained with joint text-
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audio tasks through self-supervision with masked
language modeling and denoising objectives; fur-
ther fine-tuning is often done with ASR and speech-
to-text or speech-to-speech translation tasks. One
of the most recent examples of such a multilingual
multimodal model has been SeamlessM4T (Com-
munication et al., 2023) by Meta AI, which is built
upon the NLLB (Team et al., 2022a) backbone and
can process speech and text inputs from nearly 100
languages. An implicit advantage of using such
multimodal models for low-resource ASR is the
ability to benefit from text-only learning for shared
parameters. In most cases, there is significantly
more text data available than speech data. Thus,
the capability to leverage text-only adaptation for
ASR models can be highly advantageous in these
scenarios.

While there is a lot of prior work in the domain
of text-only adaptation for ASR (Vuong et al., 2023;
Bataev et al., 2023; Chen et al., 2023; Mittal et al.,
2023), and there has been some work on a com-
parative analysis of various fine-tuning strategies
for low-resource ASR (Liu et al., 2024), to the best
of our knowledge, our work is the first to explore
them for multilingual multimodal models.

3 Methodology

In this work, we leverage a combination of
parameter-efficient adaptation, unlabeled textual
data, and minimal amounts of transcribed speech
to improve ASR performance in low-resource lan-
guages using multilingual multimodal models. Fig-
ure 1 demonstrates the overall workflow of our
proposed pipeline.

3.1 Multimodal base model: SeamlessM4T

We use SeamlessM4T (Communication et al.,
2023) as our base model for all our experiments.
SeamlessM4T, i.e., Massively Multilingual & Mul-
timodal Machine Translation, is a versatile end-to-
end model that provides support for multiple tasks,
including speech-to-speech translation, speech-to-
text translation, text-to-speech translation, text-to-
text translation, and automatic speech recognition
for up to 100 languages. The model has been
trained using over a million hours of unlabeled
speech in a self-supervised manner, along with
more than 400K hours of human and machine-
labeled audio. It supports 96 different languages
for input speech and text, as well as output text,
and can generate speech in 35 languages.

The SeamlessM4T model architecture is inspired
by UnitY (Inaguma et al., 2023), a two-pass mod-
eling framework that, unlike cascaded models, can
be jointly optimized. The text encoder and de-
coder models of SeamlessM4T are initialized by
the NLLB model (Team et al., 2022b), a text-to-
text translation model. To process speech inputs,
the model employs the Wav2Vec-BERT 2.0 speech
encoder, which is an enhancement over the origi-
nal model proposed by Chung et al. (2021) with
additional codebooks. The model also includes a
modality adapter (Zhao et al., 2022), referred to as
the length adapter, to align the speech modality
with text, projecting it to a unified representation
space. Lastly, the model uses a text-to-unit (T2U)
component for speech generation that produces
discrete speech units from the text output. These
units are then transformed into audio waveforms us-
ing a multilingual HiFi-GAN unit vocoder (Kong
et al., 2020). There are multiple variants of the
SeamlessM4T model; we have used SeamlessM4T-
medium with a total of 1.2 Billion parameters.

Although the entire model comprises multiple
components, our analysis focuses primarily on ap-
plying SeamlessM4T for multilingual ASR. The
ASR pipeline of SeamlessM4T consists of the
speech encoder (311M parameters), the length
adapter (46M parameters), and the text decoder
(201M parameters). Next, we will elaborate on
parameter-efficient fine-tuning of SeamlessM4T
(Section 3.2) and how we can use text-only adapta-
tion within such a multimodal model (Section 3.3).

3.2 Parameter-efficient Fine-tuning

The ASR components of SeamlessM4T amount
to more than 500M parameters. Full fine-tuning
of these components using limited amounts of
labeled data for low-resource languages may re-
sult in overfitting and degradation of ASR perfor-
mance. To alleviate these challenges, parameter-
efficient fine-tuning paradigms like the adapter
framework (Houlsby et al., 2019) are very popular,
especially for natural language processing tasks.
Adapters have also found success in low-resource
ASR tasks such as accent adaptation (Tomanek
et al., 2021) and cross-lingual adaptation (Hou
et al., 2022). Next, we will elaborate on the struc-
ture of an existing length adapter within Seam-
lessM4T and the new adapters we introduce in the
encoder and decoder layers.
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Figure 2: SeamlessM4T Length Adapter: Projects
speech embedding X to a lower-dimensional represen-
tation X̃ in the multimodal space.

3.2.1 The Length Adapter

The length adapter in SeamlessM4T aims to bridge
the gap between speech and text representations. It
is inspired by the M-adapter architecture (Zhang
et al., 2023) and uses a Transformer-based module
to adapt speech representations to text. By com-
pressing the speech sequence, the length adapter
generates features tailored for multilingual speech-
to-text tasks by modeling both global and local
dependencies within the speech.

The main part of the original M-adapter archi-
tecture, illustrated in Figure 2, is the Multi-head
Pooled Self-Attention (MPSA) mechanism. In the
original MPSA, convolutional layers pool the in-
put X and are further projected to the inputs of
the multi-head attention module using linear trans-
formation matrices. An additional pooling is ap-
plied in parallel to X and then added to the output
of the attention module before being processed
through a feedforward network. These processes
together generate a lower dimensional representa-
tion of X , denoted by X̃ as the current layer output,
addressing any length mismatches between embed-
dings from different modalities. Unlike the original
M-adapter architecture with independent pooling
modules for the multi-head attention inputs, the
length adapter utilizes a shared pooling module,
generating a single X̂ for each X to improve effi-
ciency. More formally, given an input sequence
X ∈ RL×D, where L is the sequence length and
D is the embedding dimension, the MPSA mecha-
nism starts by applying shared pooling to the input
X to obtain X̂ ∈ RL′×D. This pooling operation is
performed using a 1D convolutional layer with ker-
nel size k, stride s, and padding p. Subsequently, X̂

is linearly projected into the query, key, and value
matrices, denoted as Q, K, and V , respectively.

X̂ = SharedPooling (X)

Q = X̂WQ, where Q ∈ RL′×D,

K = X̂WK , where K ∈ RL′×D,

V = X̂W V , where V ∈ RL′×D.

where the new sequence length L′ is given by:

L′ =
⌊
L+ 2p− k

s

⌋
+ 1.

We hypothesize that the length adapter module
could potentially learn prosodic characteristics of
languages, such as phoneme durations, by map-
ping speech embeddings — which include both
segmental and suprasegmental information — to
text embeddings that contain only content infor-
mation. Learning certain prosodic characteristics
like durations can be particularly beneficial for ex-
tremely low-resource languages that lack sufficient
data for learning fine-grained contextual and syn-
tactical information.

3.2.2 Encoder and Decoder Adapters

In addition to the pre-existing length adapter (Fig-
ure 2) in the SeamlessM4T architecture, we in-
serted additional trainable adapter layers within the
encoder and decoder modules to adapt this mul-
tilingual model for low-resource languages. The
adapter modules, following the architecture pro-
posed in (Houlsby et al., 2019), initially project
the original D1-dimensional features into an inter-
mediate space of dimension D2. A non-linearity,
specifically GeLU (Hendrycks and Gimpel, 2023)
in our implementation, is then applied, after which
the features are projected back to the original D1

dimensions. To adjust the number of parameters
for these adapters, we can change the intermediate
dimension D2. By decreasing the value of D2, the
number of trainable parameters in the adapters is
reduced accordingly.

In our current experimental setup, we have in-
serted adapters after every Conformer layer in the
encoders and after every Transformer layer in the
text decoder. By setting the intermediate dimen-
sion D2 to one-fourth of D1 for all adapters, we
introduce 6 million new trainable parameters each
in the encoder and decoder modules.
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Formally, the operations inside the ith speech
encoder layer can be summarized as:

H = MultiHeadAttn(hi−1,hi−1,hi−1)

C = Convolution(H)

ĥi = FFN(C)

hi = Adapter(ĥi)

Similarly, the operations inside the ith decoder layer
can be summarized as:

D = MultiHeadAttn(di−1,di−1,di−1)

D̂ = MultiHeadAttn(di−1,hℓ,hℓ)

d̂i = FFN(D̂)

di = Adapter(d̂i)

where ℓ is the last encoder layer, and MultiHea-
dAttn(Q, K, V) is the standard multi-head attention
implementation (Vaswani, 2017) with Q, K, and V
denoting queries, keys, and values, respectively.

During our experiments, we fine-tuned the en-
coder adapters and length adapters on labeled ASR
data, while the decoder was fine-tuned using ASR
and machine translation (MT) data, thereby lever-
aging the text-to-text pipeline of SeamlessM4T.

3.3 Text-only Adaptation

The text decoder in the SeamlessM4T model is
shared between the ASR pipeline and the text-to-
text translation pipeline, allowing it to be trained
for both tasks. This shared component in mul-
timodal models possesses the ability to transfer
knowledge from one task to another, thereby simul-
taneously enhancing the performance of multiple
tasks. We hypothesize that we can improve the
ASR performance for a target language by fine-
tuning the text decoder adapters via text-to-text
translation into that language. This allows us to per-
form a purely text-only fine-tuning of ASR models
and is especially beneficial for languages where
speech data is scarce. With the latest advancements
in NLP, the quality of machine-translation models
has greatly improved, allowing these models to be
utilized to augment the existing parallel text using
machine-translated text for these languages.

In our text-only fine-tuning experiments, we fine-
tuned the decoder adapters on an English-to-target
language translation task to help them learn the
relevant syntactical features for the target language.

4 Experimental Setup

4.1 Dataset

The IndicVoices dataset (Javed et al., 2024) was
utilized for all our experiments. This dataset is a
multilingual, multi-speaker collection of natural
and spontaneous speech in 22 Indian languages. It
comprises 9% read speech, 74% extempore speech,
and 17% conversational speech. Among these lan-
guages, Maithili is classified as a zero-shot lan-
guage for SeamlessM4T, while Bengali is the sole
high-resource Indic language. The remaining lan-
guages are categorized as low-resource languages
for the model (Communication et al., 2023). One
of the main reasons for using this dataset is that
it is among the most comprehensive open-source,
multilingual speech datasets for Indic languages
covering many low-resource languages and one of
the few published after the release of SeamlessM4T,
ensuring there is no data leakage between the eval-
uation sets and the SeamlessM4T training data.

4.1.1 Transcribed Speech Data
The speech data and the corresponding transcripts
from the IndicVoices dataset were used for the ASR
fine-tuning experiments. The dataset, primarily
consisting of extempore speech recorded under nat-
ural conditions, is characterized by a significant
amount of noise and includes occasional disfluen-
cies. For each language, 5 hours of speech were
selected for the training set, sourced from an av-
erage of 336 speakers, to simulate an extremely
low-resource setting. On average, each of the test
and validation sets had 1 hour of speech by 68 and
206 speakers respectively. The out-of-vocabulary
(OOV) rate of the test set was calculated to de-
termine the amount of test-train domain overlap
in the data. The OOV rates for Gujarati, Bengali,
Kannada, Maithili, Malayalam, and Odia test sets
were 39%, 35%, 58%, 41%, 53%, and 37%, re-
spectively, averaging to an OOV of 43.87% on the
test sets, further demonstrating the challenging na-
ture of the task.

4.1.2 Text-only Data
The IndicTrans2 (Gala et al., 2023) model was
used to translate all the transcriptions present in
the IndicVoices dataset to obtain parallel English-X
text. Another set of parallel text data was created by
using only the transcriptions of the 5-hour speech
data in the training set for every language. For Ben-
gali, Gujarati, Kannada, Maithili, Malayalam, and
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COMPONENTS LEARNABLE MAITIHLI MALAYALAM KANNADA GUJARATI ODIA BENGALI

FINE-TUNED PARAMETERS WER CER WER CER WER CER WER CER WER CER WER CER
NONE - 82.20 43.39 56.15 20.65 69.29 29.11 41.03 24.50 42.81 17.38 37.70 18.44
LENGTH ADAPTER 46M 54.97 26.10 52.82 18.14 55.48 20.38 33.91 16.40 35.48 13.75 35.90 17.08
TEXT DECODER 201M 54.56 26.21 54.04 19.28 54.3 20.57 33.62 17.12 35.14 13.48 36.14 17.95
SPEECH ENCODER 311M 43.87 17.79 46.99 13.45 47.91 14.93 27.79 11.58 29.82 9.24 29.07 12.09

Table 1: Fine-tuning a Multimodal Model: Comparison of WER (%) and CER (%) after ASR fine-tuning of
SeamlessM4T with 5 hours of labeled speech, without adaptations; the first row presents the pre-fine-tuning results.

TEXT-ONLY LEARNABLE MAITHILI MALAYALAM KANNADA GUJARATI ODIA BENGALI

ADAPTATION PARAMETERS WER CER WER CER WER CER WER CER WER CER WER CER
NONE - 82.20 43.39 56.15 20.65 69.29 29.11 41.03 24.50 42.81 17.38 37.70 18.44
5HR TRANSCRIPT 6M 71.32 37.92 53.96 18.94 70.52 32.54 35.67 19.19 38.77 14.84 35.28 16.77
FULL TRANSCRIPT 6M 68.24 36.84 55.30 20.43 68.13 26.91 35.45 18.66 38.39 16.22 35.44 17.73

Table 2: Text-only Adaptation: Comparison of WER (%) and CER (%) after text-only adaptation on SeamlessM4T
with Eng-X parallel text using the full dataset and a 5-hour subset; the first row presents the pre-adaptation results.

Odia, the number of tokens in the 5-hour text sets
were 40k, 43k, 30k, 42k, 34k, and 34k, respectively,
while those in the large text set were 785k, 118k,
297k, 834k, 398k and 503k respectively. Thus, on
average, each of the larger text data sets contained
489000 tokens for every language, while each of
the smaller sets contained only 37261 tokens.

4.2 Implementation Details

The SeamlessM4T model comprises a speech en-
coder with 12 Conformer blocks and a text de-
coder with 12 Transformer blocks, with a model
dimension D1 = 1024. Two D2 configurations
were tested: D2 = 256 (about 500K parameters
per adapter layer, totaling 6M parameters) and
D2 = 2048 (matching adapter parameters with
the length adapter, totaling 50M parameters). Text-
only adaptation needed roughly 200 epochs of fine-
tuning, while ASR fine-tuning required up to 40
epochs. All experiments were performed with a
learning rate of 5× 10−6 and a batch size of 16.

5 Experiments and Results

5.1 System A: Pure ASR Fine-tuning

We use the name System A to refer to the stan-
dard speech-to-text fine-tuning of SeamlessM4T
using labeled speech and the ASR objective. The
results of this experimental setup are summarized
in Table 1. From the results, it is evident that fine-
tuning the length adapter requires fewer parameters
while providing similar benefits to text decoder fine-
tuning across both metrics. Additionally, the ASR
fine-tuning of the speech encoder proves to be sig-
nificantly beneficial, although it involves training a
substantially larger number of parameters.

In order to reduce the computational and storage

requirements, the fine-tuning was substituted with
language-specific adaptations, wherein adapters
were introduced in the encoder and decoder, and
these were fine-tuned in various combinations us-
ing transcribed speech data while freezing the base
model. Table 3 depicts the results for the adapta-
tions on System A. The results demonstrate that
larger encoder adapters with 50M parameters are
the most beneficial in enhancing the ASR perfor-
mance, achieving WER and CER close to full fine-
tuning of the model and the adapters while reduc-
ing trainable parameters by 90%. Additionally,
Table 3 indicates that for the same number of train-
able parameters, speech-based training of encoder
adapters performs much better than that of decoder
adapters. The performance of the length adapter
fine-tuning surpasses that of the decoder adapters
but falls short compared to the encoder adapters.

5.2 System T-A: Using Text-only Adaptation

The parallel English-target language text data gen-
erated by translating the transcripts of IndicVoices
data was used to fine-tune the decoder adapters on
an English-to-target language MT objective. Table
2 shows the ASR word error rates (WERs) with the
complete transcription data and a smaller 5-hour
text data subset (described in Section 4.1) to check
the comparative benefits of text-only adaptation,
without any ASR fine-tuning. For most languages,
using the larger text corpus led to better perfor-
mance. However, the smaller parallel dataset, with
significantly fewer tokens, demonstrated compa-
rable performance to that of the complete corpus.
This suggests that text-only adaptation can be ef-
fective for multilingual multimodal models, even
with very limited amounts of data.
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LANGUAGE

COMPONENT NONE LENGTH ENCODER DECODER LEN+ENC ENCODER ALL
FINE-TUNED ADAPTER ADAPTER ADAPTER ADAPTER ADAPTER (L) COMPONENTS

LEARNABLE - 46 M 6 M 6 M 52 M 50 M 571 M
PARAMETERS

SYSTEM A T-A A T-A A T-A A T-A A T-A A T-A A T-A

MAITHILI

WER 82.20 68.24 54.97 54.74 52.95 48.14 63.52 58.39 47.92 45.98 46.08 44.60 42.58 46.54

CER 43.39 36.84 26.10 27.10 22.86 21.58 31.60 29.70 20.56 20.47 19.20 19.52 17.14 20.78

MALAYALAM

WER 56.15 55.3 52.82 52.51 49.71 50.14 56.03 53.71 48.22 48.19 47.81 47.75 47.38 45.9

CER 20.65 20.43 18.14 18.87 15.34 16.35 20.21 20.00 14.76 15.46 14.12 14.92 13.86 13.38

KANNADA

WER 69.29 68.13 55.48 53.83 52.54 53.29 62.88 58.71 49.36 48.24 49.14 47.75 45.48 43.5

CER 29.11 26.91 20.38 20.94 16.95 18.84 23.76 23.44 15.63 16.51 15.26 14.92 14.06 14.18

GUJARATI

WER 41.03 35.45 33.91 34.41 29.20 27.72 38.88 35.53 28.03 27.73 28.09 27.90 25.56 26.31

CER 24.50 18.66 16.40 17.41 11.96 12.05 19.28 17.80 12.63 12.35 12.00 12.50 11.28 11.67

ODIA

WER 42.81 38.39 35.48 34.99 32.03 32.97 38.55 36.24 30.09 31.18 30.04 28.92 30.54 30.17

CER 17.38 16.22 13.75 14.62 10.57 11.25 14.50 14.57 10.11 11.32 10.01 9.92 10.37 10.30

BENGALI

WER 37.70 35.44 35.90 35.09 29.65 28.77 38.10 35.60 29.96 28.50 29.30 31.92 28.12 27.62

CER 18.44 17.73 17.08 17.22 12.76 12.58 18.59 17.72 13.06 12.38 12.52 14.63 12.12 11.91

Table 3: Parameter-efficient Adaptation Results: Comparison of WER (%) and CER (%) between different
parameter-efficient adaptation methods for SeamlessM4T. System A refers to pure ASR fine-tuning, while system
T-A refers to text-only adaptation followed by ASR fine-tuning. The best results for System A are underlined while
the best results for System T-A are in bold for every language. The overall best results have been highlighted .

Moreover, text-only adaptation can be combined
with ASR fine-tuning using labeled speech. We re-
fer to the resulting ASR system with text-only adap-
tation, followed by ASR fine-tuning, as System T-A.
Table 3 shows our overall results comparing System
A and System T-A. We observe that text-only adap-
tation followed by ASR fine-tuning is more bene-
ficial than pure ASR fine-tuning, as in System A.
The trends of System T-A matched those of System
A, with the larger encoder adaptation showing the
best performance across all languages except Ben-
gali, the only high-resource language in our study.
This suggests that for low-resource languages with
limited text and speech data, the most effective
strategy is to first use text-only decoder adaptation,
followed by speech-based encoder adaptation. It
must also be noted that the results of using this
strategy are comparable to those after full ASR
fine-tuning of the entire model, with a > 90% re-
duction in the number of trainable parameters, from
571M to 50M.

5.3 Cross-lingual Transfer
We hypothesize that the length adapter could cap-
ture content-agnostic prosodic characteristics of a
language without overfitting on its syntax. Conse-
quently, fine-tuning this adapter using data from a
closely related high-resource language might en-

hance the model’s predictions for a low-resource
target language. The target languages chosen for
this experiment were Maithili and Odia, catego-
rized as zero-shot and low-resource languages for
SeamlessM4T, respectively. Bengali, a language
belonging to the same Eastern Indo-Aryan lan-
guage family (Eberhard et al., 2020) as Maithili and
Odia, was selected as the high-resource pivot. To
further justify our choice of the pivot, we examined
the genetic distance between the pivot and target
languages using lang2vec (Malaviya et al., 2017).
Genetic distance (Bjerva et al., 2019) refers to the
measure of divergence between languages based on
their evolutionary relationship. The results showed
that Bengali was quantifiably close to both target
languages. The labeled Bengali speech was used to
fine-tune the length adapter and encoder adapters
individually and in combination. Separately, Kan-
nada speech was used for length adapter fine-tuning
to check if any benefits are obtained with an un-
related language. We also combined this with the
text-only adaptation of target language text data to
check if both approaches complement each other.
Table 4 summarizes the performance of the cross-
lingual systems with both the target low-resource
languages. Length adapter fine-tuning outperforms
encoder adaptation for cross-lingual transfer.
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LANGUAGE 1 LANGUAGE 2 GENETIC TEXT- ONLY ASR FINE-TUNED NUMBER OF
WER CER

(TARGET) (ASR FINE-TUNING) DISTANCE ADAPTATION COMPONENT PARAMETERS

MAITHILI

NONE - NO NONE - 82.2 43.39

BENGALI 0.625

NO LENGTH ADAPTER 46M 79.77 40.04
NO ENCODER ADAPTER 50M 81.81 41.61
NO LEN. + ENC. ADAPTER 52M 80.81 40.44
YES LENGTH ADAPTER 6M+46M 72.52 39.31

KANNADA 1.000
NO LENGTH ADAPTER 46M 80.29 38.37
NO ENCODER ADAPTER 50M 85.25 41.58

ODIA

NONE - NO NONE - 42.81 17.38

BENGALI 0.375

NO LENGTH ADAPTER 46M 41.05 15.07
NO ENCODER ADAPTER 50M 43.67 16.03
NO LEN. + ENC. ADAPTER 52M 42.4 15.27
YES LENGTH ADAPTER 6M+46M 35.45 13.92

KANNADA 1.000
NO LENGTH ADAPTER 46M 41.21 14.08
NO ENCODER ADAPTER 50M 44.01 14.59

Table 4: Results for cross-lingual transfer via ASR adaptation: Comparison of WER(%) and CER(%) on
low-resource languages with cross-lingual transfer through ASR adaptation of SeamlessM4T. The genetic distances
between the (language 1, language 2) pairs suggest that Bengali is related to both the target languages; Kannada,
despite being an Indic language, is genetically unrelated to both Maithili and Odia.

Additionally, we obtained an overall 17% re-
duction in relative WER for Odia, compared to
the base model, by inserting decoder adapters fine-
tuned on target language text data into the model
whose length adapter was fine-tuned on Bengali
ASR data. Thus, for low-resource languages with-
out any speech data, ASR performance may be
boosted by length adapter fine-tuning with a closely
related pivot language coupled with text adaptation.

6 Discussion

We observe that for decoder adapters, it is more
beneficial to use text-only adaptation compared to
ASR-based training; the latter’s benefit is mainly
derived via the encoder layers. This emphasizes the
role played by text data in improving the decoder’s
ability to enhance the internal language model of
the ASR system. We also observed that 5-hour
text data adaptation, having on average 92% fewer
tokens than the full text, performed comparably to
full-text data adaptation. This indicates that even
limited amounts of text data can significantly boost
ASR.

For a given target language with labeled speech,
we found that fine-tuning the encoder adapters was
the most accurate and parameter-efficient strategy.
However, for cross-lingual zero-shot settings with
no labeled data in a target language, we found it
beneficial to fine-tune the length adapter with data
in a related language rather than fine-tuning en-
coder adapters; the latter led to overfitting to the
related language rather than enabling transfer to
the target language. Text-based adaptation led to

further improvements in the cross-lingual setting,
indicating that even without speech data, ASR for
low-resource languages can be improved by fine-
tuning the length adapter. Lastly, a curious observa-
tion was that higher cross-lingual transfer was seen
for genetically closer language pairs, with Odia-
Bengali outperforming Maithili-Bengali in terms
of relative WER reduction.

7 Conclusion

In this work, we explored the combination of
parameter-efficient ASR fine-tuning and text-only
adaptation techniques to enhance ASR for low-
resource Indic languages using a multi-lingual
multi-modal base model (SeamlessM4T). We find
that a limited amount of text data was sufficient for
adaptation, text-based adaptation was superior to
ASR fine-tuning of decoder adapters, and encoder
adapters were most effective in limited speech set-
tings. In cross-lingual settings, however, the length
adapter (and not the encoder adapter) was most
successful, and text adaptation was additionally
beneficial. Future work will focus on developing a
better understanding of the interplay between dif-
ferent adapters within multimodal models.
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Abstract

Previous work has explored the structure of dic-
tionaries as directed graphs, with arcs between
words when one word is used in the definition
of another. We analyze the efficacy of these
methodologies for analyzing semantic ground-
ing and explore the cross-linguistic patterns of
the strongly connected components of multi-
ple monolingual dictionaries. We find that the
number of sources in the condensation graph
of a directed dictionary graph is roughly stable
across multiple languages, and present future
research directions.

1 Introduction

Explanatory dictionaries are an important tool for
lexical semantics. However, to connect lexical
meaning to real-world senses, not all meanings
can be defined in terms of words; some words
must be defined outside of the language in terms of
sensorimotor experience. This observation is the
symbol grounding problem (Harnad, 1990). Some
theories, especially in cognitive semantics, solve
this problem by considering specific words or con-
cepts as fundamental within a language and cross-
linguistically (e.g., Semantic Primes (Wierzbicka,
1996)). One empirical approach towards this prob-
lem is to analyze dictionary structures, modeling
them as directed graphs (e.g., Kostiuk et al. (2023)).

There are two major approaches for analyz-
ing dictionary graphs. The first approach consid-
ers Feedback Vertex Sets (FVS’s) (Kostiuk et al.,
2023). For a directed graph D, a Feedback Ver-
tex Set is a set of vertices F ⊆ V (D) such that
D \ F is acyclic. The Minimum Feedback Ver-
tex Set Problem consists of finding an FVS that is
minimum with respect to cardinality. For semantic
grounding, these sets have a convenient theoretical
interpretation: if words from an FVS are removed,
the dictionary becomes "grounded", i.e. there are
no self-referential definitions.

The second approach considers the dictionary
structure through strongly connected components,
or SCCs (Vincent-Lamarre et al., 2016). For a di-
rected graph D, a SCC is a maximal vertex set
S ⊆ V (D) such that there exists a directed path
in D between every pair of vertices in S. The con-
densation of a graph is the graph obtained by con-
tracting each SCC into a single vertex. SCCs parti-
tion a directed graph into equivalence classes, and
the corresponding condensation graph is acyclic.
Thus, the condensation graph captures the struc-
ture between groups of "equivalent" words, and
the sources (i.e., vertices with no incoming arcs)
represent ungrounded groups. Vincent-Lamarre
et al. presented a taxonomy of the dictionary la-
tent structure in this manner, with the sources in
the condensation graph called the "core" 1, and all
other non-trivial SCCs referred to as "satellites".
They also analyzed the psycholinguistic correlates
of the words at various levels of the latent structure,
finding words in the core to be more frequent, less
concrete, and learned earlier than those in the satel-
lites. Thus, the core occupies a fundamental role in
the dictionary’s structure.

While FVS’s can be more directly interpreted
as grounding a dictionary (by removing self-
referential definitions), there are major downsides.
The minimum FVS Problem is NP-Hard (Karp,
1972), and the minimum sizes scale with the dic-
tionary (Vincent-Lamarre et al., 2016). FVS’s are
not unique, so we must arbitrarily choose one for
comparison. By contrast, the SCCs of a digraph
are unique and efficient to compute. They consider
groups of self-referential words, and thereby re-
move arbitrary choice, facilitating cross-linguistic
comparison.

This study utilizes the SCCs approach to iden-
tify common structure of monolingual dictionaries

1Vincent-Lamarre et al. described the taxonomy in alter-
nate but equivalent terminology.
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to lend credence to the cross-linguistic aims of
cognitive semantics theories. In contrast to prior
literature that focused only on English (Kostiuk
et al. 2023, Vincent-Lamarre et al. 2016) or Span-
ish (Pichardo-Lagunas et al., 2017), we analyze
and compare English, French, German, Mandarin,
Russian, and Spanish.

2 Methods

We acquired monolingual dictionaries2 from the
Wiktionaries for English, French, German, Man-
darin, Russian, and Spanish using Wiktextract (Ylo-
nen, 2022), based on their availability of parsed
data. We limited our analyses to content words
by filtering for entries with a part of speech tag of
either noun, verb, adjective, or adverb, and with the
Python library stopwordsiso to remove function
words. The definitions for all word senses for each
entry were tokenized and lemmatized by STANZA

(Qi et al., 2020).
The dictionaries were processed into directed

graphs. Each headword was treated as a vertex, and
an arc was added from vertex u to vertex v if the
wordform u was included in at least one definition
of v. For undefined words used within a definition,
an arc from the lemma form was added, and if the
lemma was not present, the word was excluded.

The final dictionary directed graph was prepro-
cessed. All leaves (vertices with no outgoing arcs)
were removed recursively, since they were unused
in definitions and not directly relevant for the anal-
ysis. This removed all trivial SCCs. We built the
condensation graph of the directed dictionary graph
using the built-in function from networkx (Hag-
berg et al., 2008), and finally extracted the sources
from the condensation graph.

3 Results and Discussion

From each of the six monolingual dictionaries, we
found the condensation graphs and sources within
those graphs. Table 1 presents relevant descriptive
statistics, including the overall size of the dictio-
nary graph for each language and the number of
sources in the condensation graph.

Observe that, overall, the number of sources in
the condensation graphs are relatively close cross-
linguistically. Mandarin appears to be an outlier,
with 648 sources; however, it was the smallest
dictionary by far with only 25,736 words in to-
tal. Without Mandarin, the number of sources in

2The dictionaries were accessed on 7/20/2024.

Language Order Number of Sources
English 1,053,726 77
French 1,849,021 39
German 843,506 65
Mandarin 25,736 648
Russian 408,173 134
Spanish 746,297 29

Table 1: Number of wordforms in preprocessed dictio-
nary graph, and number of sources in the condensation
graph, for each language.

Figure 1: Scatter plot demonstrating the overall trend of
fewer sources in the condensation given the order.

the remaining 5 languages have a mean of 68.8
with a standard deviation of 36.9. Also note that
as the size of the dictionary increases, the number
of sources declines. Additionally, the rate at which
the number of sources declines with respect to dic-
tionary size is not constant. In fact, it appears to
decrease, as illustrated in Figure 1.

These results suggest that for sufficiently large
dictionaries, the number of sources in the condensa-
tion graph are consistent cross-linguistically. Thus,
the number of groups of "fundamental" words for
grounding are similar, supporting Semantic Prime
theory. While Wiktionary has large dictionary sizes,
a unified format, varied selection, and accessibility,
professionally curated dictionaries would provide
more conclusive results. Additionally, the varia-
tion of dictionary size (Mandarin ∼ 1% of English)
could impact condensation graph structure; more
consistent dictionary sizes, or an approach to con-
trol for the size, could improve results.

Dictionary conversion ignores undefined words
and the differences of word senses, limiting both
the number and reliability of connections. The
conversion also ignores morphological complex-
ity, using either the inflected wordform or solely
the lemma. Morphological parsing would prevent
losing inflectional information when not present
within the dictionary, and help with consistency
across typologically diverse languages.
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Abstract

There has been a surge in the development of
various Large Language Models (LLMs). How-
ever, text generation for languages other than
English often faces significant challenges, in-
cluding poor generation quality and reduced
computational performance due to the dis-
proportionate representation of tokens in the
model’s vocabulary. In this work, we address
these issues by developing a pipeline for adap-
tation of English-oriented pre-trained models
to other languages and constructing efficient
bilingual LLMs. Using this pipeline, we con-
struct Vikhr, a state-of-the-art bilingual open-
source instruction-following LLM designed
specifically for the Russian language. “Vikhr”
refers to the name of the Mistral LLM series
and means a “strong gust of wind.” Unlike
previous Russian-language models that typi-
cally rely on LoRA adapters on top of English-
oriented models, sacrificing performance for
lower training costs, Vikhr features an adapted
tokenizer vocabulary and undergoes the contin-
ued pre-training and instruction tuning of all
weights. This not only enhances the model’s
performance but also significantly improves its
computational and contextual efficiency. The
remarkable performance of Vikhr across vari-
ous Russian-language benchmarks can also be
attributed to our efforts in expanding instruc-
tion datasets and corpora for continued pre-
training. Vikhr not only sets the new state of
the art among open-source LLMs for Russian
but even outperforms some proprietary closed-
source models on certain benchmarks. The
model weights, instruction sets, and code are
publicly available1.

1 Introduction

Instruction tuning has unlocked in Large Language
Models (LLMs) vast zero-shot capabilities without
the need for careful prompt engineering (Ouyang

♢ Equal contribution
1https://huggingface.co/Vikhrmodels

et al., 2022). The most rapid research and develop-
ment efforts are currently devoted to English LLMs.
There has been a surge in English open-source mod-
els: Llama series (Touvron et al., 2023a,b), Mistral
series (Jiang et al., 2023), Vicuna series (Chiang
et al., 2023), etc. This growth is driven by the abun-
dance of raw training data in English and dedicated
efforts to create extensive sets of instruction-output
pairs. Even though LLMs oriented on English have
some multilingual capabilities (Zhao et al., 2024)
due to the presence of small amounts of text in var-
ious languages within their training datasets (Tou-
vron et al., 2023a), their overall performance in
non-English languages remains relatively limited.
Although they can usually generate portions of co-
herent texts, these models struggle with reason-
ing in non-English languages, lack culture-specific
knowledge, and are highly inefficient in terms of
tokenization. This inefficiency stems from how
byte-pair tokenization algorithms operate, as they
break down infrequent words into multiple tokens.
Since multilingual data typically represents a small
portion of the training dataset, non-English words
are often split into many pieces. As a result, this
increases the number of steps during prompt pro-
cessing and text generation, reduces the effective
context window, and ultimately degrades overall
performance (Tikhomirov and Chernyshev, 2023;
Petrov et al., 2024). This disparity places non-
English languages at a disadvantage.

There is also a research direction focused on de-
veloping multilingual LLMs designed to perform
well across multiple popular languages: BLOOMz
(Muennighoff et al., 2023), mGPT (Shliazhko et al.,
2022), Bactrian-X (Li et al., 2023), PALO (Maaz
et al., 2024), Aya101 from CohereAI (Üstün et al.,
2024), etc. These models are typically trained
on rich multilingual datasets and are less skewed
towards English. However, when aiming to per-
form well across multiple languages simultane-
ously, these models must still share their vocab-
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ulary and parameters. This often hinders their per-
formance for each particular language in isolation,
especially for the popular smaller model sizes, such
as 7B and 13B.

The aim of maximizing the LLM performance
for a specific language within a certain number of
parameters has led researchers to develop bilingual
LLMs (Sengupta et al., 2023; Pieri et al., 2024;
Faysse et al., 2024). These LLMs prioritize a re-
gional language, e.g. Jais(Sengupta et al., 2023)
focuses on Arabic, but they are trained also on
English data. The inclusion of English data in
pre-training alongside regional language data is
motivated by the significantly larger volume of En-
glish data available. This helps LLMs substantially
enhance skills such as logical and common sense
reasoning, which are also applied when generat-
ing text in a regional language. Bilingual LLMs
is a perspective direction as they can remain small
and efficient, but at the same time comprehensively
capture linguistic nuances and cultural contexts of
the regional language.

This work seeks to develop a pipeline for adapt-
ing English LLMs to other languages facilitating
the development of bilingual LLMs. Specifically,
we aim to build an instruction-following bilingual
LLM for Russian and English that could be used for
multilingual natural language processing research.

Russian is one of the high-resource languages
and is typically represented in multilingual LLMs.
Additionally, there are several proprietary closed-
source LLMs, such as MTS AI, GigaChat, and Yan-
dexGPT, that meet or even surpass their English-
oriented flagship competitors when it comes to text
processing and generation in Russian. However,
controllable research often requires white-box ac-
cess to LLM logits and layer outputs, the ability to
modify weights and model architecture, and con-
sistent answers for reproducibility, which is often
impossible in closed-source LLMs due to their con-
stant development and retirement. There are only
a few open-source LLMs designed for Russian:
Saiga (Gusev, 2023), ruGPT (AI Forever, 2022),
ruadapt (Tikhomirov and Chernyshev, 2023), and
some others. Of these, only Saiga and ruadapt
are instruction-tuned. We aim to fill the lack of
instruction-tuned open-source LLM for Russian
that is both efficient and effective.

Building even a small LLM tailored to a specific
language from scratch demands a lot of computa-
tional resources. Consequently, many researchers

opt to fine-tune LoRA adapters (Hu et al., 2021)
for English-oriented LLMs using some language-
specific data. While this approach can improve
model generation quality, it does not address com-
putational inefficiency because the tokenizer and
model vocabulary remain unchanged. In contrast,
our approach not only fine-tunes a base LLM on
Russian language data but also reconstructs its un-
derlying tokenizer and vocabulary, alongside sug-
gesting an improved method for continued pre-
training. Additionally, we have significantly ex-
panded the available Russian datasets for instruc-
tion tuning. The developed LLM achieves state-
of-the-art results for the Russian language among
other open-source counterparts across a wide range
of benchmarks.

Contributions of the paper are the following:
• We have developed a pipeline for adapting

English-oriented LLMs to other languages.
The pipeline implements vocabulary adapta-
tion, continued pre-training with regulariza-
tion to prevent “catastrophic forgetting”, and
instruction tuning.

• Using the pipeline, we have constructed Vikhr
– a state-of-the-art open-source instruction-
following LLM oriented on the Russian lan-
guage. In addition to its high generation qual-
ity, Vikhr features an efficient tokenizer that
enables rapid text generation and good context
utilization.

• We have expanded the datasets for continued
pre-training of Russian language models and
previously available instruction datasets.

• We have constructed two evaluation bench-
marks for Russian LLMs by translating the
English MMLU (Hendrycks et al., 2020) and
MMLU-pro (Wang et al., 2024b) benchmarks.

• We conducted an extensive evaluation of sev-
eral open-source LLMs on evaluation bench-
marks for Russian, demonstrating that Vikhr
achieves new state-of-the-art results. Ablation
studies confirm the effectiveness and validity
of the individual components within our LLM
adaptation pipeline.

2 Related Work

One of the first prominent series of generative
LLMs for Russian is ruGPT (AI Forever, 2022;
Zmitrovich et al., 2023). The authors developed
several models, trained on the standard language
modeling task, with sizes reaching up to 13 billion
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parameters. These models were created from the
scratch and trained on a large Russian corpus, en-
abling them to capture the linguistic nuances of
Russian more effectively than multilingual models.
Additionally, since the training data was mostly in
Russian, these models also have efficient tokeniza-
tion. However, the lack of multilingual data (e.g.
in English) limits their performance. Notably, the
ruGPT models are not instruction-tuned.

Gusev (2023) suggests to leverage reasoning ca-
pabilities of existing English-oriented LLMs and
adapt them to the Russian language by training
LoRA adapters. They created an Alpaca-like set
of Russian instruction-output pairs and performed
instruction tuning on it. As a result, they have es-
tablished the series of models called Saiga, which
demonstrate the competitive performance and used
to be a reasonable choice for an off-the-shelf open-
source Russian LLMs for the past years. However,
the tokenizer in these models is not adapted, so
they experience issues with the context size and
computational efficiency.

Tikhomirov and Chernyshev (2023) address
these issues in Saiga. In addition to model tun-
ing on Russian data, they also adapted the model
tokenizer. They note that improving tokenization
helps to both enhance the efficiency of the model
and its performance while reducing memory con-
sumption. However, during continued pre-training,
the authors freezed the model weights, except for
LM heads and token embeddings, which leads to
the suboptimal performance.

In this work, we take advantage of pre-trained
English-oriented LLMs, adapt LLM tokenizer for
better computational and contextual efficiency,
leverage continued pre-training on vast Russian-
language corpora with regularization for prevent-
ing “catastrophic forgetting”, construct a novel ex-
tended set of Russian instruction-output pairs, and
perform instruction tuning. The created LLM adap-
tation pipeline along with the data for continued
pre-training and instruction tuning enables Vikhr
to achieve new state-of-the-art results for Russian,
maintain high performance for English, and demon-
strate high computational efficiency.

3 LLM Construction Pipeline

The construction of Vikhr starts from one of the
English-oriented LLMs. In this work, we discuss
the Vikhr model based on Mistral 7B (Jiang et al.,
2023). The strong logical and common-sense rea-

Content Length Tokenization Result

Original
Sentence

31 (ru) Машинное обучение
изменяет мир
[(en) Machine learning
changes the world.

Mistral Tok-
enizer

13 [‘Ма’, ‘шин’, ‘ное’, ‘об’, ‘у’,
‘чение’, ‘из’, ‘мен’, ‘я’, ‘ет’,
‘ми’, i ‘р’ ]

Vikhr Tok-
enizer

7 [‘Ма’, ‘шин’, ‘ное’, ‘обуче-
ние’, ‘изменяет’, ‘мир’]

Table 1: A comparison of tokenization between the
original Mistral model and Vikhr.
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Figure 1: The efficiency of the Vikhr tokenizer for Rus-
sian in comparison to tokenizers of other models.

soning capabilities, as well as the extensive world
knowledge present in Mistral LLMs provide an ex-
cellent starting point for our model. These features
partially transfer to Vikhr, enhancing its perfor-
mance in generating text in Russian. The process
of the LLM adaptation to Russian starts with the
vocabulary adaptation. Then we perform continued
pre-training of the LLM on large Russian datasets
to mitigate the vocabulary shift and introduce cul-
ture specific knowledge. Finally, we perform fine-
tuning of Vikhr on a set of instruction-output pairs
in Russian.

3.1 Vocabulary Adaptation

The big drawback of English-oriented LLMs is that
each Russian word would be split into multiple
tokens: a common case is when symbols in the
word become individual tokens (see example in
Table 1). This slows down the generation by multi-
ple times, reduces the amount of information that
could be stored in the context, and drastically hurts
the generation quality.

To mitigate this problem in Vikhr, we adopt
the approach suggested in (Cui et al., 2023;
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Data Source Approx. size
(GB)

Tokens
(Billion)

Scientific papers 20 2.5
News articles 4 1
Wikipedia 25 4
Habr 6 1
Other sources 20 2.5

Table 2: The statistics of the Russian-language datasets
for continued pre-training.

Tikhomirov and Chernyshev, 2023), where authors
rebuild the tokenizer using a language-specific cor-
pus. In particular, we trained a SentencePiece to-
kenizer (Kudo and Richardson, 2018) with a 40k
vocabulary on the RuLM dataset (Gusev, 2023).
As can be seen from Figure 1, the resulting tok-
enizer for Russian is much more efficient than the
tokenizer of the original English-oriented model.

3.2 Continued Pre-training

The new vocabulary requires new embedding matri-
ces and LM heads. The tokens that were present in
the original vocabulary are initialized with the old
embeddings, the new tokens are initialized by aver-
aging the embeddings of their pieces in the origi-
nal embedding matrix (Hewitt, 2021). The similar
approach is also applied to LM heads. Training
models with these modifications demands much
more computational resources than the mainstream
method of adapting LLMs to new languages using
LoRA adapters (Hu et al., 2021). This is because it
involves continued pre-training of the entire model
and requires much more language-specific data to
mitigate the shift in the vocabulary.

The dataset for continued pre-training is con-
structed from high-quality sources, including Rus-
sian Wikipedia, news articles, scientific papers
from peer-reviewed journals and conferences, and
top 100k up-voted posts on Habr – a popular online
blog community focused on technology, software
development, and science. The statistics of these
datasets is presented in Table 2. We performed
deduplication of the collection on the level of para-
graphs using the MIHash algorithm (Cakir et al.,
2017). Furthermore, we performed filtration of
the collected data. For this purpose, we annotated
20k documents using GPT-4-turbo with the aim to
assess their informativeness, usefulness for study-
ing, grammatical correctness, style, and safety. Us-
ing these annotations, we fine-tuned a RuBERT-
tiny(Dale, 2021) filtration model and applied it to

Hyperparam. Value

LR 1× 10−3

AdamW eps 1× 10−8

Num warmup steps 10
AdamW betas 0.99, 0.95
Accumulation steps 128
Batch size 3
Epochs 1
Sequence length 1024

Table 3: The hyperparameters for continued pre-
training.

the deduplicated corpus. After filtration, the total
number of tokens left for continued pre-training is
11 billion.

We observed that continued pre-training of a
LLM can partially diminish the reasoning capabili-
ties present in the original English-oriented model,
significantly impacting overall performance. In
our preliminary experiments, a model that under-
went continued pre-training may demonstrate even
worse performance on Russian benchmarks than
the original English-oriented model. To alleviate
this “catastrophic forgetting” in reasoning, we use
the loss regularization with the KL penalty between
the probability distribution of Vikhr and the refer-
ence English-oriented LLM:

LVikhr = LCE +KL (PVikhr∥PRef ) . (1)

In practice, we implement the regularization using
the SLERP interpolation of model losses (Goddard
et al., 2024).

To speed up the process of continued pre-
training, we use an optimized Flash attention im-
plementation2. As an optimization algorithm, we
leverage AdamW, as it trades some memory effi-
ciency in favor of robustness to the hyperparameter
choice. The hyperparameters used for continued
pre-training are presented in Table 3.

3.3 Instruction Tuning
Instruction tuning is an essential step in reaching
high zero-shot performance with LLMs. It also
allows to obtain a more natural communication
with the model without complex prompting. Fur-
ther fine-tuning techniques such as RLHF (Ouyang
et al., 2022) or DPO (Rafailov et al., 2024), which
require input from the assessors, are also crucial
for such tasks as multicriteria alignment. How-
ever, the most significant performance gains are

2https://huggingface.co/docs/optimum/
bettertransformer/tutorials/convert
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still achieved through instruction tuning (Jha et al.,
2023).

Previously, Gusev (2023) constructed an open-
source set of instruction-output pairs for the Rus-
sian language (Saiga). The core Saiga dataset was
created similar to Alpaca by querying ChatGPT
(gpt-3.5-turbo) (Taori et al., 2023). In this work,
we extend this set by translating two English in-
struction datasets. First, we translated instructions
for the FLAN model (Wei et al., 2021) and gener-
ated answers in Russian using ChatGPT. Originally,
FLAN instructions were constructed automatically
from annotated datasets using templates to facili-
tate multitask and zero-shot capabilities of seq2seq
models. Later, it was shown that this data also
helps to improve decoder-only chat-oriented mod-
els as well. Second, we construct Veles3 by trans-
lating the English OpenHermes (Teknium, 2023)
instruction dataset. Third, we incroporate without
translation Nectar4 (Zhu et al., 2023) – an English
instruction dataset. This ensures that Vikhr main-
tains strong performance in English as well.

Similar to the corpus for continued pre-training,
we performed deduplication of the instruction set.
Since the majority of the outputs were machine
generated there are many low quality outputs. To
mitigate this problem, we filtered out low quality
pairs using a reward model trained on human data.
For the reward model, we selected the multilingual-
e5-large model (Wang et al., 2024a). This model
was particularly suitable for our needs due to its
ability to handle multilingual data efficiently, en-
suring that the classifier could accurately assess the
quality of responses in both Russian and English.
We trained the reward model on the answer pref-
erence dataset5, which was collected from human-
written prompts and annotated using GPT-4. By
applying this reward model, we filtered out low-
quality instruction-output pairs, significantly en-
hancing the overall performance and reliability of
our instruction datasets. The statistics of the Vikhr
instruction datasets is presented in Table 4.

Contrary to Saiga, we do not use LoRA adapters
and just as in the phase of continued pre-training,
we update all model parameters. The hyperparame-
ters for the instruction tuning phase are presented

3https://huggingface.co/datasets/Vikhrmodels/
Veles-2.5

4https://huggingface.co/datasets/
berkeley-nest/Nectar

5https://huggingface.co/datasets/Vikhrmodels/
sbs

Instruction Set Language # instances

Veles Russian 30k
Nectar English 50k
Saiga Russian 100k
ruFLAN Russian 500k

Table 4: The statistics of the instruction datasets.

Hyperparam. Value

LR 1× 10−5

AdamW, eps 1× 10−8

Num warmup steps 10
AdamW, betas 0.99, 0.95
Accumulation steps 64
Batch size 3
Num epochs 3
Sequence length 1024

Table 5: The hyperparameters for instruction tuning.

in Table 5.

3.4 Hardware

Vikhr was trained on eight NVIDIA A100 GPUs
80GB. We spend approximately 1,000 GPU hours
for the continued pre-training phase and 60 hours
for instruction tuning.

4 Experiments

4.1 Experimental Setup

Benchmarks. The evaluation was performed on
MMLU (En-MMLU) (Hendrycks et al., 2021),
Ru-MMLU6, Ru-MMLU-pro7, ruXNLI (Conneau
et al., 2018), CheGeKa (Mikhalkova and Khlyupin,
2022), Russian SuperGLUE (Shavrina et al., 2020),
and MERA (Fenogenova et al., 2024). The MMLU
(En-MMLU) benchmark assesses LLMs across 57
subjects through multiple-choice questions, mea-
suring a model’s general knowledge and reason-
ing abilities. We utilize this benchmark to ver-
ify that the model retains its bilingual proficiency.
For this dataset, we report the accuracy@1 score.
We constructed Ru-MMLU and Ru-MMLU-pro by
automatically translating original English MMLU
and MMLU-pro to Russian. Translation was done
by GPT-3.5 and GPT-4 respectively. Just as for
MMLU, for these datasets, we report the accu-
racy@1 score. CheGeKa is based on the questions
from the Russian version of “Jeopardy” (the “Own

6https://huggingface.co/datasets/NLPCoreTeam/
mmlu_ru

7https://huggingface.co/datasets/Vikhrmodels/
mmlupro-ru
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LLM Pre-train on
Russian

Training
Method En-MMLU Ru-MMLU CheGeKa Russian

SuperGLUE MERA

MTS AI Chat 7B (closed-source) ♢ false sft+dpo - 0.689 0.083 0.56 0.479
GigaChat-7B (closed-source) ♢ true sft+dpo - 0.67 0.451* 0.71* 0.479

aya101 false pt+sft 0.41 0.37 0.005 0.36 0.320
Mistral-7B-Instruct-v0.2 false none 0.60 0.78 0.005 0.57 0.400
rccmsu/ruadapt-mistral-7b-v0.1 false pt+sft 0.61 0.72 0.005 0.64 0.421
rugpt13b true none 0.25 0.25 0.132 0.52 0.208
saiga-mistral-7b-lora false sft 0.60 0.76 0.223 0.64 0.442
saiga-llama3-8b false sft 0.59 0.78 0.225 0.66 0.476
(Ours) Vikhr-7B-instruct_0.2 true pt+sft 0.62 0.80 0.231 0.67 0.485

Table 6: Evaluation results for Russian and multilingual LLMs. Pre-train on Russian means that the model
underwent (continued) pre-training on Russian data. The following abbreviations are used: sft – instruction tuning,
pt – (continued) pre-training; dpo – direct preference optimization. ♢ The results for GigaChat and MTS AI are
taken from the leaderboards. The best result among open-source models is highlighted with bold, the second best is
underscored. The best result among closed-source proprietary models is marked with *.

Prompt Answer of base Mistral-0.2-Instruct Answer of Vikhr

Что такое чебурек?
[What does cheburek
means?]

Чебурек - это классическое dish среднеазиат-
ской и русской кухни, которое включает в себя
тонкий lavash, завернутый в форме полумесяца
или кольца. Он обычно наполнен meat (говяди-
ной, бараниной или курицей) и cheese. История
чебурека начинается с древних тюркских пле-
мен, которые готовили подобные dishes из мяса
и теста. ... Чебурек часто подается как горя-
чее dish, жареное на сковороде или в духовке.
Тесто обычно тонкое и хрустящее снаружи, а
внутри мягкое и сочное. Мясо и сыр добавля-
ют flavor depth и питательную ценность.

Чебурек — это традиционное блюдо кавказ-
ской кухни, которое представляет собой боль-
шой, тонкий пирог из пресного теста с мясной
начинкой, обжаренный во фритюре. Внутри
чебурека обычно находится сочный фарш из ба-
ранины или говядины, приправленный луком,
солью, перцем и другими специями. Благодаря
обжарке в масле, тесто становится хрустящим
снаружи, а начинка остается мягкой и сочной.
История чебурека уходит корнями в древние
времена, когда кочевники готовили его на рас-
калённых камнях или в больших котлах с го-
рячим маслом.

Расскажи на русском язы-
ке что такое хачапури
[Tell in Russian what
hatchapuri is]

Хачапури (хачпури, хачъапури) – это тради-
ционное блюдо грузинской кухни. Это тип
пицце или за Francia, выполненной в виде круг-
лой или полукруглой лепёшки, покрытой верху
layerм layerim – смесью тонко нарезанныхimo
эplesses, лука ..

Хачапури — это традиционное грузинское блю-
до, представляющее собой лепешку с сыром
внутри. Вот рецепт хачапури. Ингредиенты:
- Для теста: - 3 стакана муки - 1 ч. л. соли
- 1 ч. л. сахара - 100 мл теплой воды - Для
смазывания: 1 ст. л. топленого масла ...

Расскажи на русском язы-
ке как приготовить уху
[Tell in Russian how to cook
a fish soup]

Уха (из Рыбы) – традиционное блюдо русской
кухни, которое готовится predominantly из щу-
ки или окуня. Рас**те процедуру приготов-
ления ухи в домашних условиях: Выберите
чистую рыбу. Очистить её от шерсти иICScoне
всех мелких костей s...

Уха — это традиционное русское блюдо, пред-
ставляющее собой наваристый суп из рыбы,
который варится на медленном огне. Вот базо-
вый рецепт ухи, который можно адаптировать
под свои вкусовые предпочтения. Ингредиен-
ты: 1 кг свежей рыбы (можно использовать
несколько видов, например, карп, щука, судак)
3-4 картофелины 1 крупная луковица 2-3 мор-
кови ...

Table 7: Comparison of texts generated by the base LLM Mistral-0.2-Instruct (on the left) with texts generated by
our model Vikhr (on the right). Issues in the output are highlighted with red.

game”). This benchmark contains challenging
open-ended questions, requiring logical reasoning
and world knowledge. It includes 29,376 training
and 416 test instances. The reported evaluation met-
ric is the F1 score. Russian SuperGLUE is a bench-
mark similar to well-known English SuperGLUE
(Wang et al., 2019). It tests LLMs on various natu-
ral language understanding tasks like reading com-
prehension and textual entailment. The metric re-
ported in the results is accuracy@1. The MERA
benchmark encompasses 21 evaluation tasks for
generative LLMs in 11 skill domains. Note that
among other tasks, MERA also includes CheGeKa,
RuMMLU, and one of the subtasks of SuperGLUE
(RWSD). The reported evaluation metric is the to-

tal score, which is the average of scores across all
non-diagnostic tasks.

Baselines. We compare Vikhr to six open-source
and two proprietary closed-source competitors of
the similar size. Open-source models: aya101
(Üstün et al., 2024) – a massively multilingual
LLM from CohereAI that follows instructions
in 101 languages8, it shows state-of-the-art re-
sults among massively multilingual LLMs; Mistral-
7B-0.2-instruct (Jiang et al., 2023) – an English-
oriented LLM that was used as the base model
for Vikhr; rccmsu/ruadapt_mistral_saiga_7b_v0.1
(Tikhomirov and Chernyshev, 2023) – a Russian-

8https://huggingface.co/CohereForAI/aya-101
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oriented LLM that was constructed from the Mis-
tral model using similar adaptations of the tok-
enizer, token embeddings, and the LM head; saiga-
mistral-7b-lora and saiga-llama3-8b (Gusev, 2023)
– two versions of the Saiga models based on English-
oriented LLMs and obtained by fine-tuning LoRA
adapters on the Saiga instruction dataset9. Closed-
source proprietary models for Russian: MTS AI
Chat10 and GigaChat-7b. The access to GigaChat
weights is closed, so the reported results are taken
from the leaderboards11. The results of MTS AI
Chat are also taken from the leaderboard12.

4.2 Results in NLU Tasks

The evaluation results are presented in Table 6. As
we can see, Vikhr outperforms all open-source mod-
els, including the ones that were built specifically
for Russian. It also slightly outperforms its par-
ent model Mistral on the En-MMLU benchmark,
which might be the result of longer pre-training.
The second place with close scores for all 4 Rus-
sian language benchmarks is obtained by the Saiga
model based on recently released Llama-3. The
high scores of this model probably are the result
of the transfer of the outstanding performance of
Llama-3. Since Saiga based on Llama-3 outper-
forms Saiga based on Mistral, we expect that ap-
plying our adaptation pipeline to Llama-3 would
also help further improving the state of the art.

We note that the original Mistral-7B-0.2-instruct,
despite being an English-oriented model, demon-
strates competitive performance in 3 out of 4 Rus-
sian benchmarks. This demonstrates that such mod-
els could be viable alternatives at least for NLU
tasks. The only dataset, where its performance is
very low is CheGeKa, which is related to open-
ended question-answering. This may be due to the
lack of culture-specific knowledge, as the English-
oriented model has not seen much Russian texts.
Note that the MTS AI Chat also shows very low
results on CheGeKa, which might also indicate the
lack of culture-specific knowledge.

The proprietary model GigaChat substantially
outperforms Vikhr on CheGeKa and notably on
Russian SuperGLUE. We assume this is due to the
use of much larger Russian datasets for pre-training.
However, surprisingly, it falls behind Vikhr on Ru-

9https://huggingface.co/collections/IlyaGusev
10https://huggingface.co/MTSAIR/multi_verse_

model
11https://mera.a-ai.ru/ru/submits/10257
12https://mera.a-ai.ru/ru/submits/10290

Vocab. Size PPL↓ ruXNLI↑
33k 10.2 0.42
40k 14.4 0.46
60k 16.7 0.43
80k 20.4 0.41

Table 8: Performance of the intermediate Vikhr mod-
els with different vocabulary sizes after continued pre-
training. The base model is LLaMa-2 7b. The vocabu-
lary size selected for the final Vikhr model is underlined.

PPL↓ ruXNLI↑ Ru-MMLU-pro↑
No filt. (17b tokens) 8.4 0.37 10.2
With filt. (11b tokens) (Ours) 7.2 0.46 11.1

Table 9: Performance metrics with and without filtration
of the corpus for the continued pre-training. Perplexity
is computed on the instruction dataset.

MMLU. On all benchmarks, Vikhr outperforms the
proprietary competitor from MTS AI.

4.3 Quality of Generated Text
Previous results demonstrate the performance of
our model in NLU tasks. However, the perfor-
mance in NLU does not always reflect the perfor-
mance in text generation, as the former is based on
classification and ranking capabilities of models.

To check the performance of the model in text
generation, we performed qualitative analysis of
LLM outputs. Table 7 compares several responses
of Vikhr with outputs of the base model (Mistral-
7B-Instruct-v0.2). As we can see from the pre-
sented examples, when Mistral generates Russian
text, it often injects English words. Moreover,
sometimes generated words consist of an English
and a Russian token. From the second example, we
see that Mistral also has issues with grammatical
coherence. In the third example, LLM suggests to
“clean a fish from fur”, which illustrates the lack
of understanding of word meanings in the Russian
language. We also note that Mistral tends to answer
in English even when the input prompt is in Rus-
sian. These issues appear very often and make the
base model useless for generation of Russian texts
in practical scenarios. On the considered examples,
Vikhr does not demonstrate any of these problems.
Texts generated by Vikhr are grammatically coher-
ent and correct.

4.4 Ablation Studies
We conducted several ablation studies to demon-
strate effects of various features of our model trans-
lation pipeline that allowed Vikhr to achieve high
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PPL↓ ruXNLI↑
No regul. 8.1 0.34
With regul. (Ours) 7.2 0.45

Table 10: Performance with and without KL loss regu-
larization during continued pre-training.

Instruction Set Ru-MMLU-pro

Saiga SFT 0.21
Translated Nectar 0.20
Ours 0.27

Table 11: Performance of Vikhr models fine-tuned on
various instruction sets. The base model is Llama-3 8b.

performance.

Selection of the vocabulary size. Table 8
presents the performance of intermediate Vikhr
models with different vocabulary sizes after the
stage of continued pre-training. We measure per-
plexity of the LLM on the instruction set and the
performance on the ruXNLI task (Conneau et al.,
2018). As we can see, perplexity increases with
the vocabulary size, indicating some degradation.
However, the performance on the ruXNLI dataset
is not monotonic. While the results for the largest
vocabulary size are lower than those for the small-
est, we observe a performance peak at a vocabulary
size of 40k tokens. We selected this size as it offers
improvements in the final task with only a slight
increase in perplexity.

Effect of filtration of the corpus for continued
pre-training is illustrated in Table 9. As we can
see, despite reducing the size of the data, perform-
ing continued pre-training on the filtered corpus re-
sults in a model with lower perplexity and substan-
tially better scores in both considered end tasks: Ru-
MMLU-pro and ruXNLI. This again highlights the
importance of data quality for constructing good
LLMs.

Effect of loss regularization in continued pre-
training is illustrated in Table 10. The results
show that the KL regularization introduced in
our pipeline slightly reduces perplexity and sub-
stantially increases the model performance in the
ruXNLI task. This shows that continued pre-
training on its own might deteriorate LLM reason-
ing capabilities, and proper regularization helps
preventing the catastrophic forgetting.

Effect of fine-tuning on various instruction sets
is illustrated in Table 11. The results demonstrate
that fine-tuning on our instruction set gives a big
boost in performance on NLU tasks compared to
Saiga and translated Nectar.

5 Conclusion

We have presented Vikhr – a new state-of-the-art
open-source instruction-following bilingual LLM
oriented on the Russian language. To create Vikhr,
we developed a comprehensive pipeline for adapt-
ing English-oriented LLMs to other languages. The
pipeline includes the adaptation of the tokenizer vo-
cabulary, continued pre-training of the entire model,
and instruction tuning. We have also constructed
a new dataset for instruction tuning by expanding
the Saiga dataset with automatically translated and
cleaned English instruction datasets. Our extensive
work enabled Vikhr to outperform the known base-
lines while maintaining computational efficiency.

We hope that the developed cross-lingual adap-
tion pipeline and the published models will foster
the research on LLMs and enhance the diversity of
languages incorporated into research agendas.

In the future work, we plan to release in the
open-source new better versions of Vikhr. At
the moment, our best publicly available model
is Vikhr-Nemo-12B-Instruct13 based on Mistral
NeMo. We also plan to perform cross-lingual adap-
tion of LLMs to low-resource languages such as
Belarusian, Serbian, and Kazakh.

Limitations

We do not introduce additional restrictions to the
usage of our models. However, the users must
comply with the license of the base model and
instruction datasets.

We do not implement RLHF / DPO fine-tuning
of Vikhr due to the lack of the resources for hu-
man annotation. We expect further performance
improvements from these techniques.

We do not introduce additional instruction-
output pairs to facilitate LLM alignment. However,
we note that the majority of the data for supervised
fine-tuning of Vikhr are obtained from the Chat-
GPT model series, so our model partially inherits
its alignment.

13https://huggingface.co/Vikhrmodels/
Vikhr-Nemo-12B-Instruct-R-21-09-24
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Ethical Considerations

The development and deployment of Vikhr raise
several ethical considerations that must be ad-
dressed to ensure its responsible use:

• Bias and Fairness: For developing Vikhr, we
use publicly available data. Despite efforts to
train Vikhr on diverse datasets, there is a risk
of inherent biases in the data which may be
reflected in the model’s outputs. Continued
monitoring and evaluation are required to mit-
igate any biases, ensuring fair and unbiased
performance.

• Misinformation: As with any LLM, Vikhr
has the potential to generate misleading or
incorrect information. It is crucial to es-
tablish guidelines and mechanisms for users
to verify the information provided by the
model, promoting critical assessment and
cross-referencing with reliable sources.

• Misuse: Vikhr can be used for malicious pur-
poses, such as generating harmful content,
spam, or deepfakes. Implementing usage re-
strictions and monitoring mechanisms to de-
tect and prevent misuse is critical to safeguard
against these risks.
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Abstract

Approaches to improving multilingual lan-
guage understanding often struggle with signif-
icant performance gaps between high-resource
and low-resource languages. While there are
efforts to align the languages in a single la-
tent space to mitigate such gaps, how differ-
ent input-level representations influence such
gaps has not been investigated, particularly
with phonemic inputs. We hypothesize that
the performance gaps are affected by represen-
tation discrepancies between these languages,
and revisit the use of phonemic representa-
tions as a means to mitigate these discrepan-
cies. To demonstrate the effectiveness of phone-
mic representations, we present experiments
on three representative cross-lingual tasks on
12 languages in total. The results show that
phonemic representations exhibit higher simi-
larities between languages compared to ortho-
graphic representations, and it consistently out-
performs grapheme-based baseline model on
languages that are relatively low-resourced. We
present quantitative evidence from three cross-
lingual tasks that demonstrate the effectiveness
of phonemic representations, and it is further
justified by a theoretical analysis of the cross-
lingual performance gap.

1 Introduction

Large language models have significantly advanced
natural language processing, offering improved ca-
pabilities across numerous languages. However,
substantial performance gaps remain, particularly
between high-resource languages like English and
the majority of the world’s low-resource languages.
While these gaps are partly driven by discrepan-
cies in data availability and quality, recent studies
suggest that linguistic gaps—potentially caused by
structural and lexical differences—also contribute
significantly to these disparities .

Cross-lingual transfer techniques, which aim
to adapt to arbitrary target language, have shown

Benjamin Franklin loved a 
street in Washington

벤자민	프랭클린은	워싱턴의	
거리를	좋아했습니다

ENG

KOR

bɛnd͡ʒəmən fɹæŋklɪn lʌvd ə stɹit 
ɪn wɑʃɪŋtən

ENG

pent͡ ɕamin pʰɯlɛŋkʰɯllinɯn 
wʌsiŋtʰʌni kʌlilɯl 

t͡ ɕoahɛts͈ɯmnita

KOR

linguistic gap

≈

International Phonetic Alphabet

PhonemicOrthographic

Figure 1: Example of orthographic and phonemic input
representations of a sentence (English and Korean).

promise with the advancement of pre-trained multi-
lingual language models (Devlin et al., 2019; Con-
neau et al., 2020; Clark et al., 2022). However, they
continue to face challenges, particularly with low-
resource languages. One line of prior research has
focused on mitigating these gaps through cross-
lingual representation alignment (Zhang et al.,
2022; Wu and Monz, 2023; Stap et al., 2023), but
these efforts often overlook the impact of varying
input representations on performance consistency
across languages.

In this work, we explore the use of phonemic rep-
resentations written in International Phonetic Al-
phabet (IPA) characters as a robust input represen-
tation (see Figure 1) to reduce linguistic gaps and,
consequently, performance gaps across languages.
We define the linguistic gap as the representation
discrepancy between embedding vectors and the
performance gap as the relative difference in down-
stream task performances between languages, to
analyze the impact of phonemic representations in
cross-lingual adaptation.

Our empirical analysis shows that phonemic
representations consistently reduce linguistic gaps
between languages compared to orthographic
character-based models. This reduction in linguis-
tic gaps directly correlates with smaller perfor-
mance gaps in tasks such as cross-lingual natural

200



language inference (XNLI), named-entity recog-
nition (NER), and part-of-speech (POS) tagging,
demonstrating the potential of phoneme-based
models to enhance cross-lingual transfer across di-
verse languages. We further support these findings
with theoretical analysis from domain generaliza-
tion literature, where we frame the performance
gap as a consequence of linguistic gaps driven by
lexical and syntactic differences.

Our key contributions are as follows:

• We revisit the use of phonemic representations
(IPA) as a universal input strategy to reduce
performance gaps across languages in multi-
lingual language models.

• We empirically demonstrate the effectiveness
of phonemic representations by comparing
them with subword and character-based mod-
els, highlighting their ability to minimize both
performance and linguistic gaps.

• We provide a theoretical explanation for the
observed benefits of phonemic representa-
tions, drawing parallels between linguistic
gaps in multilingual settings and domain gaps
in domain generalization literature.

2 Related Works

2.1 Cross-lingual Transfer with Multilingual
Language Model

Cross-lingual transfer learning aims to improve
performance on low-resource languages (LRLs)
by leveraging data from high-resource languages.
Models like mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020), trained on hun-
dreds of languages, have demonstrated effective
cross-lingual adaptation by leveraging large mul-
tilingual pre-train datasets (Fujinuma et al., 2022;
Wu and Dredze, 2020; Conneau et al., 2020). How-
ever, significant performance discrepancies remain
between languages due to differences in data avail-
ability, script types, and language families (Wu and
Dredze, 2020; Muller et al., 2021a; Bagheri Nezhad
and Agrawal, 2024). This "performance gap" has
been systematically evaluated in benchmarks such
as XTREME (Hu et al., 2020), highlighting the
need for methods that can ensure more consistent
performance across languages.

2.2 Cross-lingual Representation Gap
One approach to reducing performance gaps fo-
cuses on narrowing the representation gap between

languages. Multilingual pre-training enables mod-
els to learn shared representation space for mul-
tiple languages. (Singh et al., 2019) and (Muller
et al., 2021b) both analyze the representations of
pre-trained multilingual models and observe that
lower layers are responsible for this cross-lingual
alignment. (Yang et al., 2022) employs mixup
(Zhang et al., 2018) to bring representations closer
together, improving performance by reducing their
distance in the latent space. Other works show a
strong correlation between representation distance
and machine translation performance, suggesting
that improved alignment leads to better transfer
results (Wu and Monz, 2023; Stap et al., 2023).
While these studies provide valuable insights into
the benefits of aligning cross-lingual representa-
tions, they do not explore how variations in input-
level representations, such as the use of phonemic
representations instead of orthographic characters,
might affect this alignment. This paper investigates
how phonemic representations can further reduce
cross-lingual gaps.

2.3 Phonemic Representations for
Multilingual Language Modeling

Phonemes, typically represented by International
Phonetic Alphabet (IPA) characters, are the percep-
tual sounds of a language. Phonemic representa-
tions offer a language-agnostic input that can en-
hance multilingual modeling, especially for LRLs.
By using phonological features that are less de-
pendent on specific orthographic systems, these
representations offer a language-agnostic alterna-
tive that can help bridge performance gaps across
languages. Previous studies have shown that us-
ing the IPA characters as input can enhance per-
formance in cross-lingual tasks such as named en-
tity recognition (Chaudhary et al., 2018; Bharad-
waj et al., 2016; Leong and Whitenack, 2022) and
machine translation (Chaudhary et al., 2018; Sun
et al., 2022), particularly for low-resource lan-
guages. Similarly, Sohn et al. (2024) report that
phoneme-based models outperform other baselines
on target languages unseen during pre-training.
While these works demonstrate the potential of
phonemic representations in language modeling,
few have explored the specific embeddings and rep-
resentations of phonemes. Although some studies
have developed pre-defined phoneme embeddings
(e.g., PanPhon (Mortensen et al., 2016), Phoible
(Moran and McCloy, 2019)) and learned embed-
dings from masked language modeling (Li et al.,
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2023; Jia et al., 2021; Sundararaman et al., 2021;
Zhang et al., 2022), there is limited understanding
of how these embeddings function in cross-lingual
contexts.

We utilize XPhoneBERT (Nguyen et al., 2023),
a model pre-trained with phonemes across approx-
imately 100 languages, to investigate how using
phonemic representations as input can mitigate
cross-lingual performance discrepancies. Our em-
pirical and theoretical analyses provide new in-
sights into the benefits of phonemic representations
for multilingual language modeling, particularly in
terms of narrowing the cross-lingual linguistic gap
and performance gap.

3 Experimental Setup

In this section, we describe the experiment setup in
terms of models, datasets, and downstream tasks,
including the selected target languages and details
for preprocessing. Additionally, we provide details
on evaluation strategies, particularly on quantifying
the performance and linguistic gap.

3.1 Models
We employ three masked language models that
are pre-trained on multilingual corpus that covers
around 100 languages from Wikipedia dump files1:
mBERT (Devlin et al., 2019), CANINE (Clark
et al., 2022), and XPhoneBERT (Nguyen et al.,
2023). Each model is trained on different types of
language representation.

Multilingual BERT (mBERT) is a subword-
based model that utilizes WordPiece algorithm for
tokenization. During pre-training, mBERT learns
to perform masked language modeling (MLM) and
next sentence prediction (NSP).

CANINE is a multilingual character-based
model that is trained on the same corpus with the
same training objective as mBERT. CANINE is
a tokenization-free language model that directly
maps each unicode character to its codepoint by
hashing. This prevents unknown tokens, enabling
the model to handle a large amount of distinct char-
acters.

Lastly, XPhoneBERT is a phoneme-based
model trained to do MLM. XPhoneBERT follows
the pre-training scheme of XLM-R (Conneau et al.,
2020), so NSP is not employed in its pre-training.
This model takes as input the sequence of IPA char-

1pre-trained weights are obtained from
https://huggingface.co/models

acters, where the input data are created from origi-
nal text by G2P conversion followed by phoneme
segmentation.

While character-level models are known to bet-
ter generalize to low-resource languages (Clark
et al., 2022), their general performance falls behind
subword-based models. To specifically compare in-
put representations–phonemes versus orthographic
scripts–we minimize the impact of different to-
kenization units by focusing on phoneme-based
models versus character-based models, rather than
directly comparing with subword-based models
like mBERT. Nevertheless, we include mBERT
results for the XNLI task to highlight its significant
performance drop on low-resource languages. For
other tasks, we report results from phoneme and
character-based models to ensure a fair comparison,
and leave further improvements of character-level
models in overall performance as future work.

3.2 Downstream Tasks
We adopted the cross-lingual generalization bench-
mark tasks suggested in XTREME (Hu et al.,
2020).

Token-level Classification. We choose POS tag-
ging and NER as our testbed for structured predic-
tion tasks. Both tasks require labeling each token
from the model. These types of tasks were pre-
viously analyzed as being relatively independent
from the data size of each language used for pre-
training the language model (Hu et al., 2020). We
find this particularly suitable in our scenario where
two models with different pre-training strategy are
compared. For datasets, we utilize the corpora
from Universal Dependencies2 for POS tagging,
and WikiAnn (Pan et al., 2017) with train, dev, test
splits following Rahimi et al. (2019) for NER.

Sentence-level Classification. XTREME sup-
ports two sentence-level classification tasks. This
type of task requires semantic understanding of
given sentences to make a prediction. We employ
XNLI (Conneau et al., 2018) dataset, which is a
representative benchmark for the natural language
inference task on cross-lingual generalization set-
ting. This task requires the model to classify the
relation of two given sentences into three different
classes.

2https://universaldependencies.org/ , v2.13, 148 lan-
guages, released Nov 15, 2023.
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3.3 Performance Gap
We analyze performance gaps of each model for all
downstream tasks. As we are interested in how dif-
ferent models with different input types performs
consistent across languages rather than their ab-
solute overall performance, we take the relative
percentage difference (RPD) (Miller, 2011) to de-
rive the performance gap. Here, we define RPD
as

RPD(Li, Lj) =
|S(Li)− S(Lj)|
1
2(S(Li) + S(Lj))

× 100, (1)

where S(Li) represents the performance for the lan-
guage Li. This is used to analyze the performance
gap, which specifically computes the relative per-
formance gaps across languages.

3.4 Linguistic Gap
To compute representation discrepancy across lan-
guages, we use FLORES+ (Costa-jussà et al., 2022)
corpus which contains parallel sentences of more
than 200 languages. We employ devtest set of each
language subset, which contains 1,012 sentences.

After training each model on each downstream
task, we utilize each model to obtain similarity
in their representations. We adopt mean-pooling
to obtain sentence representations and Centered
Kernel Alignment (CKA) (Kornblith et al., 2019)
to measure the similarity, which Del and Fishel
(2021) has recommended for robust analysis on
cross-lingual similarity. CKA is defined as,

CKA(X,Y) =
∥XTY∥22

∥XTX∥2∥YTY∥2
, (2)

where features X and Y are from different lan-
guages. They are extracted from the input embed-
ding layers as we are interested in how different
input types (i.e., orthographic vs. phonemic) affect
cross-lingual alignment, and Muller et al. (2021b)
finds that cross-lingual alignment happens in the
lower layers of the model. We use this similarity
scores computed with CKA to refer to linguistic
gaps, where smaller CKA score means larger lin-
guistic gap.

3.5 Implementation Details
Models were trained for 30 epochs on a single
NVIDIA A5000 GPU for POS tagging, 30 epochs a
single NVIDIA A40 GPU for NER, and 20 epochs
on NVIDIA A6000 for XNLI. For all experiments,
batch size was set to 128 and AdamW (Loshchilov

and Hutter, 2018) optimization was used. Addition-
ally, cosine learning rate scheduler was adopted
with its initial learning rate set by grid search.
Learning rates used for each model on each lan-
guage are in the supplementary material.

3.6 Data Preparation
Languages. To evaluate token-level tasks, we
selected 10 languages with diverse typoloigi-
cal background—English(eng), French(fra),
Russian(rus), Italian(ita), Hungarian(hun),
Ukrainian(ukr), Korean(kor), Turkish(tur),
Finnish(fin), and Hindi(hin). First four languages
are high-resource languages, where English,
French, and Italian are written in Latin scripts
and Russian in Cyrillic. The other languages are
pre-trained on each model with moderate or small
amount of data, and are written in diverse scripts,
such as Hangul, Cyrillic and Devanagari. For
further analysis using sentence-level tasks, we
chose two low-resource languages—Swahili(swa),
and Urdu(urd)—to compare with a representative
high-resource language, English(eng).

Preprocessing. In order to prepare inputs for
a phoneme-based model, we employed G2P
(Grapheme-to-Phoneme) conversion to obtain an
IPA version of the input. This conversion was done
with Epitran3 (Mortensen et al., 2018) , an external
tool for G2P conversion. After converting to IPA,
phoneme segmentation with a python package, seg-
ments4, to identify each phoneme. Lastly, to make
it compatible with XPhoneBERT’s tokenizer, white
space was inserted between every phoneme.

4 Results and Analysis

Here, we present our observations and analyses
of the results. We first discuss the behavior of
phoneme-based model towards low-resource lan-
guages and writing systems, which contributes
to robust cross-lingual performance. Next, we
delve into the performance and linguistic gaps of
phoneme-based models through empirical and the-
oretical analyses.

4.1 Phoneme-based Model on Low-Resource
Languages and Writing Systems

We observe that phoneme-based model shows
promising performance in low-resource languages

3https://github.com/dmort27/epitran
4https://pypi.org/project/segments/
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Method Language Performance gap Linguistic Gap

eng fra rus ita hun ukr kor tur fin hin Std. (↓) Mean RPD (↓) Mean CKA (↑)

Named Entity Recognition

Character 87.13 91.27 91.80 92.26 93.14 93.88 84.11 92.92 90.45 87.68 0.0316 4.02 0.4584
Phoneme 83.61 89.42 89.60 90.56 91.89 92.76 87.19 92.35 89.23 88.23 0.0259 3.52 0.7195

Part-of-Speech Tagging

Character 96.62 95.54 87.91 96.06 74.57 85.79 86.71 90.49 91.78 96.81 0.0692 8.77 0.4593
Phoneme 95.94 96.35 86.69 96.37 85.87 91.32 85.82 91.11 93.76 96.94 0.0455 5.80 0.7204

Table 1: Performance of POS tagging and NER across different languages. Std. refers to the standard deviation of
the scores across the languages, and Mean RPD indicates average relative difference of F1 scores between different
languages. Mean CKA represents the average linguistic gap between languages.

and writing systems (scripts). Results from Ta-
ble 1 show that phoneme-based model outperforms
the character-based model on NER task, in lan-
guages written in scripts other than major scripts5—
Korean and Hindi. This can be attributed to the
fact that named entities, such as geopolitical or
personal names, are often pronounced similarly
across languages. When different writing systems
and scripts are used, models may struggle to align
such entities. However, representing them in IPA
characters that reflect their pronunciations helps
the model to better align these entities, resulting
in better cross-lingual transfer. This results align
with findings from Muller et al. (2021a); Sohn et al.
(2024), which focus on unseen languages, whereas
we observe this phenomenon with diverse ‘seen’
languages.

Results also demonstrates the potential of
phoneme-based model in addressing low-resource
languages. As shown in Table 2, the phoneme-
based model achieves a smaller gap when trans-
ferred to low-resource languages such as Swahili
and Urdu, compared to other baselines. This find-
ing is further analyzed in Section 4.2

4.2 Performance Gap Across Languages
We observe that the phoneme-based model consis-
tently exhibits the smallest performance gap across
diverse languages, highlighting its robustness in
cross-lingual tasks. In Table 1, we present the
standard deviation (Std.) and average percentage
difference (Mean diff.) for all models, which re-
flect the variability in performance across different
languages. The phoneme-based model exhibits
both a lower standard deviation and a smaller aver-
age percentage difference in the NER and POS

5Latin and Cyrillic are scripts that are used the most dur-
ing the pre-training phase.

Method

Language

eng swa urd

Acc. Acc. ∆ from eng Acc. ∆ from eng
(Rel./Abs.) (Rel./Abs.)

Subword 80.80 62.93 24.87 / 17.87 61.57 27.01 / 19.23
Character 75.02 59.72 22.71 / 15.30 56.55 28.08 / 18.47
Phoneme 71.89 60.88 16.59 / 11.01 56.10 24.67 / 15.79

Table 2: Accuracy (%) and relative/absolute perfor-
mance gaps on XNLI task. eng, swa, and urd refer
to English, Swahili, and Urdu, respectively, and relative
difference is computed with RPD. Phonemic representa-
tion shows relatively small performance gaps compared
to other representations.

tasks, demonstrating its relatively stable perfor-
mance across different languages.

Table 2 provides additional evidence by show-
ing that the phoneme-based model achieves a
smaller gap in performance between English and
other low-resource languages—Swahili(swa) and
Urdu(urd)—compared to other models. We report
both relative and absolute differences in perfor-
mance, with the relative difference calculated as
described in Section 3.3.

While subword-based mBERT achieves the high-
est scores, the performance gaps between models
narrow when applied to low-resource languages,
with outperforming the phoneme-based model by
8.91% in English and by 2.05% and 5.47% in
Swahili and Urdu, respectively. This reflects
subword LM’s significant performance drops on
low-resource languages, while highlighting the
phoneme-based LM’s robustness in cross-lingual
transfer to such languages. The leftmost panel
of Figure 3 also illustrates the performance gaps
of each model, where the phoneme-based model
predominantly displays lower gaps compared to
others.

These metrics collectively suggest that phone-
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XPhoneBERT
(Phoneme-based)

CANINE
(Character-based)

Figure 2: Linguistic gaps across languages in each model. (Center) Upper and lower triangular elements of
the heatmap indicate pairwise linguistic gaps derived with character-based model and phoneme-based model,
respectively. Darker color indicates larger CKA score, which means smaller discrepancy. Lower triangular elements
show relatively darker colors, implying smaller discrepancies across languages of phoneme-based model. (Left,
right) T-SNE plots for each model are shown with only five languages, for better visibility.

mic representations offer a more consistent perfor-
mance in multilingual settings, reducing the dispar-
ities typically observed when models are applied
to languages with varying resource availability.

4.3 Linguistic Gap of Different
Representations

To investigate the potential of phonemes as a robust
representation for multilingual language modeling,
we analyze the linguistic gap between languages us-
ing different input representations. Following Yang
et al. (2022); Muller et al. (2021b), we use linear
CKA to quantify representation similarity across
languages. Figure 2 shows the pairwise similarities
between languages, with the lower triangle of the
heatmap, which corresponds to phonemic repre-
sentations, demonstrating higher similarity values.
This indicates a smaller linguistic gap compared
to models that use orthographic inputs, contribut-
ing to a smaller performance gap. Moreover, the
t-SNE plots placed in both sides show how the
distributions of the representations from different
languages resemble each other. Phoneme-based
model exhibits more similar distribution across lan-
guages.

Figure 3 further supports these observations by
showing the linguistic gap after fine-tuning on the
XNLI task. The plot in the center illustrates that
phonemic representations have higher CKA scores
than other baseline models, indicating closer align-
ment between language representations. As XNLI
directly learns to build a sentence representation
during fine-tuning, we extract the representation
from the last hidden layer unlike in other token-

level tasks. Additionally, by using Sinkhorn dis-
tance to compare the logit space, we observe that
the phoneme-based model shows lower distances,
reflecting more consistent predictions across lan-
guages.

These results highlight the potential of phonemic
representations to address the performance gaps
that challenge multilingual language models, par-
ticularly in bridging the gap between high-resource
and low-resource languages by more similar repre-
sentations.

4.4 Connecting Performance Gap and
Linguistic Gap

Correlation Analysis. Meanwhile, one may
speculate the low-performance gap of the phoneme-
based model can be driven by the low English per-
formance rather than reducing the linguistic gap.
To clarify this, we simulate 15 repeated runs (with
different random seeds) of phonemic representa-
tion using 10% of the XNLI train dataset over En-
glish, Swahili, and Urdu. After computing the best
performance per each language, Sinkhorn distance
(S-Dist), and CKA between English and the other
two languages, we conducted correlation analyses
by performing hypothesis tests with Spearman’s
rank correlation coefficient and Kendall’s Tau.

As can be seen from Table 3, rather than the En-
glish performance, S-Dist and CKA have stronger
correlations, indicating that the linguistic gap has
stronger correlations that are statistically signifi-
cant (with a significant level less than 0.01).
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Figure 3: Qualitative analysis of performance gap (difference of accruacy) on XNLI task. (Left) the absolute
difference between performance across two languages, (center) centered kernel alignment (CKA) scores to measure
cross-lingual embedding similarity, and (right) Sinkhorn distance on the output probability space. Phonemic
representation shows relatively small performance gaps w.r.t. eng ↔ swa and eng ↔ urd, and these gaps are
correlated with similarity and discrepancy on the embedding space (CKA) and logit space (Sinkhorn distance).

Correlation Spearman’s R Kendall’s T

coefficient p-value coefficient p-value

Performance Gap <-> eng Performance 0.111 5.60E-01 0.104 4.30E-01

Performance Gap <-> S-Dist 0.681 3.50E-05 0.457 2.00E-04

Performance Gap <-> CKA -0.782 3.40E-07 -0.577 2.10E-06

Table 3: Correlation analysis with 45 phoneme-based models. We fine-tune the phoneme-based language model
XPhoneBERT on three languages, eng, swa, and urd, with 15 different random seeds and conduct two types of
correlation analyses.

Theoretical Analysis. We aim to diminish the
performance gap between different languages by
adopting IPA as a universal language representa-
tion. Motivated by domain adaptation literature
(Kifer et al., 2004; Ben-David et al., 2010), we
present a theoretical justification of IPA for ro-
bust multilingual modeling by deriving a bound
for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input X , such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X → {0, 1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X → {0, 1} that is expected to minimize a
risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has
a small risk-deviation over two domains DA and
DB . Then, to formalize the cross-lingual perfor-
mance gap, we first need a discrepancy measure
between two languages. By following Ben-David
et al. (2010), we adopt H-divergence (See Ap-
pendix C for its definition) to quantify the distance
between two language distributions.

Now, based on Lemma 1 and 3 of Ben-David
et al. (2010), we make reasoning on performance
gap over different language domains.

Theorem 4.1. Let h : X → [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. If D̂A and D̂B are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from DA and DB respectively, then
for any δ ∈ (0, 1), and for all h, the bound below
hold with probability at least 1− δ.

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B)

+2

√
d log(2n) + log(2/δ)

n

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given
⊕ as a xor operation (proof is in Appendix C). We
see that performance gap between two lanauges is
bounded from above with a distribution divergence
plus an irreducible term defined by problem setup.
That is, if we reduce the divergence between lan-
guage distributions, the expected performance gap
can also be reduced accordingly.

To investigate whether this is indeed a case or
not, we provided embedding space similarity and
logit-space Sinkhorn distance (Cuturi, 2013) be-
tween different languages in Figure 3. We argue
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that phonemic representation’s relatively mild per-
formance gap is achieved by reducing linguistic
gaps which is confirmed in the embedding space
(high CKA) and final output space (low Sinkhorn
distance).

5 Conclusion

Towards robust multilingual language modeling,
we argue that mitigating the linguistic gap between
different languages is crucial. Moreover, we advo-
cate the use of IPA phonetic symbols as a universal
language representation partially bridges such lin-
guistic gaps without any complicated cross-lingual
training phase. Empirical validation on three repre-
sentative NLP tasks demonstrates the superiority of
phonemic representation compared to subword and
character-based language representation in terms
of the cross-lingual performance gap and linguistic
gap. Theoretical analysis of the cross-lingual per-
formance gap explains such promising results of
phonemic representation.

6 Limitations

While we have shown that phonemic representa-
tion induces a small cross-lingual linguistic gap,
therefore a small performance gap, the absolute per-
formance of this phonemic representation is still
lacking compared to subword-level models. We
spur the necessity of putting research attention to
developing phoneme-based LMs. Moreover, there
is no such large phonemic language model beyond
the BERT-base-size architecture, so we confine the
scope of our empirical validation to BERT-base-
size LMs. This also means the experiments rely on
existing pre-trained models, limiting control over
their pre-training settings. Since the models were
trained on different language sets and pre-training
objectives (as noted in 3.1), it is important to verify
these findings in a controlled environment. Addi-
tionally, we performed evaluation with a limited
languages (up to 12), so it is unclear whether IPA
language representations are effective for other nu-
merous languages (especially low-resource ones)
or not.
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sues that harm the code of ethics provided by ACL.
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A Dataset Statistics

In Table 4, we provide the dataset statistics. For
the experiments, we used train set for training and
validation set for evaluation.

Dataset Lang. Train Dev Test

FLORES+

eng

- 1.2k -

fra
rus
ita
hun
ukr
kor
tur
fin
hin

XNLI
eng

393k 2.49k 5.01kswa
urd

WikiAnn

eng 20k 10k 10k
fra 20k 10k 10k
rus 20k 10k 10k
ita 20k 10k 10k
hun 20k 10k 10k
ukr 20k 10k 10k
kor 20k 10k 10k
tur 20k 10k 10k
fin 20k 10k 10k
hin 5k 1k 1k

UD

eng 12.5k 2k 2k
fra 14.5k 1.5k 0.4k
rus 16k 0.9k 0.9k
ita 13k 0.6k 0.5k
hun 0.9k 0.4k 0.4k
ukr 5.5k 0.7k 0.9k
kor 23k 2k 2.3k
tur 15k 1.6k 1.6k
fin 12k 1.4k 1.6k
hin 13k 1.7k 1.7k

Table 4: Dataset statistics for datasets used in experi-
ments: FLORES+, XNLI, WikiAnn, Universal Depen-
dencies Tree Bank. For FLORES+ dataset, we used
devtest set with 1,012 sentences.

B Hyperparameter sweep.

We sweep hyperparameters over grid below (in
Table 5), and select the final parameters for each
model based on the best validation performance
(Accuracy for XNLI and F1-score for NER and
POS Tagging).

C Details on Theoreoretical Analysis

We aim to diminish the performance gap between
different languages by adopting IPA as a univer-
sal language representation. Motivated by domain
adaptation literature (Kifer et al., 2004; Ben-David
et al., 2010), we present a theoretical justification of
IPA for robust multilingual modeling by providing
a bound for cross-lingual performance gap.

Let D denote a domain as a distribution over text
feature input X , such as the sequence of word em-
beddings or one-hot vectors, and a labeling func-
tion f : X → {0, 1}. Assuming a binary clas-
sification task, our goal is to learn a hypothesis
h : X → {0, 1} that is expected to minimize a
risk εD(h, f) := Ex∼D[I(f(x) ̸= h(x))] and has
a small risk-deviation over two domains DA and
DB . Then, to formalize the cross-lingual perfor-
mance gap, we first need a discrepancy measure
between two languages. By following (Ben-David
et al., 2010), we adopt H-divergence to quantify
the distance between two language distributions.
Definition C.1 (H-divergence; Ben-David et al.
(2006)). Let H be a hypothesis class for input
space X and a collection of subsets from X is de-
noted by SH := {h−1(1)|h ∈ H} which is the
support of hypothesis h ∈ H. The H-divergence
between two distributions D and D′ is defined as

dH(D,D′) = 2 sup
S∈SH

|PD(S)− PD′(S)|

H-divergence is a relaxation of total variation be-
tween two distributions, and it can be estimated by
finite samples from both distributions if H governs
a finite VC dimension. Now, based on Lemma 1
and 3 of Ben-David et al. (2010), we make reason-
ing on performance gap over different language
domains.
Theorem C.2. Let h : X → [0, 1] be a real-valued
function in a hypothesis class H with a pseudo
dimension Pdim(H) = d. If D̂A and D̂B are the
empirical distribution constructed by n-size i.i.d.
samples, drawn from DA and DB respectively, then
for any δ ∈ (0, 1), and for all h, the bound below
hold with probability at least 1− δ.

|εDA
(h, f)− εDB

(h, f)| ≤ 1

2
dH∆H(D̂A, D̂B)

+2

√
d log(2n) + log(2/δ)

n

where H∆H := {h(x)⊕ h′(x)|h, h′ ∈ H} given
⊕ as a xor operation.
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Task Hyperparam Search space Selected parameter value

mBERT CANINE XPhoneBERT

XNLI
learning rate [5e-6, 7e-6, 1e-5, 3e-5, 5e-5] 5e-6 5e-6 (en), 1e-5 (sw, ur) 7e-6 (en), 3e-6 (sw, ur)
weight decay [0.0, 1e-1, 1e-2, 1e-3] 0.01 0.1 (en), 0.0 (sw), 0.01 (ur) 0.1 (en), 0.0 (sw), 0.01 (ur)

learning rate scheduling [True, False] True True False

NER learning rate [3e-5, 5e-5, 1e-4, 3e-4] - 5e-5 (en, fr, it, hu, ko, tr), 1e-4 (ru, uk, fi, hi) 3e-5 (ru, it), 5e-5 (en, fr, hu, uk, tr, fi, hi), 1e-4 (ko)
weight decay 1e-2 - 1e-2 1e-2

POS learning rate [3e-5, 5e-5, 1e-4, 3e-4] - 5e-5 (ru, uk, tr), 1e-4 (en, fr, fi, hi), 3e-4 (it, hu, ko) 5e-5 (en), 1e-4 (fr, ru, it, hu, uk, ko, tr, fi, hi)
weight decay 1e-2 - 1e-2 1e-2

Table 5: List of hyperparameter, search spaces and selected parameter values for different models applied to XNLI,
NER, and POS tasks, detailing learning rate, weight decay, and learning rate scheduling for mBERT, CANINE, and
XPhonemBERT, with specific configurations for optimal model performance per task.

proof of Theorem B.2. we start to prove Theorem
B.2. by restating Lemma 1 of (Ben-David et al.,
2010) adapted to our notation.

Lemma C.3. Let DA and DB be distributions of
domain A and B over X , respectively. Let H be
a hypothesis class of functions from X to [0, 1]
with VC dimension d. If D̂A and D̂B are the n-size
empirical distributions generated by DA and DB

respectively, then, for 0 < δ < 1, with probability
at least 1− δ,

dH(DA,DB) ≤ dH(D̂A, D̂B)

+ 4

√
d log(2n) + log(2/δ)

n
.

Then, for any hypothesis function h, h′ ∈ H, by
the definition of dH∆H-divergence, we have:

dH∆H(DA,DB)

= 2 sup
h,h′∈H

|Px∼DA [h(x) ̸= h′(x)]− Px∼DB [h(x) ̸= h′(x)]|

= 2 sup
h,h′∈H

|εDA(h, h
′)− εDB (h, h′)|

≥ 2|εDA(h, h
′)− εDB (h, h′)|

Now the below bound holds for any hypothesis
functions h, h′ ∈ H (See Lemma 3 of (Ben-David
et al., 2010)).

|εDA
(h, h′)− εDB

(h, h′)| ≤ 1

2
dH∆H(DA,DB)

Finally, by plugging the Lemma C.3 into the above
bound, we have Theorem C.2.

From Theorem C.2, we see that the difference
between true risks across language domains is
bounded by an empirical estimation of the diver-
gence (dH∆H) between those two domains plus an
irreducible term defined by problem setup. Thus, if

we reduce the divergence between language distri-
butions, the expected performance gap can also be
reduced accordingly. To investigate whether this is
indeed a case or not, we provided the embedding-
space similarity and logit-space Sinkhorn distance
between different languages in Figure 3. We ar-
gue that phonemic representation’s relatively mild
performance gap is achieved by reducing linguistic
gaps in the embedding space (high CKA) and final
output space (low Sinkhorn distance) those are the
proxy of H-divergence.
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1 Creoles in Machine Translation

Creole languages are low-resource languages, of-
ten genetically related to languages like English,
French, and Portuguese, due to their linguistic his-
tories with colonialism (DeGraff, 2003). As such,
Creoles stand to benefit greatly from both data-
efficient methods and transfer-learning from high-
resource languages. At the same time, it has been
observed by Lent et al. (2022b) that machine trans-
lation (MT) is a highly desired language technol-
ogy by speakers of many Creoles. To this end,
recent works have contributed new datasets, al-
lowing for the development and evaluation of MT
systems for Creoles (Robinson et al., 2024; Lent
et al., 2024). In this work, we explore the use
of the limited monolingual and parallel data for
Creoles using parameter-efficient adaptation meth-
ods. Specifically, we compare the performance of
different adapter architectures over the set of avail-
able benchmarks. We find adapters a promising
approach for Creoles because they are parameter-
efficient and have been shown to leverage trans-
fer learning between related languages (Faisal and
Anastasopoulos, 2022). While we perform experi-
ments across multiple Creoles, we present only on
Haitian Creole in this extended abstract. For future
work, we aim to explore the potentials for leverag-
ing other high-resourced languages for parameter-
efficient transfer learning.

2 Methodology and Experiments

To train adapters for Haitian, we use monolingual
data from NLLB-OPUS (Fan et al., 2020), and the
parallel CreoleM2M training split from CREOLE-
VAL (Lent et al., 2024). For evaluation, we lever-
age two evaluation datasets from CREOLEVAL: the
CreoleM2M evaluation split and the MIT-Haiti Cor-
pus for MT; we also evaluate over FLORES-200
(Goyal et al., 2022) (see Table 1).

All experiments are conducted with Kreyòl-MT,

Dataset Domain Size (#lines)
NLLB-OPUS Web scrape ∼15M
FLORES-2003 Wikipedia 3,001

CreoleM2M Religion
208,772 (train)

1,000 (eval)
MIT-Haiti3 Education 1,559

Table 1: Datasets used in our preliminary experiments.
A 3 indicates the dataset is used only as evaluation data.

Method Source Config name
Bottleneck Houlsby et al., 2019 double_seq_bn

+ Invertible Houlsby et al., 2019 ._inv
Compacter Mahabadi et al., 2021 compacter
LoRA Hu et al., 2021 lora
(IA)3 Liu et al., 2022 ia3

Table 2: Adapter architectures compared in our experi-
ments (Table adapted from Poth et al., 2023). We also
experiment with prefix tuning adapters (Li and Liang,
2021) and bottleneck adapters from Pfeiffer et al. (2020),
which differ only from those of Houlsby et al. (2019) in
adapter placement. However some preliminary experi-
ments found they performed worse than these five.

an mBART-50 model fine-tuned on the KREYÒL-
MT dataset (Robinson et al., 2024). Furthermore,
we apply dNLLB-200, a 600M-parameter distil-
lation of the original 54B-parameter NLLB-200
model as a baseline (NLLB Team et al., 2022).
Both models have 12 encoder and 12 decoder lay-
ers, 16 attention heads, and 1024 dimensions, and
each model have their own model vocabularies of
over 250,000 sentence-piece tokens shared across
all languages.

2.1 Experiments

Following Üstün et al. (2021), we attempt to lever-
age monolingual data to improve MT performance
by training denoising adapters added to the encoder,
the decoder, or or both components of Kreyòl-
MT model. Additionally, we experiment with or
without cross-attention (CA) fine-tuning between
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eng→hat hat→eng

eval set: CreoleM2M FLORES MIT-Haiti CreoleM2M FLORES MIT-Haiti
compacter 42 28 35 76 40 31
double-seq-bn 40 27 34 77 38 32
double-seq-bn-inv 41 26 35 76 37 32
ia3 42 28 34 77 39 32
lora 42 28 35 79 38 31
Kreyòl-MT w/ CA 42 27 35 75 40 31
Kreyòl-MT 33 27 32 66 40 30
NLLB 22 26 33 34 37 36

Table 3: Average BLEU scores across each evaluation benchmark. Different adapter methods are on top, while
baselines are on bottom.

the components. We evaluate using a number of
adapter architectures (see Table 2) which to our
knowledge have not yet been directly compared
against each other.

In preliminary experiments we narrowed down
all adapters from AdapterHub1 to the five best per-
forming, as shown in Table 2. We compare ap-
pendage of these adapters to three baseline models:
Kreyòl-MT out-of-the-box, Kreyòl-MT with CA
fine-tuning, and the 600M-parameter NLLB-200
model (NLLB Team et al., 2022).

2.2 Results

We find that some adapter architectures are more
amenable to Üstün et al. (2021)’s monolingual
adaptation methodology, as demonstrated by their
relative increased performance over baselines (see
Table 3). However, these scores consistently drop
as the quality and cultural relevance of the data in-
creases (i.e., we observe much better performance
on the religious-domain samples from CreoleM2M,
and worse performance on MIT-Haiti, which is cul-
turally appropriate data sourced from the commu-
nity). Regarded holistically, even the best adapters
do not consistently improve over CA fine-tuning
between encoder and decoder, and they either im-
prove or degrade performance by only marginal
amounts. Our results also suggest that CA fine-
tuning generally helps performance.

3 Conclusion and Future Work

While gains over baselines were reached via the
monolingual adaptation, most Creoles do not have
lage amounts of web-scraped data, as found in
NLLB-OPUS. Thus, the ability to leverage data

1https://docs.adapterhub.ml/overview.html

and transfer from closely related languages to Cre-
oles has great potential for bolstering Creole MT.
To this end, we plan experiments for parameter-
efficient transfer learning, inspired by Faisal and
Anastasopoulos (2022), who found success with
phylogenetically-motivated adaptation. The appli-
cation of phylogenetic adaptation for Creoles is not
straight-forward, however. There is no consensus
phylogeny of Creoles or even their broader lan-
guage families (Bakker et al., 2011; Aboh, 2016).
Simultaneously, previous works have shown that
transfer learning to Creoles from related languages
is nontrivial (Lent et al., 2022a, 2024; Robinson
et al., 2022, 2023). Thus an important area of Cre-
ole MT remains selecting favorable languages for
transfer learning.

In addition to phylogentic relation, we are explor-
ing selection of transfer languages via embedding
clustering. We cluster NLLB-200 language token
embeddings with cosine and Euclidean distance,
and identify Afrikaans, Igbo, and Yiddish as the
nearest neighbors of Haitian. These are interesting
findings, since Igbo is one of Haitian’s hypothe-
sized relatives (Seguin, 2020), and Yiddish and
Afrikaans are Indo-European languages influenced
by Afroasiatic and South African Khoisan lan-
guages, respectively—which appears analogous to
Haitian’s mixed Indo-European and Niger-Congo
influences. We also explore measuring vocabu-
lary subword evenness, as introduced by Pelloni
et al. (2022), as a more helpful language selection
method than simple typological proximity. While
experiments are still underway, these explorations
will help establish the languages amenable to cross-
lingual transfer for Creoles, and ultimately the de-
gree to which cross-lingual adaptation methods can
benefit speakers of Creoles.
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Abstract

Recent large language models (LLMs) demon-
strate impressive capabilities in handling long
contexts, some exhibiting near-perfect recall on
synthetic retrieval tasks. However, these eval-
uations have mainly focused on English text
and involved a single target sentence within
lengthy contexts. Our work investigates how
LLM performance generalizes to multilingual
settings with multiple hidden target sentences.
We create a new dataset – mLongRR – to com-
prehensively evaluate several multilingual long-
context LLMs on retrieval and reasoning tasks
across five languages: English, Vietnamese,
Indonesian, Swahili, and Somali. These lan-
guages share the Latin script but belong to dis-
tinct language families and resource levels. Our
analysis reveals a significant performance gap
between languages. The best-performing mod-
els such as Gemini-1.5 and GPT-4o, achieve
around 96% accuracy in English to around 36%
in Somali with a single target sentence. How-
ever, this accuracy drops to 40% in English
and 0% in Somali when dealing with three tar-
get sentences. Our findings highlight the chal-
lenges long-context LLMs face when process-
ing longer contexts, an increase in the number
of target sentences, or languages of lower re-
source levels.

1 Introduction

The ability to model long context sequences span-
ning tens of thousands of tokens is crucial for tasks
such as summarization and question answering
based on long documents such as books and re-
ports, and code generation at the repository level.
Recent advancements in large language models
(LLMs) have focused on improving their capabil-
ities in processing long context information (Dai
et al., 2019; Chen et al., 2023; Ding et al., 2024).

Long-context language models, particularly mul-
tilingual ones, have the potential to enable remark-
able progress in various applications by under-

standing lengthy textual data across different lan-
guages. An example of this potential was recently
demonstrated by the newly introduced Gemini-1.5
Pro model (Reid et al., 2024) which leveraged its
long-context window for in-context learning. By
including a grammar manual in its context win-
dow, the model was able to learn to translate from
English to Kalamang, an extremely low-resource
language with fewer than 200 speakers (Visser,
2020). Such examples highlight the potential of
long-context models in tackling challenging tasks
in low-resource languages, where data scarcity has
traditionally been a barrier.

Current methods for evaluating long-context
LLMs primarily focus on English text. This has led
to a severe lack of insights into their performance
across diverse languages. Evaluating multilingual
performance is crucial, not only for informing the
development of effective models that serve diverse
communities (Lai et al., 2023a; Ahuja et al., 2023),
but also for developing safer models as research
suggests that LLMs tend to generate more unsafe
and irrelevant responses to malicious prompts in
lower-resource languages (Shen et al., 2024). How-
ever, there is a notable lack of multilingual bench-
marks hindering our understanding of how long-
context LLMs perform across different linguistic
contexts.

To address this gap, we present the first compre-
hensive study of long-context LLMs in multilingual
settings leveraging evaluation frameworks relying
on synthetic tasks (Mohtashami and Jaggi, 2023;
Chen et al., 2023; Liu et al., 2024; Kamradt, 2023;
Reid et al., 2024; Anthropic, 2024). Although the
task is partially synthetic, we create a new dataset –
mLongRR1 – consisting of naturally occurring text
and human translated data, making the setup as
close to real-world setting while creating a con-

1The code is available at https://github.com/
PortNLP/mLongRR.
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Language ISO 639-3 Code Resource Level Language Family Script

English eng Level 5 Indo-European Latin
Vietnamese vie Level 4 Austro-Asiatic Latin
Indonesian ind Level 3 Austronesian Latin
Swahili swa Level 2 Niger-Congo Latin
Somali som Level 1 Afro-Asiatic Latin

Table 1: Languages studied and their details.

trolled environment for comparing model perfor-
mance across languages. In addition to retrieval
tasks, we introduce a new reasoning task where the
models not only need to retrieve relevant items but
also compare them with each other. For this, the
models must keep track of these items in a long-
context scenario, allowing us to analyze the models’
reasoning capabilities.

We conduct a systematic evaluation of six differ-
ent LLMs across five languages of varying resource
levels. Our research aims to answer the following
two questions:
(1) How do the long context capabilities of LLMs
compare in retrieval and reasoning tasks in multi-
lingual contexts?
(2) Are there significant performance differences
between LLMs in multilingual contexts?

Some of our key findings are summarized as
follows:

• The performance rapidly declines as we in-
crease the context lengths for all languages.

• The performance also rapidly decreases as we
move from higher-resource to lower-resource
languages.

• Reasoning tasks are more challenging than
retrieval tasks for all languages.

• There is a significant gap between the perfor-
mance of different LLMs.

• Even seemingly simple “needle in the
haystack” evaluation is able to expose limi-
tations in current models when dealing with
multilingual contexts.

We hope that the findings of our study will con-
tribute to a deeper understanding of current long-
context evaluation in multilingual contexts and en-
courage the development of more effective long-
context multilingual models.

2 Related Work

Recent advancements in language models have fo-
cused on improving their ability to recall and rea-
son over fine-grained information from tens of thou-
sands of tokens of context (Achiam et al., 2023; Jin
et al., 2024). Due to shortage of really long-context
benchmarks, evaluation is typically focused on syn-
thetic tasks such as passkey retrieval (Mohtashami
and Jaggi, 2023; Chen et al., 2023; Liu et al., 2024;
Ding et al., 2024; Jin et al., 2024) or needle in a
haystack (Kamradt, 2023; Reid et al., 2024; An-
thropic, 2024) which measure a model’s ability to
accurately recall information from a vast corpus of
data.

Recently, Gemini 1.5 (Reid et al., 2024) and
Claude-3 (Anthropic, 2024) models reported near-
perfect recall on the needle in a haystack task. Prior
work has also studied perplexity but a low perplex-
ity score has shown to not necessarily indicate pro-
ficiency in handling long contexts or reflect the
model’s performance on sequence-level tasks in
real applications (Sun et al., 2021; Pal et al., 2023;
Jin et al., 2024). Furthermore, most of these studies
have been limited to English only texts.

Although some long-context real-world bench-
marks have been recently introduced, they are also
limited to English (An et al., 2024), and while some
bilingual English/Chinese (Bai et al., 2023; Qiu
et al., 2024; Yuan et al., 2024) datasets offer a slight
improvement, due to the effort-intensive nature of
dataset creation, they are limited to a very small
number of languages.

3 Multilingual Needles in a Haystack for
Retrieval and Reasoning Evaluation

3.1 Languages and Models

Languages We selected five languages to study:
English, Vietnamese, Indonesian, Swahili, and So-
mali. These languages span different resource lev-
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els from high to extremely low2 allowing us to gain
insight into how language resource levels affect
models’ ability to work over long context windows.

Furthermore, we deliberately control for script-
related variables as they have been shown to have
a considerable impact on the performance of a
model (Bagheri Nezhad and Agrawal, 2024b). We
study languages that use the Latin script for three
reasons: models perform significantly better on
Latin-script languages than non-Latin languages
(Chau and Smith, 2021; Bang et al., 2023), the
fragmentation rate of Latin script is lower than
other scripts allowing Latin-script languages to be
represented with substantially fewer tokens as com-
pared to languages in other scripts (Ács, 2019; Ahia
et al., 2023) – a disparity that becomes even more
pronounced over long contexts, and, lastly, the frag-
mentation rate of Latin-script languages remains
comparable which is helpful when considering con-
siderably long input texts. Our selection of lan-
guages, shown in Table 1, has the added benefit
of including less-studied languages and language
families3, providing a more comprehensive view
of the latest generation of multilingual capabilities
of long-context LLMs.

Models We consider four proprietary and two
open-source long-context LLMs.

• GPT-4 is a proprietary multilingual LLM
from OpenAI (Achiam et al., 2023) that
has been shown to perform a wide range of
tasks. We used the gpt-4-0125-preview ver-
sion, which is the latest one at the time of our
experiments. It has a context window of 128K
tokens and was trained with the data until Dec
2023. We also study the recently introduced
GPT-4o model.

• Gemini-1.5 is another proprietary LLM withh
a context window of 10M tokens (Reid et al.,
2024). We used the gemini 1.5 pro version
which is built on top of mixture-of-experts
transformer-based architecture.

• Claude-3 is yet another proprietary model re-
leased by Anthropic with a context window of
length 200K (Anthropic, 2024) but is claimed

2The linguistic diversity taxonomy (Joshi et al., 2020) is
used to identify the resource levels.

3Language families were obtained from Ethnologue: Lan-
guages of the World, available at https://www.ethnologue.
com/.

to accept up to 1M tokens. We used claude-3-
sonnet-20240229 variant of the Claude family.

• YaRN-Llama-2-7b (Peng et al., 2024) is
an open-source model that extends Llama 2
model (Touvron et al., 2023) to accept a larger
context window. It is available in different
model sizes with varying context windows.
We selected the 7B model with the maximum
context window of 128K tokens, accessed via
Huggingface4.

• Llama-3-8B is a robust open-source model
(Dubey et al., 2024). We selected the
instruction-tuned version of the model with a
context window of 8k5.

3.2 Retrieval and Reasoning Tasks

Language models with the ability to handle long
context rely heavily on their capacity to retrieve
relevant information from the given text and reason
based on that information to interpret and follow
human instructions effectively. Although synthetic
tasks alone may not provide a comprehensive as-
sessment of a language model’s long-context ca-
pabilities, they offer the advantage of being easily
adaptable to specific scenarios and languages. This
is particularly important given that the most recent
long-context real-world benchmarks are limited to
English (An et al., 2024) or bilingual English/Chi-
nese (Bai et al., 2023; Qiu et al., 2024; Yuan et al.,
2024). Moreover, there is some evidence to suggest
that performance on synthetic retrieval tasks can,
to a certain extent, generalize to real-world datasets
(Qiu et al., 2024). Therefore, carefully designed
synthetic tasks can serve as a valuable tool for eval-
uating a language model’s long-context capabilities
across a diverse range of languages.

The “needle in a haystack” task (Kamradt, 2023),
similarly to the passkey retrieval task (Mohtashami
and Jaggi, 2023; Chen et al., 2023; Liu et al., 2024),
evaluates a model’s ability to extract relevant infor-
mation from lengthy documents. Typically, a target
sentence (the “needle") is inserted into a corpus of
documents (the context or “haystack"), followed
by a question designed to retrieve the fact in the
needle. As the input text grows longer, this task
typically becomes increasingly challenging.

4https://huggingface.co/NousResearch/
Yarn-Llama-2-7b-128k

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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We can formalize the problem of needles in a
haystack as follows: Given the needle n, a context
(or haystack) c, and a question q, the model is ex-
pected to generate an answer a. Usually, n, q, and
a are short, while c represents a long sequence of
text that can span thousands of tokens. The task
can involve either a single needle n = 1 or multiple
needles n > 1. With one or more needles, we can
create retrieval tasks, whereas with multiple nee-
dles we can construct reasoning tasks that require
the model to draw connections between different
pieces of information.

3.2.1 Retrieving a Needle (n = 1)
In this task, the model’s objective is to locate and
extract information from a single target sentence
hidden somewhere in the haystack. We adopt the
same needle pattern as used in previous studies
(Dhinakaran, 2024; Reid et al., 2024; Anthropic,
2024), which takes the form: “The special magic
{city} number is: {number}”. Here, {city} is ran-
domly chosen from a list of 69 unique cities from
around the world, and {number} is a randomly
generated 7-digit number. The list of cities were
automatically translated and then post-edited into
all the languages.

In English, this yields needle sentences such as
“The special magic Paris number is: 2243738” or
in Indonesian, “Nomor ajaib khusus untuk kota
Sydney adalah 9347172”.

The needle is then placed at different depths
within the context. We experiment with five depth
positions: 0% (near the beginning), around the
25% mark, 50% (in the middle), about 75% of
the way through, and 100% (towards the end of
the context). The needle is placed after the first
complete sentence at each specified depth to ensure
a linguistically meaningful position. Finally, the
model is asked to retrieve some information (e.g.,
the magic number or the city) found in the needle.
It is worth noting that all languages in this study
use the same Hindu-Arabic numeral system.

3.2.2 Reasoning over Multiple Needles (n > 1)
In real-world applications, tasks often require not
just accurate text retrieval but also the ability to
reason with the recalled information. To increase
the challenge, we introduce a setup where multiple
needles are placed within the context, requiring
the model to track and reason about these different
pieces of information.

The needle format remains similar to the one
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Figure 1: Ablation results of comparing Paul Graham’s
essays and news articles serving as haystacks for English
experiments tested using GPT-4 model.

used in retrieval task. We discretize the positions
of the target needles into four intervals: near the
top (0-25%), in the middle (25-50% and 50-75%),
and closer to the end (75-100%) of the context. For
instance, in the 25-50% bucket, the first needle is
placed around the 25% depth and the remaining
needles are randomly placed between somewhere
within the 25-50% depth. We explore two varia-
tions of this task, with n = 2 and n = 3. Finally,
the model is asked to generate a response based
on the information (e.g., the larger or the largest
magic number, or the city with the larger/largest
number) found in the needles.

3.3 Creating mLongRR Dataset

Prior work has extensively relied on Paul Gra-
ham’s essays in English to make up the haystacks
(Kamradt, 2023; Dhinakaran, 2024; Anthropic,
2024). Translating these essays into multiple lan-
guages, however, could potentially introduce trans-
lation errors. Instead, we create a new dataset –
mLongRR – by collecting BBC news articles pub-
lished in the five languages6, inspired by recent
work (Bagheri Nezhad and Agrawal, 2024a). This
approach allows us to work with sufficiently long,
naturally occurring, with the added benefit that this
recently published data is less likely to have been
encountered by the models during training. It is
worth noting that this does not result in a parallel
dataset as the news articles are often specific to
their respective regions.

We assess the impacts of different data for
haystacks by conducting an ablation study using the
GPT-4 model. As shown in Figure 1, we observed

6Our language selection was primarily constrained by the
availability of authentic texts, especially those within the same
script but varying in resource levels.
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no noticeable differences in the model performance
when the haystacks consisted of Paul Graham’s es-
says or news articles in English. To statistically
confirm this observation, we applied McNemar’s
test (McNemar, 1947), which yielded a p-value of
1.0, indicating no significant difference between
the two datasets.

The haystacks in mLongRR were created by draw-
ing on sufficient numbers of articles to fill up the
target context window length. There are enough
articles in each language to provide non-repeating
text for all window lengths. Thus, for example, the
first half of the 8K haystack is the same as the 4K
haystack, but its second half is composed of differ-
ent articles. An example of an English haystack
of 8K tokens with the needle “The special magic
Doha number is 9121372." located at 50% depth is
shown below:

Star dunes - or pyramid dunes - are
named after their distinctive...
[continues to about 4K tokens]
The special magic Doha number is
9121372.
In our dark laboratory, we see light
from these sand grains...
[context continues until 8K tokens]

3.4 Prompts
In our initial run of experiments, we explored two
existing prompt templates used in previous work:

• prompt 1 (Kamradt, 2023; Dhinakaran, 2024;
Anthropic, 2024), and

• prompt 2 (Reid et al., 2024).
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Figure 2: Ablation results of comparing two different
prompts.

As shown in Figure 2, prompt 1 performed better
in most of the models, so we decided to continue
with it for the rest of the experiments. The prompt
for the n = 1 retrieval task is as follows:

You are a helpful AI bot that answers
questions for a user. Keep your response
short and direct. The following is a
set of context and a question that will
relate to the context.
#CONTEXT
{context}
#ENDCONTEXT

#QUESTION
What is the special magic number? Don't
give information outside the document or
repeat your findings. If the information
is not available in the context respond
UNANSWERABLE.

For the reasoning with multiple needles task,
the prompt format remains largely similar except
the question. Recall that each needle has two ran-
dom variables: the number and the city. Therefore,
we explore two possible reasoning questions, one
about the larger number, and the other about the
city with the larger number.

• For reasoning about numbers, the question
is either “What is the larger magic number?”
when n = 2, or “What is the largest magic
number?” when n > 2.

• For reasoning over cities, the question is either
“Which city has the larger magic number?”
when n = 2, or “Which city has the largest
magic number?” when n > 2.

Although the articles in mLongRR are already in
the native languages, we hired four professional
human translators from the freelancing website
fiverr.com to translate the needles, city names,
and prompts from English into Vietnamese, Indone-
sian, Swahili, and Somali. In our preliminary ex-
periments with the GPT-4 model, we experimented
with English and language-specific prompts, and
found that English prompts worked better than
language-specific prompts, in line with previous
studies (Etxaniz et al., 2024; Bareiß et al., 2024;
Lai et al., 2023b), for three of four non-English
languages (with the exception of Swahili). As a
result, the remaining experiments were conducted
using English prompts.

3.5 Experiments
We conducted experiments on six models: GPT-4,
Gemini-1.5, Claude-3, Yarn-7b, Llama 3, and GPT-
4o. The context lengths varied from 2k, 8k, 16k,
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Figure 3: Radar plots showing the performance of six language models (GPT-4, Gemini-1.5, Claude-3, Yarn-7b,
Llama-3, GPT-4o) across five languages (English, Vietnamese, Indonesian, Swahili, Somali) in retrieval and
reasoning tasks involving one, two, and three target sentences (“needles”). The three plots represent different task
complexities: single needle retrieval (n = 1, left plot), two needle reasoning (n = 2, center plot), and three needle
reasoning (n = 3, right plot).

32k, to 64k tokens, and the needles were placed
at different depths/positions: 0%, 25%, 50%, 75%,
and 100%. For the retrieval task, we experiment
with one needle (n = 1), whereas for the reasoning
tasks, we investigate setups of needles n = 2, and
n = 3. To enhance the robustness of our evalua-
tion, we used a diverse corpus of recently published
news articles and a combination of random cities
and random numbers resulting in a vast number
of possible needle variations. Furthermore, we
conducted multiple runs for a subset of our experi-
ments and consistently observed a variance close
to 0 across these runs. Each model was evaluated
using its default configuration, and the maximum
output token size was set to 50.

3.6 Evaluation

The responses generated by the models were used
to calculate the accuracy. For both the retrieval
and reasoning tasks, the models generated a short,
straightforward text containing the 7-digit number
(for number-based reasoning) (Dhinakaran, 2024)
or the city name (for city-based reasoning). For ex-
ample, a typical output looked like this: "3210496"
or "The larger magic number is 8134445".
We extracted the number/city and compared it to
the ground truth to check whether the model’s re-
sponse was correct or not. For languages other than
English, the models occasionally responded with
the city name in English or the target language and
both were acceptable.

4 Results and Discussion

This section presents our results of four main ex-
periments: (1) performance of different models, (2)
performance with respect to varying needle depths
and haystack lengths, (3) performance across five
different languages, and (4) reasoning over magic
numbers and world cities. For the first three ex-
periments, we analyze the models’ responses when
asked to retrieve and reason about the magic num-
ber. In the last experiment, we compare the models’
performance when asked about the magic number
or the city.

4.1 Performance of different models across
languages and tasks

Figure 3 presents the radar plots summarizing the
the average accuracy of each model for all tasks
and languages.

Across the languages evaluated, English gener-
ally demonstrates strong performance across all
models and tasks, particularly in the simpler re-
trieval task (n = 1), likely due to the extensive
amount of English data available for model train-
ing. Vietnamese also performs relatively well, espe-
cially in the more complex reasoning tasks (n = 2
and n = 3), which may be attributed to effective
tokenization (more discussion in section 4.3). In
contrast, performance drops significantly for In-
donesian, Swahili, and Somali, particularly as task
complexity increases. While this decline is not
surprising and highlights the ongoing challenge in
multilingual NLP models trained predominantly on
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Figure 4: Heatmap visualizations with varying depths on the y-axis and context lengths on the x-axis, showing
average model performance over all the languages for both retrieval (top panel) and reasoning tasks (middle and
bottom panels). The color gradient from white to dark green represents accuracy levels, with darker green indicating
higher accuracy.

high-resource languages tending to perform well
in those languages but faltering in low-resource
languages, the extent of the decline remains note-
worthy.

Gemini-1.5 and GPT-4o exhibit strong perfor-
mance across all tasks and languages, maintaining
the most balanced results overall, particularly in En-
glish and Vietnamese. However, their performance
declines in more complex tasks for low-resource
languages like Swahili and Somali. In contrast,
other models display more variability, with certain
strengths in specific languages but generally lower
performance in reasoning tasks, particularly when
multiple needles are involved.

As task complexity increases (from n = 1 to
n = 3), extending from retrieval to reasoning, all
models experience a performance drop, particu-
larly in low-resource languages. This indicates
that while models can handle simple retrieval tasks
reasonably well, they struggle significantly with
reasoning tasks that require understanding and pro-
cessing long contexts in less-resourced languages.

4.2 Performance across varying needle depths
and haystack lengths

Figure 4 presents a detailed heatmap analysis of
each model’s performance with varying context

lengths and needle depths. For all models, perfor-
mance is better in shorter contexts, or when the
needle is either near the top or the bottom of the
context, suggesting that the “lost in the middle”
phenomenon which was previously observed in
English settings (Liu et al., 2024) extends to multi-
lingual contexts as well.

The heatmaps clearly show that longer context
lengths and greater depths negatively impact ac-
curacy. This suggests that current LLM architec-
tures struggle to use relevant information effec-
tively when processing large amounts of data or
when reasoning requires multiple steps. As the task
complexity increases (from retrieval to 3-needle
reasoning), model performance declines across the
board. This decline is particularly pronounced in
models like Yarn-7b and Llama-3, which fail to
handle the increased cognitive load of deeper rea-
soning tasks with longer contexts. Gemini-1.5 is
the most resilient model across all tasks, maintain-
ing relatively high accuracy even in complex sce-
narios. However, its performance also suffers as
depth and context length increase, highlighting the
challenges of scaling reasoning abilities in LLMs.

4.3 Performance across different languages

The results presented in Figure 5 provide a fine-
grained analysis of language-specific performance.
English consistently performs well across tasks,
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Figure 5: Language-specific heatmap visualizations with varying depths on the y-axis and context lengths on the
x-axis, averaged over all the models, when n = 1, n = 2, and n = 3.

GPT-4 Gemini-1.5 Claude-3 YaRN-7b Llama-3 GPT-4o

English 1.13 1.15 1.15 1.32 1.13 1.11
Vietnamese 2.08 1.20 2.89 2.75 1.27 1.29
Indonesian 1.92 1.40 2.33 2.48 1.91 1.55
Swahili 2.23 1.85 2.36 2.48 2.21 1.68
Somali 2.37 2.09 2.47 2.70 2.36 1.79

Average 1.94 1.53 2.24 2.34 1.77 1.48

Table 2: Tokenization rate for each language using different model tokenizers.

with near 100% accuracy in simpler tasks but de-
clining with increased complexity, particularly at
greater depths and longer contexts. Vietnamese
also maintains high accuracy, though it declines
similarly with complexity. Indonesian starts rea-
sonably well but drops significantly in more com-
plex scenarios. Swahili shows weaker overall
performance, struggling with all tasks, especially
complex ones. Somali performs the poorest, of-
ten reaching zero accuracy as task complexity in-
creases, highlighting challenges in handling this
low-resource language. In short, performance
degrades progressively as we move from high-
resource languages to low-resource languages. The
detailed results of each model and language are
included in Appendix A.

The strong performance of English and, to a

lesser extent, Vietnamese, reflects the availability
of ample training data in these languages. However,
access to the exact language distributions of train-
ing data are not readily available for most models,
including open-source model like Llama-3.

4.4 Impact of tokenization

We further analyze the tokenization rate, also
known as fertility rate, which is the average num-
ber of tokens generated per word for the different
languages. The results are presented in Table 2. Un-
surprisingly, English consistently shows the lowest
tokenization rates across all models. Vietnamese
has varying rates, with Gemini-1.5 being the most
efficient, while Claude-3 and YaRN-7b tokenize
more heavily. Indonesian exhibits moderate rates
with some variability across models. Swahili and
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Figure 6: Comparing reasoning over magic numbers and random cities, when n = 2 and n = 3 (results obtained
using Gemini-1.5).

Somali, the two lowest resource level languages in
our study, generally have higher tokenization rates,
suggesting these are more challenging for models
to process effectively.

We can make two interesting observations: (i)
the performance of LLMs is influenced by the
way the models tokenized text across languages,
with lower fragmentation leading to improved per-
formance, and (ii) the models with overall lower
fragmentation scores, such as Gemini-1.5 followed
by GPT-4o, achieved better results across all lan-
guages and tasks.

4.5 Reasoning about magic numbers and
world cities

Lastly, we compare the performance of the models
in reasoning tasks with 2 and 3 needles for two
types of question prompts: identifying the larg-
er/largest magic number (e.g., 4281932) or the city
with the larger/largest magic number (e.g., Doha).
From the results presented in Figure 6, we ob-
serve that the models yield generally better per-
formance in the “number” tasks compared to the
“city” tasks implying that they may be more adept at
handling numerical reasoning than reasoning over
geographic entities, however, this trend is reversed
for Swahili and Somali.

5 Conclusion

We introduce a new dataset designed to study long-
context retrieval and reasoning tasks across mul-
tiple languages. By evaluating six LLMs on their
ability to process text in five languages with vary-
ing resource levels, using naturally occurring text
and a needle-in-a-haystack paradigm with different
numbers of needles, we discovered key insights.
Notably, we observed a significant decline in per-
formance, particularly when dealing with longer

contexts, an increased number of needles, or lower
resource levels. Even seemingly simple synthetic
tasks like needle-in-a-haystack revealed substan-
tial performance disparities. Our findings high-
light the need to develop not only more effective
long-context models but also improved tokeniza-
tion schemes for the effective processing of low-
resource languages.

Limitations

While our current focus has been on languages that
use Latin script, we are eager to expand our hori-
zons and explore the diversity of languages from
other scripts in the future. Furthermore, our inves-
tigation was restricted to three needles. It would
be interesting to explore whether addition of more
needles continues to increase the task complexity.

Ethics Statement

We did not implement any filtering of the haystack
data, it is possible that there are inherent biases
towards certain groups within the dataset. The im-
pact of such biases on our findings remains unclear
and fall outside the scope of this study. For an-
notation in Vietnamese, Indonesian, Swahili, and
Somali, we hired translators and paid USD 15 to
each translator as the short translation tasks took
less than one hour each.
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A Detailed model and language-specific
results

Figures 7, 8, 9, 10 and 11 show detailed results of
the five models: GPT-4, Gemini-1.5, and Claude-3,
Llama 3, and GPT-4o.
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Figure 7: GPT-4
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Figure 8: Gemini-1.5
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Figure 9: Claude-3
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Figure 10: Llama 3
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Figure 11: GPT-4o
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Abstract

The development of large language models
(LLMs) relies heavily on extensive, high-
quality datasets. Publicly available datasets
focus predominantly on English, leaving other
language communities behind. To address
this issue, we introduce Community OSCAR,
a multilingual dataset initiative designed to
address the gap between English and non-
English data availability. Through a collec-
tive effort, Community OSCAR covers over
150 languages with 46 billion documents, to-
taling over 345 TiB of data. Initial results in-
dicate that Community OSCAR provides valu-
able raw data for training LLMs and enhancing
the performance of multilingual models. This
work aims to contribute to the ongoing advance-
ments in multilingual NLP and to support a
more inclusive AI ecosystem by making high-
quality, multilingual data more accessible to
those working with low-resource languages.

1 Introduction

The success of large language models (LLMs)
hinges on access to vast amounts of high-quality
data. The exact composition, procurement, and cu-
ration of this data has been one of the more closely
guarded secrets of commercial LLMs. Recently,
academic and open-source efforts have made signif-
icant strides in curating and refining large-scale cor-
pora for English [10, 9, 11, 8]. These data-driven
efforts are central to advancing open-source and
transparent LLM initiatives.

Nonetheless, a strong disparity remains between
the availability of English-language datasets and
those for other languages. We argue that access to
high-quality data is imperative for ensuring lin-
guistic diversity, academic and economic com-
petitiveness, and AI sovereignty for non-English
countries and speakers. However, clean, multilin-
gual datasets like CulturaX [7], for example, can
only provide 100B+ tokens for less than ten lan-

Languages 151
Documents 46B
Data size 346 TiB
Crawls 45 (Oct. 2014 - Aug 2024)

Table 1: Community OSCAR dataset statistics. All
statistics were calculated on a random subset of 10 re-
leases and extrapolated to the entire dataset.

guages. To bridge this gap, we introduce Com-
munity OSCAR, a publicly available multilingual
dataset that covers over 150 languages and includes
over four times as much data as previous corpora.
The creation of Community OSCAR is a collective,
community-driven effort, highlighting the impor-
tance of collaboration in addressing the challenges
of data scarcity for non-English languages1. By ex-
panding the availability of non-English data, Com-
munity OSCAR seeks to democratize access to
resources essential for building inclusive, multilin-
gual AI systems. Our initial results indicate that
Community OSCAR provides valuable raw data
for downstream LLM training.

2 Community OSCAR

As the name suggests, Community OSCAR builds
on prior work of the OSCAR corpus [1]. We went
ahead and extended these efforts.

OSCAR. The OSCAR project (Open Super-large
Crawled Aggregated coRpus) aims to provide
open-source, web-based multilingual resources.
Community OSCAR utilizes the high-performance
Ungoliant data pipeline to process, filter, and an-
notate data at scale [2]. Most importantly, Ungo-
liant identifies and splits all documents based on
their language [3, 6]. Similar to prior releases of
OSCAR, we source our web-crawled data from
Common Crawl’s (CC) WET files.

1Dataset available at https://huggingface.co/
datasets/oscar-corpus/community-oscar
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German English
Model T-QA↑ ARC↑ HellaSwag↑ MMLU↑ T-QA↑ ARC↑ HellaSwag↑ MMLU↑
LLama-3-8B 0.476 0.476 0.599 0.537 0.439 0.594 0.821 0.667
LLama-3-8B + DE pre-train 0.491◦ 0.507◦ 0.654• 0.540• 0.449 0.573 0.804 0.627
LLama-3.1-8B 0.504• 0.470 0.608 0.535 0.451 0.577 0.817 0.661
LLama-3.1-8B + DE pre-train 0.483 0.517• 0.650◦ 0.540• 0.464 0.581 0.802 0.635

Table 2: Multilingual pre-training with Community OSCAR. We report benchmark scores in German and English of
Llama-3 models before and after continual pre-training with 80B German tokens from a filtered version of our data.

Dataset Collection & Statistics. Community
OSCAR follows the annotation schema established
in the OSCAR 23.01 release2, ensuring consistency
and reliability in data quality. Consequently, Com-
munity OSCAR contains the raw CC text but in-
cludes quality annotations for filtering. In con-
trast to prior work, we incorporate 45 monthly CC
dumps from August 2024 to October 2014. We
prioritized more recent data, covering all CC re-
leases from the last four years in addition to hand-
selected earlier data. Computation was split over
multiple super-computers and high-performance
clusters across Europe. Community OSCAR cov-
ers 151 different languages and contains over 45B
documents for a total of over 345TiB of data.

By offering this extensive corpus, we hope to
contribute to the ongoing efforts to improve mul-
tilingual NLP. Further, Community OSCAR aims
to ensure these advancements are accessible to a
broader audience, including researchers and devel-
opers working with low-resource languages.

3 Outlook

The release of Community OSCAR now enables
further progress in multilingual language model-
ing. We are actively working on extending the
dataset to at least all available CC dumps, curat-
ing a high-quality subset from the raw data, and
training LLMs on that data. All three steps yield
good initial results, which we will discuss in the
following section. Specifically, we conducted ini-
tial experiments with subsets of the data and plan
to extend our insights to the rest of the dataset.

Extending Community OSCAR. Despite its
size, this initial release of Community OSCAR
still leaves room for more data to be included. We
aim to provide continuous support for the dataset,
processing and adding any upcoming CC dumps
whenever they become available. Further, out of
100 current CC releases, we only cover 45%. We

2Annotation scheme documented at: https://oscar-project.
github.io/documentation/versions/oscar-2301/

are continuing the Community OSCAR effort to in-
corporate every existing CC dump since 2014. We
globally deduplicated a subset of Community OS-
CAR for over ten languages and found that consec-
utive crawls contain significant numbers of unique
documents. Especially for very low-resource lan-
guages, that additional data can be crucial in en-
abling LLM training at scale.

Data Curation. The raw Community OSCAR
data should be processed further before being used
for LLM training. To begin with, different crawls
contain large amounts of duplicate documents. Ad-
ditionally, the raw data from CC consists of differ-
ent quality levels concerning syntactical and gram-
matical correctness, factual accuracy, quality of
HTML parsing, unsafe content, etc. We want to
identify the high-quality subset of all documents
for training and remove duplicates. Community
OSCAR has already been annotated with important
information to enable curation efforts. Addition-
ally, we have begun implementing a more sophisti-
cated curation pipeline building on fineweb [8]. We
identified several steps in the fineweb filtering that
must be adjusted for the specific target language.
We have already made an initial cleaned and dedu-
plicated subset of the data available online for 10
languages3.

LLM Training. Lastly, we filtered and dedupli-
cated the German data from 20 Community OS-
CAR dumps to assess its potential for LLM train-
ing. We follow existing approaches for the mul-
tilingual extension of pre-trained LLMs [5] and
performed continual pre-training on LLama-3.x-8B
checkpoints [4]. Specifically, we further trained the
Llama-3 and LLama-3.1 checkpoints on roughly
80B German tokens interleaved with 5% English
replay from fineweb-edu.

The evaluation results are depicted in Tab. 2. We
can clearly see that continual pre-training on our
German data significantly improves the model’s

3fineweb dataset at: https://huggingface.co/
datasets/occiglot/occiglot-fineweb-v0.5
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German performance. Crucially, that observation
also holds for Llama-3.1 which is already a
multi-lingual model with German capabilities.

Community OSCAR’s ongoing work con-
tributes to multilingual NLP and aims to make
advancements accessible to a broader audience.
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Abstract

Large language models (LLMs) are increas-
ingly used in medical fields. In mental health
support, the early identification of linguistic
markers associated with mental health con-
ditions can provide valuable support to men-
tal health professionals, and reduce long wait-
ing times for patients. Despite the benefits
of LLMs for mental health support, there is
limited research on their application in mental
health systems for languages other than En-
glish. Our study addresses this gap by focusing
on the detection of depression severity in Greek
through user-generated posts which are auto-
matically translated from English. Our results
show that GPT3.5-turbo is not very successful
in identifying the severity of depression in En-
glish, and it has a varying performance in Greek
as well. Our study underscores the necessity for
further research, especially in languages with
less resources. Also, careful implementation is
necessary to ensure that LLMs are used effec-
tively in mental health platforms, and human
supervision remains crucial to avoid misdiag-
nosis.

1 Introduction

Mental health issues (e.g., depression, anxiety, and
post-traumatic stress disorder (PTSD)) are preva-
lent worldwide and pose significant challenges to
public health (World Health Organization, 2021).
Traditional methods for diagnosing mental health
conditions often rely on self-reported surveys, clin-
ical interviews, and standardised assessments con-
ducted by trained professionals (Kessler and Üstün,
2004). While these methods are effective, they are
also resource-intensive, time-consuming, and may
not always be accessible to individuals in need, par-
ticularly for speakers of languages beyond English.

In this context, the application of LLMs to detect
mental health symptoms from textual data offers
a compelling alternative. These models can anal-
yse large volumes of text data (e.g., social media

posts, forum discussions, and personal narratives)
quickly to identify linguistic markers associated
with mental health conditions (Guntuku et al., 2019;
Chancellor et al., 2019). This capability opens up
new avenues for early detection and intervention,
providing valuable support to mental health profes-
sionals and potentially reaching out to the patients
whose symptoms may be overlooked and/or save
time (e.g., long waiting times).

Despite the potential benefits, the performance
of LLMs in multilingual mental health symptom
detection remains underexplored. Previous stud-
ies have primarily focused on English-language
datasets, leaving a gap in our understanding of how
these models perform in other linguistic contexts
(Raihan et al., 2024). Hence, our work raises the
following research questions:

• Can an LLM accurately predict the severity
of mental health conditions from English user-
generated posts?

• Is the detection performance similar if one
automatically translates the English posts to
another language (e.g., Greek) with LLMs?

To address these research questions, first, we
assess a state-of-the-art multilingual LLM when
predicting the severity of mental health in English
user-generated posts. Then, we automatically trans-
late these posts from English to Greek, a language
for which there are no resources for this task (Bak-
agianni et al., 2024), and re-assess the performance
of the LLM. Our research not only contributes to
the development of more robust and inclusive AI-
driven mental health diagnostic tools but also em-
phasises the importance of culturally and linguis-
tically sensitive approaches in mental health care
beyond English. The contribution of this work lies
into the evaluation of the predictive power of a pop-
ular LLM in detecting the severity of depression
across English and Greek.
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Το παραπάνω κείµενο 
κατηγοριοποιείται στο 
επίπεδο σοβαρότητας 
κατάθλιψης 3.

Δεν το ξέρω αυτό. Νομίζω ότι είμαι 
υπεύθυνος για όλα αυτά. Για τους 

δράστες, για την κακοποίηση, για τη 
δυσλειτουργία, για την κατάθλιψη 
μου, τις αυτοκτονικές μου σκέψεις, 
την αθλιότητα της ζωής μου. Όλα 

αυτά. Είμαι υπεύθυνος.

I don’t know that. I think I’m 
responsible for all of it. For the 

perpetrators, for the abuse, for the 
dysfunction, for my depression, my 

suicidal ideation, my pathetic life. All 
of it. I’m responsible.

Predicted:3, 
Ground truth:3

Translate with LLM to 
Greek

Validate ground 
truth

Translation Predict if indication 
of mental health 

condition or level

Tweet or reddit 
post in English

LLMLLM

Prediction Result

Figure 1: An illustration of our proposed methodology.

2 Related work

LLMs have remarkable accuracy in detecting men-
tal health symptoms by leveraging their ability to
understand context and semantics at a deeper level.
Examples include BioBERT (Lee et al., 2020), and
ClinicalBERT (Huang et al., 2019), which are pre-
trained on biomedical corpora or clinical notes.
In contrast, models like MentalBERT (Ji et al.,
2022), DisorBERT (Aragon et al., 2023), and Suici-
dalBERT (Anonymous) are pre-trained on mental
health-related social media data. Additionally, re-
search by Benton et al. (2017) showed that NLP
can effectively assess depression and PTSD from
clinical notes, further validating the utility of these
models in a healthcare setting.

Although the details about training and evalu-
ation are not always transparent, the multilingual
capabilities of LLMs enable these models to un-
derstand and generate text in various languages. A
recent example is the XLM-R model, which has
been trained on a vast amount of multilingual data
and shows strong performance across multiple lan-
guages. According to Conneau et al. (2020), their
model XLM-R outperforms previous models on a
wide range of tasks, demonstrating that leveraging
large-scale multilingual data can lead to improve-
ments in cross-lingual understanding.

Despite these advancements, significant chal-
lenges remain in achieving truly equitable perfor-
mance across all languages and handling culturally
specific contexts accurately (Zhang et al., 2020).
Languages with limited digital text data still pose
a considerable challenge for LLMs, often result-
ing in lower performance and less reliable outputs.
Addressing this issue requires more inclusive data
collection practices and further research into trans-
fer learning techniques that can better utilise lim-
ited resources (Doğruöz and Sitaram, 2022). Ad-
ditionally, capturing cultural nuances and context-
specific meanings is a complex task, as language is
deeply intertwined with cultural and societal norms.

Efforts to improve these aspects include developing
more sophisticated algorithms and incorporating
diverse and representative datasets (Doğruöz et al.,
2023), ensuring that the benefits of multilingual
LLMs are accessible to a broader range of users
globally.

More recently, a plethora of social network
datasets targeting mental health, have been avail-
able (Raihan et al., 2024). The authors gathered
social media posts from Reddit and Twitter regard-
ing depression, PTSD, schizophrenia, and eating
disorders. Moreover, multiple models were fine-
tuned on small-sized publicly available annotated
mental health datasets by the authors to use them
for labelling their introduced MentalHelp dataset.
Nevertheless, the dataset includes only posts in En-
glish, and thus its use is restrictive, disallowing
further research for multilingual scenarios.

3 Proposed Methodology

Our methodology leverages LLMs, in order to
translate English social media posts to another lan-
guage (Greek), and then to predict mental health
conditions accordingly. Specifically, we translate
the social media posts to Greek via an LLM, and
we feed the resulting translations to a prompt that
asks the LLM to predict specific severity levels of
mental health conditions. We assess the LLM by
comparing the predicted classes in both languages
against the ground truth labels. We note that al-
though our study focuses on Greek, our method
is applicable to other language pairs as well. An
illustration of the proposed approach for evaluating
LLMs for multilingual detection of mental health
conditions is shown in Figure 1.

4 Experiments

We select the DEPSEVERITY dataset of Naseem
et al. (2022), which consists of posts from the social
media platform Reddit, regarding different levels
of depression. The posts (in English) are already
labelled in terms of four levels of severity: minimal,
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Dataset Category #Classes #Instances Labels (#Support) Prompt

Depression 4 3553

Minimum (2587) “Categorise the following text
with 1 of the 4 depression sever-
ity levels (0: Minimum, 1: Mild,
2: Moderate, 3: Severe)"

DEPSEVERITY Mild (290)
Naseem et al. (2022) Moderate (394)

Severe (282)

Table 1: The benchmark dataset used in our study along with statistics.

English Greek

Class Pr Rec F1 Pr Rec F1

MINIMUM 0.98 0.14 0.25 0.99 0.07 0.14
MILD 0.04 0.15 0.07 0.04 0.17 0.06
MODERATE 0.13 0.22 0.17 0.14 0.55 0.23
SEVERE 0.13 0.71 0.22 0.16 0.28 0.20

Macro avg 0.32 0.30 0.17 0.33 0.27 0.16

Table 2: GPT-3.5 with 0-shot learning on DEP-
SEVERITY, measuring Precision, Recall, and F1 per
class in English and Greek. The last row shows the
macro averages. The best F1 per class is shown in bold.

mild, moderate, and severe depression. The ma-
jority of posts belong to the minimal severity level
(Table 1) making it a highly imbalanced dataset.
We specifically selected this multi-class dataset to
make the task more challenging for the LLM, as
binary problems would have been easier to answer.

We use GPT3.5-turbo (Brown et al., 2020)
through its API to translate the posts and predict the
labels. The temperature parameter is set to 0, so the
outcome is reproducible, regarding translations and
predictions. We approach the task with text classi-
fication, comparing the predicted classes with the
ground-truth ones, reporting Precision, Recall and
F1. We experiment with English as the source and
Greek as the target language. The prompt we used
to predict the severity levels is shown in Table 1.

Preliminary Prompting Before exposing our
LLM to any posts, definitions, or instructions, ei-
ther for the translation or the classification task,
we asked how it would classify posts to different
levels of depression severity. The response of LLM
was that it would initially try to identify language
patterns associated with depression, such as:

• Persistent negative emotions, such as sadness,
or hopelessness.

• Self-criticism or feelings of worthlessness.

• Expressions of loneliness or social with-
drawal.

• Changes in behavior or routines, as in sleep
patterns or appetite.

• References to emotional pain or distress.

More specifically, it would try to adapt the four
depression severity levels to fit the context of social
media posts, as follows.

• Level 1 (Minimum): Posts with minimal or
occasional expressions of sadness.

• Level 2 (Mild): Posts indicating frequent neg-
ative emotions or noticeable changes in behav-
ior.

• Level 3 (Moderate): Posts suggesting signifi-
cant impairment in daily functioning or clear
signs of distress.

• Level 4 (Severe): Posts indicating severe emo-
tional distress, potential risk factors for self-
harm, or complete social withdrawal.

We can infer that the LLM expects posts with very
generic indications of negative signs.

Classification in the source language Initially,
we experimented with the data in their source lan-
guage (English), to set the baseline performance.
That is, no translation step has been performed
at this stage. As we observe in Table 2, the best
F1 is achieved for the lowest severity/indication
(F1=0.25) and the next best for the highest severity
(F1=0.22). The overall low performance (F1=0.17)
can be attributed to the difficulty of the task of
detecting specific levels of depression, which are
considered less distinct compared to other condi-
tions. Therefore, it is likely more challenging for
an LLM to distinguish these levels in user posts.

Classification in the target language In Greek,
the worst results are observed for the mild level
(F1=0.06), similarly to English (F1=0.07). Overall,
a drop in scores is observed across all classes ex-
cept for the moderate level, where results improve
(F1=0.23; from 0.17). Also, although the scores for
the two edges remain relatively high, the score for
the lowest severity dropped in Greek (F1=0.14).

Error Analysis Mental health terminologies and
nuances may not be well-represented in the avail-
able Greek corpora, making it difficult for an LLM
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My therapist says this is a normal behavior 
to display. Having been ripped from my 
children and left on the streets is very hard 
and I honestly want to give up. But the 
anxiety swirls to the point I keep trying to 
find where I went wrong. It replays and 
plays in my head over and over like a 
horror movie. The feeling of wanting to 
die because at that point I had nothing left.

Ground truth: 3 (severe)
LLM prediction: 3 (severe)

Ο θεραπευτής µου λέει ότι αυτή είναι µια 
φυσιολογική συµπεριφορά να εκδηλώνεται. Να 
έχεις αποσπαστεί από τα παιδιά µου και να 
µείνεις στους δρόµους είναι πολύ δύσκολο και 
ειλικρινά θέλω να τα παρατήσω. Αλλά η 
ανησυχία στριφογυρίζει µέχρι το σηµείο που 
συνεχίζω να προσπαθώ να βρω πού έκανα λάθος. 
Επαναλαµβάνεται και παίζει στο µυαλό µου ξανά 
και ξανά σαν ταινία τρόµου. Το συναίσθηµα 
της επιθυµίας να πεθάνω επειδή σε εκείνο το 
σηµείο δεν είχα τίποτα άλλο.

LLM prediction: 3 (severe)

Βάσει του περιεχοµένου του 
κειµένου, η κατηγοριοποίηση της 
κατάθλιψης είναι στο επίπεδο 3: 
Σοβαρό.
----------------------------------------

Both original post and 
translation are correct 

Original post in English Translated post in Greek Prediction

The sensation lasted hours. It seemed like 
a circulation problem, and I panicked and 
of course ended up in the ER again. This 
time a doctor came to see me immediately. 
He wanted to talk about my anxiety. He 
said he could run some more tests, but he 
didn't think it would help.

Ground truth: 0 (minimum)
LLM prediction: 3 (severe)

Η αίσθηση κράτησε ώρες. Φάνηκε σαν 
πρόβληµα κυκλοφορίας, και πανικοβλήθηκα και 
φυσικά κατέληξα ξανά στο ΕΚΑ. Αυτή τη φορά 
ήρθε αµέσως ένας γιατρός να µε δει. Ήθελε να 
µιλήσει για την αγωνία µου. Είπε ότι θα 
µπορούσε να κάνει µερικές ακόµα εξετάσεις, 
αλλά δεν νοµίζει ότι θα βοηθήσει.

LLM prediction: 2 (moderate)

Both original post and 
translation are wrong

Figure 2: Example translation (from English to Greek), with similar colour used for original and translated words.

to grasp the context accurately. Figure 2 presents
two instances of the dataset and their corresponding
translations in Greek. We marked words and their
translations with similar colours for better visibility.
Both translations appear to be accurate and convey
the same meaning as the original Greek text. There
are no significant differences that would alter the
understanding of the texts. The first segment con-
tains explicit mentions of severe depression symp-
toms such as “want to give up" and “feeling of
wanting to die.” These statements clearly indicate
a severe level of depression, which is why both
the ground truth and prediction were classified as
severe. The second segment describes physical sen-
sations, panic, and anxiety but does not express a
severe depressive state. The ground truth classified
this as minimal depression, likely because the pri-
mary issues are related to panic and anxiety rather
than depression. The LLM predicted a moderate
level of depression for the second segment, possi-
bly because it picked up on the words “panicked"
and “anxiety", which are associated with higher
levels of distress. However, these symptoms are
more indicative of anxiety disorders rather than
depression. The discrepancy in the second predic-
tion can be attributed to the LLM’s interpretation
of anxiety and panic as indicative of moderate de-
pression, whereas the ground truth assessment con-
siders these symptoms in the context of a panic or
anxiety disorder with minimal depression.

Cost of experiments The total cost of credits us-
ing the GPT3.5-turbo API was less than $30 (US

dollars), showing that minimal resources were re-
quired to conduct our experiments, without the
need for expensive GPU infrastructure or fine-
tuning. Our cost-saving methodology for utiliz-
ing resources efficiently is especially promising for
extending medical data sets in English into other
languages.

5 Conclusion

In our study, we focused on the ability of an LLM to
predict the severity of depression in user-generated
posts in English (source language) and in Greek
(target language) when the posts are machine-
translated by the same LLM. Our findings show
that there is room for improvement in the source
language (English) and that the edge classes are
easier to handle. In the target language (Greek),
results dropped for all but the moderate level, for
which results increased considerably. Considering
the varying performance of the LLM across the
two languages, there is a need for utmost precau-
tions not to rely on LLMs solely for translation in
any healthcare setting. As stated by Stade et al.
(2024), diagnosis of mental health should never be
left alone to automatic systems, and it should never
replace the diagnosis by human professionals, to
avoid possible errors and/or misdiagnoses. Our ap-
proach, however, does not aim to assist the patients.
By contrast, it is potentially useful to train profes-
sionals in the mental healthcare domain, which can
be vital for languages other than English.
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Limitations

Translation In this work, we used a popular
LLM like GPT3.5 to translate posts. Translating us-
ing only an LLM and not having an expert or native-
language human resources introduces a small loss
of information that in some cases affects the final
results.

Evaluation Automatically evaluating the perfor-
mance of LLMs is by definition a hard task. In
order to measure the performance we search for
the label in the LLM output. Whenever no label is
detected we count it as the minimum label (class:
0) for the depression dataset and not suicidal (class:
0) for the suicide dataset.

Potential risks The quality of publicly available
datasets, especially in sensitive areas like the men-
tal health care domain is of great importance for
prediction tasks. The data sets we employed as a
basis in our study, along with our created multilin-
gual data should be used with utmost care and only
for assisting the health care specialists instead of
diagnosing patients directly.
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Abstract
Large Language Models (LLMs) are becoming
crucial across various fields, emphasizing the
urgency for high-quality models in underrep-
resented languages. This study explores the
unique challenges faced by low-resource lan-
guages, such as data scarcity, model selection,
evaluation, and computational limitations, with
a special focus on Turkish. We conduct an in-
depth analysis to evaluate the impact of train-
ing strategies, model choices, and data avail-
ability on the performance of LLMs designed
for underrepresented languages. Our approach
includes two methodologies: (i) adapting ex-
isting LLMs originally pretrained in English
to understand Turkish, and (ii) developing a
model from the ground up using Turkish pre-
training data, both supplemented with super-
vised fine-tuning on a novel Turkish instruction-
tuning dataset aimed at enhancing reasoning
capabilities. The relative performance of these
methods is evaluated through the creation of a
new leaderboard for Turkish LLMs, featuring
benchmarks that assess different reasoning and
knowledge skills. Furthermore, we conducted
experiments on data and model scaling, both
during pretraining and fine-tuning, simultane-
ously emphasizing the capacity for knowledge
transfer across languages and addressing the
challenges of catastrophic forgetting encoun-
tered during fine-tuning on a different language.
Our goal is to offer a detailed guide for ad-
vancing the LLM framework in low-resource
linguistic contexts, thereby making natural lan-
guage processing (NLP) benefits more globally
accessible.

1 Introduction

The remarkable advancements in Large Language
Models (LLMs) have revolutionized the field of
natural language processing (NLP) (Brown et al.,
2020; OpenAI, 2023; Chowdhery et al., 2022; Anil
et al., 2023; Touvron et al., 2023b). However,
addressing models that diverge from an English-
centric framework poses considerable challenges,

particularly in low-resource languages. While cer-
tain languages like Turkish aren’t categorized as
under-resourced, there’s a limited number of re-
search groups focusing on them (Safaya et al.,
2022). Consequently, these languages lag in ad-
vancing cutting-edge systems because of the ab-
sence of solid and open-source base LLMs together
with standardized benchmarks to evaluate their ca-
pabilities.

Recognizing this gap, our work is motivated
by aiming to leverage Turkish LLMs. We metic-
ulously demonstrate two distinct methodologies:
we first tried to adapt two base LLMs, Mistral-7B
(Jiang et al., 2023) and GPT2-xl (Radford et al.,
2019) to Turkish. Secondly, we trained a family
of decoder models entirely from scratch in varying
sizes. To adhere the Turkish LLMs to human in-
structions and extend their reasoning capabilities,
we designed a novel Turkish instruction-tuning (IT)
dataset, designed to enhance the reasoning abilities
of Turkish LLMs by following the Self-Instruct
framework (Wang et al., 2022a).

One of the key challenges with Turkish LLMs is
evaluating their accuracy on different tasks in a re-
producible and fair manner while ensuring dataset
quality. Many reasoning datasets have been directly
machine-translated from English without any vali-
dation, leading to biased and inaccurate results. To
address this, we introduce three Turkish datasets:
TruthfulQA-TR, for assessing a model’s tendency
to reproduce common falsehoods, ARC-TR, a set
of grade-school science questions, and GSM8K-TR
for evaluating the mathematical reasoning capabili-
ties of the models. We carefully translated by using
state-of-the-art tools and validated all samples with
multiple annotators, cleaning them as needed. We
detailed the translation and annotation processes.

Our contributions are as follows:

• We release the Hamza LLM series, encom-
passing models from 124M to 1.3B parame-
ters. Notably, Hamza-xl with 1.3B parameters
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marks the premier and most expansive open-
source, scientifically vetted Turkish LLM that
is trained on 300B tokens.

• Our analysis explores two distinct method-
ologies for developing Turkish LLMs in re-
source and computational power-constrained
environments: (i) extending pretrained mod-
els (Mistral-7b and GPT2-xl) with Turkish-
only data (called as HamzaMistral and
HamzaGPT2−xl), and (ii) constructing a
model from scratch, similar to the GPT2 ap-
proach. This paper thoroughly discusses the
merits and drawbacks of these strategies.

• We have curated new Turkish evalua-
tion datasets TruthfulQA-TR, ARC-TR, and
GSM8K-TR by carefully validating each with
multiple annotators, offering meticulously
cleaned datasets, and launching a leaderboard
to catalyze ongoing advancements in Turkish
LLMs.

• Committing to open science principles, we
make all source code, model checkpoints, and
datasets open-source and publicly accessible.

By detailing the development of specialized
datasets and methodologies, we offer a compre-
hensive guide for building LLMs for languages
with limited resources. Additionally, our contri-
butions substantially enrich the field by providing
critical resources that will support future research
in Turkish language processing and the broader
area of Natural Language Processing (NLP) for
under-resourced languages.

2 Datasets

The initial step in building a base LLM involves
pretraining it on a vast corpus of text with a next-
token-prediction objective (Brown et al., 2020).
This corpus comprises trillions of words gathered
from the internet and is characterized by its large
volume but often compromised in quality due to
the noise in the raw internet data. Following the
pretraining, the model undergoes fine-tuning with
high-quality prompt-response pairs which focuses
on improving the model’s reasoning capabilities
(Zhang et al., 2023a). In the end, the goal is to
achieve a Supervised-Finetuned (SFT) model that
is aligned with the desired response behavior or do-
main expertise. This section describes the corpora
utilized in the pretraining phase (Section 2.1) and

the development process of the Turkish IT dataset
(Section 2.2).

2.1 Pretraining Dataset

For pretraining our models, we utilized CulturaX
(Nguyen et al., 2023), a substantial multilingual
dataset designed for LLM development. This
dataset contains 6.3 trillion tokens in 167 languages
and is a combination of two well-known multilin-
gual datasets: mC4 (Raffel et al., 2019) and Oscar
(Abadji et al., 2022; Abadji et al., 2021; Caswell
et al., 2021; Ortiz Suárez et al., 2020; Ortiz Suárez
et al., 2019). These datasets go through a detailed
preprocessing that involves removing duplications,
filtering out URLs, identifying languages, metric-
based cleaning, and refining documents to enhance
the data quality and consistency of each corpus.
Since our focus is building a Turkish LLM, we
only used the Turkish splits from CulturaX.

mC4. mC4 (Raffel et al., 2019) is a large mul-
tilingual dataset initially created for training the
mT5 (Xue et al., 2021) which multilingual encoder-
decoder model pretrained on 101 different lan-
guages. This dataset was generated by extracting
content from 71 monthly snapshots of the internet
via Common Crawl (CC). CulturaX contains ver-
sion 3.1.0 of mC41 which was provided by AllenAI.
Its raw dataset contains 337GB of Turkish data.

OSCAR. OSCAR (Open Super-large Crawled
Aggregated coRpus) is a web-based multilingual
dataset that is specialized in offering large volumes
of unannotated raw data commonly used for train-
ing large deep learning models. It was developed
by efficient data pipelines to organize and filter
web data effectively. The final version of Oscar232

contains 73.7GB of Turkish data.

CulturaX Turkish. We trained using the Turkish
subset of CulturaX3, comprised of 128 portions,
totaling 180 GB. No additional preprocessing was
required since CulturaX had already undergone
thorough detailed preprocessing during its creation.
In the end, our Turkish dataset corpus comprises
130B unique tokens determined by using the GPT-2
tokenizer (Radford et al., 2019).

1https://huggingface.co/datasets/mc4
2https://huggingface.co/datasets/oscar-corpus/

OSCAR-2301
3https://huggingface.co/datasets/uonlp/

CulturaX
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Corpus Documents Ratio # of Tokens

mC4 75,859,899 80.52% 104.3 B
OSCAR-2019 5,867,831 6.23% 8.1 B
OSCAR-2109 6,614,512 7.02% 9.1 B
OSCAR-2201 2,580,896 2.74% 3.5 B
OSCAR-2301 3,284,322 3.49% 4.5 B

CulturaX (total) 94,207,460 100.0% 129.5 B

Table 1: Statistics of the pretraining dataset. This
table presents the statistics of our pretraining dataset
used to train our Hamza series models that are presented
in Table 3.

2.2 Instruction-Tuning Dataset
Instruction fine-tuning is a crucial method used to
improve LLMs in terms of their performance and
ability to follow specific instructions (Zhang et al.,
2023b). This phase involves supervised training of
LLMs using an instruction-tuning (IT) dataset com-
posed of instruction and response pairs that link
input instructions to their corresponding responses.

Self-Instruct. To create an automated, high-
quality, and diverse IT dataset, we adapt the Self-
Instruct procedure (Wang et al., 2022b; Taori et al.,
2023) for Turkish. We established 175 diverse in-
struction and response pairs as seed tasks which
are translated manually from Alpaca repository4 by
human annotators. These annotators are experts in
NLP and native speakers of both Turkish and En-
glish. For the given prompt, we asked text-davinci3
(Brown et al., 2020) to generate 20 complex and
diverse instruction-response pairs, adhering strictly
to the guidelines specified in the prompt. An ex-
ample prompt is illustrated in Appendix J. Gen-
erated pairs are post-processed by removing any
samples that contain visual context like images or
photographs. This process resulted in the creation
of 50,817 samples and cost only 8.12$, which were
then utilized for supervised fine-tuning (SFT).

3 Methodology

Creating an LLM for under-resourced languages,
like Turkish, often poses challenges primarily due
to the scarcity of publicly available data especially
if you have limited computational resources. Re-
garding these, we followed two different strate-
gies to build a Turkish series of LLMs: (i) further
training state-of-the-art base models on Turkish
data, which was initially unfamiliar with Turkish

4Alpaca Repository: https://github.com/tatsu-lab/
stanford_alpaca

Corpus Split Documents Portion # of Tokens

CulturaX 0.1GB 36,799 0.05% 0.05 B
CulturaX 0.25GB 91,998 0.14% 0.13 B
CulturaX 0.5GB 183,996 0.28% 0.25 B
CulturaX 1.0GB 367,993 0.56% 0.5 B
CulturaX 2.0GB 735,987 1.11% 1.1 B
CulturaX 5.0GB 1,839,968 2.78% 2.5 B

Table 2: Statistics of the continued pre-training
dataset. This table presents the statistics of our
continued pretraining dataset that is used to train
HamzaMistral and HamzaGPT2−xl.

(i.e., not trained on Turkish data), (ii) pretraining
a model from scratch, following GPT2 scales on a
vast amount of text data defined in Section 2.1.

3.1 Method 1: Further Training a Base Model
(HamzaMistral and HamzaGPT2−xl)

In this approach, we aim to enhance base LLMs
with Turkish linguistic capabilities. After a de-
tailed evaluation based on perplexity, we selected
an LLM that did not specifically train on Turkish
data during its initial pretraining phase. We sub-
jected it to further training using Turkish-only data,
accomplished through the next-token prediction ob-
jective implemented in an autoregressive manner.
Essentially, this process serves as a continuation of
the pretraining phase of LLMs, but with a focus on
a specific segment of the Turkish dataset.

Selecting Base Model. For the successful devel-
opment of an advanced Turkish LLM with a 7 bil-
lion parameter scale, choosing the most suitable
base model is essential. To this end, we have se-
lected Mistral 7B (Jiang et al., 2023) as one of our
base models, owing to its recent success across var-
ious tasks. Additionally, we opted for GPT2-xlarge,
since our Hamza model is trained from scratch on
the GPT2 architecture. This selection allows for
a meaningful comparison between models trained
from scratch and those initially trained in English
and subsequently continued with pre-training in the
same architectural setup.

Dataset. In order to inject Turkish into Mistral
and GPT-2 base LLMs, we followed a strategy
of incremental continued pretraining on Turkish-
specific segments of our dataset. Beginning with
an initial 100MB of pure Turkish data, we progres-
sively expanded the training corpus, culminating
in the model being trained on 5GB of data. This
volume aligns closely with the dataset size used for
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GPT (Radford and Narasimhan, 2018), ensuring
a comprehensive and effective adaptation of the
model to handle Turkish linguistic nuances. Please
refer to Table 2 for the details of these splits.

Training. As a continual learning approach, we
conducted a series of experiments by progressively
enlarging the pretraining corpus size and halting
upon observing convergence. The models are ini-
tialized with the pretraining weights of the Mistral-
7B and GPT2-xl and then further trained on seg-
ments of our text corpus with a casual language
modeling objective. Throughout our continued
pretraining experiments, we employed LoRA (Hu
et al., 2021) and updated only the additional bot-
tleneck adapter weights while freezing the original
model weights to make the training cost-efficient
and avoid any catastrophic forgetting from the mod-
els’ previous capabilities. During our LoRA train-
ings, we used r = 32 and α = 32, along with a
dropout rate of 0.05, applying LoRA exclusively
to the projection layers. We used AdamW opti-
mizer and cosine scheduler with a learning rate of
0.0001. Based on our experiments, we opted for
a batch size of 1 and avoided gradient accumula-
tion due to its significant impact on convergence.
To simplify the execution of our experiments and
ensure the reproducibility of our results, we used
the LLaMA-Factory5 repository, only in our LoRA-
based continued pretraining experiments.

3.2 Method 2: Pretraining from Scratch
(Hamza Series Models)

In our final approach for developing a Turkish base-
LLM, we adopted the most straightforward method:
training from scratch using Turkish-only datasets.
We follow a similar framework as in GPT2 (Rad-
ford et al., 2019), with similarities in training pro-
cedures and architectural settings. However, we
differed in our approach by utilizing a pretraining
corpus nearly double the size of GPT2.

Pretraining Data. The construction of a robust
LLM hinges on the aggregation and processing
of high-quality text data. To develop Hamza, we
used the Turkish split of CulturaX (Nguyen et al.,
2023) includes a meticulous process of data cu-
ration. It gathers a comprehensive dataset from
open-sources mC4 (Raffel et al., 2019) and OS-
CAR (Abadji et al., 2022; Abadji et al., 2021;
Caswell et al., 2021; Ortiz Suárez et al., 2020; Or-

5https://github.com/hiyouga/LLaMA-Factory

tiz Suárez et al., 2019). Our pretraining data con-
tains 128 parquet files each 1.4GB, totaling almost
179.2GB. The compiled training dataset contains
129,486,207,634 (130B) training tokens. Further
details of the data gathering, structure, and prepara-
tion can be found in CulturaX work Nguyen et al.
(2023).

Architecture. To develop an inaugural Turkish
base model, we followed prior works, establishing
a solid model for Turkish language modeling akin
to earlier studies on other languages. Our approach
led to the creation of four variants of Hamza, fol-
lowing GPT-2 (Radford et al., 2019): Hamza-small
(124M parameters), Hamza-medium (354M param-
eters), Hamza-large (772M parameters), and our
largest model, Hamza-xlarge (1.3B parameters).
The architectural specifications of these models are
given in Table 3.

Optimizer. During our training, AdamW
(Loshchilov and Hutter, 2017) optimizer is used
with hyper-parameters β1 = 0.9 and β2 = 0.95.
A cosine learning rate schedule is implemented,
designed to reduce the learning rate to 10% of
its maximum value. Additionally, we applied a
weight decay rate of 0.1 and limited the gradient
norm to 1.0 to prevent overfitting. The training
process includes 2, 000 warm-up steps. We used a
learning rate 0f 0.0006 and batch size 491, 520 in
our smallest model Hamza-small. We varied the
learning rate and batch size according to the model
size, for details see Table 3.

Training. Our from-scratch Hamza models are
built on the GPT2 architecture (Radford et al.,
2019) and incorporate the flash-attention mecha-
nism for efficient training (Dao et al., 2022). As
outlined in Table 8, the hyperparameters of the
model follow the scaling principles set by GPT2,
except for the largest variant, Hamza-xlarge, which
is inspired by a recent French-based LLM (Faysse
et al., 2024). All model versions were trained for
300 billion tokens, with a uniform batch size of
500,000 tokens. The learning rate was fine-tuned
for each model variant. We standardized the con-
text window across all models at 1024 tokens and
did not employ any dropout techniques during their
training process. All training sessions were con-
ducted in half-precision (fp16) settings by utilizing
both tensor and data parallelism across eight A100
GPUs each with 80GB of memory.
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Model Parameters Layers Heads dmodel Learning Rate Batch Size Tokens

hamza-small 124M 12 12 768 6.0e−4 0.5M 300B
hamza-medium 354M 24 16 1024 3.0e−4 0.5M 300B
hamza-large 772M 36 20 1280 3.0e−4 0.5M 300B
hamza-xlarge 1.3B 24 16 2048 2.0e−4 0.5M 300B

Table 3: Architecture and optimization hyperparameters for the four Hamza model sizes that are trained
from scratch.

4 Evaluations

4.1 Bits-Per-Character (BPC) Evaluations

Auto-regressive language modeling is trained on
optimizing the Negative Log-Likelihood (NLL) of
the data in the training set and the effectiveness of
the model is then calculated on the unseen test data.
Furthermore, the most common metric to evaluate
these models is perplexity, which measures the un-
certainty of an LLM in predicting the next token in
a sequence and is derived by taking the exponential
average of the NLL. However, as various tokeniz-
ers can divide each sentence into differing numbers
of tokens, NLL and PPL may produce incompara-
ble results for models utilizing different tokenizers.
To tackle this, we use Bits-Per-Character (BPC),
which is another critical metric derived from NLL,
used for evaluating the performance of LLMs at
character-level. Further details on the calculation of
these metrics are given in the Appendix in Section
F. Consequently, our comparisons mainly relied on
BPC, which normalizes the impact of tokenization
differences. For the BPC evaluation, we utilized
the test set of the trnews-64 corpus (Safaya et al.,
2022), comprising 5,000 samples.

Results. We present the BPC results of different
models evaluated on trnews-64 in the last column
of Table 4; including our models together with var-
ious open-source multi-lingual and Turkish LLMs.
Looking at the BPC results, we observe a wide
range of values across the models. Lower BPC
values indicate better performance in terms of com-
pression, suggesting that the model is more effi-
cient in representing the text. The most favorable
outcomes are attained with the pretrained Kanarya-
2b and Hamza-xlarge models. The adapted mod-
els which are originally pretrained on English but
extended to Turkish, yielded promising results as
well, lower than 1 BPC, whereas the multilingual
models had a relatively lower performance.

4.2 Prompting & Few-Shot

Evaluating the reasoning capabilities of large lan-
guage models (LLMs) in downstream Question
Answering (QA) tasks is essential to assess their
performance and reliability. However, finding com-
prehensive datasets in languages other than English
poses a significant challenge due to the limited
availability of benchmarks. To bridge this gap, we
developed TruthfulQA-TR, ARC-TR, and GSM8K-
TR Turkish question-answering datasets, which are
designed to evaluate the ability of LLMs to gen-
erate truthful and accurate responses to questions.
To develop the Turkish versions of the main Truth-
fulQA Multiple Choice (MC) (Lin et al., 2021a),
ARC (AI2 Reasoning Challenge) (Clark et al.,
2018), and GSM8K (Grade School Math) (Cobbe
et al., 2021) datasets, we translated each example
of these datasets using the advanced DeepL Ma-
chine Translation (MT) framework by its Python-
supported API6. After translating to Turkish, each
sample was reviewed for errors or superficial trans-
lations. We used the test sets from TruthfulQA-
MC2, ARC-Challenge, and GSM8K for evalua-
tions. For more details on datasets and annota-
tion validation, see the Appendix in Section G.
Our experiments followed the same prompting set-
tings with LLM-Leaderboard7. We include perfor-
mances of all of our models together with all the
open-source Turkish LLMs that are available on
Huggingface, along with other monolingual and
multilingual models.

Results. We evaluate various language models in
depth, including base LLMs (Touvron et al., 2023b;
Jiang et al., 2023; Radford et al., 2019), multi-
lingual LLMs (Shliazhko et al., 2022; Lin et al.,
2021b), all available Turkish fine-tuned LLMs
on Huggingface, and the models we propose in
this paper. Our evaluation was conducted on the

6https://github.com/DeepLcom/deepl-python
7https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard
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Type Models Accuracy (%) (↑) BPC (↓)

ARC-TR TruthfulQA-TR GSM8K-TR trnews-64

Base & SFT
Models

LLaMA2 7b 25.94 41.18 3.49 1.374
LLaMA3 8b 43.09 44.77 30.02 0.929
Mistral 7b 32.68 41.16 17.66 1.260
Gemma 2B 31.31 43.57 7.35 1.208
Gemma 7B 46.16 42.35 36.24 0.989
GPT2-xl 24.91 40.97 0.38 2.533
LLaMA2 7b-chat 25.00 40.07 4.62 1.374
Mistral 7b-chat-v2 35.24 48.34 19.18 1.428

Multi-
lingual
Models

XGLM-7.5B 29.01 39.09 1.82 0.880
XGLM-4.5B 25.94 40.18 1.14 0.949
XGLM-2.9B 27.05 39.35 2.12 0.946
XGLM-1.7B 26.37 41.75 2.05 1.044
XGLM-564M 23.55 42.59 0.91 1.125
mGPT 26.54 42.37 0.00 1.306

Huggingface
Turkish
Models

Kanarya-2b 29.78 41.43 1.59 0.724
Kanarya-750m 28.16 41.50 0.68 0.767
Turkcell-LLM-7b-v1 43.09 44.91 28.35 1.208
ytu-gpt2-large 27.13 43.09 0.53 0.805
Trendyol-7b-base 35.24 41.50 4.85 0.829
Trendyol-7b-chat 35.58 44.35 5.31 0.820
Trendyol-7b-dpo 39.93 50.11 5.61 0.859
Commencis-LLM 33.28 44.50 0.38 1.306
Sambalingo-tr 44.37 46.61 3.56 0.894
Thestral-tr-chat 34.00 41.90 6.22 1.314
Mistral-7b-chat-v2-tr 33.96 45.71 18.42 1.411
Gemma-2B-tr 31.31 44.46 2.73 1.089

Our
Models

Hamza-small 25.26 43.65 1.21 0.897
Hamza-medium 26.45 43.55 1.29 0.814
Hamza-large 29.10 40.93 1.97 0.760
Hamza-xl 28.24 42.33 1.97 0.754
HamzaGPT2−xl 24.74 44.95 1.74 1.152
HamzaMistral 39.85 46.40 5.31 0.816

Table 4: Performance comparison on various Turkish tasks. We compare the performance of various types
of models: (i) Base and SFT Models, (ii) Multilingual Models (iii) Open-Source HF (Huggingface) Turkish
Models, (iv) Our pretrained and adapted Hamza Models. The first three columns show accuracies evaluated on the
ARC-TR, TruthfulQA-TR and GSM8K-TR datasets. The last column includes the Bits-Per-Character (BPC) metric
evaluated on TRNEWS-64 corpus. Note that Accuracy is the highest and BPC is the lowest for the best models. The
top-performing model for each metric is highlighted in bold, while the second-best model is underlined for easy
identification. See Appendix C for model details.

newly established Turkish Benchmarks, ARC-TR,
in 25-shot settings, as well as on TruthfulQA-TR
and GSM8K-TR, adhering to the same settings as
outlined by the LLM-Leaderboard. In ARC-TR,
Google’s Gemma 7B model leads with an accuracy
of 46.16 even though it is not specifically tuned
for Turkish, closely followed by Sambalingo-tr

with 44.37 accuracy. Moreover, in the TruthfulQA-
TR evaluation, Trendyol’s DPO model emerges
as the top performer with an accuracy of 50.11,
while Mistral-7b-chat-v2 secures the second posi-
tion with 48.34 accuracy. Lastly on GSM8K-TR,
Gemma 7B performs the best with an accuracy of
36.24, and LLaMA3 8b model had the second best
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with 30.02 accuracy. The accuracy scores for ARC-
TR range from 24 to 47, TruthfulQA-TR ranges
from 33 to 50, and GSM8K-TR ranges from 0 to
36. These results underscore the necessity for sub-
stantial improvements in these models to reach the
proficiency levels observed in English benchmarks.

Qualitative Analysis. We performed qualitative
analysis on our models by testing them with various
prompts as demonstrated in Appendix in Section
I. Both the pretrained and Hamza models perform
well on sentence completion. In particular, com-
pared to other open-source Turkish models, we
observed a reduced tendency to generate text that
resembles web-based content, where most of the
Turkish corpora is retrieved from websites. Further-
more, we tested our models on English prompts to
assess their ability to handle multilingual tasks. Al-
though results indicate that our models can generate
coherent responses, there is a high tendency for the
models to continue English sentences in Turkish.
Overall, our qualitative analysis highlights the ro-
bust performance of our models and the potential
for diverse tasks.

5 Case Studies

5.1 Enhancing Non-English Models:
Fine-Tuning vs. From-Scratch Training

The analysis of Turkish language models, specifi-
cally comparing models trained from scratch, con-
tinued pretraining from GPT2-xl (Radford et al.,
2019), and those adapted using Mistral 7B (Jiang
et al., 2023), shows insightful trends. Accord-
ing to Table 5, the Mistral 7B adapted model ex-
hibits superior performance on Turkish question-
answering tasks, compared to other methods. More-
over, starting from scratch surpasses the contin-
ued pretraining approach within the same model
architecture, underscoring the significance of the
base language model when undertaking continued
pretraining. This is evidenced by the discrepancy
in accuracy between models fine-tuned from Mis-
tral 7B versus those from GPT2. Therefore, ap-
plying continued pretraining to a robust base lan-
guage model emerges as the most effective strategy
for low-resource languages, considering both data
scarcity and hardware constraints.

Models ARC-TR TruthfulQA-TR Avg.

Hamza-xl 28.24 42.33 35.28
HamzaGPT2−xl 24.74 44.95 34.84
HamzaMistral 39.85 46.40 43.12

Table 5: Accuracy comparison of our best models
on Turkish question answering tasks. This table
shows the performance of our models, pretrained Hamza
models with different sizes, and the HamzaMistral and
HamzaGPT2−xl models that are adapted on Turkish. We
present the results evaluated on the ARC-TR (25 shot)
and TruthfulQA-TR (6 shot) datasets.

Models ARC-TR TruthfulQA-TR Avg.

Hamza-xl 28.24 42.33 35.28
Hamza-xl + SFT 29.61 44.67 37.14

Table 6: Accuracy results of our models fine-tuned on
our Self-Instruct IT dataset on Turkish question an-
swering tasks. This table compares the performance in-
crease after instruction tuning with IT dataset described
in Section 2.2. We present the results evaluated on
the ARC-TR (25 shot) and TruthfulQA-TR (6 shot)
datasets.

5.2 Effect of Supervised Fine-Tuning:
Assessing Model Performance with the
Proposed IT Dataset.

Supervised Fine-Tuning (SFT) plays a crucial role
in enhancing the reasoning capabilities of LLMs,
as highlighted in existing research (Zhang et al.,
2023a). In this context, we introduced a novel
Turkish IT Dataset, meticulously crafted from the
ground up, inspired by the Alpaca (Taori et al.,
2023; Wang et al., 2022b). By fine-tuning our
largest model Hamza-xlarge with this bespoke
Turkish IT Dataset, we observed an improvement
in model performance across downstream bench-
marks (see Table 5). This improvement under-
scores the effectiveness of SFT when applied to
our tailored IT dataset, bolstering our model’s rea-
soning proficiency slightly.

5.3 Retention after Fine-Tuning: Will Models
Forget English-Learned Skills When
Fine-Tuning on Another Language?

According to Figure 1, further pretraining of base
English language models such as GPT2 and Mistral
results in a decrease in accuracy proportional to the
number of samples used during continued pretrain-
ing on the English downstream tasks TruthfulQA
and ARC, compared to their original base scores
before fine-tuning on Turkish. This indicates catas-
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Models ARC TruthfulQA Avg.

GPT2-xl 30.29 38.53 34.41
HamzaGPT2−xl (0.1GB) 28.84 38.15 32.98
HamzaGPT2−xl (0.25GB) 26.37 38.10 32.88
HamzaGPT2−xl (0.5GB) 27.13 38.88 33.35
HamzaGPT2−xl (1GB) 26.54 38.95 33.09
HamzaGPT2−xl (2GB) 24.74 40.34 33.01
HamzaGPT2−xl (5GB) 22.61 41.36 32.49

Mistral-7b 61.52 42.57 51.49
HamzaMistral (0.1GB) 56.14 40.31 48.22
HamzaMistral (0.25GB) 52.90 39.15 45.77
HamzaMistral (0.5GB) 52.39 38.70 45.51
HamzaMistral (1GB) 51.71 41.46 46.60
HamzaMistral (2GB) 49.32 38.44 43.91
HamzaMistral (5GB) 45.90 40.90 43.82
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Figure 1: Accuracy comparison of Continued Pretrained models on English (Left, Right) and Turkish (Right)
question answering tasks and demonstrating the original language catastrophic forgetting while learning
the new language. In the table on the left, the performance of our HamzaMistral and HamzaGPT2−xl models that
are adapted on Turkish together with the original Mistral 7B and GPT2-xl. We present the result of our ablation
study, where the performance of the adapted models is given by progressively enlarging the pretraining corpus size
from 0.1 GB to 5 GB. Here, the zero and few-show accuracies were evaluated on the original ARC and TruthfulQA.
The figure on the right illustrates the Mistral model’s results on both Turkish and English versions of the ARC
dataset, highlighting its improved performance in Turkish and decreasing performance in English with continued
pretraining.

trophic forgetting, where the models lose their prior
knowledge upon being fine-tuned on a smaller lan-
guage dataset, as evidenced by a decline in baseline
accuracy compared to the versions not previously
trained, even after applying techniques like LoRA
training. One further work for this could be includ-
ing some English data along with Turkish in each
batch during continued pretraining.

6 Conclusion

Our work advances the development of Turkish
LLMs, presenting a new series of models both
trained from scratch (Hamza) and also adapted
from other base LLMs (HamzaMistral and
HamzaGPT2−xl), together with new Instruction
Tuning dataset and a meticulously crafted Turkish
LLM Leaderboard. In our analysis, we noted that
the base LLMs exhibited catastrophic forgetting
of their primary language knowledge during
continued pretraining. Additionally, through
the creation of a novel Turkish LLM evaluation
benchmark, we have identified a significant
performance gap between current Turkish LLMs
and their English counterparts, underscoring
the need for further improvements in Turkish
language modeling. For more detailed discussions
on limitations and future work, please refer to

Appendix B. Our fully open-source work and
detailed observations play a pivotal role in the
field of Turkish language modeling, providing
insights on construction methodologies and
offering a comparative framework for evaluating
performance, thereby paving the way for future
advancements.
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repositories, ensuring compliance with data pri-
vacy regulations. We did not collect any personal
or sensitive information that could compromise
the privacy of individuals.

• Data Quality and Bias: Effort is made to gather
high-quality datasets for training and evaluation
purposes. However, we acknowledge the poten-
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tial for inherent biases in the data due to its web-
crawled nature in the pretraining dataset.

• Transparency and Reproducibility: We have
made all source codes and datasets used in this
study freely available in accordance with the
open scientific principles. By allowing other aca-
demics to replicate our findings and expand on
our work, this transparency promotes cooperative
developments in the area.

• Avoiding Harmful Outputs: We acknowledge
the potential risks associated with the deployment
of LLMs, such as the generation of harmful or bi-
ased content. To address this, we have focused on
creating models that adhere to high standards of
accuracy and reliability. We have also included
benchmarks to assess and mitigate the reproduc-
tion of common falsehoods by the models.

• Responsible Use of Computational Resources:
The computational experiments were con-
ducted using resources provided by TUBITAK
ULAKBIM and KUIS AI Center. We have
taken measures to ensure efficient use of these
resources and have reported our methodologies
to enable responsible replication of our experi-
ments.
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A Related Work

LLMs have significantly advanced the field of NLP
by demonstrating remarkable capabilities in gener-
ating human-like text across various domains (Rad-
ford et al., 2019; Zhang et al., 2022; Anil et al.,
2023; Jiang et al., 2023; OpenAI, 2023). Their
development illustrates not only improvements in
model size and complexity (Hoffmann et al., 2022;
Biderman et al., 2023) but also in their ability to
understand and generate more nuanced and con-
textually appropriate responses through techniques
such as fine-tuning, supervised instruction-tuning,
and reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022; Wang et al., 2022b;
Taori et al., 2023; Rafailov et al., 2023). Investi-
gation into these models, focusing on overcoming
their constraints for low-resource languages and
furthering their development, remains a vital pur-
suit for achieving global applicability.

Multilingual LLMs represent a significant leap
forward, enabling a single model to understand and
generate text across multiple languages (Scao et al.,
2022; Shliazhko et al., 2022; Lin et al., 2021b),
thereby bridging linguistic gaps on a global scale.
By leveraging vast datasets from diverse linguistic
sources (Nguyen et al., 2023), these models are
trained to capture the nuances of language, cul-
ture, and context. However, the inherent limita-
tions posed by the restricted vocabulary sizes and
diverse morphological characteristics of each lan-
guage present substantial challenges that neces-
sitate ongoing refinement and innovation within
these models.

Regarding the Turkish context, although Turk-
ish is not classified as a low-resource language,
it has attracted limited research focus, with only
a handful of groups dedicating efforts. The land-
scape of Turkish NLP is beginning to shine with
the advent of new evaluation datasets (Safaya et al.,
2022) and some language models. However, these
advancements are predominantly in encoder-based
(Schweter, 2020) or encoder-decoder-based mod-
els (Uludoğan et al., 2024) which necessitates task-
specific training by leaving a gap in generative
LLM work tailored specifically for Turkish. Con-
sequently, there is an absence of pioneering re-
search that offers insights for advancing the field of
Turkish LLMs, underscoring the urgent need for a
comprehensive strategy to develop robust Turkish-
based LLMs.

B Limitations and Future Work

Better Turkish Pretraining Corpora. The ac-
curacy of your pretraining corpus is one of the
most crucial factors in achieving a well-performing
LLM. The three key elements of a good dataset are:
quality, diversity, and quantity. While the last ele-
ment is easy to measure, performance is a function
of all three8. Our models are trained on 300 billion
tokens, LLaMA (Touvron et al., 2023a) is trained
on 1.5 trillion tokens, and LLaMA 3 is trained on
15 trillion tokens. We need more Turkish data,
at least 3 trillion tokens. However, the diversity
of these datasets should be sufficient, including
common crawl, book corpora, code, math, etc., in
a balanced manner. Current Turkish LLMs are
trained on MC4 (Raffel et al., 2019) and OSCAR-
based (Abadji et al., 2022) datasets with minimal
preprocessing. These datasets mostly include po-
litical, gambling, or sports-related data, resulting
in biased outcomes. The measurement of dataset
quality is still an important research question today.
We firmly believe that better data is better than
better models.

Small Scale of the Proposed Models. One of
the objectives of our work is not merely to provide
the largest or best-performing Turkish LLM but
also to offer a clear pathway and framework for
building robust LLMs in low-resource scenarios.
For instance, we trained all our models using, at
most, eight A100 GPUs in parallel. Our Hamza-
xlarge model, with 1.3B parameters, is the largest
and best-performing open-source, decoder-based
model that is scientifically published for Turkish.
However, the Turkish language requires better pre-
trained models, scaling up to at least 7B, 13B,
and 30B parameters, with high-quality datasets,
to achieve results comparable to models like Mis-
tral performed in English. Achieving this requires
more GPUs and larger cluster environments. Cur-
rently, the largest clusters in Turkey are owned
by TÜBİTAK TRUBA and Koç University KUIS
AI Center. However, Turkish needs more H100
and A100 GPUs, with at least 512 GPUs support-
ing multi-node training, to develop LLMs com-
parable to those in other languages. We also ex-
plore whether training a model from scratch in low-
resource settings is worthwhile or if fine-tuning
from a strong base model is more effective. At

8https://x.com/karpathy/status/
1782798789797101876?s=46
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present, adapting a base LLM like Mistral appears
more promising; however, it also leads to catas-
trophic forgetting (see Section 5).

Limited Performance of Current Turkish LLMs.
Upon examining Table 4, it is evident that the cur-
rent Turkish LLMs available on Huggingface per-
form significantly worse than base models like
LLaMA, Mistral, and Gemma, which excel at
the same tasks in English. The Turkish results
range from 24 to 46 in ARC-TR and 39 to 50 in
TruthfulQA-TR. Even Gemma 7B achieves the best
performance in ARC-TR without any specific fine-
tuning for Turkish. This highlights the considerable
room for improvement, as discussed earlier, to de-
velop better LLMs in Turkish.

More Diverse Turkish Evaluation Benchmarks.
In this work, we shared two new evaluation datasets
for Turkish: TruthfulQA-TR and ARC-TR. These
datasets test a model’s propensity to reproduce
falsehoods commonly found online, and its abil-
ity to answer grade-school science questions, re-
spectively. However, robust LLMs should also be
evaluated in more challenging areas, such as chat
abilities, mathematical reasoning, ethical biases,
and more. We are currently working on establish-
ing and sharing scientific datasets in these areas as
well. Collaborations are always welcome.

C Models

GPT2-xl. GPT2 (Radford et al., 2019) introduces
several scaled models with the largest one as 1.5B
parameter, which significantly expands upon its
predecessor by enhancing its capacity for unsu-
pervised learning of natural language tasks. This
model demonstrates notable improvements in lan-
guage understanding and generation, outperform-
ing earlier versions in a range of linguistic tasks
without task-specific training. GPT2-xl’s architec-
ture builds on the decoder-based transformer model
by enabling it to generate coherent and contextu-
ally relevant text over extended passages. We used
GPT2-xl in our evaluations.

XGLM. XGLM (Lin et al., 2021b) presented
with five multilingual generative language mod-
els, with up to 7.5 billion parameters. The mod-
els are trained on a large-scale corpus of 500 bil-
lion tokens across 30 diverse languages, balancing
representation for low-resourced languages. The
study explores the models’ zero-shot and few-shot

learning capabilities across various tasks, includ-
ing multilingual NLU, machine translation, and
specific English tasks. The largest model, XGLM-
7.5B, outperforms GPT-3 in multilingual common-
sense reasoning and natural language inference
tasks. We evaluated XGLM-7.5B, XGLM-4.5B,
XGLM-2.9B, XGLM-1.7B, and XGLM-564M.

mGPT. mGPT (Shliazhko et al., 2022) is intro-
duced with two different scales: 1.3 billion and 13
billion parameters. These models are trained on 60
languages from 25 language families, using data
from Wikipedia and the Colossal Clean Crawled
Corpus. The models replicate the GPT-3 architec-
ture using GPT-2 sources and a sparse attention
mechanism. The training and inference processes
are effectively parallelized using the Deepspeed
and Megatron frameworks. We used mGPT from
Huggingface.

LLaMA Models. LLaMA (Touvron et al.,
2023a) is a collection of open-source LLMs re-
leased by Meta, ranging from 7B to 65B parame-
ters, achieved state-of-the-art performance using
publicly available datasets. LLaMA 2 (Touvron
et al., 2023b), an enhanced version, expanded
its training corpus and context length, releasing
models with 7B, 13B, and 70B parameters, to-
gether with introducing LLaMA 2 Chat for dia-
logue. Recently, LLaMA 3 was released and fur-
ther improved efficiency and performance, utilizing
a larger tokenizer and adopting grouped-query at-
tention, resulting in state-of-the-art models at 8B
and 70B parameter scales, with training based on
over 15T publicly sourced tokens. During our eval-
uations, we used LLaMA2 7b, LLaMA2 7b-chat,
and LLaMA3 8b.

Mistral 7B. Mistral 7b (Jiang et al., 2023) is
a new state-of-the-art 7-billion-parameter LLM
known for its high performance and efficiency.
It surpasses other larger models, including
13b-parameter models like LLaMA2 (Touvron
et al., 2023b) and 34-billion-parameter model like
LLaMA (Touvron et al., 2023a), in various areas
such as reasoning, mathematics, and code genera-
tion. The model incorporates grouped-query atten-
tion (GQA) (Ainslie et al., 2023) for quicker infer-
ence and sliding window attention (SWA) (Child
et al., 2019; Beltagy et al., 2020) to handle long
sequences cost-effectively. During our evaluations,
we utilized Mistral 7b and Mistral 7b-chat-v2.
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Gemma. Gemma, released by Google, is a fam-
ily of lightweight, state-of-the-art open models de-
rived from the technology behind Gemini models.
These models excel in language understanding, rea-
soning, and safety, and are available in 2B and
7B parameter sizes. Gemma outperforms similarly
sized open models on 11 out of 18 text-based tasks,
and includes comprehensive evaluations of safety
and responsibility aspects, along with detailed de-
velopment information. We used Gemma 2B and
Gemma 7B from Huggingface.

Kanarya. Kanarya LLMs are pre-trained Turk-
ish GPT-J models from scratch. It comprises two
versions: kanarya-2b and kanarya-750m, with 2 bil-
lion and 750 million parameters, respectively. Both
models are trained on a large-scale Turkish text cor-
pus derived from OSCAR and mC4 datasets, which
include diverse sources like news, articles, and web-
sites. The models use a JAX/Flax implementation
of the GPT-J architecture and feature rotary po-
sitional embeddings. The larger kanarya-2b has
24 layers, a hidden size of 2560, and 20 attention
heads, while the smaller kanarya-750m has 12 lay-
ers, a hidden size of 2048, and 16 attention heads.
Both models have a context size of 2048 and a vo-
cabulary size of 32,768. We used both kanarya-2b
and kanarya-750m during our evaluations.

Turkcell LLM 7b. Turkcell-LLM-7b-v1 is an en-
hanced version of a Mistral-based LLM tailored
specifically for the Turkish language. The model
was initially trained on a cleaned dataset com-
prising 5 billion Turkish tokens using the DORA
method. Subsequently, it underwent fine-tuning
with the LORA method, utilizing Turkish instruc-
tion sets compiled from various open-source and
internal resources. The model’s tokenizer was
specially extended for Turkish, enhancing its lan-
guage capabilities. Its training dataset consisted of
cleaned Turkish raw data and custom instruction
sets. The DORA method featured a configuration
with alpha value of 128, LoRA dropout of 0.05,
rank of 64, and targeted all linear modules. We
also evaluated Turkcell-LLM-7b-v1 in our results
table.

Trendyol 7b LLMs. Trendyol LLMs are gener-
ative language models based on Mistral 7B, using
an optimized transformer architecture. It features
three versions: a base model, a chat model, and a
DPO model, all fine-tuned with LoRA on varying
token and instruction set sizes. The base model

was trained on 10 billion tokens, the chat model
on 180K instruction sets, and the DPO model on
11K sets. Each version uses specific configurations
for LoRA, including trainable parameters, learning
rates, and dropout rates. We used Trendyol-7b-
base, Trendyol-7b-chat, and Trendyol-7b-dpo.

Commencis-LLM. Commencis LLM is a gener-
ative model tailored to Turkish Banking through a
diverse dataset and based on the Mistral 7B model.
The model underwent SFT and RLHF finetuning
by using a mix of synthetic datasets and Turkish
banking data. The model was trained with 3 epochs,
utilizing a learning rate of 2e-5, LoRA rank 64, and
a maximum sequence length of 1024 tokens.

Sambalingo-tr. SambaLingo-Turkish-Chat is a
bilingual chat model trained in both Turkish and
English, utilizing direct preference optimization on
top of SambaLingo-Turkish-Base, which is adapted
from LLaMA2 7b using 42 billion tokens from the
CulturaX dataset. It involves both SFT and DPO
stages. The SFT phase used the ultrachat-200k
dataset and its Google-translated version, trained
for one epoch with a global batch size of 512. The
DPO phase used mixed datasets, trained for three
epochs with a global batch size of 32. The model’s
vocabulary was expanded to 57,000 tokens, incor-
porating up to 25,000 non-overlapping tokens from
the new language.

Thestral-tr-chat and ytu-gpt2-large. Thestral-
tr-chat is a fully fine-tuned version of Mistral 7b
and trained on diverse Turkish datasets. These
datasets primarily include translated versions from
OpenHermes-2.5, Open-Orca, and SlimOrca.On
the other hand, we evaluated the largest cosmos-
GPT model, ytu-gpt2-large, following the GPT-2
large architecture with 774 million parameters, it
is designed for generation-based NLP tasks.

Mistral-7b-chat-v2-tr and Gemma-2B-tr.
Mistral-7B-Instruct-v0.2-turkish is a fine-tuned
version of Mistral-7B-Instruct-v0.2. Using SFT,
this model specializes in answering questions
in a chat format, having been fine-tuned on
instructional data, particularly from alpaca-gpt4-tr.
For Gemma 2B Turkish, we used this version
available on Huggingface.

D Training Hardware and GPU hours

We additionally report the computational aspects
of training our hamza models, emphasizing the
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Model Trained Parameters GPU Type GPU Count Training Hours

Hamza-small 124M A100 (80GB) 8 72
Hamza-medium 354M A100 (80GB) 8 201
Hamza-large 772M A100 (80GB) 8 378
Hamza-xlarge 1.3B A100 (80GB) 8 460
HamzaGPT2−xl 17M A40 (48GB) 1 334
HamzaMistral 57M A40 (48GB) 1 501

Table 7: Device Overview of hamza Model Configurations. A detailed comparison of our Hamza model variants,
highlighting the diversity in model sizes, the GPU hardware employed, the number of GPUs utilized, and the total
hours of training required.

Configuration Key Value Configuration Key Value Configuration Key Value

eval-interval 2000 block-size 1024 beta1 0.9
log-interval 1 n-layer 12 beta2 0.95
eval-iters 200 n-head 12 decay-lr True
eval-only False n-embd 768 warmup-iters 2000
init-from – bias False lr-decay-iters 600,000
dataset path learning-rate 6e-4 min-lr 6e-5
max-iters 600 weight-decay 0.1 backend nvll
batch-size 12 gradient-clip 1.0 device cuda
gradient-acc-steps 40 type fp16 ddp-world-size 8

Table 8: Configuration Parameters for Training the Hamza-xlarge Model. Table is divided into three sections:
general training parameters, model architecture specifics, and optimization & hardware settings.

scalability and efficiency of our training processes.
Table 7 delineates the variations across our model
suites. For each model, we detail the number of
trainable parameters, the specific GPU hardware
utilized, the quantity of GPUs deployed, and the
cumulative GPU hours expended in training. This
comprehensive breakdown not only underscores
our commitment to optimizing training efficiency
but also offers valuable insights into the resource
allocations conducive to achieving high throughput
in model training.

E Hamza Model Configuration Details

This section provides comprehensive configuration
details necessary for training the Hamza-xlarge
model. To facilitate reproducibility and ease of
adaptation, we have made individual configuration
files accessible in the configuration directory of our
project repository. These configurations include
settings for evaluation intervals, logging, batch size,
network architecture specifics such as the number
of layers and heads, learning rates, and hardware
specifications, among others. Each value is care-
fully chosen to optimize model performance.

F Evaluation Metrics

The Negative Log-Likelihood (NLL) is calculated
as follows:

NLL(Xtest) = − 1

n

n∑

i=1

log pθ(xi|x<i) (1)

Perplexity measures the uncertainty of an LLM
in predicting the next token in a sequence and is
derived as the exponential average of NLL:

PPL(Xtest) = 2−
1
n

∑n
i=1 log2 pθ(xi|x<i) (2)

Bits-Per-Character (BPC) is another critical metric
derived from NLL, used for evaluating the perfor-
mance of LLMs at character-level:

BPC(Xtest) =
n

N ∗ log(2) ∗NLL(Xtest) =

=
−1

N ∗ log(2)
n∑

i=1

log pθ(xi|x<i)

(3)

In this context, N denotes the original number of
characters in Xtest, and n represents the number
of tokens in Xtest resulting from the specific tok-
enization method employed.

256



G Evaluation Datasets n and Annotation
Details

TruthfulQA. TruthfulQA Multiple Choice (MC)
(Lin et al., 2021a) is designed to evaluate a model’s
tendency to replicate commonly encountered on-
line falsehoods. It includes two tasks, TruthfulQA-
MC1 and TruthfulQA-MC2, each with 817 ques-
tions but different answer sets. Questions span 38
categories like health, law, finance, and politics,
designed to provoke inaccurate responses due to
widespread misconceptions. Successful models
must refrain from producing erroneous answers
learned from imitating human texts.

ARC. The test set of the ARC (AI2 Reasoning
Challenge) (Clark et al., 2018) dataset, prepared by
Allen Institute for Artificial Intelligence, consists
of 1,172 hard questions in the Challenge Set. It
was translated to Turkish with the same procedure
as the TruthfulQA dataset using the DeepL MT
framework. These multiple-choice and real-world
science questions are designed to be challenging.
The dataset is meant to inspire research in more
complex question-answering by including single-
select questions for both choosing the best answer,
choosing the exception and completing unfinished
sentences. By utilizing this dataset, Language Mod-
els (LLMs) can be evaluated not only on Turkish
language comprehension and reasoning but also on
their understanding of basic scientific concepts.

GSM8K. GSM8K (Cobbe et al., 2021) is a
dataset of 8.5K linguistically diverse grade school
math word problems designed to address the lim-
itations of LLMs in multi-step mathematical rea-
soning. The dataset is divided into 7.5K training
and 1K test problems, requiring 2 to 8 steps to
solve using basic arithmetic. Solutions are writ-
ten in natural language. Despite the simplicity of
these problems, even advanced transformer models
struggle to perform well.

Validation After completing the automated
translations, we proceeded with the evaluation of
the translated samples using three annotators. Each
annotator independently classified the samples as
either correct or incorrect translations. Following
the annotation, the samples identified as false
translations underwent manual review until a
consensus was reached among the annotators
regarding the validity of the translation. Correc-
tions were made to ensure both the meaning and

structure were accurate. Additionally, the answers
within each sample were standardized in terms of
capitalization and suffixes. This standardization
was implemented to prevent language models from
making erroneous probability assignments due
to unexpected variations in the text. Exemplary
samples are demonstrated in section H. The inter-
annotator agreement of the Truthful-TurkishQA
and Arc-Challange-TR translation annotations are
presented in Tables 9 and 10.

In Table 9, we provide the simple percent agree-
ment score between each pair of annotators, as well
as Cohen’s Kappa metric, which is a more robust
measure than simple percent agreement as it ac-
counts for the possibility of agreement occurring
by chance (Cohen, 1960). Cohen’s Kappa (κ) is
calculated as:

κ =
Po − Pe

1− Pe
(4)

where Po is the relative observed agreement be-
tween the two raters, and Pe is the hypothetical
probability of chance agreement, calculated as

Pe =
1

L2

∑

k

nk1nk2 (5)

In this context, k is the number of categories,
L is the number of annotated samples and nki the
number of times rater i predicted category k. The
discrepancy between a high agreement rate and a
relatively low κ score in TruthfulQA arises from
the lower level of agreement among annotators for
the less frequent falsely annotated samples. Ad-
ditionally, Table 10 displays the simple percent
agreement among all three annotators, along with
Fleiss’ Kappa score, which can assess the reliabil-
ity of more than two annotators, in contrast to the
Cohen’s Kappa (Fleiss, 1971). The Fleiss’ Kappa
(κ) is calculated as:

κ =
P̄ − P̄e

1− P̄e
(6)

where P̄ and P̄e can be described as below

P̄ =
1

Lm(m− 1)




L∑

i=1

k∑

j=1

(n2
ij)− Lm


 (7)

P̄e =
k∑

j=1

p2j , pj =
1

Lm

L∑

i=1

nij (8)
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Dataset ARC (1171 samples) TruthfulQA (817 samples)

Annotator Pair Agreement Cohen’s Kappa Agreement Cohen’s Kappa
a1-a2 %80.63 0.41 %91.06 0.49
a1-a3 %79.69 0.34 %86.90 -0.04
a2-a3 %88.31 0.58 %86.78 -0.04

Average %88.25 0.44 %82.88 0.14

Table 9: Pairwise annotation evaluations. Here, the Agreement is the simple percent agreement between annotator
pairs and Cohen’s Kappa calculated as equation 4.

Dataset ARC (1171 samples) TruthfulQA (817 samples)

Total Agreement %74.32 %82.37
Fleiss’ Kappa 0.44 0.17

Table 10: Evaluations between all 3 annotators. Here, the Total Agreement is the simple percent agreement between
all three annotators and Fleiss’ Kappa calculated as equation 6.

In this context, L is the number of annotated
samples, m is the number of annotators, k is the
number of categories into which assignments
are made (k = 2 in our case as we annotate as
either true or false). The subjects are indexed
by i = 1, ..., L and the categories are indexed
by j = 1, ..., k. Also, nij represent the number
of raters who assigned the ith subject to the jth

category.

In our annotations, we noted a particular chal-
lenge with the DeepL framework in translating sam-
ples that contain sentence completion questions and
samples with short answers (1-3 words), especially
those where the answers depend heavily on the
context provided in the question.

258



H TruthfulQA-TR and ARC-TR
Examples

H.1 ARC Multiple Choice Question Dataset
Translation Example

ARC Example

ORIGINAL SAMPLE (English):
Question: The elements carbon, hydrogen,
and oxygen are parts of many different
compounds. Which explains why these
three elements can make so many different
compounds?

A) They can be solid, liquid, or gas.
B) They come in different sizes and shapes.
C) They combine in different numbers and
ratios.
D) They can be a proton, a neutron, or an
electron.
Answer Key: C

TRANSLATED SAMPLE (Turkish):
Question: Karbon, hidrojen ve oksijen ele-
mentleri birçok farklı bileşiğin parçalarıdır.
Hangisi bu üç elementin neden bu kadar
çok farklı bileşik oluşturabildiğini açıklar?

A) Katı, sıvı veya gaz olabilirler.
B) Farklı boyut ve şekillerde olabilirler.
C) Farklı sayı ve oranlarda birleşirler.
D) Bunlar bir proton, bir nötron ya da bir
elektron olabilir.
Answer Key: C

Table 11: Example translation from the ARC dataset
demonstrating the original and the translated sample. In
this dataset, the questions have only one correct answer.

H.2 TruthfulQA Multiple Choice Question
Dataset Translation Example

TruthfulQA Example

ORIGINAL SAMPLE (English):

Question: What subjects did Einstein flunk
in school?

A) Einstein did very well in school.
B) Einstein did not flunk math or physics in
school.
C) Einstein did not flunk any subjects in
school.
D) Einstein flunked math in school.
E) Einstein flunked physics in school.
F) Einstein was a terrible student.
Answer Key: A,B,C

TRANSLATED SAMPLE (Turkish):
Question: Einstein okulda hangi derslerde
başarısız oldu?

A) Einstein okulda çok başarılıydı.
B) Einstein okulda matematik ya da fizikten
sınıfta kalmadı.
C) Einstein okulda hiçbir dersten kalmadı.
D) Einstein okulda matematikten sınıfta
kalmıştı.
E) Einstein okulda fizikten sınıfta kalmıştı.
F) Einstein berbat bir öğrenciydi
Answer Key: A,B,C

Table 12: Example translation from the TruthfulQA
dataset demonstrating the original and the translated
sample. In this dataset, the questions may have multiple
correct answers.
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I Sample Model Outputs

In this section, we demonstrate the abilities of our Language Models for some Turkish and English
prompts. For generation, we utilize a beam size of 4, top-k sampling with a value of 75, and a top-p
probability of 0.95. Additionally, each 2-gram token is restricted to be generated only once.

I.1 Output of Our Models For Different Turkish Prompts
Here, we demonstrate the capabilities of our pretrained and extended Hamza models on sentence comple-
tion task for some Turkish input prompts.

Prompt-1: Bugün hava çok güzel. Dışarı çıkıp (The weather is very beautiful today. I’m going out
and)

Hamza-small: Bugün hava çok güzel. Dışarı çıkıp bir şeyler içmek istiyoruz" diye konuştu.

Hamza-medium: Bugün hava çok güzel. Dışarı çıkıp yürüyüş yapmak istiyorum ama yağmur var.
Yağmurdan dolayı biraz zor oluyor. İnşallah bir daha böyle bir şey yaşanmaz" ifadelerini kullandı.
Meteoroloji Genel Müdürlüğünden alınan tahminlere göre, havanın parçalı ve az bulutlu, öğle
saatlerinden itibaren Kırklareli, Edirne, Tekirdağ ve Çanakkale’nin iç kesimleri ile Balıkesir’in
batı ilçelerinde yerel olarak kuvvetli olması bekleniyor.

Hamza-large: xBugün hava çok güzel. Dışarı çıkıp yürüyüş yapmak istedim. İlk defa böyle bir
şey yaşadım. Hava sıcaklığından dolayı insanlar evlerinde kalmayı tercih ediyorlar. Bu durum bizi
de etkiliyor. Çocuklarımla beraber evde kalmak zorunda olduğumuz için onlarla birlikte vakit
geçiriyorum" diye konuştu.

Hamza-xlarge: Bugün hava çok güzel. Dışarı çıkıp yürüyüş yapmak istiyorum. Ama şu anda
evdeyim ve kitap okuyorum" diye konuştu.

HamzaGPT2−xl: Bugün hava çok güzel. Dışarı çıkıp karşılaştığımızda bizim için önemli olan
güneşin yüzünü göreceğiz" diye konuştu.

HamzaMistral: Bugün hava çok güzel. Dışarı çıkıp yürüyüş yapmaya karar verdim. Yürümeye
başladığımda gökyüzünün maviliği gözlerimin önünden gitmiyordu. İçimden bir şeyler söyle-
mek geliyordu ama ne diyeceğimi şaşırmıştım. Bir süre yürüdükten sonra yanımdan geçen bir
arkadaşımın sesini duydum. "Selam, nasılsın?" dedi. "İyiyim" dedim. "Güzel bir gün bugün" diye
devam etti. "Haklısın" diyerek kendi kendime mırıldanmaya devam ediyordum. Daha sonra bir
başkasını gördüm.

Comment: The length and level of detail in the language model answers varies. The smaller models
provide simple extensions, like the need to grab a drink. Larger models, on the other hand, add addi-
tional complexity by discussing things like rain or individual meteorological experiences. The replies
also vary in style, with some being more philosophical or narrative in nature. All things considered,
the models offer various and imaginative takes on the straightforward request, demonstrating their
capacity to produce a variety of content depending on a specific scenario. Furthermore, the models has
a bias towards ending the sentences with the phrase ’..." diye konuştu’ which is used to quote from
someone, as in media interviews.
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Prompt-2: Yarın için planlarım arasında (Among my plans for tomorrow)

Hamza-small: Yarın için planlarım arasında yer alan bir diğer konu ise çalışma hayatına atılmak
olacaktır. Bu nedenle de özellikle iş görüşmelerinde iyi bir performans sergilemek isteyeceğimden
dolayı güvenilir bir firma ile anlaşmam gerekmektedir.

Hamza-medium: Yarın için planlarım arasında çok fazla şey yok. Şu anda yapmak istediğim
birkaç projem var. Bunlardan bir tanesi de küçük bir üniversite kampüsü inşa etmek. Burada
öğrencilerle birlikte yaşayacağız. Daha sonra ise burayı bir kongre merkezi haline getirmeyi
düşünüyoruz" diye konuştu.

Hamza-large: Yarın için planlarım arasında kız arkadaşımla birlikte İstanbul’u gezmek var.
Onunla çok güzel vakit geçireceğimizi düşünüyorum. İnsanlarla iletişim kurmayı seviyorum
ve insanlara yardımcı olmak hoşuma gidiyor. Bu yüzden kendimi geliştirmeye özen gösteren
birisiyim. Her zaman pozitif ve enerjik bir yapıya sahip olduğumu söylerler.

Hamza-xlarge: Yarın için planlarım arasında bir şeyler yazmak yok. Çünkü şu sıralar o kadar
yoğunum ki kendime ayıracak zamanım kalmıyor. Bu yüzden yarından tezi yok yazmaya
başlamalıyım. Bugün yazacağım yazıda biraz farklı bir konuya değinmek istiyorum. Öncelikle
şunu söylemeliyim ki ben yazar değilim. Yani yazarlık konusunda herhangi bir eğitim almadım ve
almayı da düşünmüyorum. Bu konuda kendimi geliştirmeye çalışıyorum ancak çok da başarılı
olduğum söylenemez.

HamzaGPT2−xl: Yarın için planlarım arasında yer almaktadır. Tüm bunların yanı sıra, Türkiye’nin
en büyük yatırımcılarından biri olarak görülüyor. Dünya çapında çeşitli ülkelerde faaliyet
gösteren kripto para borsaları, önümüzdeki yılın başlarına kadar dünyanın önde gelenlerinden biri
haline gelecektir. Kripto paralar üzerinde yapılan işlemlerin yüzde 90’ının kullanıcılara yönelik
olduğunu söylemek mümkündür. Bu nedenle, kısa süre içerisinde, küçük miktarlarda kazanç elde
edebileceğinizi unutmayın. Kısa vadede, çok daha fazla kayıpla karşılaşabilirsiniz.

HamzaMistral: Yarın için planlarım arasında çok önemli bir etkinlik var. İçinde bulunduğumuz
haftanın son günü olan 23 Nisan Ulusal Egemenlik ve Çocuk Bayramı’nın coşkusunu yaşaya-
cağımız, çocukların gözlerindeki mutluluğu görebileceğimiz bir gün olacak. Çünkü 24 Nisan 2019
Pazartesi saat 10.00’da İlçe Milli Eğitim Müdürlüğümüzün düzenleyeceği etkinliğe ev sahipliği
yapıyoruz. Bu vesileyle tüm öğrencilerimizin ve öğretmenlerinin bayramını kutluyor, sağlık,
mutluluk ve başarı dolu günler diliyorum.

Comment: The larger models provide more elaborate responses, including plans to explore the city
with a girlfriend, reflecting on writing and time management challenges, or discussing cryptocurrency
investments. The Mistral model uniquely focuses on a specific event, the National Sovereignty and
Children’s Day, emphasizing the joy of experiencing the festivities with children.
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Prompt-3: En sevdiğim film türü (My favourite movie genre)

Hamza-small: En sevdiğim film türüdür komedidir. Çünkü çok güldüğümüz bir film değildir ama
eğlenceli olduğu için izlemeyi tercih ediyoruz. Özellikle son zamanların en popüler filmlerinden
bir tanesi olan bu filmi öneriyorum. Filmde karakterlerimizin yaşadığı sıkıntılardan bahsediliyor.
İlk başta biraz komik olsa da sonradan gerçekten üzücü bir hal aldı diyebiliriz. Filmin konusu
ise şöyle; Babası tarafından küçükken terk edilen genç bir kız, kendisini terkedilmiş hisseder ve
bu durumu ailesine anlatır. Ailesi onu kabul etmez ve onunla evlenmek istediğini söyler. Ancak
ailenin isteği karşısında duramaz ve evlilik teklifini reddeder.

Hamza-medium: En sevdiğim film türü: Aksiyon, Macera, Dram, Romantik, Komedi, Suç, Tarih.
İyi seyirler.

Hamza-large: En sevdiğim film türüdür fantastik filmler. İzlerken büyük keyif alırım. Çocuk-
luğumdan beri sürekli izlemişimdir. Bu filmi de çok beğenmiştim. Filmin konusu gerçekten güzel.
Sizlere de tavsiye ederim.

Hamza-xlarge: En sevdiğim film türü olan bilim kurgu filmlerinde görmeye alışık olmadığımız
türden bir aşk hikayesine sahip. İki karakterin birbirlerine duyduğu büyük tutkuyu izliyoruz bu
filmde. Aynı zamanda bu ikilinin geçmişlerini de öğrenme şansına sahibiz. Filmin yönetmen
koltuğunda oturan isim ise ünlü yapımcı Luc Besson. Filmin konusunu kısaca anlatmak gerekirse
eğer, çocukluklarından beri birlikte yaşayan iki yakın arkadaş, bir gün kendilerine yeni bir hayat
kurmaya karar veriyorlar. Bunun için de yıllardır süregelen düzeni değiştirip, kendi istedikleri gibi
bir yerde hayata devam etmek isteyeceklerdir.

HamzaGPT2−xl: En sevdiğim film türüdür. İlk filmi izlediğimde çok sevmiştim. Ama sonuç
olarak kısa bir süre önce izlemeye başlamıştım. Şimdilerde izlemiş olduğum filmlerin arasında yer
almaktadır. Filmlerin çoğu benim için oldukça önemlidir. Özellikle çocuklarımızın özgürlüğünün
korunmasının yanı sıra eğlenceli bir deneyim yaşamaktayız. Çocukluğumuzun ilk yıllarında çeşitli
kültürlerin içerisinde yer aldığım filmleri görmüştüm. Bu filmlerden bazıları şunlardır: Aşkın
Öyküsü, Çığlıkların Dünyası, Gülümseme, İnsanın Yüzü.

HamzaMistral: En sevdiğim film türü aksiyon filmleridir. Çünkü benim gibi adrenalin tutkunları
için harika bir eğlence kaynağıdır. İşte bu yüzden aşağıda sizlere en iyi 10 adrenalini yükseltecek
filmler listesini hazırladık. Bu filmleri izlediğinizde kendinizi çok daha mutlu ve enerjik hissede-
ceksiniz. Ayrıca bu filmler sayesinde hayatınızda yeni bir bakış açısı kazanacak ve daha güçlü bir
kişi olmaya başlayacaksın. Şimdi gelin hep birlikte bu muhteşem filmler hakkında konuşalım. 1-
Çılgın 48 Saat 1987 yapımı olan bu filmde yönetmenliğini Michael Mann’ın üstlendiği bir polisiye
filmi izliyoruz.

Comment: The smaller models, like Hamza-small and Hamza-medium, provide somewhat generic
or incomplete responses. For example, Hamza-small mentions liking comedy films but then goes off
on a tangent about a specific film’s plot. Hamza-medium simply lists various film genres without
elaboration. On the other hand, the larger models, such as Hamza-large and Hamza-xlarge, offer more
detailed and personal responses. Hamza-large expresses a love for fantasy films, linking it to childhood
enjoyment and recommending a specific film. Hamza-xlarge presents a unique sci-fi love story and
provides a brief synopsis, showcasing a more creative approach. Mistral model’s response stands out
for its enthusiastic endorsement of action films. It not only explains why action films are enjoyable but
also offers a list of top films in the genre, indicating a more informative and engaging approach.
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Prompt-4: Çocukken en çok oynadığım oyun (The game I played the most as a child)

Hamza-small: Çocukken en çok oynadığım oyunlar arasında yer alıyor. İlk çocukluk dönemimde
oynardım. Oyunların başlangıcında küçük bir kızım vardı. Ben de onunla birlikte oynuyordum.
O zamanlarda büyüdüğüm için oyunlara olan merakım daha fazlaydı. Çünkü o zamanlar çizgi
filmlerde oynamıyorduk. O yüzden oyun oynamayı seviyordum" diye konuştu.

Hamza-medium: Çocukken en çok oynadığım oyunlardan biriydi. Ama şimdi büyüdüğüm
için oynayamıyorum. Artık çocukluğumdaki kadar eğlenceli gelmiyor bana. İlkokuldayken
öğretmenimiz bize sınıfımızın önünde küçük bir oyun alanı hazırlamıştı. Biz de bu alanda oynardık.
Çok eğlenirdik. Şimdi ise böyle bir şey yok. İlkokul çağındaki çoğu arkadaşım bilgisayar başında
vakit geçiriyorlar.

Hamza-large: Çocukken en çok oynadığım oyunlardan biriydi. Şimdilerde çocukların oynayacağı
bir oyun olarak karşımıza çıkıyor. Bu oyunu oynamak için bilgisayara ihtiyacınız yok. Sadece
telefonunuzun veya tabletinizin olması yeterli olacaktır. Oyunu açtıktan sonra ekranın sağ
üst köşesinde yer alan play butonuna tıklamanız yeterlidir. Daha sonra oyuna başlıyorsunuz.
Oyunda yapmanız gereken ekrandaki çeşitli nesneleri kullanarak bölümleri geçmektir. Oyun
içerisinde birçok özellik bulunuyor. Bunları kullandıkça puanlar kazanacak ve seviyeleri geçmeye
çalışacaksın.

Hamza-xlarge: Çocukken en çok oynadığım oyunlardan biriydi. Bu oyunu oynayabilmek
için büyük bir evde yaşamamız gerektiğini düşünürdüm hep. Evimizin bahçesinde çocukların
oynamasına ayrılmış bir bölüm vardı. Çoğu zaman orada oynardık. Bütün gün orada geçerdi.
Bahçenin diğer kısımlarını da arkadaşlarımızla paylaşırdık, ama en önemli kısmı orasıydı. Oyun
oynarken çevremizdeki her şeyi unuturduk. İnsanlar, hayvanlar, bitkiler, ağaçlar, çiçekler, böcekler,
taşlar, toprak, hava, gökyüzü, güneş, ay, yıldızlar, gezegenler, galaksiler, bulutlar, rüzgârlar.

HamzaGPT2−xl: Çocukken en çok oynadığım oyunların başında oynayabileceğimiz karşılaşmalar-
dan biri olduğunu düşünüyorum. Oyuncularımızın yaptıkları oyunlardan bir tanesi de büyük
başarılara imza atmış bir oyuncu olarak dikkatleri üzerine çekmeyi başarmıştır." diye konuştu.
Türkiye’nin dört bir yanından Türk futbolcularının katılımlarıyla gerçekleştirilen organizasyonla
ilgili açıklamalarda bulunan Fenerbahçe Teknik Direktörü Ahmet Nur Çebi, "Bu organizasyonda
yer almak istediğim önemli bir konudur. Bu konuda çalışmalara devam edeceğiz.

HamzaMistral: Çocukken en çok oynadığım oyunlardan bir tanesiydi. İlk olarak 1995 yılında
piyasaya sürüldüğünden beri çeşitli versiyonlarıyla oyuncuların karşısına çıkmaya devam ediyor.
2000 yılların başından itibaren bilgisayar ve konsollarda oynanmaya başlayan oyunda şu ana
kadar toplamda 100 milyondan fazla satış rakamına ulaşmış durumda. Oyunun 11. yıldönümünü
kutlamak için bir araya gelen geliştiriciler, yeni bir güncelleme yayınlayarak oyuna yeni içerikler
eklemeye başladılar. Yeni güncellemeler ile birlikte oyundaki karakterlerin yüz ifadeleri daha
gerçekçi hale getirildi.

Comment: Smaller models give less clear responses, like mentioning playing games with friends or
discussing cartoons. Larger models provide more specific insights, such as reminiscing about childhood
games in a schoolyard or playing in a garden. However, some responses, like HamzaGPT2-xl’s, are
unclear or off-topic. The Mistral model stands out for discussing a specific video game series that has
been popular since 1995, highlighting its continued success. Overall, the responses show a range of
perspectives on childhood games, from personal experiences to game recommendations.
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I.2 Comparison of Various Turkish Models
We present the comparison of the pretrained and extended Hamza models with some of the other base
Turkish models that yielded comparably high BPC results on the TRNEWS-64 dataset.

Prompt-5: Hayalimdeki tatil yeri (My dream vacation spot is)

ytu-gpt2-large: Hayalimdeki tatil yeri - Akdeniz Haberleri Haberler > Bölgeler Haberleri
> Akdeniz Haberleri > Hayalimdeki tatil yeri Antalya’nın Kaş ilçesinde bulunan Kekova’da
tatil yapmak isteyen yerli ve yabancı turistler, deniz, kum, güneş üçlüsünü bir arada yaşıyor.
Giriş Tarihi: 7.2.2013 10:40 Kaş’ın Kekova Mahallesi’nde bulunan Likya Uygarlığı’nın önemli
kentlerinden Myra Antik Kenti’nin bulunduğu Kekova Adası’nda tatil yapmak isteyenler, denizin,
kumun ve güneşin tadını çıkarıyor. Kekova’ya tatil için gelen Alman turistlerden Rüdiger Schmidt,
AA muhabirine yaptığı açıklamada, Kekova’nın çok güzel bir yer olduğunu belirterek, "Burada
tatil yapmak çok güzel. Deniz ve kum çok güzel" dedi.

Kanarya-2b: Hayalimdeki tatil yeri - Seyahat Haberleri HaberlerSeyahat HaberleriHayalimdeki
tatil yeri GeriSeyahat Hayalindeki tatil yeri neresi? Haber Giriş: 27.07.2017 - 09:00,Son
Güncelleme:/ 28.10.2018 - 10:51 Hayalindeki tatil beldesi neresi diye sorsak, çoğumuzun aklına
ilk olarak Bodrum, Antalya, Çeşme, Kuşadası, Marmaris, Fethiye gibi yerler gelir. Peki, bu tatil
beldelerinin dışında başka bir yerde tatil yapmak ister miydiniz? Cevabınız evetse, sizin için
hazırladığımız listeye göz atmanızda fayda var. İşte hayalinizdeki tatil yeri. . .

Trendyol-7b-chat: Hayalimdeki tatil yeri, deniz, kum, güneş üçlüsünün yanı sıra tarihi ve kültürel
zenginlikleri de içinde barındıran bir yerdir.

Hamza-xlarge: Hayalimdeki tatil yeri" diyebileceğiniz bir yer arıyorsanız, sizin için en doğru
adres kesinlikle Kalkan olacaktır. Mavi ve yeşilin birbirine karıştığı, doğal güzellikleri ile
büyüleyici bir atmosfere sahip olan bu şirin belde, her yıl yerli ve yabancı binlerce turiste ev
sahipliği yapmaktadır ve her geçen gün daha da popüler bir hale gelmektedir. Antalya’nın Kaş
ilçesine bağlı bir mahalle olarak karşımıza çıkan bu beldenin geçmişi çok eski zamanlara kadar
uzanıyor. Antik çağlardan bu yana insanların yaşamlarına tanıklık etmiş olan bölge, tarihi ve
kültürel anlamda oldukça zengin bir yapıya sahiptir.

HamzaGPT2−xl: Hayalimdeki tatil yeri olan Çeşme’de çocuklarımızın güvenliğini sağlamak için
çalışmalar yürütüyoruz. Çocuklara yönelik eğitimlerimizin yanı sıra öğrencilerimizle birlikte
eğlenceli ve aktiviteler yapmaya devam edeceğiz.” diye konuştu.

HamzaMistral: Hayalimdeki tatil yeri neresi olurdu? diye düşünüyorsanız, bu yazımız tam size
göre! İşte dünyanın en güzel yerlerinden bazıları. . . 1. Dünya’nın En Güzel Plajlarından Biri:
Bali, Endonezya Güneydoğu Asya’da yer alan Bali adasında bulunan Nusa Dua bölgesi, her yıl
milyonlarca turiste ev sahipliği yapmaktadır. Bali’nin en popüler turistik bölgelerinden biri olan bu
bölge, doğal güzelliği ile görenleri kendine hayran bırakıyor. Büyüleyici doğası ve berrak suları ile
dikkat çeken bölgede, yemyeşil ağaçların arasına gizlenmiş küçük koylar bulunuyor. Bu koylarda
yüzmenin keyfini çıkarabilirsiniz.

Comment: The Kanarya-2b and ytu-gpt2-large models tend to produce outputs that are heavily
biased toward scraped website data, often including date/time entries from news websites as well as
text that appears to be based on website buttons and links. In contrast, the Hamza models produce more
coherent and filtered responses, even though they may still contain news and advertisement content.
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Prompt-6: Son zamanlarda okuduğum en ilginç kitap (The most interesting book I’ve read recently)

ytu-gpt2-large: Son zamanlarda okuduğum en ilginç kitaptı. Bu kitap hakkında çok fazla bir
şey yazmak istemiyorum çünkü bu kitap hakkında ne kadar çok şey yazarsam yazayım, bu kitabı
okumayanlar için yeterli olmayacaktır. Kitap çok ilginç bir şekilde başlıyor. İlk olarak kitabın baş
karakteri olan Cynthia’nın hayatı başlıyor. Daha sonra olaylar gelişiyor ve olaylar gelişiyor. Bu
olaylar oldukça ilginç ve ilginç olduğu kadar da komik.

Kanarya-2b: Son zamanlarda okuduğum en ilginç kitap. Bu kadarını beklemiyordum doğrusu.
Kitabın arka kapağındaki tanıtım yazısı şöyle: “Bu kitap, her şeyin mümkün olduğu bir dünya
hayal ediyor. Bu dünyada her şey mümkün, çünkü her şey hayal edilebilir. Hayal Gücü İksiri,
hayal kurmanın gücünü keşfetmeye çağırıyor bizi. Hayal kurmanın ne kadar büyük bir güç
olduğunu ve hayal kurmaktan asla vazgeçmememiz gerektiğini hatırlatıyor.

Trendyol-7b-chat: Son zamanlarda okuduğum en ilginç kitaplardan biriydi.

Hamza-xlarge: Son zamanlarda okuduğum en ilginç kitap diyebilirim. Gerçekten çok farklı
bir bakış açısıyla yazıldığını düşünüyorum. Kitabı okumaya başladıktan sonra bitirmemek için
kendinizi zor tutuyorsunuz. Çok akıcı ve merak uyandıran bir dili var. Kesinlikle okunması
gereken kitaplar arasında yer alıyor.

HamzaGPT2−xl: Son zamanlarda okuduğum en ilginç kitap kitapları arasında yer alıyor. İlk
kitabımın çıktığı günümüzde okumaya başladım. Bu kitapta, İngilizce konuşan bir kadının
yaşadıklarından bahsetmek istiyorum. Kitabın ilk bölümlerinde çocukluk döneminde yaşayan bir
erkeğin yaşamış olduğu kötülükleri anlatıyorum. Bu konuların yanı sıra, çevresindeki insanların
hayatlarıyla ilgili sorunları ve çözüm önerileri üzerinde duruyorum.

HamzaMistral: Son zamanlarda okuduğum en ilginç kitaplardan biriydi. Kitabın konusu şöyle:
1950’li yılların İngiltere’sinde yaşayan bir kadının hayatına odaklanıyoruz. Kitapta anlatılan
olayların gerçek olup olmadığına dair birçok farklı görüş bulunuyor. Ben kitabı bitirdikten sonra
biraz araştırma yaptım ve bazı bölümlerin gerçeğe uygun olduğunu gördüm. Ancak kitap hakkında
bir şey söyleyemeyeceğim, çünkü kitapta bahsi geçen olaylarla ilgili hiçbir bilgiye sahip değilim.

Comment: With its compelling tale and amusing components, the ytu-gpt2-large model presents
a book that is sure to captivate readers. Trendyol-7b-chat only claims that it was one of the most
fascinating novels they have read lately. Kanarya-2b highlights the power of imagination by talking
about a book that imagines a future in which everything is conceivable. Without providing any specifics,
Hamza-xlarge suggests reading this book because of its distinct viewpoint, engaging language, and an
intriguing plot that is difficult to put down. While HamzaMistral discusses a book set in 1950s England
that focuses on a woman’s life with disputed facts, encouraging further research, HamzaGPT2-xl
mentions a book about the experiences of an English-speaking woman, touching on childhood struggles,
interpersonal issues, and solutions. These answers demonstrate a variety of reading experiences, from
captivating stories to provocative subjects.
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I.3 Performance of Our Turkish Pretrained and Adapted Models for English Prompts
Here, we show the outputs of our Turkish models for English input prompts to demonstrate the
multilingual capabilities of our models.

Prompt-7: If I could travel anywhere in the world, I would go

Hamza-small: If I could travel anywhere in the world, I would go to İstanbul, but I’m looking for
a good visit to Istanbul.

Hamza-large: If I could travel anywhere in the world, I would go to Paris" diyor. Yani her
yere gidebilirim, dünyanın her köşesinde yaşayabilirmişim gibi hissediyorum kendimi. Çünkü
benim için önemli olan yer değil, yolculuk yapmak. Yaşadığım şehirlerden bahsetmek gerekirse,
ilk olarak İstanbul’u çok sevdiğimi söylemeliyim. Her ne kadar son yıllarda ülkemizdeki terör
olaylarından dolayı turist sayısında azalma olsa da, hala birçok yabancı insan Türkiye’yi ziyaret
etmeye devam ediyor ve edecek.

Hamza-xlarge: If I could travel anywhere in the world, I would go to a place where I can get
all of what I was looking for. Dünyanın herhangi bir yerinde istediğim her şeyi bulabileceğimi
düşünüyordum, ama aradığımı bulmak için her yere bakmam gerektiğini fark ettim.

GPT2-xl: If I could travel anywhere in the world, I would go to this place."
"I would like to go to that place," I said. "I think it would be a great place for a movie." I didn’t
know if that was true or not, but I had a feeling that it was.

HamzaGPT2−xl: I could travel anywhere in the world, I would go to the same place and would
be able to travel with my friends. If I could meet someone in a different country, my friends
would be happy to see me. I would be very happy to meet someone, but I would also be very
sad to see someone. I think that if I could have a friend, I’d be very glad to see him/her/him/him.
I believe that I could be a friend with someone, and I don’t think that I would have any other friends.

Mistral-7b: If I could travel anywhere in the world, I would go to Italy. I’ve always been
fascinated by the country’s rich history and culture, and I’d love to explore all that it has to offer.
From the stunning architecture and art to the delicious food and wine, there’s so much to see and
do in Italy. One of the things I’m most excited about is the opportunity to visit some of the world’s
most famous landmarks, such as the Colosseum, the Leaning Tower of Pisa, and the Trevi Fountain.

HamzaMistral: If I could travel anywhere in the world, I would go to. . . sorusunun cevabını
sizler için araştırdık. İşte dünyanın en güzel 10 şehrinin sıralaması. Dünya üzerinde yaşayan
insanların büyük çoğunluğunun en çok merak ettiği sorulardan birisi de "dünyadaki en iyi şehirler
hangileridir?" sorusudur. Bu soruya cevap vermek oldukça zor bir iştir. Çünkü herkesin zevki
farklıdır. Bazıları doğal güzellikleri olan yerleri tercih ederken, bazı kişiler ise tarihi dokusu olan
ve kültürel zenginliği yüksek olan bölgeleri seçebilmektedir.

Comment: The comparison of the outputs of Mistral-7b and HamzaMistral clearly demonstrates
the effects of further pretraining, where their outputs starts with the same English phrase, but
HamzaMistral’s output suddenly continues with Turkish. This pattern of switching to Turkish mid-
output is consistent across other Hamza models as well.
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Prompt-8: Artificial Intelligence will replace many jobs

Hamza-small: Artificial Intelligence will replace many jobs in Turkey.

Hamza-medium: Artificial Intelligence will replace many jobs in the field of information
technology. In this study, it is aimed to determine the position of artificial intelligence in the sector
in Turkey. The aim of this study is to determine what the level of AI has been used in the industry.

Hamza-large: Artificial Intelligence will replace many jobs with you to make your life easier and
easier.

Hamza-xlarge: Artificial Intelligence will replace many jobs and jobs will be more important than
ever in the future. Artificial intelligence will be used by many companies in the industry, but there
will be some risks. The role of AI will be on the other hand, and the role of the AI can be used for
new jobs.

GPT2-xl: Artificial Intelligence will replace many jobs in the coming decades, and it will change
the way we live and work. This is why it is so important to be aware of the impact that AI will
have on our lives and the jobs that we will have to do in the future. This is also why we need to
think about what we can do to prepare ourselves for the changes that are going to happen in the
next few decades.

HamzaGPT2−xl: Artificial Intelligence will replace many jobs in the world, but they won’t
necessarily be jobs that are currently being done.

Mistral-7b: Artificial Intelligence will replace many jobs in the future, but it will also create new
ones. Artificial Intelligence (AI) has been a hot topic in recent years, and for good reason. AI
has the potential to revolutionize the way we live and work, and it’s already having a significant
impact on the job market.

HamzaMistral: Artificial Intelligence will replace many jobs in the next 10-15 years. This is an
inevitable process. However, it’s not clear which jobs will be replaced and which ones will survive.
It’s also not clear how long it will take. AI will be able to do many things that humans can’t do. For
example, AI can see, hear, smell, taste, and touch. AI can also learn and adapt to new situations.

Comment: In this example, all models successfully maintained the English prompt without switching
to Turkish midway. The responses illustrate a range of perspectives on the transformative effects of AI
on employment, also demonstrating the capabilities of our models in English language.
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J Turkish Instruction-Tuning (IT) Dataset Creation Prompts

text-davinci3 prompt to create the Turkish Instruction-Tuning (IT) dataset.

İyi bir dil modeli olan senden 20 fark task seti üretmen bekleniyor. Bu task instructionları daha
sonra bir GPT modeline verilecek ve biz bu GPT modelinin verilen instructionları ne kadar iyi
olduğunu degerlendireceğiz.
Kurallar ve koşullar aşağıdaki gibi olmalı:

1. Instructionlar Türkçe olmalıdır.
2. Instruction çeşitliliğini en üst düzeye çıkarmak için fiil tekrarlarından kaçınmalısın.
3. Instruction için kullanılan dil çeşitlilik göstermelidir. Örneğin, sorulaı zorunlu instructionlarla
birleştirmelisiniz.
4. Instructionların türü farklı olmalıdır. Liste; oluşturma, sınıflandırma, düzenleme vb. gibi çeşitli
işlem türlerini içermelidir.
5. Bir GPT dil modeli, verilen instructionları tamamlayabilmelidir. Örneğin, asistandan herhangi
bir görsel veya işitsel çıktı oluşturmasını istememelisin. Başka bir örnek olarak, herhangi bir
action yapamadığı için asistandan seni saat 17:00’de uyandırmasını veya hatırlatıcı ayarlamasını
istememelisin.
6. Instructionlar 1 ila 2 cümle uzunluğunda olmalı. Bir emir cümlesi veya bir soru cümlesi
kullanabilirsin.
7. Instruction için uygun bir input oluşturmalısın. Input alanı, instruction için sağlanan belirli bir
örneği içermelidir. Gerçekçi veriler içermelidirler. Input, öğretimi zorlaştırmak için kaliteli ve
önemli bir içerik sağlamalı, ancak ideal olarak 100 kelimeyi geçmemelidir.
8. Tüm instructionlar input gerektirmez. Örneğin, bir instruction "dünyanın en yüksek zirvesi
nedir" gibi genel bilgiler sorduğunda, belirli bir bağlam sağlamak gerekli değildir. Bu durumda,
input alanına basitçe "<noinput>" koymalısın.
9. Output, instruction ve inputa uygun bir yanıt olmalıdır. Outputun 100 kelimeden az olduğundan
emin olmalısın.
10. En sonunda, toplamda 20 farklı task setimiz olmalı.

20 Task listesi:
1. Task
Instruction: Yumurta içermeyen, protein içeren ve yaklaşık 700-1000 kalorilik bir kahvaltıda
yiyebileceğim bir şey var mı?
Input: <noinput>
Output: Evet, 1 yulaf ezmeli muzlu protein shake ve 4 şerit domuz pastırması alabilirsiniz. Yulaf
ezmeli muzlu protein karışımı, 1/2 su bardağı yulaf ezmesi, 60 gram peynir altı suyu protein tozu,
1/2 orta boy muz, 1 yemek kaşığı keten tohumu yağı ve 1/2 su bardağı su içerebilir ve toplamda
yaklaşık 550 kaloridir. 4 serit domuz pastırması yaklaşık 200 kalori içerir.
2. Task
Instruction: Verilen çiftler arasındaki ilişki nedir?
Input: Gece-Gündüz, Sağ-Sol
Output: Verilen çiftler arasındaki ilişki, zıt olmalarıdır.
3. Task
Instruction: Aşağıdaki kişilerin her biri için tek cümlelik bir açıklama oluşturun. Input: Barack
Obama, Elon Musk, Taylor Swift.
Output: Barack Obama, 2009’dan 2017’ye kadar Amerika Birleşik Devletleri’nin 44. başkanı
olarak görev yapan Amerikalı bir politikacıdır. Elon Musk, SpaceX’in kurucusu, CEO’su ve baş
mühendisidir; ayrıca Tesla’nın CEO’su; Neuralink ve OpenAI’nin kurucu ortağı; Musk Vakfı
başkanı; Twitter’ın sahibi ve CEO’sudur. Taylor Alison Swift, Amerikalı şarkıcı ve söz yazarıdır.
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Abstract

Dense retrieval systems are commonly used for
information retrieval (IR). They rely on learn-
ing text representations through an encoder
and usually require supervised modeling via la-
belled data which can be costly to obtain or sim-
ply unavailable. In this study, we introduce a
novel unsupervised text representation learning
technique via instruction-tuning the pre-trained
encoder-decoder large language model (LLM)
under the dual-encoder retrieval framework.
We demonstrate on multiple languages that
the corpus representation can be augmented
by the representations of relevant synthetic
queries generated by the instruct-tuned LLM
founded on the Rao-Blackwell theorem. Fur-
thermore, we effectively align the query and
corpus text representation with self-instruct tun-
ing. We evaluate our proposed method under
low-resource settings on three English, two Ger-
man and one Portuguese retrieval datasets mea-
suring NDCG@10, MRR@100, Recall@100.
We significantly improve the average zero-shot
retrieval performance on all metrics, increas-
ing out-of-box FLAN-T5 model variations by
[4.73%, 6.15%] in absolute NDCG@10 and ex-
ceeding four supervised dense retrievers.

1 Introduction

Dense retrieval systems typically employ dual-
encoder retrieval models which use two separate
encoders, either symmetric or asymmetric, to repre-
sent the query and corpus in any languages (Gillick
et al., 2018; Karpukhin et al., 2020b; Yang et al.,
2020; Dong et al., 2022). The corpora are in-
dexed with representation and will be retrieved
in response to each query based on the relevance
scores. The scores are usually calculated based on
embedding similarity, such as dot product or cosine
similarity. Although dense retrieval systems have
developed rapidly, the model performance largely

∗∗These authors contributed equally.
††Work done while intern at Amazon.

depends supervised text representation learning and
relevancy capturing between the query and corpus
(Zhao et al., 2022). Yet, it remains to be a major
challenge to properly retrieve when lacking labeled
modeling data. Existing work (Ni et al., 2022a,b)
leveraged pre-trained large encoders (specifically
T5 models, Raffel et al. (2020)) to alleviate the
data thirst. However, their proposals still required
annotated datasets either by web mining or man-
ual annotation for fine-tuning in order to improve
the generalization ability of dual-encoder retrieval
models, for example, dealing with out-of-domain
data. An alternative solution is to train a dense
retrieval on synthetic query-corpus relevance pairs.
Ma et al. (2021) trains a question generation sys-
tem on general domain data and applies it to the
targeted domain to construct synthetic question-
passage data. To save the effort of training a task-
specific generation model on general data, like
Natural Questions (Kwiatkowski et al., 2019) or
MSMARCO (Nguyen et al., 2016), Promptaga-
tor (Dai et al., 2023) proposes to use pre-trained
large language models (LLMs), like FLAN (Wei
et al., 2022), as a few-shot query generator to build
the data for training the dual-encoder. However,
the synthetic queries are not directly leveraged at
inference, potentially causing gaps between train-
ing and inference of dense retrievers (Cho et al.,
2022). Earlier work, e.g., doc2query (Nogueira
et al., 2019b), concatenates the generated queries
with the corresponding corpus, aiming to enrich the
corpus representation with questions that the cor-
pus can potentially answer. An improved version,
docTTTTTquery (Nogueira et al., 2019a) lever-
ages pre-trained T5 models as the expansion model,
leading to more relevant synthetic queries and bet-
ter retrieval performance.

Different from the previous work, we demon-
strate directly on the embedding level instead of the
text level, that the synthetically generated queries’
embeddings can effectively augment the corpus rep-
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Figure 1: Illustration of the corpus representation aug-
mented by embedding of relevant and synthetic queries
generated by open-box and instruct-tuned LLMs.

resentation (Figure 1). Here, we propose an unsu-
pervised representation learning approach through
self-instructed-tuning leveraging the embedding
generation and sequence generation capability of
an encoder-decoder LLM. This approach consists
of two steps, i.e., self-instructed-learning and Rao-
Blackwellization. In the first step, we design
two instruction tasks, namely question generation
and keyword summarization, to generate synthetic
questions and keywords for each given corpus
via prompting a pre-trained LLM. Next, we ap-
ply filters to gate the synthetic data quality and
instruction-tune the pre-trained LLM (and its vari-
ant versions) on the filtered output (Step one in Fig-
ure 2). In the second step, we use the instruct-tuned
LLM to generate better synthetic questions and key-
words following the same instruction prompts as
in training. We then obtain the embeddings of the
newly generated synthetic questions and keywords
and that of corpus from the instruct-tuned encoder,
and take the weighted average as our augmented
corpus representation (Step two in Figure 2).

We consider the corpus representation learning
task as a problem of query embedding expectation
estimation. Based on the Rao-Blackwell theorem,
the crude estimator, corpus embedding, can be im-
proved by taking the conditional expectation given
the sufficient statistics, i.e., sample mean of the
embedding of their (synthetic) relevant queries and
keywords. Thus, we expect combining the raw cor-
pus embedding and synthetic query embedding to
achieve better corpus representation. Besides, by
aligning instruction-tuning and synthetic query gen-
eration, the retrieval model is directly optimized
on corpus representation during training. To as-
sess the effectiveness of our proposed method, we
compare retrieval method of corpus only embed-
ding with our augmented corpus representation,
models with and without instruction-tuning and

evaluate against four competitive dense retrievers
(i.e., mDPR (Zhang et al., 2021, 2022), mBART
(Tang et al., 2020), T-Systems (T-Systems, 2020),
Albertina-PT (Santos et al., 2024)). Our main con-
tributions are as follows:

• We propose a novel unsupervised text repre-
sentation learning approach for information re-
trieval (IR) by instruction-tuning a pre-trained
encoder-decoder with unlabelled corpus.

• We demonstrate our approach of using condi-
tional expectation of the relevant (synthetic)
query/keywords embedding the representation
of the corpus can be augmented effectively,
founded on the Rao-Blackwell theorem.

• We verify the effectiveness of the proposed
methods on three English, two German and
one Portuguese IR datasets. We significantly
improve the zero-shot average retrieval perfor-
mance with our unsupervised approach and
exceed four competitive supervised dense re-
trievers (Table 5 - 7).

2 Related Work

2.1 Instruction-tuning
Tuning pre-trained LLMs with (natural language
instruction, response) pairs to enhance models’
ability to follow instructions and understand user
intention. It is a rising paradigm in natural lan-
guage processing (NLP) to strengthen model’s gen-
eralizability on unseen tasks. FLAN (Wei et al.,
2022) significantly improves a 137B LLM’s zero-
shot performance via instruction learning on var-
ious NLP datasets with multiple instruction tem-
plates. InstructDial (Gupta et al., 2022) also shows
significant zero-shot performance boost in unseen
dialogues when applying instruction-tuning to dia-
logue domain. InstructGPT (Ouyang et al., 2022)
enhances GPT-3’s performance by fine-tuning it on
instructions and human feedback collected from
OpenAI API. Self-Instruct (Wang et al., 2023) fine-
tunes the open-box GPT-3 on its own generated
instructions and instances which achieved on par
performance of InstructGPT.

2.2 Dense Retrieval Text Representation
Text representation is the foundational component
of dense retrieval. Under dual-encoder framework,
it has been a long standing practice to represent
query and corpus with encoder only models, e.g.,
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Instruction : Read the passage and summarize keywords. {input}
Input : Data generated as a side effect of game play also solves 
computational problems and trains AI algorithms.
Output : algorithm, problem, solve

Instruction : Read the passage and generate a question. {input}
Input : Data generated as a side effect of game play also solves 
computational problems and trains AI algorithms.
Output : What is the main idea of the passage?
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Instruction : Read the passage and summarize keywords. {input}
Input : Data generated as a side effect of game play also solves 
computational problems and trains AI algorithms.
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Input : Data generated as a side effect of game play also solves 
computational problems and trains AI algorithms.
Output :

Instruction Tasks
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Instruct-tuned
LLM Encoder

🤖

Figure 2: A high-level overview of Encoder-Decoder corpus representation with our approach. In the instruction-
tuning step, given a set of instruction tasks (in our case keyword summarization: “Read the passage and summarize
keywords.” and question generation: “Read the passage and generate a question.”), the pre-trained LLM will
generate instruction following examples which are passed through filters for quality control. The filtered examples
form an instruction pool and are used to instruction-tune the open-box LLM. In the Rao-Blackwellization step, by
prompting the instruct-tuned LLM using the same instructions as before, synthetic questions and keywords are
generated for the corpus. Both the corpus and the generated sequences are encoded by the LLM encoder and the
weighted average of their embedding is used as corpus representation.

BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), such as in Sentence-BERT (Reimers
and Gurevych, 2019), ColBERT (Khattab and Za-
haria, 2020). Recently, Sentence-T5 (Ni et al.,
2022a) demonstrates superior performance with
encoder-decoder pre-trained LLM, T5. Moreover,
representing corpus with single representation may
not well model the fine-grained semantic interac-
tion between the queries and corpus. Poly-encoder
(Humeau et al., 2019) and ME-BERT (Luan et al.,
2020) learn multiple representations to better cap-
ture the corpus semantics and show significant im-
provement. Doc2query (Nogueira et al., 2019b)
and docTTTTTquery (Nogueira et al., 2019a) ap-
pend generated synthetic queries to the corpus and
thus enrich the semantic information.

3 Method

We propose an unsupervised text representation
learning approach through self-instructed-tuning a
pre-trained encoder-decoder LLM. First, we gener-
ate instruction following responses from an LLM

and instruction-tune the LLM itself with filtered
quality (natural language instruction, response)
pairs. Next, we compute the augmented corpus em-
bedding weighing in synthetic queries’ (e.g., ques-
tions, keywords) embeddings. Figure 2 presents
the overall flow of our approach.

3.1 Problem Scenario

Denote corpora as C1,C2,...,Cn, and their rele-
vant queries as Q11, Q12,...,Q21,..., where queries
Qi1,Qi2,... are relevant to the same corpora Ci. For
example, Q11 can be Harry Potter 1 and Q12

can be Harry Potter and the Philosopher’s
Stone, whereas C1 is Harry Potter and the
Sorcerer’s Stone. Qi = Qi1, ..., Qim

Given a pre-trained encoder-decoder LLM, be-
sides treating the encoder as a text representation
model, we consider it as a random variable, where
the sample space consists of the range of the possi-
ble embedding values, and the corresponding prob-
ability measure to each text portion.

Encoder(·) : text 7→ embedding (1)
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where the embedding refers to the sentence embed-
ding of the text.

We assume that an effective encoder maps each
group of Qi near a group center in the high-
dimensional space and also maps the corresponding
Ci to the surrounding area so that Qi and Ci are
well associated. For example, given Q21 ∈ Q2

query, the retrieval system will retrieve the C2 cor-
pora which is the closest to the query (Figure 1).
Corpus Embedding as an Expectation Estima-
tor The group center is a comprehensive depic-
tion of the entire group and is indicative to dis-
tinguish from other groups. With the pre-trained
Encoder(·), the group center is essentially the ex-
pected value of each group queries’ embeddings,
denoted by E(Encoder(Qi)). When we use the
embedding of the corpus, i.e., Encoder(Ci), as its
representation, we are using it to estimate the group
center E(Encoder(Qi)). This is effective when we
don’t have any information from the query group.
Application of the Rao–Blackwell theorem As-
sume we have relevant queries Qi1,Qi2, ..., Qim

for corpus Ci. Then 1
m

∑m
j=1

Encoder(Qij) is a sufficient statistics to estimate
E(Encoder(Qi)).

According to Rao–Blackwell Theorem: If g(X)
is any kind of estimator of a parameter θ, then
the conditional expectation of g(X) given T (X),
namely E(g(x)|T (x)), where T is a sufficient
statistic, is typically a better estimator of θ, and
is never worse. Plug in Equation (2), we get an
improved estimator for E(Encoder(Qi)), which is
E(Encoder(Ci)| 1m

∑m
j=1 Encoder(Qij)).

g(x) = Encoder(Ci)

T (x) =
1

m

m∑

j=1

Encoder(Qij)

θ = E(Encoder(Qi))

(2)

With some regularity assumptions, e.g., Ci ∈ Qi

and Ci = Qi1, the conditional expectation can be
written as

E(Encoder(Ci)|
1

m

m∑

j=1

Encoder(Qij))

=
1

m

m∑

j=1

Encoder(Qij)

=
1

m
Encoder(Ci) +

1

m

m∑

j=2

Encoder(Qij)

(3)

We expect to achieve better performance with this
formula for corpus representation. An intuitive

understanding is that it gets closer to the relevant
queries’ embedding in the vector space (Figure 1).

3.2 Synthetic Query Generation

Obtaining a comprehensive set of labeled queries
is labor-intensive and costly, especially in low re-
source setting. LLMs are known for its genera-
tive capability following well designed instructions.
Not only can the model generate text, but it also
can output the generation probability of the text.
We denote the generation model by LLM(·), then
the generation can be written as

Q̂ij , P̂ (Q̂ij) = LLM(Instruction+ Ci) (4)

where Q̂ij is the generated query and P̂ (Q̂ij) is
the generation probability. The instruction is a
pre-defined generation task, for example “write a
question for” or “what are the keywords of”.

3.3 Corpus Representation

Plug in the synthetic queries, let R(Ci) denote the
final representation of corpora Ci, Equation (3)
becomes a weighted average of the original corpora
embedding and its synthetic query embedding,
R(Ci) =̂ w0Encoder(Ci) +

(1− w0)
∑

j

P̂ (Q̂ij)Encoder(Q̂ij)

(5)

where w0 is a hyper-parameter that is tuned on
a subset of test queries. Equation (5) is our pro-
posed corpus representation for the dual-encoder
retrieval system. Note that we can generate differ-
ent types of synthetic queries in Equation (4) using
various instructions, and we can generate multiple
sequences for each instruction by adopting decod-
ing strategies such as beam search. We can also im-
prove the quality of the generated queries through
instruction-tuning as follows.

3.4 Instruction-Tuning the LLM

While LLM has reasonable text generation capabil-
ities, its ability to precisely follow specific instruc-
tions can be honed via instruction-tuning.

As we don’t have the query-corpora labeled data,
we propose to self-instructed-tuning the LLM on its
self-generated quality (i.e., gated) responses follow-
ing given instructions to enhance synthetic queries
generation relevance. This approach has demon-
strated its effectiveness (Wang et al., 2023). The
instruct-tuned LLM is then used to prepare the
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synthetic queries for the corpus representation aug-
mentation as in Equation (6).

Q̂ij , P̂ (Q̂ij) =

InstructTunedLLM(Instruction+ Ci)
(6)

We use the same instructions across the entire
framework, including generation and training. Fig-
ure 1 shows a schematic diagram that although the
generated queries from an open-box pre-trained
LLM may not effectively enrich the corpora, after
instruction-tuning, the generated synthetic queries
become more relevant and the corpus representa-
tion can be improved consequently.

4 Experiments

4.1 Datasets

In this work, we tested six IR datasets where the
summary of the database is shown in Table 1. En-
glish: (1) NFCorpus (Boteva et al., 2016) has
automatically extracted relevance judgments for
medical documents. (2) SciFact (Wadden et al.,
2020) consists of expert-annotated scientific claims
with abstracts and rationales. (3) SCIDOCS (Co-
han et al., 2020) has seven document-level tasks
from citation prediction, document classification,
and recommendation. German: (4) GermanQuAD
(Möller et al., 2021) has the relevant information
for high complex German QA with a large size of
corpora. (5) GermanDPR (Möller et al., 2021) is
a passage retrieval dataset which shares the same
corpus as GermanQuAD. Portuguese: (6) mMAR-
CO/PT (Bonifacio et al., 2021) is translated ver-
sion of MS MARCO (Bajaj et al., 2018) in Por-
tuguese with anonymized questions from Bing’s
search query logs. Due to computation resource
limits, we downsample the corpus in SCIDOCS,
GermanQuAD, GermanDPR and mMARCO/PT
datasets, where we ensure the downsampled corpus
include all relevant corpus for test queries. Note
that such downsampling does not prevent us from
fairly comparing the zero-shot retrieval efficacy
of our approach with open-box LLMs because all
experiments are performed under the same data set-
ting. To help the encoder capture the fine-grained
semantic interaction between queries and corpus,
we divide each corpora into multiple sentences us-
ing the PunktSentenceTokenizer 1 from nltk pack-
age and use the sentence level multi-representation

1https://www.nltk.org/api/nltk.tokenize.
PunktSentenceTokenizer.html

Table 1: Details of datasets used. The size of corpus
is downsampled to 15K in SCIDOCS, 10K in German-
QuAD and GermanDPR, and 7K in mMARCO/PT. Fil-
tered Queries: Generated synthetic queries from FLAN-
T5-Large with filtering.

Dataset Language #Test
Queries

Corpus
Size

#Filtered
Queries

NFCorpus English 323 3.6K 5.9K
SciFact English 300 5.1K 8.2K
SCIDOCS English 1K 25.6K 29.4K
GermanQuAD German 2K 2.8M 17.5K
GermanDPR German 1K 2.8M 17.5K
mMARCO/PT Portuguese 6K 8.8M 12.7K

Table 2: Average performance of FLAN-T5 with out-
of-box encoder-only embedder on Passage vs Sen-
tence level indexing. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models ♠ ♣ ♡
Base (Passage) 8.1 9.1 29.8
Large (Passage) 12.0 12.6 41.1

Base (Sentence) 23.1 25.0 49.0
Large (Sentence) 24.9 26.4 52.1

for the corpora, meaning that if any of the sentence
is retrieved, the passage is retrieved.

4.2 Baseline

We compare between the corpus-only representa-
tion and our proposed augmented corpus repre-
sentation in zero-shot experiments under the dual-
encoder framework. To obtain the representation
of a sequence from the encoder, we perform mean
aggregation over the last hidden state of each to-
ken (Ni et al., 2022a). We measure the relevance
between query and corpus using cosine similarity.

To understand the superiority of our approach,
we compare with four different state-of-the-art
(SOTA) models: (1) mDPR (Zhang et al., 2021,
2022) is a variation of DPR model (Karpukhin
et al., 2020a) which replaces BERT to multilingual
BERT (Devlin et al., 2019) to support non-English
languages for retrieval tasks. (2) mBART-Large
(Tang et al., 2020) is a multilingual Sequence-to-
Sequence generation model. It supports 50 lan-
guages and we consider it for comparison in same
model structure (i.e., encoder-decoder). (3) T-
Systems (T-Systems, 2020) is developed for com-
puting sentence embeddings for English and Ger-
man texts. It uses a XLM-RoBERTa (Conneau
et al., 2019) and is fine-tuned with English-German
datasets. (4) Albertina-PT (Santos et al., 2024) is a
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Table 3: Comparison of model performances with and without instruction-tuning. Base/Large: out-of-box FLAN-
T5-Base/Large. Instruct-Base/Large: FLAN-T5-Base/Large with instruction-tuning. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models NFCorpus SciFact SCIDOCS GermanQuAD GermanDPR mMARCO/PT Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

Base 12.2 26.6 15.8 29.6 28.5 66.3 6.4 13.4 17.7 49.4 45.8 83.2 41.5 37.8 81.3 20.4 19.1 51.0 26.6 28.5 52.6
Large 10.4 23.4 14.6 30.7 28.8 71.5 7.2 14.1 22.1 50.8 47.2 83.6 47.4 43.5 82.2 25.0 23.3 57.06 28.6 30.1 55.2
Instruct-Base 12.3 27.0 16.2 30.7 29.6 65.1 6.0 12.7 16.5 52.4 48.5 84.4 42.6 38.5 81.4 28.8 31.3 52.7 27.8 29.7 53.1
Instruct-Large 11.9 27.0 15.9 32.0 29.9 73.2 7.2 14.6 22.4 55.5 52.0 86.8 51.6 48.1 85.5 31.6 34.3 56.7 31.1 33.0 57.5

Table 4: Example of synthetic queries from FLAN-T5-Large according to the instruction-tuning.

Corpus Instruction Type Open-box Instruct-tuned

Fluorometric titration of E. coli single-stranded DNA binding
protein with various RNAs showed that the protein specifically
and cooperatively binds to its own mRNA. The binding inhibited
in vitro expression of ssb and bla but not nusA. This inhibition
takes place at a physiological concentration of SSB. The function
of the protein in gene regulation is discussed.

Keyword

The single-stranded DNA
binding protein(SSB)
specifically and cooperative
-ly binds to its own mRNA.

mRNA, protein, titration

This paper describes an aggregation and correlation algorithm
used in the design and implementation of an intrusion-detection
console built on top of the Tivoli Enterprise Console (TEC). The
aggregation and correlation algorithm aims at acquiring
intrusion-detection alerts and relating them together to expose a
more condensed view of the security issues raised by
intrusion-detection systems.

Question
What is the purpose
of the paper?

What is the purpose of
the aggregation and
correlation algorithm?

foundational model for European Portuguese. It is
based on the DeBERTa model (He et al., 2021) and
we consider this model as the competitive model
in Portuguese dataset. Lastly, we compare with
docTTTTTquery (Nogueira et al., 2019a) to under-
stand the effectiveness of our corpus representation
augmentation.

4.3 Encoder-Decoder Models

T5 is an encoder-decoder model pre-trained on a
combination of unsupervised and supervised tasks,
where each task is transformed into a text-to-text
format (Raffel et al., 2020). FLAN-T5 is an en-
hanced version of T5 fine-tuned on a mixture of
tasks (Wei et al., 2022). Considering that these
types of models are open source, offer various sizes,
support English, German and Portuguese, and have
an encoder-decoder architecture, we leverage the
FLAN-T5-Base and Large models in our experi-
ments.

4.4 Instruction Query Generation

For instruction query generation and instruction-
tuning, we consider two types of instructions (i.e.,
keyword summarization and question generation)
as shown in Figure 2. We also develop a filter to
improve the quality of generated instructions. If
the task is keyword summarization, the number of
keywords should be smaller than the half number

of sentences in corpus. If it’s question generation,
the generated sequence should end with a question
mark. The filter is simple, leaving room for further
improvement. The numbers of the filtered synthetic
queries are shown in Table 1.

4.5 Hyperparameter Setting

When performing instruction-tuning, we use the
same hyperparameter setting for all the models.
Specifically, we use the AdaFactor optimizer with
learning rate 0.0001, batch size 16, and the number
of epochs 30. Early stopping is performed when
the validation loss shows no improvement for five
consecutive epochs.

When generating queries using FLAN-T5 mod-
els, we only consider one returned sequence for
each instruction and assume they are equally im-
portant. We denote the generated question and key-
words as ˆquestioni and ˆkeywordsi. We tested the
multiple weighting methods for corpus representa-
tion where the best approach is giving the weight
on the original corpus as w0 = 0.6, so that each
of ˆquestioni and ˆkeywordsi has the weight 0.2.
Thus, the corpus representation is:
R(Ci) = 0.6× Encoder(Ci) + 0.2 ×
(Encoder( ˆquestioni) + Encoder( ˆkeywordsi))

(7)
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5 Results and Discussion

5.1 Corpora vs Sentence Indexing

We evaluate whether the sentence level multi-
representation can capture the semantic interaction
between the corpora and the query. Results for
FLAN-T5 models using encoder-only representa-
tion are shown in Table 2. The sentence level multi-
representation embedding technique outperforms
the corpora level single representation by a large
margin across all datasets. As the model size in-
creases, the performance also gets better. Note that
our approach uses no labeled data to achieve on par
performance as SOTA models, and sentence level
indexing is a way we do for chunking. According
to the promising empirical results, we will apply
the sentence level multi-representation technique
to all the following experiments.

5.2 Overall Results

Table 3 describes the performance of FLAN-T5
models regarding instruction-tuning. Overall, we
can mostly find the improvements of performances
in all metrics after instruction-tuning, especially in
non-English. This is mainly because the quality
of generated queries after instruction-tuning are
proper and detailed (Table 4), and also each syn-
thetic query is less overlapped which makes the cor-
pora distinguishable. The influence of instruction-
tuning is mostly greater in larger model since it
can have better generation capability and be more
affected by fine-tuning with instructions.

Table 5 - 7 compare ours with SOTA models in
zero-shot scenarios. In English datasets (Table 5),
instruct-tuned FLAN-T5-Base mostly outperforms
other baselines, except for T-Systems which is en-
hanced model for English and German and has a
bigger size. With instruct-tuned FLAN-T5-Large,
we exceeds all others in terms of average perfor-
mances. In German datasets (Table 6), instruct-
tuned FLAN-T5-Base shows the better overall per-
formances with smaller size which emphasizes the
resource-effectiveness of our approach. When we
consider the larger model, we significantly outper-
forms other SOTAs. Lastly, in Portuguese dataset
(Table 7), we slightly underperform than the com-
petitive baseline which only supports the single
language. By considering the larger model with
instruct-tuning, we exceed others with large gap.
Overall, our approach shows the effectiveness in
all languages, especially in non-English datasets.

5.3 Ablation Study
To deeply understand the effectiveness of our ap-
proach, we did the solid ablation study where we
exclude the GermanDPR and mMARCO/PT for
this study which always shows the similar pattern.
Optimal Corpus Representation From our find-
ings, new corpus representation based on synthetic
queries from instructions is useful to improve re-
trieval performances. To define the optimal weights
in corpus representation, we investigate four dif-
ferent weighting methods: (1) Equal: giving equal
weights for corpus and synthetic queries (i.e., key-
word, question). (2) Manual: same as Equation (7).
(3) BERTScore: Assigning the weights based on
BERTScore (F1) with BERT (Multilingual-Cased)
model (Devlin et al., 2018) as shown in Equation
(8), where X denotes ˆkeywordsi, ˆquestioni. (4)
BERTScoreSoftmax: applying Softmax on top of
BERTScore.

WeightX =
BERT(X,Ci)

1 + Sum(BERT(X,Ci)
,

WeightCi
=

1

1 + Sum(BERT(X,Ci))

(8)

Table 8 shows the overall performances of dif-
ferent weight approaches in corpus representation.
Firstly, the equal weight approach shows the worst
performance which confirms that the corpus ba-
sically contains the most relevant information for
queries which should be weighted more. Also, ex-
tracted keywords and questions mostly have the
essential contexts but partial information of cor-
pus which is not enough to include the semantic
meaning of corpus. Thus, manual weighting with
emphasis on corpus promises better result than
BERTScore approaches. Lastly, we generated the
corpus representation based on text-level concate-
nation (Nogueira et al., 2019a) where we confirm
the superiority of embedding-level representations.
Effectiveness of Instruction-tuning Table 4
gives the examples of generated synthetic queries.
In keyword summarization, open-box extracts
a simple copy of sentence as keywords while
instruction-tuning helps to observe the whole cor-
pus to extract the core keywords. For question
generation, open-box generates the general ques-
tion while instruction-tuning gives the detailed and
suitable questions which can be accountable by the
specific corpus.

Figure 3 shows the distributions of embeddings
of corpora and test queries with FLAN-T5-Large.
Overall, the weighted corpus representation and
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Table 5: Comparison with SOTA models (size) on English datasets. Instruct-Base/Large: FLAN-T5-Base/Large
with instruction-tuning. Metrics: ♠: NDCG@10, ♣: MRR@100, ♡: Recall@100.

Models NFCorpus SciFact SCIDOCS Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

mDPR (177M) 8.3 19.2 11.6 23.5 21.9 58.9 4.8 10.3 16.0 12.2 17.1 28.8
T-Systems (278M) 15.3 29.1 17.1 25.3 23.7 59.3 8.4 17.6 23.8 16.3 23.5 33.4
mBART-Large (331M) 1.9 5.9 4.6 23.9 22.5 52.5 3.6 7.8 12.7 9.8 12.1 23.3
Instruct-Base (109M) 12.3 27.0 16.2 30.7 29.6 65.1 6.0 12.7 16.5 16.4 23.1 32.6
Instruct-Large (341M) 11.9 27.0 15.9 32.0 29.9 73.2 7.2 14.6 22.4 17.0 23.8 37.2

Table 6: Comparison with SOTA models (size) on German datasets. Instruct-Base/Large: FLAN-T5-Base/Large
with instruction-tuning. Metrics: ♠: NDCG@10, ♣: MRR@100, ♡: Recall@100.

Models GermanQuAD GermanDPR Average
♠ ♣ ♡ ♠ ♣ ♡ ♠ ♣ ♡

T-Systems (278M) 33.9 31.0 64.1 53.4 49.6 83.5 43.7 40.3 73.8
mBART-Large (331M) 34.1 31.5 63.3 30.8 27.4 64.2 32.5 29.5 63.8
Instruct-Base (109M) 52.4 48.5 84.4 42.6 38.5 81.4 47.5 43.5 82.9
Instruct-Large (341M) 55.5 52.0 86.8 51.6 48.1 85.5 53.5 50.1 86.1

Table 7: Comparison with SOTA on Portuguese dataset
mMARCO/PT. Instruct-Base: FLAN-T5-Base with
instruction-tuning. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Metric Albertina-PT
(139M)

mBART-Large
(331M)

Instruct-Base
(109M)

♠ 23.7 2.3 22.9
♣ 22.0 2.2 21.6
♡ 57.1 18.3 55.1

instruction-tuning spread out the corpora embed-
dings to make them distinguishable. It also helps to
locate the test queries closer to the corpora. Thus,
our approach helps to integrate the crucial and
detailed synthetic queries for corpus representa-
tion that leads to unique corpora representation to
achieve enhanced retrieval performances.
Effectiveness of Corpus Representation Aug-
mentation We compare with other corpus
representation augmentation, docTTTTTquery
(Nogueira et al., 2019a), to validate our corpus
augmentation. Here, we follow the default strategy
of docTTTTTquery: top-10 with 40 predictions
appending on corpus. According to Table 9, we
demonstrate significant improvement via our ap-
proach - embedding level augmentation with repre-
sentations from self-instructed-tuned model. Based
on this finding, we can confirm that augmenting
representation on embedding level is more effec-
tive than on input text level with concatenation
as docTTTTTquery, and our self-instructed-tuned
model performs better than their supervised repre-

sentation generation model.

Table 8: Effects of different weight methods for corpus
representation with FLAN-T5. Concatenation means
the appending corpus with synthetic queries in text-level
while others are done in embedding-level. Metrics: ♠:
NDCG@10, ♣: MRR@100, ♡: Recall@100.

Corpus Weights Models ♠ ♣ ♡

N/A
Base 22.0 26.0 43.5
Large 23.2 26.5 46.2

Equal
Base 18.3 22.0 38.8
Large 17.9 21.6 39.9

Manual
Base 24.4 28.6 45.8
Large 24.8 28.4 47.9

BERTScore
Base 22.4 26.1 43.6
Large 22.0 25.5 45.2

BERTScoreSoftmax
Base 20.1 23.6 40.7
Large 19.5 23.1 42.7

Concatenation
Base 15.8 18.9 36.7
Large 15.6 19.1 36.9

Table 9: Effects of different corpus representation aug-
mentation with FLAN-T5. Metrics: ♠: NDCG@10, ♣:
MRR@100, ♡: Recall@100.

Models ♠ ♣ ♡
docTTTTTquery (Base) 9.6 12.8 24.9
Our approach (Base) 22.0 26.0 43.5
docTTTTTquery (Large) 13.4 16.3 33.3
Our approach (Large) 23.2 26.5 46.2

6 Conclusion

In our research, we propose the unsupervised
text representation learning technique through self-
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Figure 3: t-SNE distributions for corpus representation generated from FLAN-T5-Large. (a-d) NFCorpus, SciFact,
SCIDOCS, GermanQuAD. (1-2) Original corpus, Weighted corpus with synthetic queries after instruction-tuning.

instructed-tuning encoder-decoder LLMs. Based
on the Rao-Blackwell theorem, we leverage the
embeddings of synthetically generated queries (i.e.,
questions and keywords) to augment the corpus
representation for the dual-encoder retrieval frame-
work. In zero-shot experiments, our proposed cor-
pus representation consistently improves the per-
formance over encoder-only corpus representation.
Even if the open-box LLM was not pre-trained on
retrieval task and there is no labeled modeling data,
after fine-tuning with our approach it exceeds the
SOTA models across different datasets, presenting
the high effectiveness and data efficiency of our
method in retrieval tasks.

In future work, we plan to explore our proposed
method on separate encoder and decoder models.
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Abstract

Language fairness in multilingual information
retrieval (MLIR) systems is crucial for ensur-
ing equitable access to information across di-
verse languages. This paper sheds light on the
issue, based on the assumption that queries
in different languages, but with identical se-
mantics, should yield equivalent ranking lists
when retrieving on the same multilingual doc-
uments. We evaluate the degree of fairness
using both traditional retrieval methods, and
a DPR neural ranker based on mBERT and
XLM-R. Additionally, we introduce ‘LaKDA’,
a novel loss designed to mitigate language bi-
ases in neural MLIR approaches. Our analy-
sis exposes intrinsic language biases in current
MLIR technologies, with notable disparities
across the retrieval methods, and the effective-
ness of LaKDA in enhancing language fairness.

1 Introduction

Information retrieval (IR) is the process of obtain-
ing relevant information from a large collection of
data according to a user’s information needs. This
information may exist in various formats, including
text documents, images, or videos. Conventionally,
the collection is a corpus of text documents, and
user information needs are expressed in plain text
queries. IR serves as a foundational technology
in numerous NLP applications including question-
answering systems (Abbasiyantaeb and Momtazi,
2020; Chen et al., 2017), and is also assuming
an increasingly pivotal role in supporting the ad-
vancement of Large Language Models (LLMs) for
text understanding and knowledge inference (Miao
et al., 2024; Zhu et al., 2024).

Multilingual information retrieval (MLIR) en-
tails queries being in different languages, with the
results for a query in a given language being across
multiple languages (including the source language
of the query). MLIR has particular importance as it
enables (multilingual) users to access information

Figure 1: The case of language bias studied in this
work. Semantically parallel queries retrieve the same
documents, but the ranking outputs are inconsistent.

that may be unavailable or limited in their native
language, thereby fostering cultural and linguistic
diversity.

Research has shown that MLIR systems often
exhibit biases towards certain languages due to
factors like morphological complexity (Park et al.,
2021) and resource availability (Lawrie et al., 2023;
Huang et al., 2023). For instance, Lawrie et al.
(2023) found that documents in higher-resource
languages tend to be ranked higher in MLIR. This
phenomenon is particular notable when the mod-
els are built upon multilingual pretrained models
(Yang et al., 2024).

Another case of language bias in MLIR is shown
in Figure 1. Given semantically equivalent queries
in different languages and the same documents, we
are interested in determining the consistency of the
obtained ranking lists. This forms the basis for our
investigation of language fairness in MLIR from a
query-level perspective.

Our study compares MLIR methods using se-
mantically equivalent queries in 24 European lan-
guages, which we use to search a fixed multilingual
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document collection. These parallel query sets are
from the original dataset, not machine-translated,
and are based on human-annotated document tags.
In repurposing them as queries and using the tags
as relevance judgements, we fashion a multilingual
IR collection with massively-multilingual parallel
query sets.

Our work makes four main contributions:1

1. Novel evaluation metric for fairness under
ranking: we propose the mean rank correla-
tion (MRC) score to evaluate language fair-
ness under MLIR, based on the premise that
semantically-equivalent queries in different
languages should yield consistent document
rankings.

2. Novel dataset: we develop the MultiEup-v2
dataset, consisting of semantically parallel
queries and multilingual documents, along
with demographic attributes. This dataset
serves as a benchmark for future fairness re-
search in MLIR.

3. Quantification of language (un)fairness: we
analyze language fairness in MLIR across dif-
ferent languages and language families, and
find that BM25 exhibits larger language bias
than neural retrieval frameworks like mDPR.
Additionally, higher-resource languages tend
to be associated with higher degrees of lan-
guage fairness.

4. Proposal of a new ranking bias mitiga-
tion method: we propose the language KL-
divergence alignment (LaKDA) loss to miti-
gate language bias in MLIR, demonstrating
its effectiveness within the mDPR neural re-
trieval framework with multilingual text en-
coders mBERT and XLM-R.

2 Language Bias in MLIR

In this section, we examine language bias in MLIR.
First, we introduce a novel metric for quantifying
language fairness, our evaluation benchmark, and
introduce a method for mitigating language bias.

2.1 MLIR Language Fairness Metric

We define fairness in MLIR as follows: queries
in different languages but with identical semantics
should yield equivalent ranking lists when executed
against the same multilingual document collection.

1The dataset and code are available from https://
github.com/jrnlp/MLIR_language_bias under an Apache
2.0 license.

Assume we have L languages and N queries
for each language. For language pair a, b ∈
{ℓ1, ℓ2, . . . , ℓL}, let:

Qa = {q(1,a), q(2,a), . . . , q(N,a)}

Qb = {q(1,b), q(2,b), . . . , q(N,b)}

represent the sets of all queries in languages a and
b, respectively, where q(i,a) is the i-th query in lan-
guage a and q(i,b) is the i-th semantically parallel
query in language b.

Assume a ranking method π produces a ranked
result list R(q(i,a), D) when given query q(i,a)
against document collection D. Then for each
query i and pair of languages (a, b), we compute
the ranking correlation RCi

(a,b) between the rank-
ing lists R(q(i,a), D) and R(q(i,b), D) using Spear-
man’s rank correlation (Oakes, 2010; Spearman,
1904):

RCi
(a,b) = corr(R(q(i,a), D), R(q(i,b), D))

Next, we compute the average correlation for lan-
guage a with query i with the other L−1 language
pairs, denoted as RCi

(a):

RCi
(a) =

1

(L− 1)

∑

1≤a<b≤L

RCi
(a,b)

The overall mean correlation score (MRC) for
a specific language a among L languages with N
queries is:

MRC@k(a) =
1

N

N∑

i=1

RCi
(a)

The MRC@k represents the average degree of
consistency between ranking lists for semantically
identical queries across all language pairs in the top-
k results. A higher MRC@k value indicates greater
fairness, reflecting a higher degree of equivalence
in the search results across different languages.

2.2 Mitigation Language Bias Methodology

Figure 2 demonstrates our co-training MLIR model
framework with two losses. Section 2.2.1 intro-
duces the unitized Dense Passage Retrieval (DPR)
loss for IR, and in Section 2.2.2 we propose Lan-
guage KL-Divergence Alignment (LaKDA) loss to
improve language fairness.

281

https://github.com/jrnlp/MLIR_language_bias
https://github.com/jrnlp/MLIR_language_bias


Figure 2: Our model framework contains two parts: the IR component, and the parallel query component. For the
IR part, we adopt a DPR module for retrieval with DPR loss. For the parallel query part, we use the LaKDA loss to
improve MLIR language fairness.

2.2.1 DPR Loss
Dense passage retrieval (Karpukhin et al., 2020) is
a neural retrieval framework initially proposed for
monolingual supervised fine-tuning. This architec-
ture separately encodes queries and documents into
dense vectors, optimizing their alignment through
a contrastive loss. The goal is to maximize the simi-
larity between queries and their relevant documents
while minimizing it with irrelevant documents.

Assume we have a query q and a collection of
documents D = {d−1 , d+2 , d−3 , . . . , d−M}, where d+i
indicates a relevant document and d−j an irrelevant
document.

Let q be the dense vector representation of the
query, and d+

i and d−
j be dense vector representa-

tions of the corresponding documents.
The similarity between the query and each

document is computed using the dot product:
sim(q, d+i ) = q · d+ ⊺

i and sim(q, d−j ) = q · d− ⊺
j .

We then define the loss to be the negative log-
likelihood of the positive documents’ similarity
scores among all documents:

LDPR = − 1

N

N∑

i=1

log
exp(sim(qi, d

+
i ))

Zi

Zi = exp(sim(qi, d
+
i )) +

M∑

m=1

exp(sim(qi, d
−
i,m)).

This contrastive loss formulation ensures that the
query embedding is closer to the positive docu-
ment embedding than to any of the negative docu-

ment embeddings, thereby enhancing the model’s
retrieval performance.

2.2.2 LaKDA Loss
To further mitigate language bias in MLIR, we add
a Kullback-Leibler (KL) divergence term to mea-
sure the similarity of the distribution of retrieval
scores between the original and parallel-language
queries over a shared set of document embeddings.

For each query q(i, ℓa) and its parallel query
q(i, ℓb), we compute their similarity distributions
over the document embeddings as follows:

1. Compute Similarity Scores:

For the original query q(i, ℓa) and the parallel
query q(i, ℓb):

sim(i, ℓ) = q(i, ℓ)·D⊺ where ℓ ∈ {ℓa, ℓb}

2. Transform to Probability Distributions:

The similarity scores are transformed into
probability distributions using the softmax
function:

p(i, ℓ) =
exp(sim(i, ℓ))

∑M
j=1 exp(sim(i, ℓ)j)

3. KL Divergence Calculation:

The KL divergence between the similarity dis-
tributions of the original and parallel queries
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is defined as:

DKL(p(i, ℓb) ∥ p(i, ℓa)) =
M∑

j=1

p(i, ℓb)j log

(
p(i, ℓb)j

p(i, ℓa)j + ϵ

)

where ϵ is a small constant to avoid taking the
log of zero.

4. Overall LaKDA Loss:

The LaKDA Loss for all N queries is the
mean of KL Divergence over all queries:

LLaKDA =
1

N

N∑

i=1

DKL(p(i, ℓb) ∥ p(i, ℓa))

Finally, to balance information retrieval perfor-
mance and language fairness, we define a joint loss
function as a weighted combination of the DPR
loss LDPR and the LaKDA loss LLaKDA:

L = (1− α)LDPR + αLLaKDA (1)

where α is a tunable hyperparameter.

2.3 MLIR Language Fairness Benchmark
Overview The European Parliament (EP) serves
as a crucial forum for political debate and decision-
making in the European Union. During debates,
Members of the European Parliament (MEPs) dis-
cuss topics in their own languages, and debates
are then transcribed in the original languages, and
indexed with multilingual topics.

We constructed MultiEuP-v2 by expanding Mul-
tiEuP (Yang et al., 2023), taking the debate titles
as queries, and individual MEP speeches in a given
debate as documents. The documents are multilin-
gual, encompassing 24 languages from 8 language
families. Each query has parallel versions in all 24
languages, sourced from the original dataset. Addi-
tionally, we collected the basic demographic details
of each of the MEPs, making it the perfect target
for the study of fairness in an IR context, in terms
of both language and other protected attributes.

Dataset Statistics We partition the dataset into
mutually-exclusive train/dev/test sets to ensure that
the queries and documents in the three sets are dis-
tinct. Table 1 details the statistics of the dataset.
The number of unique queries is counted per lan-
guage; i.e., for the dev and test sets, each language
has 100 queries, with parallel versions across all 24

# Documents # Unique Queries
Train 44,961 1,623
Dev 2,787 100
Test 2,589 100

Table 1: Data size and unique query IDs in train, dev,
and test sets. The number of unique query IDs repre-
sents the counts for each language.

languages. The document collection is also made
up of documents from all 24 languages. Table 6 in
the Appendix shows the language distribution, with
languages such as English (EN), German (DE), and
French (FR) making up over 50% of the dataset in
terms of document count.

3 Experiments and Findings

Our language fairness experiment consists of two
main parts: the detection and comparison of lan-
guage bias among different ranking methods (Sec-
tion 3.1) and the mitigation of fairness bias (Sec-
tion 3.2).

3.1 Language Bias Detection

3.1.1 Detection Experiment Setting

We used the MultiEuP-v2 dataset in a many-vs-
many setting for traning, where both queries and
documents are multilingual to ensure language di-
versity. For evaluation, we adopted a parallel one-
vs-many approach, with queries in one language
and documents in multiple languages, enabling par-
allel comparison across different languages.

3.1.2 Detection Experiment Models

BM25 We implemented BM25, a commonly
used traditional information retrieval baseline, us-
ing Pyserini (Lin et al., 2021). Pyserini is built upon
Lucene (Yang et al., 2017). We used the default set-
tings (k1 = 0.9 and b = 0.4) and language-specific
analyzers.

DPR Our neural IR approach is based on DPR
and uses a bi-directional encoder to encode queries
and documents separately. We compare DPR per-
formance over two text encoders: mBERT with
bert-base-multilingual-uncased, and XLM-R with
xlm-roberta-base. In each case, the batch size was
set to 96 and the learning rate was 5e-5, with each
epoch taking approximately 40 minutes on a single
Tesla V100 GPU.
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MRR@100
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 87.6 59.8 29.6 25.5 21.4 59.6 58.2 33.9 51.7 49.7 39.9 33.4 22.6 30.9 32.5 28.2 22.9 20.3 19.6 22.8 21.6 18.1 12.6 16.5 34.1

mBERT

LDPR 42.8 39.4 37.1 36.3 33.9 38.3 41.0 38.3 39.2 40.1 39.9 37.9 36.9 39.0 39.7 37.9 32.5 32.2 30.7 35.8 33.7 30.6 27.0 14.5 35.6
+LMSE 29.1 28.7 25.8 22.5 26.5 26.2 27.0 26.2 26.9 26.8 26.9 25.9 22.8 25.7 26.0 26.3 22.7 23.7 23.3 20.0 22.9 16.3 15.6 12.2 24.0 (↓ 32.6%)
+LLaKDA 46.5 47.5 43.0 43.3 40.7 45.7 42.6 41.5 44.4 41.4 42.3 42.6 39.7 43.3 39.4 43.8 39.5 42.3 37.1 38.1 39.5 31.7 28.1 16.8 40.0 (↑ 12.4%)

XLM-R

LDPR 47.6 49.7 45.6 49.4 45.6 48.7 51.2 51.7 45.4 47.1 47.1 45.7 51.0 50.0 43.5 49.8 43.7 47.1 44.3 46.1 49.4 46.5 40.6 30.0 46.5
+LMSE 48.4 46.4 53.9 50.2 54.1 60.8 58.5 58.0 50.1 45.6 51.7 46.1 52.7 50.6 45.9 51.7 50.2 48.1 43.1 41.4 48.7 47.5 28.8 24.7 48.2 (↑ 3.7%)
+LLaKDA 70.0 65.3 65.6 68.8 69.1 69.0 62.0 66.0 67.3 60.7 69.1 57.3 62.2 61.4 64.4 63.4 62.6 59.2 56.7 61.5 60.7 55.4 34.9 30.8 61.0 (↑ 31.2%)

Table 2: The MLIR performance evaluation results on MultiEuP-v2. MRR@100 (×100) ranges from 0 to 100,
where values closer to 100 indicate better performance. Underscore indicates the best performance for mBERT,
and bold indicates the best performance for XLM-R. The symbol ↑/↓ indicates the percentage increase or decrease
compared to the vanilla setting LDPR. All differences are significant at p < 0.0005. Note the broad similarities in
results for a given language and also language family.

MRC@5
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 0.5 −1.0 1.4 −0.6 −0.5 −1.2 0.4 2.0 2.8 1.1 −0.3 1.8 3.2 −0.3 1.5 3.3 1.7 0.4 0.6 0.7 −2.4 1.0 −1.4 −0.5 0.6

mBERT

LDPR 12.9 15.0 15.9 15.2 12.8 12.9 15.4 15.1 14.4 13.7 14.6 15.2 15.6 15.5 13.8 16.0 7.3 13.0 10.3 10.6 11.3 12.9 10.2 5.3 13.1
+LMSE 14.3 15.6 12.2 14.5 14.6 15.5 13.5 18.3 17.1 15.5 15.5 14.4 10.7 15.5 14.3 17.2 13.2 14.2 12.1 12.1 12.7 6.5 13.7 7.7 13.8 (↑ 5.3%)
+LLaKDA 18.3 17.4 20.1 17.4 14.9 20.6 20.2 19.1 18.2 20.7 17.3 18.2 16.9 20.0 17.5 16.7 16.9 18.7 16.0 14.2 13.0 10.2 9.4 3.5 16.5 (↑ 25.6%)

XLM-R

LDPR 12.6 13.8 9.3 13.9 15.2 12.7 11.7 13.1 9.5 12.7 15.0 15.7 13.0 14.1 13.7 11.2 13.8 10.0 10.9 11.3 10.6 9.5 0.2 7.4 11.7
+LMSE 12.8 11.7 11.0 12.1 13.1 9.2 12.5 12.7 13.5 11.3 11.9 12.4 11.3 9.3 11.9 10.5 11.5 10.5 9.9 11.9 9.3 8.6 2.2 0.7 10.5 (↓ 10.3%)
+LLaKDA 12.9 20.1 15.8 18.5 18.6 19.3 15.9 16.2 16.9 18.0 17.2 16.0 17.0 16.5 18.3 18.3 17.5 16.6 15.5 16.4 14.3 12.9 6.7 6.2 15.9 (↑ 35.9%)

Table 3: The MLIR fairness evaluation results on MultiEuP-v2. MRC@5 (×100) ranges from −100 to 100, where
values closer to 100 indicate better fairness. Underscore indicates the best fairness for mBERT, and bold indicates
the best fairness for XLM-R.

3.1.3 Detection Evaluation and Findings
Performance Metrics To evaluate MLIR re-
trieval performance, we used the MRR@100 met-
ric, which represents the Mean Reciprocal Rank
for the top 100 documents (Radev et al., 2002;
Voorhees and Tice, 2000). For a single query, the
Reciprocal Rank (RR) is defined as RR = 1

rank ,
where rank is the position of the highest-ranked
relevant document. If no relevant document is re-
turned, the RR is set to 0. For multiple queries N ,
the MRR is the mean of RRs (Yang et al., 2023).

MRR =
1

N

N∑

i=1

1

ranki

Performance Findings Table 2 shows the
MRR@100 results for semantically identical
queries in different languages. The findings in-
clude: (1) for low-resource languages2 like Mal-
tese (MT) and Irish (GA), the MRR@100 is lower
than high-resource languages; (2) interestingly, de-
spite Maltese having more documents than Esto-
nian (ET) in our dataset (Table 6), the MRR@100

2Defined as those languages in Conneau et al. (2020) with
less than 0.5 GiB in training data.

disparity suggests that data augmentation alone
does not eliminate the inherent bias in pre-trained
IR models against low-resource languages; and (3)
DPR with mBERT is slightly better overall than
BM25, while DPR with XLM-R significantly out-
performs both BM25 and DPR with mBERT.

Fairness Findings When we evaluate language
fairness based on MRC@5 (see Section 2.1), we ob-
tain the results shown in Table 7. The main findings
are: (1) BM25 has lower language fairness than
DPR; (2) similarly to MRR@100, low-resource
languages (MT and GA) exhibit lower language
fairness than high-resource languages; and (3) ac-
cording to Figure 3, which shows the MRC@5
correlation between language pairs (noting that the
results are symmetric), languages in the same lan-
guage family (within the black squares) tend to
have higher MRC scores, esp. for the Germanic,
Romance, and Slavic language families (the dashed
square).

3.2 Language Bias Mitigation

Next we turn to the question of language bias miti-
gation.

284



Figure 3: The MRC@5 matrix among parallel queries. The x-axis and y-axis both represent query languages.

3.2.1 Mitigation Experiment Setting
The training parameters and evaluation protocol
and metrics used to measure language bias miti-
gation are consistent with those described in Sec-
tion 3.1.

3.2.2 Mitigation Experiment Models
Vanilla Our vanilla setting is using only the DPR
loss for MLIR (Karpukhin et al., 2020) and not
incorporating any language fairness loss.

MSE Another baseline involves calculating the
Mean Squared Error (MSE, Hastie et al. (2009))
between the embeddings of parallel queries to in-
crease their similarity. We employ the same joint
MSE loss with DPR loss.

LaKDA With our proposed LaKDA debiasing
method (Section 2.2.2), for each query, we ran-
domly sample a semantically identical query in a
different language and compute the LaKDA loss,
which is then jointly optimized with the DPR loss
as shown in Equation (1). For both mBERT and
XLM-R, we set α = 0.5 for comparability (but
return to investigate the hyperparameter sensitivity
in Figure 4).

3.2.3 Mitigation Evaluation and Findings
Table 2 presents the IR performance (MRR@100),
and Table 7 demonstrates language fairness
(MRC@5) for the DPR framework with different
pretrained multilingual models. Our observations
are as follows:

mBERT Findings Compared to the vanilla set-
ting (DPR only): (1) incorporating either MSE

Figure 4: MSE and LaKDA sensitivity plot.

or LaKDA enhances language fairness (MRC@5)
with mBERT, but LaKDA is more effective (25.6%
vs. 5.1%); and (2) for MRR@100, LaKDA
achieves an 11.3% improvement, whereas MSE
loss reduces MRR@100 by 32.6%. Figure 4 also
shows that during the hyperprameter α grid search,
the DPR model with LaKDA loss is more robust in
terms of MRR than MSE loss. This is because, un-
like MSE loss, LaKDA loss considers not only the
similarity between parallel queries but also their
embedding similarity with documents, providing a
better trade-off between fairness and performance.

XLM-R Findings Compared to the vanilla set-
ting (DPR only): (1) only LaKDA improves lan-
guage fairness (MRC@5), by 35.9%, while MSE
leads to a slight degradation; and (2) both MSE

285



Figure 5: Parallel query similarity over training.

and LaKDA improve IR performance (MRR@100),
with increases of 3.7% and 16.6%, respectively.
XLM-R not only achieves better IR performance
but is also more robust. This observation aligns
with other research, and is why XLM-R is more
commonly used in MLIR (Hu et al., 2020; Conneau
et al., 2020; Conneau and Lample, 2019).

4 Discussion

4.1 Improvement of Parallel Query Similarity

In our experimental setup, an important character-
istic for enhancing language fairness is the increase
in similarity of semantically parallel queries. We
calculated the average parallel query similarity in
each batch over training for mBERT, as depicted in
Figure 5. We observe that with the addition of the
LaKDA loss, the final stable value of parallel query
similarity is higher compared to the vanilla setting.
This result explains the enhancement in language
fairness (MRC).

4.2 Effect of Size and Quality of Parallel
Queries

To explore the impact of the number and quality of
parallel queries on IR performance and language
fairness, we selected queries in two languages, MT
and GA, from the training dataset and conducted
experiments under the following three settings:

Zero-shot: As low-resource languages, there is
relatively little training data for MT and GA; we
therefore excluded queries in MT and GA from the
training dataset, keeping the other parallel queries
unchanged, and then conducted the same training
and evaluation settings.

Translation: Without the original MT and GA
parallel queries, we translated English queries into
MT and GA parallel queries using Google Trans-

Parallel MT Query MRR@100 MRC@5

Zero-shot 21.2 2.8
Translated 36.2 1.2
Original 34.9 6.7

Table 4: Maltese (MT) query MLIR results.

Parallel GA Query MRR@100 MRC@5

Zero-shot 21.4 0.6
Translated 29.6 1.4
Original 30.8 6.2

Table 5: Irish (GA) query MLIR results.

late.3 The BLEU scores (Papineni et al., 2002)
of the translation results compared to the original
were 0.196 and 0.251, respectively.

Original: The original queries in MT and GA,
as per the experiments in Section 3.2.

Findings: Tables 4 and 5 show the results for
MT and GA, conducted on the XLM-R model with
LaKDA loss. We found that:

1. The zeroshot setting had the worst MRR per-
formance, indicating the importance of paral-
lel queries.

2. The translated version serves as a silver-
standard, with improvements in MRR com-
pared to the zeroshot setting.

3. The original texts are the best choice, achiev-
ing the best MRR and MRC, demonstrating
the value of our MultiEuP-v2 dataset in pro-
viding an original multilingual corpus.

4.3 Effect of Neural Retrieval Approaches

The MRC@5 results presented in Table 7 show
more than a 20-fold disparity between BM25 and
the neural retrieval ranker DPR, with scores of 0.6
and 11.7, respectively. To understand the underly-
ing causes, we analyzed the top 100 ranking out-
puts from both methods. As shown in Figure 6,
BM25’s output document languages and query lan-
guages exhibit a strong correlation along the diago-
nal line, contributing to heightened language bias.
Since BM25 is only able to retrieve documents con-
taining keywords present within the query (Thakur
et al., 2021) and suffers from lexical gap (Berger
et al., 2000), resulting in high retrieval rates for
documents in the same language as the query.

Meanwhile, DPR retrieves documents across dif-
ferent languages more effectively, with substantial

3https://translate.google.com/
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Figure 6: The correlation of query language with document language in top 100 ranking output.

off-diagonal values and reflecting the skewness of
the dataset (see Table 6). This suggests that neu-
ral retrieval approaches can mitigate language bias
to leveraging multilingual pre-trained models that
understand semantic content regardless of the lan-
guage.

5 Related Work

Fairness in Information Retrieval (IR) has been ex-
tensively studied through two primary dimensions:
individual fairness and group fairness. These frame-
works are crucial in ensuring equitable access to
information, addressing concerns related to biases
in ranking systems.

Individual fairness refers to the principle that
similar items (in this case, documents) should be
treated similarly (Biega et al., 2018; Dwork et al.,
2011). In IR, this means that if two documents
are equally relevant to a query, they should receive
similar rankings. A violation of individual fair-
ness occurs when two comparable documents are
ranked differently due to irrelevant factors, such as
their format or metadata. This concept is rooted
in the idea of consistency and uniform treatment,
ensuring that the system does not unfairly prioritize
or penalize specific documents that are otherwise
similar in content and relevance.

Group fairness, on the other hand, ensures that
predefined groups (such as demographic groups
or, in our case, languages) are treated equitably
in the ranking process (Sapiezynski et al., 2019;
Zehlike et al., 2022, 2017). The goal is to pre-
vent bias against any group by ensuring that the
system does not favor one group over another. In
IR, this often translates to ensuring that documents
associated with a protected group (e.g., underrepre-
sented languages or communities) are not system-

atically ranked lower than those associated with
unprotected groups. Group fairness frameworks at-
tempt to mitigate historical and societal biases that
might seep into the retrieval process, making sure
that members of different groups have equitable
access to information. In our work, we extend this
concept to multilingual IR, treating each language
as a group and ensuring that rankings are fair and
consistent across languages.

Two key fairness metrics in group fairness that
align with our work are Probability of Equal
Expected Rank (PEER) and Attention Weighted
Ranked Fairness (AWRF).

• PEER (Yang et al., 2024) is designed to
ensure equity in ranking by guaranteeing
that documents from different languages are
treated equally when they are equally rele-
vant. This metric is particularly valuable for
multilingual retrieval, as it addresses the risk
of language bias, ensuring that a document’s
rank does not depend on the language of the
query if the content is of similar relevance
across languages.

• AWRF (Sapiezynski et al., 2019) assesses
group exposure by comparing how documents
are distributed across ranked positions rela-
tive to a predefined target distribution. This
metric focuses on ensuring that documents
from all languages receive appropriate visi-
bility within the top-ranked results, balancing
relevance and fairness in exposure.

While these metrics primarily emphasize
document-level fairness, our approach uniquely
focuses on query-level fairness. In our context,
we argue that the retrieval system should provide
consistent performance across languages, ensuring
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that the language of the query does not affect the
user’s ability to access relevant information. This
promotes inclusivity, ensuring that users from dif-
ferent linguistic backgrounds experience similar
outcomes when interacting with the system, ulti-
mately fostering equal access to information.

6 Background Knowledge

MultiEuP The European Parliament (EP) serves
as a crucial forum for political debate and decision-
making in the European Union. During debates,
Members of the European Parliament (MEPs) dis-
cuss topics in their own languages, and debates
are then transcribed in the original languages, and
indexed with multilingual topics. As such, the data
is naturally occurring in the 24 official languages
of the EU, and expertly transcribed and multilin-
gually annotated. Additionally, we have access to
basic demographic details of each of the MEPs,
making it the perfect target for the study of fairness
in an IR context, in terms of both language and pro-
tected attributes was crafted. The EU has published
different language versions of all titles, providing
semantically identical queries for investigating lan-
guage fairness in MLIR.

An earlier version of the MultiEuP dataset was
published in 2023 covering debates up to October
2022 (Yang et al., 2023). In this work, we have
expanded the dataset using the same data collection
and preprocessing procedures, to include debates
up to 2024. This doubles the total data volume,
and provides a sufficient sample size to research
neural ranking methods. We additionally augment
each document with comprehensive metadata of
the author, including gender, nationality, political
affiliation, and age, for use in exploring fairness
with respect to protected attributes.

Unlike MLIR datasets such as mMARCO (Boni-
facio et al., 2021), a multilingual version of the MS
MARCO (Bajaj et al., 2016), that relies on machine
translation, our benchmark queries and documents
are original rather than translated versions. This re-
duces noise and ensures the linguistic authenticity
of the corpus.

Another commonly used MLIR datasets Mr.
TyDi (Zhang et al., 2021) and MIRACL (Zhang
et al., 2023) , are actually mixed monolingual IR
dataset, since they were structured such that queries
in different languages are matched only with docu-
ments in the same language. This limits the compa-
rability of results across different languages. Our

benchmark addresses this limitation by introduc-
ing semantically parallel queries across multiple
languages, enabling comprehensive analysis of lan-
guage fairness in MLIR.

DPR Dense Passage Retrieval (DPR: Karpukhin
et al. (2020)) is a neural retrieval framework ini-
tially proposed for monolingual supervised fine-
tuning. DPR uses dual encoders: one for encoding
queries and another for encoding passages (doc-
uments), both based on the BERT architecture
(Devlin et al., 2019). The primary advantage of
DPR over traditional retrieval models like BM25
is its ability to embed both queries and documents
into a shared dense vector space, enabling efficient
nearest-neighbor search for retrieval. The relevance
of a document to a query is determined by the sim-
ilarity between their embeddings, typically using
the dot product as a similarity measure.

In our work, we employ mDPR using mBERT
and XLM-R to handle multilingual queries and doc-
uments. These models are fine-tuned on parallel
query-document pairs from multiple languages, al-
lowing the system to generalize across different
languages. The use of mDPR allows us to explore
how multilingual language models handle language
biases, which often favor high-resource languages
over low-resource ones. Furthermore, we investi-
gate the performance of these models on the Mul-
tiEuP dataset, assessing their ability to ensure fair
and equitable retrieval across 24 languages, thus
promoting fairness in multilingual IR.

7 Conclusion

We introduced a novel benchmark, MultiEup-v2,
for investigating language fairness in multilingual
information retrieval (MLIR) systems. Addition-
ally, we proposed the mean rank correlation (MRC)
score to assess language fairness in MLIR systems,
which ensures that queries in different languages
but with the same semantic meaning retrieve sim-
ilar documents. Our findings indicate that the tra-
ditional IR method BM25 exhibits larger language
biases than DPR with multilingual pretrained lan-
guage models. Furthermore, we designed the lan-
guage KL-divergence alignment (LaKDA) loss to
mitigate language bias, and found that incorpo-
rating LaKDA loss into DPR improves language
fairness substantially without sacrificing retrieval
performance.

288



Ethics Statement

The dataset contains publicly-available EP data that
does not include personal or sensitive information,
with the exception of information relating to public
officeholders, e.g., the names of the active members
of the European Parliament, European Council, or
other official administration bodies. The collected
data is licensed under the Creative Commons Attri-
bution 4.0 International licence.4

Limitations

Our investigation into language fairness in multi-
lingual information retrieval (MLIR) is limited to
European languages in this work. However, our
approaches and evaluation methods are adaptable
to other languages. Additionally, we focused exclu-
sively on language fairness, leaving other dimen-
sions of fairness in MLIR, such as demographic
fairness, unexplored. We encourage the research
community to conduct more comprehensive studies
on fairness in MLIR, building upon the foundation
of our benchmark.
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Language ISO
code Countries where official lang. Language

Family
Total
Usage # Docs Words

per Doc

English EN United Kingdom, Ireland, Malta Germanic 51% 14086 271/192
German DE Germany, Belgium, Luxembourg Germanic 32% 5861 183/168
French FR France, Belgium, Luxembourg Romance 26% 5313 267/210
Italian IT Italy Romance 16% 3378 191/176
Spanish ES Spain Romance 15% 4621 228/195
Polish PL Poland Slavic 9% 2857 150/142
Romanian RO Romania Romance 5% 1482 183/172
Dutch NL Netherlands, Belgium Germanic 5% 1642 180/166
Greek EL Greece, Cyprus Hellenic 4% 1104 180/171
Hungarian HU Hungary Uralic 3% 979 131/131
Portuguese PT Portugal Romance 3% 2185 183/169
Czech CS Czech Republic Slavic 3% 913 155/143
Swedish SV Sweden Germanic 3% 1038 168/154
Bulgarian BG Bulgaria Slavic 2% 737 190/171
Danish DA Denmark Germanic 1% 498 206/191
Finnish FI Finland Uralic 1% 564 115/111
Slovak SK Slovakia Slavic 1% 698 158/157
Lithuanian LT Lithuania Baltic 1% 250 145/125
Croatian HR Croatia Slavic <1% 995 175/162
Slovene SL Slovenia Slavic <1% 549 188/158
Estonian ET Estonia Uralic <1% 88 167/162
Latvian LV Latvia Baltic <1% 176 128/113
Maltese MT Malta Semitic <1% 243 151/148
Irish GA Ireland Celtic <1% 80 179/163

Table 6: MultiEuP-v2 statistics, broken down by language: ISO language code; EU member states using the
language officially; language family; proportion of the EU population speaking the language (Chalkidis et al.,
2021); number of debate speech documents; and words per document (mean/median).

Recall@100
Germanic Romance Slavic Uralic Baltic Hellenic Semitic Celtic

EN DE NL SV DA FR ES RO IT PT PL HR BG SK SL CS HU FI ET LT LV EL MT GA Avg

BM25 77.7 75.5 77.7 75.5 75.5 68.1 75.5 76.6 77.7 76.6 74.5 77.7 75.5 76.6 75.5 74.5 75.5 74.5 75.5 77.7 76.6 76.6 75.5 62.8 75.2

mBERT

LDPR 88.3 89.4 88.3 87.2 88.3 89.4 89.4 88.3 90.4 87.2 88.3 88.3 87.2 88.3 86.2 87.2 85.1 86.2 86.2 88.3 86.2 86.2 85.1 73.4 87.0
+LMSE 74.5 72.3 72.3 71.3 72.3 66.0 72.3 72.3 73.4 73.4 71.3 73.4 71.3 72.3 71.3 69.1 70.2 72.3 72.3 69.1 70.2 71.3 67.0 60.6 70.9
+LLaKDA 77.7 78.7 76.6 76.6 77.7 79.8 79.8 81.9 78.7 78.7 78.7 79.8 77.7 76.6 75.5 77.7 77.7 77.7 78.7 76.6 76.6 76.6 73.4 72.3 77.6

XLM-R

LDPR 86.2 89.4 86.2 84.0 86.2 85.1 89.4 89.4 86.2 87.2 86.2 84.0 87.2 88.3 90.4 86.2 89.4 90.4 84.0 80.9 86.2 86.2 88.3 81.9 86.6
+LMSE 91.5 92.6 90.4 86.2 88.3 69.1 91.5 91.5 90.4 91.5 90.4 90.4 90.4 91.5 88.3 92.6 91.5 88.3 87.2 88.3 91.5 90.4 87.2 78.7 88.7
+LLaKDA 93.6 96.8 93.6 93.6 93.6 67.0 94.7 94.7 92.6 96.8 95.7 96.8 95.7 94.7 92.6 92.6 94.7 92.6 95.7 93.6 93.6 92.6 89.4 75.5 92.2

Table 7: The MLIR additional evaluation results on MultiEuP-v2. Recall@100 (×100) ranges from 0 to 100, where
values closer to 100 indicate better performance.
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Abstract

In this extended abstract, we investigate the ca-
pability of Large Language Models (LLMs) to
represent texts in multilingual contexts. Our
findings reveal that sentence representations
derived from LLMs exhibit a high degree of
isomorphism across languages. This existing
isomorphism facilitates representational align-
ments in few-shot settings. Specifically, by
applying a contrastive objective at the represen-
tation level with only a small number (e.g., 100)
of translation pairs,1 we significantly improve
models’ performance on Semantic Textual Sim-
ilarity (STS) tasks across languages.2

1 Introduction

Representational isomorphism has been recognized
as a key factor of few-shot capabilities (Lample
et al., 2017; Søgaard et al., 2018). In this paper,
we analyze multilingual sentence representations
in LLMs through the lens of isomorphism. By ex-
amining the geometric properties of sentence pairs,
we show that while embeddings from different lan-
guages are not well clustered in a common space,
they exhibit high isomorphism. Projecting them
via an orthogonal matrix effectively aligns repre-
sentations across languages. It also explains the
previous success of combining non-English inputs
with English prompts (Etxaniz et al., 2023; Huang
et al., 2023).

Building on this observation and previous stud-
ies highlighting representational isomorphism as
a key factor in few-shot capabilities, we explore
multilingual semantic alignment in LLMs. Using
just 100 English-centric translation samples with
contrastive loss across language pairs, we achieve

*These authors contributed equally to this work.
1Due to page limits, these results are not included in the

extended abstract.
2Our anonymous code is available at https://anonymous.

4open.science/r/multilingual_reps.

effective representation space alignment. This sig-
nificantly improves cross-lingual Semantic Textual
Similarity (STS) task performance, proving more
efficient than continued multilingual training. No-
tably, this also boosts STS performance within in-
dividual languages, even without a monolingual
objective.

2 Representational Analysis

2.1 Representation Extraction
PromptEOL (Jiang et al., 2023) extracts sentence
embeddings from causal language models like
LLaMA (Touvron et al., 2023) using a simple
prompting template:

This sentence: “[TEXT]” means in one word:“

The last hidden layer’s vector for the final token
is used as the sentence representation. This method
has demonstrated strong performance on semantic
representation tasks (Agirre et al., 2015, 2016).

We adopt PromptEOL for its simplicity and
adaptability. For multilingual use, the English tem-
plate is translated into corresponding languages,
e.g., for German:

Dieser Satz: “[TEXT]” bedeutet in einem Wort:“

We use this method to derive multilingual LLM
representations.

2.2 Cross-lingual Structural Analysis
We use Procrustes analysis (Schönemann, 1966) to
assess the structural similarity of representations
across languages. This method optimally rotates or
reflects one set of points to align with another, pre-
serving the shape. The accuracy of this alignment
indicates the degree of isomorphism across spaces.

Formally, given two embedding sets, A and
B, from LLMs using sentence pairs in different
languages, Procrustes analysis learns an orthogo-
nal projection W that maps A to a shared space
with B by solving min ∥WA−B∥F subject to
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Precision@5 EN AR ZH JP RU DE ES Into X
EN - / - 0.33 / 0.67 0.61 / 0.97 0.03 / 0.82 0.36 / 0.96 0.82 / 0.96 0.76 / 0.99 0.49 / 0.90
AR 0.12 / 0.23 - / - 0.18 / 0.44 0.01 / 0.37 0.07 / 0.45 0.08 / 0.34 0.14 / 0.53 0.10 / 0.39
ZH 0.22 / 0.73 0.08 / 0.55 - / - 0.14 / 0.71 0.31 / 0.88 0.18 / 0.74 0.40 / 0.93 0.22 / 0.76
JP 0.04 / 0.33 0.02 / 0.34 0.21 / 0.59 - / - 0.17 / 0.56 0.03 / 0.56 0.06 / 0.62 0.09 / 0.50
RU 0.20 / 0.73 0.19 / 0.61 0.56 / 0.86 0.05 / 0.71 - / - 0.24 / 0.85 0.60 / 0.95 0.31 / 0.79
DE 0.67 / 0.88 0.09 / 0.62 0.37 / 0.89 0.01 / 0.80 0.36 / 0.92 - / - 0.83 / 0.96 0.39 / 0.85
ES 0.12 / 0.75 0.08 / 0.60 0.18 / 0.87 0.00 / 0.67 0.20 / 0.92 0.48 / 0.85 - / - 0.18 / 0.78

From X 0.23 / 0.61 0.13 / 0.57 0.35 / 0.77 0.04 / 0.68 0.24 / 0.78 0.3 / 0.72 0.47 / 0.83 0.25 / 0.71

Table 1: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection.
“From X” and “Into X” denote the average results for each column and row, respectively.

Precision@5 EN AR ZH JP RU DE ES Into X
EN - / - 0.78 / 0.73 0.93 / 0.94 0.95 / 0.93 0.76 / 0.94 0.96 / 0.96 0.97 / 0.97 0.89 / 0.91
AR 0.67 / 0.67 - / - 0.83 / 0.76 0.84 / 0.74 0.59 / 0.76 0.82 / 0.78 0.83 / 0.79 0.76 / 0.75
ZH 0.85 / 0.93 0.86 / 0.79 - / - 0.99 / 0.98 0.84 / 0.95 0.97 / 0.95 0.96 / 0.96 0.91 / 0.93
JP 0.88 / 0.92 0.86 / 0.78 1.0 / 0.97 - / - 0.83 / 0.95 0.96 / 0.95 0.95 / 0.95 0.91 / 0.92
RU 0.75 / 0.96 0.83 / 0.81 0.97 / 0.96 0.97 / 0.96 - / - 0.97 / 0.97 0.96 / 0.97 0.91 / 0.94
DE 0.9 / 0.96 0.68 / 0.79 0.91 / 0.94 0.89 / 0.94 0.75 / 0.96 - / - 0.99 / 0.97 0.85 / 0.93
ES 0.89 / 0.96 0.65 / 0.77 0.87 / 0.94 0.85 / 0.94 0.65 / 0.95 0.98 / 0.96 - / - 0.82 / 0.92

From X 0.82 / 0.9 0.78 / 0.78 0.92 / 0.92 0.91 / 0.92 0.74 / 0.92 0.94 / 0.93 0.94 / 0.93 0.86 / 0.90

Table 2: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection.
Note that all embeddings are derived from the prompting template in English, instead of the same language with
input sentences.

W TW = I . The solution W = UV T is derived
from the singular value decomposition (SVD) of
BAT .

We conduct experiments on seven languages.
We train W on translation pairs from NTREX (Fed-
ermann et al., 2022) and test on Flores (Goyal et al.,
2022), merging 1,997 and 2,009 samples from the
dev and test sets, respectively.

We then compute Precision@k by using embed-
dings in WA to retrieve those in B and checking
if their counterparts are among the k-nearest neigh-
bors based on cosine similarity, using this precision
to quantify structural similarity in each translation
direction.

2.3 Representation Discrepancy and
Isomorphism

Table 1 shows the success rate of the resulting em-
beddings in cross-lingual retrieval before/after ap-
plying Procrustes projection (§2.2). It is clear that
1) the initial representation discrepancies are gener-
ally substantial across languages. 2) However, after
properly rotating (applying W ), representations in
most of the directions are well aligned, leading to
clear gains from an average of 0.25 to 0.71.

2.4 Multilingual Representation via English
Prompts

Previous studies show decent improvements can be
achieved by simply adjusting/filling non-English
instructions into English-centric prompting tem-

plates in the inference stage (Etxaniz et al., 2023;
Huang et al., 2023). To explain the success, we in-
vestigate how the representations of LLMs change
when using the prompting template in the predom-
inant language, English, for different languages,
rather than the same ones mentioned in §2.1.

Table 2 shows the success rate within the same
data setting in §2.3. Notably, the initial represen-
tations’ degree of alignment is much higher than
that in Table 1 (0.86 v.s., 0.25), resulting in a sim-
ilar alignment level with the latter after rotation.
Also, the gain from applying Procrustes projection
is marginal in this setting. We interpret the degen-
eration of the rotation gain as that English prompts,
to some extent, have taken on the role of the cor-
responding spatial transformation, i.e., mapping
representations into a shared English space.

3 Conclusion

In this extended abstract, we show that LLMs’
representations exhibit a high degree of isomor-
phism across languages, which explains their cross-
lingual zero-shot or few-shot capabilities in a mul-
tilingual context. Further experiments demonstrate
that LLMs’ semantic representations can be en-
hanced across languages through alignment using
just 100 translation samples, offering a more ef-
ficient and effective approach than sample-level
pretraining or instruction tuning.
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Limitations

We conduct experiments exclusively on two fami-
lies of LLMs, namely LLaMA2 and Tower. There-
fore, the generalizability of our findings to other
LLMs remains uncertain. Additionally, our seman-
tic analysis is restricted to a few languages.
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A Appendix

A.1 Semantic Alignment across Languages on
STS tasks

Table 3 shows the multilingual cross-lingual STS
results in different settings after contrastive learn-
ing on both LLaMA2 and Tower models.

A.2 Representation Isomorphism with
Additional Metrics

We present the results of Precision@1 and Pre-
cision@10 on representation isomorphism with
LLaMA-7B in Table 4, 5, 6, and 7.

A.3 Representation Isomorphism with Last
Token Pooling-Derived Representations

Table 8 shows the results on representation isomor-
phism with last token pooling-derived representa-
tions of the LLaMA2-7B model.

A.4 Representation Isomorphism with
LLaMA-13B

Table 9 and 10 show the results on representation
isomorphism with the LLaMA2-13B model.
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Model Settings EN AR ES AR-EN ES-EN TR-EN Avg
LLaMA2-7B self -prompts 0.72 0.24 0.28 0.17 0.11 0.09 0.27
LLaMA2-7B en-prompts 0.72 0.46 0.46 0.36 0.27 0.12 0.40
LLaMA2-7B en-prompts (+100) 0.76 0.62 0.73 0.52 0.64 0.42 0.62
LLaMA2-7B en-prompts (+1000) 0.82 0.62 0.80 0.54 0.75 0.55 0.68
Tower-7B self -prompts 0.69 0.25 0.41 0.14 0.15 0.08 0.29
Tower-7B en-prompts 0.69 0.45 0.70 0.26 0.35 0.11 0.43
Tower-7B en-prompts (+100) 0.73 0.57 0.67 0.50 0.60 0.41 0.58
Tower-7B en-prompts (+1000) 0.76 0.60 0.65 0.54 0.62 0.47 0.61

Table 3: The multilingual and cross-lingual STS results in different settings using contrastive learning. self -prompts
and en-prompts denote using prompting methods in §2.1 and §2.4, respectively. Tower continues to pre-train
LLaMA2 with large amounts of multilingual data but fails to align semantics. However, aligning LLaMA2 at the
representation level using a few translation samples from NTREX (e.g., 100), results in clear improvements from
0.40 to 0.68.

Precision@1 EN AR ZH JP RU DE ES Into X
EN - / - 0.20 / 0.47 0.44 / 0.88 0.01 / 0.63 0.19 / 0.87 0.65 / 0.88 0.54 / 0.93 0.34 / 0.78
AR 0.06 / 0.09 - / - 0.10 / 0.26 0.00 / 0.2 0.03 / 0.26 0.02 / 0.21 0.06 / 0.33 0.05 / 0.23
ZH 0.07 / 0.52 0.02 / 0.36 - / - 0.07 / 0.50 0.12 / 0.71 0.07 / 0.57 0.11 / 0.79 0.08 / 0.57
JP 0.01 / 0.15 0.00 / 0.19 0.10 / 0.38 - / - 0.08 / 0.35 0.01 / 0.38 0.02 / 0.40 0.04 / 0.31
RU 0.01 / 0.52 0.01 / 0.43 0.38 / 0.72 0.02 / 0.54 - / - 0.09 / 0.73 0.36 / 0.86 0.14 / 0.63
DE 0.40 / 0.72 0.01 / 0.42 0.02 / 0.73 0.00 / 0.63 0.21 / 0.83 - / - 0.62 / 0.88 0.21 / 0.70
ES 0.02 / 0.55 0.04 / 0.41 0.09 / 0.72 0.00 / 0.49 0.11 / 0.80 0.26 / 0.73 - / - 0.09 / 0.62

From X 0.10 / 0.42 0.05 / 0.38 0.19 / 0.62 0.02 / 0.50 0.12 / 0.64 0.18 / 0.58 0.28 / 0.70 0.14 / 0.55

Table 4: The success rate (Precision@1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@10 EN AR ZH JP RU DE ES Into X
EN - / - 0.40 / 0.73 0.67 / 0.98 0.05 / 0.88 0.44 / 0.98 0.86 / 0.97 0.82 / 0.99 0.54 / 0.92
AR 0.16 / 0.31 - / - 0.24 / 0.51 0.02 / 0.45 0.12 / 0.54 0.12 / 0.41 0.19 / 0.62 0.14 / 0.47
ZH 0.30 / 0.80 0.16 / 0.62 - / - 0.20 / 0.77 0.40 / 0.91 0.28 / 0.80 0.53 / 0.95 0.31 / 0.81
JP 0.06 / 0.41 0.06 / 0.42 0.28 / 0.69 - / - 0.23 / 0.64 0.06 / 0.65 0.13 / 0.70 0.14 / 0.58
RU 0.27 / 0.80 0.27 / 0.68 0.63 / 0.90 0.08 / 0.76 - / - 0.34 / 0.89 0.69 / 0.97 0.38 / 0.83
DE 0.78 / 0.92 0.16 / 0.69 0.46 / 0.92 0.04 / 0.84 0.43 / 0.95 - / - 0.88 / 0.97 0.46 / 0.88
ES 0.24 / 0.82 0.10 / 0.67 0.24 / 0.90 0.02 / 0.73 0.27 / 0.94 0.56 / 0.89 - / - 0.24 / 0.83

From X 0.30 / 0.68 0.19 / 0.64 0.42 / 0.82 0.07 / 0.74 0.32 / 0.83 0.37 / 0.77 0.54 / 0.87 0.32 / 0.76

Table 5: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@1 EN AR ZH JP RU DE ES Into X
EN - / - 0.59 / 0.52 0.83 / 0.81 0.83 / 0.80 0.57 / 0.82 0.87 / 0.88 0.87 / 0.90 0.76 / 0.79
AR 0.50 / 0.44 - / - 0.68 / 0.56 0.69 / 0.56 0.41 / 0.58 0.63 / 0.61 0.65 / 0.63 0.59 / 0.56
ZH 0.70 / 0.79 0.67 / 0.60 - / - 0.96 / 0.92 0.68 / 0.86 0.89 / 0.87 0.80 / 0.88 0.78 / 0.82
JP 0.74 / 0.77 0.69 / 0.59 0.97 / 0.91 - / - 0.67 / 0.85 0.87 / 0.85 0.81 / 0.86 0.79 / 0.81
RU 0.51 / 0.84 0.63 / 0.64 0.91 / 0.88 0.88 / 0.87 - / - 0.88 / 0.93 0.86 / 0.91 0.78 / 0.85
DE 0.80 / 0.87 0.51 / 0.61 0.80 / 0.85 0.78 / 0.85 0.57 / 0.89 - / - 0.95 / 0.92 0.73 / 0.83
ES 0.76 / 0.87 0.45 / 0.58 0.73 / 0.83 0.69 / 0.82 0.46 / 0.87 0.94 / 0.91 - / - 0.67 / 0.81

From X 0.67 / 0.76 0.59 / 0.59 0.82 / 0.81 0.81 / 0.80 0.56 / 0.81 0.85 / 0.84 0.82 / 0.85 0.73 / 0.78

Table 6: The success rate (Precision@1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. Note that all embeddings are derived from the prompting template in English as described
in §2.4, instead of the same language with input sentences.
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Precision@10 EN AR ZH JP RU DE ES Into X
EN - / - 0.83 / 0.80 0.95 / 0.96 0.97 / 0.95 0.80 / 0.96 0.98 / 0.97 0.98 / 0.98 0.92 / 0.94
AR 0.73 / 0.75 - / - 0.88 / 0.81 0.89 / 0.80 0.66 / 0.82 0.87 / 0.84 0.87 / 0.84 0.82 / 0.81
ZH 0.89 / 0.95 0.90 / 0.84 - / - 1.00 / 0.98 0.89 / 0.97 0.98 / 0.97 0.98 / 0.97 0.94 / 0.95
JP 0.91 / 0.94 0.90 / 0.83 1.00 / 0.98 - / - 0.88 / 0.97 0.98 / 0.97 0.98 / 0.97 0.94 / 0.94
RU 0.80 / 0.97 0.88 / 0.86 0.98 / 0.97 0.98 / 0.97 - / - 0.98 / 0.98 0.98 / 0.98 0.93 / 0.96
DE 0.93 / 0.97 0.74 / 0.84 0.94 / 0.96 0.92 / 0.96 0.79 / 0.97 - / - 0.99 / 0.98 0.89 / 0.95
ES 0.92 / 0.97 0.71 / 0.82 0.90 / 0.96 0.88 / 0.96 0.72 / 0.96 0.99 / 0.97 - / - 0.85 / 0.94

From X 0.86 / 0.92 0.83 / 0.83 0.94 / 0.94 0.94 / 0.94 0.79 / 0.94 0.96 / 0.95 0.96 / 0.95 0.90 / 0.93

Table 7: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-7B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.

Precision@5 EN AR ZH JP RU DE ES Into X
EN - / - 0.05 / 0.23 0.04 / 0.51 0.08 / 0.41 0.13 / 0.54 0.09 / 0.57 0.08 / 0.70 0.08 / 0.49
AR 0.03 / 0.07 - / - 0.02 / 0.13 0.02 / 0.08 0.03 / 0.13 0.01 / 0.12 0.02 / 0.16 0.02 / 0.12
ZH 0.19 / 0.24 0.08 / 0.18 - / - 0.46 / 0.34 0.15 / 0.37 0.19 / 0.40 0.11 / 0.44 0.20 / 0.33
JP 0.11 / 0.12 0.06 / 0.09 0.35 / 0.25 - / - 0.05 / 0.17 0.08 / 0.13 0.06 / 0.17 0.12 / 0.15
RU 0.15 / 0.23 0.05 / 0.12 0.08 / 0.30 0.06 / 0.15 - / - 0.19 / 0.36 0.18 / 0.45 0.12 / 0.27
DE 0.06 / 0.20 0.02 / 0.10 0.03 / 0.28 0.04 / 0.11 0.09 / 0.38 - / - 0.18 / 0.45 0.07 / 0.25
ES 0.07 / 0.28 0.02 / 0.14 0.02 / 0.33 0.02 / 0.15 0.08 / 0.45 0.13 / 0.43 - / - 0.06 / 0.30

From X 0.10 / 0.19 0.05 / 0.14 0.09 / 0.30 0.11 / 0.21 0.09 / 0.34 0.12 / 0.33 0.10 / 0.40 0.10 / 0.27

Table 8: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. The embeddings are derived by taking the output hidden vector of the last token without
prompting (last token pooling).

Precision@5 EN AR ZH JP RU DE ES Into X
EN - / - 0.26 / 0.72 0.66 / 0.90 0.66 / 0.88 0.22 / 0.96 0.56 / 0.85 0.30 / 0.83 0.44 / 0.86
AR 0.02 / 0.37 - / - 0.09 / 0.28 0.11 / 0.34 0.10 / 0.64 0.03 / 0.33 0.03 / 0.41 0.06 / 0.40
ZH 0.02 / 0.68 0.04 / 0.29 - / - 0.42 / 0.50 0.02 / 0.68 0.00 / 0.32 0.00 / 0.38 0.08 / 0.47
JP 0.02 / 0.62 0.05 / 0.40 0.74 / 0.54 - / - 0.05 / 0.86 0.01 / 0.57 0.01 / 0.53 0.15 / 0.59
RU 0.01 / 0.43 0.07 / 0.30 0.07 / 0.28 0.12 / 0.43 - / - 0.02 / 0.47 0.02 / 0.48 0.05 / 0.40
DE 0.47 / 0.84 0.24 / 0.61 0.19 / 0.57 0.52 / 0.79 0.20 / 0.95 - / - 0.41 / 0.80 0.34 / 0.76
ES 0.25 / 0.71 0.29 / 0.52 0.09 / 0.46 0.46 / 0.57 0.14 / 0.83 0.52 / 0.70 - / - 0.29 / 0.63

From X 0.13 / 0.61 0.16 / 0.47 0.31 / 0.51 0.38 / 0.58 0.12 / 0.82 0.19 / 0.54 0.13 / 0.57 0.20 / 0.59

Table 9: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-13B model. The embeddings in each language are derived from the LLaMA2-13B model using the
prompting method as described in §2.1.

Precision@5 EN AR ZH JP RU DE ES Into X
EN - / - 0.89 / 0.82 0.90 / 0.94 0.89 / 0.93 0.77 / 0.94 0.99 / 0.98 0.98 / 0.98 0.90 / 0.93
AR 0.81 / 0.80 - / - 0.82 / 0.86 0.86 / 0.85 0.78 / 0.85 0.94 / 0.88 0.94 / 0.88 0.86 / 0.85
ZH 0.59 / 0.95 0.89 / 0.88 - / - 1.00 / 0.98 0.88 / 0.97 0.97 / 0.97 0.99 / 0.98 0.89 / 0.96
JP 0.69 / 0.94 0.91 / 0.87 1.00 / 0.99 - / - 0.91 / 0.96 0.98 / 0.98 0.99 / 0.97 0.91 / 0.95
RU 0.44 / 0.95 0.94 / 0.89 0.94 / 0.98 0.95 / 0.97 - / - 0.98 / 0.99 0.98 / 0.98 0.87 / 0.96
DE 0.98 / 0.98 0.94 / 0.90 0.94 / 0.98 0.94 / 0.97 0.91 / 0.98 - / - 1.00 / 1.00 0.95 / 0.97
ES 0.95 / 0.97 0.93 / 0.88 0.90 / 0.97 0.91 / 0.96 0.86 / 0.97 0.99 / 0.98 - / - 0.92 / 0.96

From X 0.74 / 0.93 0.92 / 0.87 0.92 / 0.95 0.93 / 0.94 0.85 / 0.94 0.97 / 0.96 0.98 / 0.96 0.90 / 0.94

Table 10: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-13B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.
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Abstract

Building robust and reliable machine learn-
ing systems requires models with the capacity
to generalize their knowledge to interpret un-
seen inputs with different characteristics. Tradi-
tional language model evaluation tasks lack in-
formative metrics about model generalization,
and their applicability in new settings is of-
ten measured using task and language-specific
downstream performance, which is lacking in
many languages and tasks. To address this gap,
we explore a set of efficient and reliable mea-
sures that could aid in computing more informa-
tion related to the generalization capability of
language models, particularly in cross-lingual
zero-shot settings. Our central hypothesis is
that the sharpness of a model’s loss landscape,
i.e., the representation of loss values over its
weight space, can indicate its generalization
potential, with a flatter landscape suggesting
better generalization. We propose a novel and
stable algorithm to reliably compute the sharp-
ness of a model optimum, and demonstrate its
correlation with successful cross-lingual trans-
fer. 1

1 Introduction

Generalization enables models to use prior knowl-
edge to reasonably respond to previously unseen
stimuli. Although traditional machine learning
evaluation is performed based on a preselected
set of prediction or generation tasks, accuracy on
many public benchmarks may often not be suffi-
cient to extensively assess the ability to perform
well in new settings. Therefore, a majority of re-
searchers have found it worthwhile to investigate
measures that could evaluate the generalization ca-
pability of models with properties, such as VC di-
mension (Vapnik and Chervonenkis, 1971), cross-
entropy (Shannon, 1948), complexity (Mohri et al.,
2012) or variation in parameters during training

1Code: https://anonymous.4open.science/r/strikegen-7288

(Nagarajan and Kolter, 2019). Among these, re-
cent findings support the smoothness in the loss
curvature to correlate best with generalization ca-
pability (Chaudhari et al., 2019; Petzka et al., 2021;
Kaddour et al., 2022), motivating the development
of learning methods that induce smoothness in the
learning trajectory such that the model becomes
more robust; either through data perturbation (Jiang
et al., 2020a; Aghajanyan et al., 2021; Liang et al.,
2021; Hua et al., 2021; Park et al., 2022; Zheng
et al., 2021; Wang et al., 2021; Huang et al., 2021)
or by integrating the measure directly to the op-
timization objective (Izmailov et al., 2018; Jas-
trzebski et al., 2021; Cha et al., 2021; Foret et al.,
2021; Hu et al., 2022; Zaken et al., 2022; Stickland
and Murray, 2021). However it might often not
be straightforward to compute such measures in
high-dimensional feature space in a stable fashion
(Nachum et al., 2024).

As models get larger and cover more languages,
the possibility of improving the applicability of
NLP systems in many under-resourced languages
gets more promising. An essential requirement
in studying the dynamics of cross-lingual knowl-
edge transfer is to have an evaluation methodology
that can reliably measure the model’s capability in
generalization of knowledge under different scenar-
ios. There is a common hypothesis that states that
a model demonstrating an extended flat optimum
area of low loss value surrounding the minimized
loss is indicative of better generalization capability.
In this work, we study the above hypothesis and
present the first study to provide methods that can
be used for measuring the cross-lingual generaliza-
tion capability of language models.

• We pick prominent measures that were previ-
ously shown to correlate well with generaliza-
tion performance (Jiang et al., 2020b), such
as the Frobenius distance of the learned pa-
rameters after training (Nagarajan and Kolter,
2019), the margin between model predictions
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and true labels (Wei et al., 2018) and sharp-
ness in loss minima to test applicability to
zero-shot cross-lingual generalization mea-
surement (Keskar et al., 2017; Foret et al.,
2021).

• We also extend the formulation of state-of-the-
art sharpness computation methods (Keskar
et al., 2017; Foret et al., 2021) to provide a
sharpness prediction algorithm such that the
optimization of the parameters can converge
in a more stable fashion.

2 Related work

Loss-landscape Minima One of the most promis-
ing indicators of generalization capability to date
seems to be related to the form of the loss land-
scape, in particular, the sharpness in the loss curva-
ture. A potential reason for this fallback is traced to
stochastic gradient descent (SGD) (Bottou, 2012)
methods which often fall into sharp minima of
the loss surface (Keskar et al., 2017; Chaudhari
et al., 2019; Wang et al., 2021). Although clear
conclusions on the relationship between sharpness
and generalization performance, such as whether
sharper (Dinh et al., 2017) vs. flatter (Li et al.,
2018; Keskar et al., 2017) minima would generally
yield better generalization, are still due. The main
idea behind these methods is that their objective is
to explicitly find flat minima, often using stochastic
averaging methods (Polyak and Juditsky, 1992; Iz-
mailov et al., 2018), mini-max or sharpness-aware
minimization methods, which can be computed by
direct formulation based on the Hessian matrix of
the loss function (Chaudhari et al., 2019; Petzka
et al., 2021) or Monte-Carlo approximations of the
minimizer’s neighborhood (Foret et al., 2021; Cha
et al., 2021).

Adversarial optimization Comparison of two
approaches finds that for NLP tasks, mini-max
methods are more competitive over averaging-
based optimization (Kaddour et al., 2022). Jas-
trzebski et al. (2021) hypothesize that regularizing
the trace of the Fisher information matrix amplifies
the implicit bias of SGD, which prevents memo-
rization. The Fisher information (Fisher, 1925)
measures local curvature, so a smaller trace im-
plies a flatter minimum, which gives the model
more freedom to reach an optimum. Instead of ex-
plicitly minimizing the values of parameters, Foret
et al. (2021) propose minimizing both loss and
sharpness while optimizing the parameters such

that they lie in neighborhoods with low loss val-
ues. Perturbation is an auxiliary objective that en-
courages the model predictions to be similar in the
vicinity of the observed training samples (Engles-
son and Azizpour, 2021), usually by penalizing the
KL-divergence between the probability distribution
of the perturbed and normal model. Perturbations
can be adversarial inputs (Jiang et al., 2020a) or in-
puts with Gaussian or uniform noise (Aghajanyan
et al., 2021). To improve cross-lingual generaliza-
tion, translations of the input generated by machine
translation systems were used as perturbed input
(Wang et al., 2021; Zheng et al., 2021). Other work
also has found the benefit of enforcing consistency
for perturbations within the model in addition to
the input distribution (Liang et al., 2021; Hua et al.,
2021).

3 Methodology

In this study, we undertake the development of a
methodology that could benefit an accurate assess-
ment of the generalization capability of models for
the purpose of cross-lingual knowledge transfer
into under-resourced languages. This section first
presents approaches to improving generalization
performance and the selected measures that provide
stable results for measuring zero-shot cross-lingual
transfer performance.

3.1 Sharpness-based Optimization

We chose the following objective functions as
fine-tuning methods for a given pre-trained model
as a means of comparison since their main pur-
pose is to enhance the generalization and robust-
ness of models. Following the work of Stick-
land and Murray (2021), as the two most promi-
nent approaches to mini-max optimization, we
include Sharpness-Aware Minimization (SAM)
(Foret et al., 2021) and regularization with Fisher
Information Matrix (FIM) (Jastrzebski et al., 2021)
in our evaluation study on cross-lingual generaliza-
tion.We also include Multi-view Subword Regular-
ization (MVR) as a perturbation-based optimiza-
tion method (Wang et al., 2021) which induces
stochasticity into the shared subword vocabulary
across languages for easing cross-lingual transfer.

SAM (Foret et al., 2021) works on the
principle of a mini-max objective function:
minw max∥ϵ∥2<ρ L(w + ϵ), which essentially
means the optimizing function tries to minimize
the maximum loss value in a given radius in loss
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landscape. Therefore, SAM states that it tries to
seek "parameters lying in uniformly low-loss neigh-
borhoods".

Fisher Penalty is defined as explicitly penal-
izing the trace of the Fisher information matrix
(FIM). Jastrzebski et al. (2021), Stickland and Mur-
ray (2021) observed penalizing FIM during training
correlates to better generalization performance. It
can be written mathematically as 1

n

∑n
i ∇L(xi, yi)

where L(xi, yi) is the loss at the data point (xi, yi).
MVR (Wang et al., 2021) function on the con-

cept of consistency regularization where the di-
vergence between the model predictions on deter-
ministic and probabilistic segmentation inputs is
minimized. The objective function is formulated as

N∑

i=1

(
− 1

2
log p(yi|x̂i)−

1

2
log p(yi|x′i) (1)

+ λD(p(yi|x̂i) ∥ p(yi|x′i))
)

(2)

where the first term is the model loss on de-
terministic segmentation of the ith data sample
(most probable segmentation), the second term is
the model loss on probabilistic segmentation of
the ith data sample (random segmentation) and the
third term is the KL divergence between these two
output predictions. This technique influences the
model to be consistent on the predictions of differ-
ent input types which successively motivates the
model to be more adversarially robust.

3.2 Generalization Measures
Our study aims to investigate which type and char-
acteristics of methods would best correlate with
better performance in generalization, in this case,
zero-shot cross-lingual transfer. We are especially
interested in confirming the applicability of the flat-
ness hypothesis for cross-lingual generalization. In
order to assess whether a flat optimum loss-scape
region corresponds to generalization, we essentially
break down the experiment to measure two things,
flatness, and generalization, such that their correla-
tion can be measured.

Jiang et al. (2020b) conducted an extensive study
on image classification tasks using generalization
measures such as flatness-based measures (sharp-
ness metrics), margin and norm-based metrics
(based on parameter norms and distance from ini-
tial weights) to find correlations between measures
and model performance which supported the us-
ability of measures. These measures can be useful

to explore the capabilities of language models to
transfer knowledge from high-resource languages
to low-resource ones.

Margin
Higher certainty in predicting the correct label
leads to a model that is robust to perturbations
and unseen examples. Margin is the distinction be-
tween model prediction for ground truth label and
the next highest prediction probability. We use an
average based margin formula defined by Wei et al.
(2018) to calculate margin values on the entire test
set. Jiang et al. (2020b) observed that the margin
was directly proportional to better generalization
in the image classification tasks. Margin is

1

n

n∑

i

(
fyi(xi)−max

j ̸=yi
fj(xi)

)

where xi is the ith input to model, yi is the
ground truth label, f(.) is the model function. A
larger value of the margin of a model on a given
dataset would mean higher confidence in the model
to predict the correct label - including unseen exam-
ples (from languages not included in fine-tuning).

Sharpness of optimum
In simpler terms, we can define sharpness as the
change in the model loss value at two neighbor-
ing points in the model weights plane. It can also
be loosely interpreted as the inverse of the maxi-
mum radius the loss function can sustain a low loss
value at the optimum. Sharpness-based measures
resulted in the highest correlation with generaliza-
tion in (Jiang et al., 2020b).

Jiang et al. (2020b) formulates the sharpness to
be

ϕ =
∥W −W0∥22 log(2ω)

4α2
+ log

m

σ
+ 10

such that max|ui|≤α L(fW+u) < 0.1, where α
is the maximum radius in the model’s loss land-
scape possible, W and W0 are the models finetuned
weights and model initial weights respectively, ω is
the number of parameters, m is the total number of
observations, σ is the standard deviation of Gaus-
sian noise added. In this work, as we are compar-
ing models with the same architecture (considering
mBERT only), on the same dataset, we can remove
the constants, and simplify the equation further for
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comparative analysis.

ϕ =
∥W −W0∥22

4α2

Intuitively, if the radius of the low-loss region
in the loss-landscape (α) is small, that means the
model has a higher loss value near the optimum,
which would mean the landscape of the optimum
is not flat. We can relate this to resulting in an
unstable prediction when having perturbations in
either the data or model weights. Jiang et al.’s
formula didn’t result in stable results for our exper-
imental set-up which might be because the ascent
steps taken to optimize the α value resulted in ei-
ther having a large or a very small final α. The
values of α occurred at extreme points because the
algorithm was using a binary search method and
whenever optimal α was not found, the search al-
gorithm stopped with the final α value at either of
the extreme points. The correlation results of the
above sharpness method are shown in Table 3.

We present an alternative definition (inclined
with sharpness measure mentioned in the works
of Keskar et al., and Foret et al.), ϕdifference that
removes the need to optimize α by calculating the
difference between loss values at two points in the
optimum region, formulated as

ϕdifference = L(fW ′)− L(fW )

where W ′ is W + ϵ (ϵ being Gaussian noise) and
W is the optimum weight parameters. The details
of our definition are in Algorithm 1 and performs
calculation at about roughly 5-10 times faster than
Jiang et al.’s algorithm for a given batch size of 8.

Algorithm 1 Difference-based sharpness algorithm
1: w0 = original_weight
2: w = w0 + ϵ ▷ Small noise added to avoid zero

gradient
3: ∆w = ∇L(w)
4: w′ = w + n∆w
5: p = λ× ∥w′∥F ▷ λ is small like 0.05
6: if ∥w′ − w0∥ > p then
7: w′ = w0 +

(w′−w0)
∥w′−w0∥ · p

8: end if
9: ϕdifference = L(w′)− L(w0)

4 Experiments

For comparison, we implement each Sharpness-
based optimization as a fine-tuning objec-

tive on the multilingual mBERT base variant
(bert-base-multilingual-cased from hugging-
face) (Devlin et al., 2019) in addition to mT5 model
(google/mt5-small) (Xue et al., 2021). We use a
linear classification layer of size 768x3 where the
output dimension is equal to the number of labels.
We adopt a two-step training approach in our exper-
iments. First, we fine-tune the model on the English
language part of the XNLI dataset to optimize the
model to learn the task specifically in English. Sub-
sequently, we perform a zero-shot transfer of the
fine-tuned model on the rest of the 14 languages
to facilitate an evaluation of the generalization of
models.

4.1 Data, Model details, and Settings
For this work, we used the XNLI dataset (Conneau
et al., 2018) that includes data samples from the
MultiNLI dataset (Williams et al., 2018) and their
translated versions in 14 different languages (Ara-
bic "ar", Bulgarian "bg", German "de", Greek "el",
Spanish "es", French "fr", Hindi "hi", Russian "ru",
Swahili "sw", Thai "th", Turkish "tr", Urdu "ur",
Vietnamese "vi", Chinese "zh"). We only train the
models on the English ("en") subset of the dataset.
We use the data of these 14 languages only for
inference and evaluation of the models.

We fine-tune pretrained mBERT models for 15
epochs each with a batch size of 32, with a learn-
ing rate of 2 × 10−5, and select best checkpoint
on validation. The objective function we use for
the baseline model with the classification layer
is the AdamW optimizer (Loshchilov and Hutter,
2019) with cross-entropy loss, the mBERT+FIM
model has an additional loss as Fisher Penalty, the
mBERT+SAM model uses the SAM optimizer and
mBERT+MVR uses the MVR algorithm for fine-
tuning. We use the hyperparameters and code pre-
sented in XTREME2 and MVR codebase3. We run
the models with 8 random seeds and present the
average performance of these models (Figure 6).
In Algorithm 1, the amount of Gaussian noise we
add to model weights during calculating sharpness
is controlled using a scale that we empirically find
(among [0.001, 0.005, 0.01, 0.02]) for each model,
with n equal to 0.05.

We fine-tuned the MT5 model
(google/mt5-small using Huggingface’s li-
brary over 15 epochs. The XNLI dataset was

2https://github.com/google-research/xtreme
3https://github.com/cindyxinyiwang/multiview-subword-

regularization
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processed using a function to tokenize inputs,
and the optimizer utilized was Adafactor with a
learning rate scheduler. Adafactor optimizer’s
ability to adapt learning rates is helpful with
larger models like T5 in multi-lingual settings.
We trained the model with a batch size of 8,
accumulating gradients over 4 steps.

Additional experiments were run on PAWS-
X dataset (Yang et al., 2019) which has 7 lan-
guages: German "de", English "en", Spanish "es",
French "fr", Japanese "ja", Korean "ko", Chinese
"zh". We use similar experimentation of fine-
tuning on english and doing a zero-shot transfer
on 6 other languages as defined above for this
dataset. We used Huggingface’s models: mBERT
(bert-base-multilingual-cased), RoBERTa
(roberta-base), and XLM (xlm-mlm-en-2048)
using Adam optimizers.

Results
To evaluate how each of the selected measures cor-
relates with cross-lingual generalization, we first
compare these measures with held-out test accu-
racy. In Table 1, we present the correlation co-
efficients (using numpy.corrcoef) of margin vs.
accuracy and sharpness vs. accuracy. We notice
that having a higher margin is exceptionally cor-
related to achieving great performance on unseen
language data. Hence, we assume the margin to
indicate the generalization performance of a given
model. Similarly, sharpness captures a noteworthy
negative correlation with test performance.

Model Correlation with Accuracy

Margin Sharpness

Baseline 0.801 -0.845
mBERT+MVR 0.818 -0.793
mBERT+SAM 0.874 -0.584
mBERT+FIM 0.954 -0.671
mT5 + Adafactor 0.912 -0.410

Table 1: Correlation coefficients between Margin & Test
Accuracy, and Sharpness & Test Accuracy on the XNLI
dataset.

We notice similar results by extending
our similar experimentation to Paraphrase
Identification, PAWS-X dataset (Yang et al.,
2019) with 3 different models: mBERT
(bert-base-multilingual-cased), RoBERTa
(roberta-base) (Liu et al., 2019), and XLM

(xlm-mlm-en-2048) (CONNEAU and Lample,
2019) and analyze the validity of the flatness
hypothesis, i.e. a flat optimum neighborhood
would lead to a generalized model. In Figure
1, we confirm the strong relationship between
Margin (indicating generalization) and Sharpness
(indicating flatness) even when compared across
all models and metrics, suggesting flat neighbor-
hoods of model optimum can help in achieving
higher margin values which correlate to better
generalization. More findings about visualizations
are in Appendix A.1.

Model Correlation with Accuracy

Margin Sharpness

mBERT 0.998 -0.289
RoBERTa 0.997 -0.708
XLM-R 0.995 -0.622

Table 2: Correlation coefficients between Margin and
Sharpness with Test Accuracy on the PAWS-X dataset.

Figure 1: Scatter plot of Margin values and Sharpness
(ϕdifference) values for each mBERT model (on XNLI
dataset) with different objectives language-wise to show
the relationship between sharpness and generalization.

We can interpret sharpness as the inverse of flat-
ness, providing us the verdict that flatness of the
minimum in which the fine-tuned model is, would
help the model perform better on unseen language
data. When we evaluate similar models trained
with different objectives across languages, we ob-
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Figure 2: Scatter plot of difference-based sharpness
measure with test performance for all models combined.

serve that the relationships between measures are
likely dependent on the optimization objective func-
tions used during fine-tuning. In coherence with
both Figure 1 and 2, overall, we see that min-max
based optimization methods including FIM and
SAM, have the lowest sharpness values, compared
to the baseline and the regularization method MVR.

In Figure 3, we create scatter plots for mBERT
models where in each scatter plot, we plot the
model’s margin based on the validation set for each
language, and we plot the accuracy of that model
on the test set on the XNLI dataset. We observe
that the margin measure exhibits a consistent corre-
lation with test performance across all the models
analyzed.

As can be seen in the scatter plots for sharpness
(proposed difference-based sharpness) and accu-
racy in Figure 4, findings further indicate a nega-
tive correlation between sharpness and test perfor-
mance, suggesting that lower sharpness values are
associated with better generalization, represented
as model performance on unseen data.

5 Conclusion

Enabling cross-lingual knowledge transfer is an
important step towards extending the applicabil-
ity of NLP models to more languages. Despite
recent efforts to develop better optimization meth-
ods for improving the generalization of language
models in new languages or domains; these tech-
niques try different types of methods to achieve
higher performance such as sharpness-based mini-
mizations, reducing gradient of loss functions, or
consistency regularization. Evaluating these tech-
niques thoroughly without a standardized method-

ology remains a difficult task. This work aims to
uncover insights into how to measure cross-lingual
generalization by exploring suitable measures that
work well under different settings. Our experi-
ments studying model loss landscape and param-
eter properties find strong relationships between
the margin, sharpness in the loss minima neigh-
borhood, and zero-shot cross-lingual downstream
task performance, both on validation and test sets,
supporting strong applicability to evaluate models
before deploying them in new languages.

Limitations

The algorithm presented in our paper, the
difference-based sharpness measure, is a great nov-
elty for more robust sharpness computation, how-
ever, we would like to acknowledge that a few vari-
ables in the algorithm still require tuning heuristi-
cally, including the noise scale and the multiplica-
tion coefficient required to compute the projected
radius. Secondly, the mean-based margin distance
is only applicable to classification tasks. Due to the
limited scope of this project, we leave the develop-
ment of generalization measures more suitable for
generative tasks to future work.
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(a) Correlation visualization for Baseline(mBERT + AdamW) (b) Correlation visualization for mBERT + MVR model

(c) Correlation visualization for mBERT + SAM model (d) Correlation visualization for mBERT + FIM model

Figure 3: Scatter plots of margin of individual models and their corresponding performance on test set language-wise on XNLI
dataset.
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(a) Correlation visualization for Baseline (mBERT + AdamW) (b) Correlation visualization for mBERT + MVR model

(c) Correlation visualization for mBERT + SAM model (d) Correlation visualization for mBERT + FIM model

Figure 4: Scatter plots of the proposed difference-based sharpness (ϕdifference) of individual models and their corresponding
performance on test set language-wise on XNLI Dataset.
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A Appendix

A.1 Visualization results
Previous work (Nagarajan and Kolter, 2019; Jiang
et al., 2020b) suggests that a lower Frobenius dis-
tance from initialization would lead to better gen-
eralization. As Figure 5 shows, we fail to observe
a strong direct relationship between generalization
and Frobenius distance from initialization. How-
ever, the model trained with Fisher Penalty as an
additional objective function that has a high dis-
tance from initialization overall performed poorly
than others. We also see that models trained with
Fisher Penalty, SAM, and MVR optimizers tend
to be more stable than the baseline model, with
Fisher Penalty resulting in the most stable model
when trained multiple times (with different seeds,
see Figure 6), and SAM achieving generally the
best average zero-shot task accuracy.

Figure 5: Scatter plot of Frobenius distance from initial-
ization and Test accuracy for each model type (trained
multiple times independenty).

A.2 Additional experiments
To compare all models together, using the
difference-based sharpness measure, on language-
wise performance, we observe it is dependent on
the learning algorithms used during training in Fig-
ure 2.

We used the Jiang et al.’s α-based sharpness
algorithm for the experiment and optimized the
threshold loss values for our experimental set-
ting. The results of the correlation coefficient (us-
ing numpy.corrcoef) for α-based sharpness and
test accuracy are shown in Table 3 and Figure 7.
We notice that α-based sharpness values occur at
extreme points (for example, for mBERT+FIM
model, sharpness values are low whereas for the

Figure 6: Average test performance (and deviations)
of models when trained multiple times with different
seeds.

Model Correlation coefficient of
α-sharpness with accuracy

Baseline 0.249
mBERT+MVR -0.471
mBERT+SAM -0.166
mBERT+FIM -0.440

Table 3: Correlation coefficients between α-sharpness
(Jiang et al., 2020b) & Test Accuracy on the XNLI
dataset.

Baseline or mBERT+MVR model, sharpness val-
ues are much larger). Apart from being a compu-
tationally expensive algorithm, we failed to see a
strong relationship of α-based sharpness with per-
formance in Baseline and mBERT+SAM models.
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(a) Correlation visualization for Baseline (mBERT + AdamW) (b) Correlation visualization for mBERT + MVR model

(c) Correlation visualization for mBERT + SAM model (d) Correlation visualization for mBERT + FIM model

Figure 7: Scatter plots of Jiang et al. (2020b) based α-sharpness measure (we are only considering 1
α2 here) of individual

models and their corresponding performance on test set language-wise.
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Abstract

Most languages could be ambiguous, which
means the same conveyed text or speech, re-
sults in different actions by different readers or
listeners. In this project, we propose a method
to detect the ambiguity of a sentence using
translation by multilingual LLMs. In particular,
we hypothesize that a good machine translator
should preserve the ambiguity of sentences in
all target languages. Therefore, we investigate
whether ambiguity is encoded in the hidden rep-
resentation of a translation model or, instead,
if only a single meaning is encoded. In our
experiments, we have been able to predict the
ambiguity of sentences with high accuracy us-
ing machine translation without direct use of
semantics and only based on the reconstruction
error of a function that maps the forward and
backward translation hidden representations to
each other. The potential applications of the
proposed approach span i) detecting ambiguous
sentences, ii) fine-tuning existing multilingual
LLMs to preserve ambiguous information, and
iii) developing AI systems that can generate
ambiguity-free languages when needed.

1 Introduction

Language ambiguity is defined as the potential
of different actions as a response to a single text
by different people, based on their interpretations
(Ceccato et al., 2004). This definition aligns with
the semantic, syntactic, pragmatic tests along with
identity tests defined in (Zwicky and Sadock, 1975)
to identify ambiguous sentences.

Several research studies have been focusing on
the ambiguity of language. For a comprehensive
review on resolving ambiguities in NLP, refer to
(Yadav et al., 2021). (Wang, 2011) have studied
lexical and syntactic ambiguity in the Korean lan-
guage. They proposed adding new words as a solu-
tion for lexical and syntactic ambiguities. (Ceccato
et al., 2004) proposed a prototype for an ambiguity

Ambiguous Disambiguation
“Give me the bat!”
(Lexical)

“Give me the baton!”

“The professor said
on Monday he would
give an exam" (Syn-
tactic)

“The professor said
that on coming Mon-
day he would give an
exam"

“Jane saw the man
with a telescope” (Se-
mantic)

“Jane saw the man by
using a telescope”

“I like you too!”
(Pragmatic)

“I like you too like
others do!”

“The prof said she
would give us all
A’s.” (Vagueness)

“The prof said the
TA would give us all
A’s.”

“Proposal” to “voors-
tel” and “aanzoek”
(Translational)

“Research proposal”

Table 1: Various types of language ambiguity (Yadav
et al., 2021) and their disambiguated versions.

identification tool. They defined sentence ambigu-
ity of a sentence, as a function of number of senses
of each word in that sentence. Furthermore, Yadav
et al. (2021) have proposed a comprehensive tax-
onomy of different types of language ambiguities.

In many languages including English, sentences
do not always correspond to a unique set of possible
behaviors and actions by different readers/listeners,
which as we define, leads to language ambiguity.
Table 1 lists different types of language ambiguities
based on (Yadav et al., 2021), including examples
and their disambiguated versions.

Language ambiguity brings up misunderstand-
ings and conflicts in real-world interactions such
as political, commercial, and cultural interactions
(Bowe et al. (2014), Bachmann-Medick (1996)).
This misunderstanding can lead to either wasting
of huge amount of time in negotiation between the
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parties for conflict resolution or even in the worst
case results in conflicting actions (Kimmel (2006)).
By using the powerful tools in NLU and NLP using
language models, it could be possible to solve these
issues.

The main research questions being investigated
in this project are:

Question 1: Do state-of-the-art Transformer-
based MT models properly encode whether
a sentence in the source language is (non-)
ambiguous?

Question 2: Are both semantic validity and ambi-
guity preserved by the translation of these models,
when the sentence is translated into a target lan-
guage, and then translated back?

Question 3: Can we predict the ambiguity of a
sentence by translating it into another language
looking at the learned hidden representations?

The main contribution of this work is proposing
a solution that detects ambiguous sentences in dif-
ferent typos, without direct use of semantics. Fur-
thermore, through our experiments, we conclude
that ambiguity of the sentences are preserved in
the hidden representation of the multilingual LLM
translation model.

2 Related work

Before explaining the proposed approach, we re-
view the related literature, consisting of ambiguity
in NLP, ambiguity in machine translation, and an
overview of multilingual LLMs.

2.1 Ambiguity in machine translation
Language ambiguity is a key aspect explored in
machine translation (Baker et al. (1994), Jaspaert
(1984)).

With the goal of disambiguation in translation,
in Baker et al. (1994), the authors propose a source
language analyzer component in their machine
translation system that incorporates a controlled
lexicon, a controlled grammar, and a semantic do-
main model.

One of the key points in dealing with ambigu-
ity in translation is choosing the representation of
the ambiguous sentence. The way we represent
the sentence, directly influences the method we
propose to detect ambiguity and/or disambiguate
the sentence. Emele and Dorna (1998) suggest us-
ing a form of hierarchical recursive representation

similar to a syntactic tree, to preserve the ambigui-
ties between source and target language. In cases
where the target language cannot preserve the am-
biguity, the authors propose local disambiguation
by asking the human user to specify the correct in-
tention of the source sentence. In Boguslavsky et al.
(2005), the authors propose a rule-based machine
translation system that use a morphological struc-
ture and dependency tree structure to interactively
disambiguate sentences.

Apart from syntactic structures, lexical represen-
tation of sentences is also crucial in disambiguation.
In Sammer et al. (2006), the authors propose using
human assistance in lexical ambiguity resolution
in machine translation. They develop a system
composed of a controlled language lexicon com-
posed of words, word senses, their translations,
and a short, intuitive gloss or set of clue words
to help the user select the correct word sense dur-
ing interaction with the machine translation system.
Měchura (2022) investigates gender, number, and
formality ambiguities in translation. In these cases,
according to the paper, the machine translator ei-
ther decided on a random or statistically biased
translation which requires to ask the human the
right questions to disambiguate the text manually.

Unlike Baker et al. (1994), our method is not
rule-based and hard-coded which results in a more
flexible ambiguity detection method. Also, con-
trary to Sammer et al. (2006), we do not require a
predefined lexicon for detecting ambiguous words.
Unlike Emele and Dorna (1998) and Boguslavsky
et al. (2005),our approach however represents the
sentences in forms of vector representations in the
LLM but still do not directly rely on these repre-
sentations in detecting ambiguity.

In this project, we do not provide direct solutions
for disambiguation. As of future work, similar to
Měchura (2022), our method can be considered
as a human-assisted machine translation (HAMT)
solution defined in Alzeebaree (2020) which the
user is asked to disambiguate detected ambiguous
sentences in the input text. Also, the machine trans-
lation model we use is trained based on the inter-
lingua approach.

2.2 Ambiguity in the Era of LLMs
Language ambiguity, as a subset of semantic under-
specification (Egg, 2010) which is introduced as
the possibility for a linguistic signal to convey only
part of the information needed for communication
to succeed ((Hada et al., 2023)).
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Liu et al. (2023) have proposed a benchmark
for evaluating pre-trained language models to rec-
ognize ambiguity and disentangle possible mean-
ings. They capture the ambiguity of the sentences
through their entailment relations with other sen-
tences. They have covered different ambiguity
types including pragmatic, lexical, syntactic, sco-
pal, coreference, figurative, and other ambiguities.
Based on their benchmark, they realized that disam-
biguation of sentences using state-of-the-art LLMs
is still very challenging.

More recently, in Wildenburg et al. (2024), the
authors use perplexity measures to identify under-
specified sentences from the pairs in their proposed
DUST dataset. Based on Egg (2010), they define
four types of underspecified sentences.

In (Pezzelle, 2023) the author has investigated
how multi-modal models deal with semantic under-
specification and how communicative approaches
would provide solutions to this type of task. In
Hutchinson et al. (2022), the authors also investi-
gated semantic underspecification in text used to
generate images. They studied a taxonomy of the
family of multi-modal tasks and provided a list of
risks and concerns regarding ambiguity in multi-
modal text and image tasks.

Our work builds on this previous research inves-
tigating how LLMs deal with ambiguity. However,
we make a step further, and consider how ambigu-
ity is represented by current models across various
languages. To the best of our knowledge, ours is
the first work studying ambiguity in multilingual
LLMs.

2.3 Multilingual Large Language Models
With the advent of Transformer-based language
models, multilingual models have been proposed.
These models are trained with data from many
languages and can perform machine translation
among many other NLP tasks with higher perfor-
mance, compared to traditional approaches (Liu
et al. (2024), Liao et al. (2024)).

As multilingual LLMs are trained on data from
multiple languages, the mechanism of how these
models perform certain tasks has been recently
studied. Knowing the internal mechanism could
provide us insight into the ambiguity encoded in
the representation of the hidden layers of the LLM.

Choenni et al. (2023) have studied how individ-
ual languages in multilingual LLMs benefit from
each other as in cross-lingual sharing at the data
level. They found that multilingual LLMs rely on

data from multiple languages during fine-tuning
which can be useful in real-world translation mod-
els. Furthermore, in Zhang et al. (2023), the au-
thors studied how knowledge transfer happens in
multilingual LLMs during translation while lim-
ited multilingual training data leads to advanced
multilingual capabilities. According to their find-
ing, LLMs struggle to provide accurate results in
translation-variant tasks. Liu et al. (2024) have
studied the connections of multilingual activation
patterns in LLMs at the level of language families.
Similar to Tang et al. (2024), they have discov-
ered (non-)language-specific neurons in the LLMs
which capture meanings, regardless of specific tar-
get language.

Finally, Zhao et al. (2024) have studied the rep-
resentation of multilingual LLMs across the layers
of the model and realized that the first layers under-
stand the questions by converting the multilingual
input to English, the intermediate layers perform
problem-solving, mainly in English, and in the last
layers, the models generate the response according
to the original language. Knowing the outcome
of their results in finding the responsibility of dif-
ferent layers of multilingual LLMs could help us
choose the representation of the right layer for our
experiments.

In Qi et al. (2023), the authors study the cross-
lingual consistency of factual knowledge and pro-
pose a metric to evaluate knowledge consistency
across languages independently from accuracy.
Tanwar et al. (2023) study cross-lingual in-context
learning.

Finally, Zhu et al. (2023), (Zhu et al., 2024) and
Gao et al. (2024) have studied multilingual ma-
chine translation in LLMs. Through their approach,
they where able to improve zero-shot translation
performance by learning language-agnostic repre-
sentations in the multilingual LLMs.

3 Proposed method

In this project, we aim at testing how language
ambiguity is represented in multilingual LLMs.
We propose language translation as an action per-
formed by LLM agents. Accordingly, we propose
a four-step approach in detecting language ambigu-
ity, as illustrated in figure 1:

1. Translation: Translate the input text from
the source language into the target languages
using a multilingual LLM. Then extract the
hidden representation from the LLM.
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Figure 1: Proposed approach in language ambiguity de-
tection using LLM translation consisting of four steps:
1) translating the text into the target languages, 2) trans-
lating back the new texts into the source language, 3)
comparing the pairwise representations, 4) computing
the overall measure of ambiguity.

2. Back-translation: Translate back the output
texts of the first step from the target language
into the source language using the same LLM.
Then extract the hidden representation of the
state of the LLM as a vector.

3. Mapping function: Compute a function that
maps the two representations above. Note
that due to the both complexity of the LLM
and also various types of information stored
in the representations such as semantics, syn-
tax, language information, etc., we do not ex-
pect an identity function to be able to map the
representations, even in case of unambiguous
sentences.

4. Ambiguity evaluation: Compute an overall
measure of ambiguity based on the properties
of the mapping function. We hypothesize that
the mapping function learns high-level feature
encoding how ambiguous a sentence is, inde-
pendently of its meaning. Therefore, we can
use features of this mapping function to quan-
tify how much ambiguity was preserved in the
translation and back-translation.

Considering n different meanings for input text
tA and m different interpretations of the output text
tB , in the worst case we would have n×m different
translation meaning pairs, which complicates the
problem of ambiguity in translation. As it has been
noted in section 4.3, the translation process by itself
can be a source of ambiguity.

The LLM works as a function f(.) defined in

equation (1):

r 7→ f(t, ls, lt) (1)

where t is the input text, ls is the source language, lt
is the target language, and r is the vector represen-
tation of the hidden state of the LLM. By applying
the translation function f(.) in steps 1 and 2 listed
above, the representation vectors can be found as
in equation (2):

rA = f(tA, l1, l2)

rB = f(tB, l2, l1)
(2)

where tA is the input text and tB is the generated
output text from the translation using the LLM in
step 1.

The hidden representation r consists of a dis-
tributed representation of multiple factors, not
only including the semantics (Bau (2022), Zhang
(2024)) and it is not easy to simply disentangle
these factors and manually extract the representa-
tion of the input text t from the representation r.
Also as the representation r contains factors such
as the information about the source and target lan-
guage, the translation task, etc., we can not directly
compare the two representations rA and rB to de-
tect ambiguity in the text. Therefore we propose a
different approach in detecting ambiguity.

In the first step, we define a function g(.) that
maps the two representations to each other as illus-
trated in equation (3):

rB = g(rA) (3)

where rA and rB are the representations found
from equation (2) and g(.) is the mapping func-
tion.

To find the function g(.), we learn a simple auto-
encoder with a single hidden layer of size sH , input
size of sA and output size of sB . Note that as the
translation in steps 1 and 2 are both performed
using the same LLM, we have sA = sB .

The auto-encoder maps the input translation rep-
resentation rA to the output translation represen-
tation rB . The error of the network implementing
g(.) is defined as the normalized mean squared
error (NMSE) of the elements of the two repre-
sentations rA and rB (the actual equations can be
found in the Appendix A).

We define the function c(.) as complexity of the
function g(.) as follows:
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c(g) = sH/sA (4)

where sH and sA are the sizes (number of neurons)
in the hidden layer H and input rA of the neural
network implementing the g(.) function.

By learning function g(.), for each text tA in the
input dataset, we can evaluate the translation error
e(.) for each setting of the network complexity c(.)
with different hidden layer sizes. Figure 2 reports
the error of the function against its complexity.

The main idea for using an auto-encoder is based
on the assumption that: (1) We expect the auto-
encoder will behave differently for ambiguous vs
unambiguous sentences; (2) in particular, we con-
jecture that model size and the target language will
affect differently the model when dealing with am-
biguous vs unambiguous sentences.

We propose using a simple neural network model
to predict ambiguity using the data points in the
elbow chart in figure 2 as input in a supervised
manner.

3.1 Experiments

The Dataset of semantically Underspecified Sen-
tences by Type (DUST)1 contains a balanced num-
ber of ambiguous and unambiguous English sen-
tences. We use a multi-language translation model
such as Facebook M2M1002 (Fan et al., 2020) to
translate each sentence from English to other pos-
sible languages and translate them back to English.
The model is trained on any pairs of 100 languages
in a supervised manner with 15.4B parameters has
resulted a high performance compared to English-
Centric approaches. The pairs of sentences are
selected from different sources mentioned in (Fan
et al., 2020). The scope of the paper is to study
ambiguity detection in LLM translation for the first
time, therefore we chose one model not necessarily
the state-of-the-art. Therefore, future work should
indeed compare various models. We consider Ger-
man, Greek, Persian, Spanish, French, Hindi, Ital-
ian, Korean, Dutch, Russian, Turkish, Croatian,
Romanian and Chinese as our target languages. Af-
ter translation, we extract the hidden states of the
LLM for the two translation steps as defined in
equation (5):

TA = {tjA}, RA = {rjA}, RB = {rjB} (5)

1https://github.com/frank-wildenburg/DUST
2https://huggingface.co/facebook/m2m100_418M

After learning the network for the function g(.),
we feed all the rA’s to the network and capture the
outputs r′B’s. Using equations (4) and (6), we find
the complexity and error for each sample and each
network size. Figure 2 shows the elbow for the
mapping functions of an ambiguous sentence and
its unambiguous version.

For classification, we used either a neural net-
work or a logistic regression model. Further details
about the classification experiments are explained
in section 4.2.

3.1.1 Qualitative Analysis
As an analysis of the experiment before, for the
misclassified samples, the two authors of the pa-
per, who are proficient in two languages (Farsi and
Italian) out of the set reported above, verified if the
corresponding sentence in the target language is
(A) semantically valid and (B) (non-)ambiguous.
Semantic validity is verified by asking the human
user whether the sentence is correctly translated,
and ambiguity is verified by asking whether the
translated sentence is (still) ambiguous or not.

3.2 Evaluation

We translate ambiguous and unambiguous English
sentences to the languages listed above and inves-
tigate whether the meaning has changed through
analysis of the hidden states of the multilingual
LLMs.

Based on our evaluation protocol, if we obtain
high accuracy in predicting the ambiguity of am-
biguous sentences, we can conclude that the model
is able to properly encode ambiguity in its hidden
representations (research question 1). Furthermore,
the high accuracy shows that predicting ambigu-
ity using multilingual LLM translation models is
possible (research question 3).

Human error analysis will help us shed light on
the research question 2.

4 Results

In this section, we provide the results of our exper-
iments.

4.1 Discriminability

In the first step of our analysis, we examined the
discriminability of reconstruction error of the best
auto-encoder per each language in predicting ambi-
guity of the sentences. Figure 5 illustrates the distri-
bution of reconstruction error along languages for
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(a) "Andrei picked up the chair or the bag and the telescope"
(ambiguous)

(b) "Andrei picked up the chair, or both the bag and the tele-
scope" (unambiguous)

Figure 2: Illustration of the mapping function for an ambiguous sentence and its unambiguous version.

Language t-test p-value
German -0.341 0.33

Greek 0.510 0.610
Persian -1.95 0.051
Spanish -0.087 0.931
French -1.072 0.285
Hindi 1.828 0.069

Italian -0.821 0.413
Korean 1.864 0.063
Dutch -2.253 0.025

Russian -0.905 0.366
Turkish -1.557 0.121

Croatian -1.034 0.452
Romanian -1.594 0.112

Chinese -3.307 0.001

Table 2: T-test statistics indicating discriminability of
reconstruction error of best auto-encoder for ambiguity.
We test significance at pvalue < 0.05.

each class. To evaluate the discriminability, we per-
formed t-test statistics by verifying pseudo-normal
distribution of data. The detailed results are listed
in table 2.

Based on the t-test results, we can conclude that
mean reconstruction errors for separate target lan-
guages are not informative enough to discriminate
ambiguous and unambiguous sentences, except for
a limited number of languages.

4.2 Classification

To determine the most informative variables for
classification, we performed several experiments,
each including a different setting composed of the

options listed in Appendix B.
Table 3 shows the results of classification in all

experiment settings. The detailed analysis of the
findings for these experiments is provided in sec-
tion 5.

4.3 Source of Ambiguity

After classifying the data, we investigated the
source of misclassification using annotation for the
Italian and Persian languages. Accordingly, we
found both machine translation and also the incapa-
bility of the target language itself in preserving the
ambiguity, as the sources of misclassification. We
only performed a preliminary and arguably limited
annotation, but in future work we chould recruit
many more participants and conduct a much larger-
scale human analysis. Figure 3 illustrates these
results.

From the misclassified sentences (examples
shown in table 6), considering two target languages
(Italian and Persian) we found the following out-
comes:

• Ambiguity was lost in 44.68% of the Italian
and 51.02% of the Persian target sentences
(out of misclassified ambiguous sentences).

• From the misclassified sentences that the am-
biguity was lost, in the Italian target language,
85.71% of the loss was because of the transla-
tion model and the sentence could be written
in an ambiguous sense by a native human.
However, none of the loss of ambiguity was
because of the translation in the Persian target
language and the native Persian human was
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Input Input variable Output Model Accuracy F-Measure
Persian Differences Amb. Vs unamb. LR 57.81% 0.578
Best AE Values Amb. Vs unamb. LR 66.67% 0.667

Along languages Differences Amb. Vs unamb. LR 85.87% 0.859
Whole Differences Amb. Type LR 92.83% 0.928
Whole Differences Amb. Vs unamb. LR 88.19% 0.882

Best AE Values Amb. Vs unamb. NN 73.21% 0.732
Whole Values Amb. Vs unamb. NN 81.99% 0.820
Whole Values Amb. Type NN 78.26% -
Whole Differences Amb. Type NN 93.04% 0.925
Whole Differences Amb. Vs unamb. NN 94.94% 0.949

Table 3: Classification results for different settings. For classifying ambiguous vs unambiguous sentences the chance
level accuracy is 50.0% and for ambiguity type it is 36.58%

Figure 3: Misclassified samples distribution - format:
source-target(problem): amb: ambiguous, unamb: un-
ambiguous, tran: source of misclassification is wrong
machine translation, lang: source of misclassification is
target language incapability in transferring ambiguity.

also unable to translate the ambiguity into the
target language due to the innate difference
between English and Persian languages.

• From the unambiguous misclassified sen-
tences, in 7.69% of the cases, ambiguity
was introduced in Italian translation, none of
which was because of wrong translation by
the machine, but because of the innate dif-
ference between the target language and En-
glish. This percentage increases in Persian
to 26.67% of the unambiguous misclassified
sentences which was similarly due to the in-
nate difference in languages and not because
of machine translation.

• We can conclude that 68.49% of the misclas-
sified sentences in total were correctly trans-
lated in terms of ambiguity in Italian while
58.23% in Persian, from which 78.26% (for

Italian) and 0.0% (for Persian) was because
of a machine translation problem.

5 Discussion

Based on the results of our classification experi-
ments shown in table 3, we achieved the following
findings:

1. Single language translation is not informative
enough in predicting ambiguity. By moving
from one language (Persian) to all languages,
we achieved 85.87% accuracy (from 57.81%).
This could be due to the effect of adding more
informative input features (information about
other language translations) to the classifica-
tion algorithm.

2. Single best auto-encoder is not informative
enough in predicting ambiguity. The accuracy
has changed from 66.67% to 88.19% by intro-
ducing more auto-encoder models even with
lower complexities. Adding more features
about the gradual change over the complexity
of the auto-encoder model could explain this
phenomenon.

3. Adding reconstruction error differences be-
tween languages improves accuracy. By
adding this information we achieved 88.19%
accuracy compared to 85.87%. Accordingly,
adding more features about the properties of
the mapping function mesh improved the ac-
curacy.

4. Reconstruction error differences is more infor-
mative than their values. These phenomena
can be observed from the results by improv-
ing from 81.99% to 94.94% accuracy. We
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can conclude that the shape of the mapping
function is informative not the position of it.
However, we would expect that a nonlinear
complex classifier would also be able to pick
this feature.

5. A simple linear model can perform relatively
close to a complex neural network model. The
accuracy of the complex model was 94.94%
compared to 88.19% for the linear model.
Learning more complex and nonlinear fea-
tures actually helped the classification.

6. Predicting more detailed classes improves
the accuracy in linear models. For the lin-
ear model, the accuracy have changed from
88.19% (F-measure 0.820) to 92.83% (F-
measure 0.928) by changing to multi-class
classification. It can be explained by classify-
ing more detailed regions in the misclassified
regions. For more details on the distribution
of the classes along the main two principle
components, refer to figure 6. For the neu-
ral network however, the classification result
decreased from 94.94% to 93.04% by mov-
ing to multi-class classification. Compared to
the increase of accuracy in the linear model,
we can explain that the neural networks have
been already able to learn the nonlinear bound-
aries in the input space and already got a high
accuracy in two-class classification.

Moving back to our initial research questions,
based on the results in table 3, we can claim that it
is possible to predict sentence ambiguity using ma-
chine translation. However, we can not claim that
the semantic validity and ambiguity is preserved
by translation for all target languages and it highly
depends on the language. Finally, we conclude that
the ambiguity of the sentence is actually encoded in
the hidden representation of the LLMs, as the am-
biguity is predictable from these representations.

The main contribution of the project is predicting
ambiguity of the sentences, without direct use of
semantics. As explained in section 3 this feature is
achieved by classifying the ambiguity based on the
shape of the mapping function. As a consequence,
the algorithm does not require extensive training
data to cover the whole semantic. Furthermore, the
approach is potentially much more generalizable
to unseen sentences with unseen semantics. Also,
the model would be robust to changes to the input
distribution as it is independent of the semantics.

6 Future work

One future direction method is to investigate in
more details the source of misclassification for all
fourteen target languages other than Italian and
Persian. Other than that, detecting the source of
ambiguity in sentences in terms of words could be
an interesting direction. Furthermore, extending
the method to different source languages other than
English could also be considered as future work.

One of the potential applications of an ambiguity
detection method could be in automatic translation
of critical documents e.g. legal, political, commer-
cial, where the user is asked to clarify the ambi-
guity of the source language manually, to prevent
misunderstanding and potential conflicts.

Fine-tuning existing multilingual large language
models to preserve ambiguity in sentences could
be another potential application of the proposed
method.

Finally, the trained classifier model can poten-
tially be used as a partial loss function for design-
ing and optimizing ambiguity-free AI-generated
human languages investigated at Synaptosearch3.
In order to do so, for each input sentence gener-
ated by the AI, the ambiguity is measured using the
model and the gradient with respect to the input is
calculated and used to optimize the loss function
term related to ambiguity.

Ambiguity can be considered of a strength of the
language in cases such as providing efficient means
of communication or when it is used as amphi-
bology in literature. However, in critical political,
commercial and cultural cases and social media,
unintended ambiguity results in misunderstandings
and conflicts. The outcome of the misunderstand-
ing could lead to spending a lot of time in nego-
tiation to elaborate the meaning, or in worse case
conflicting actions.

One major organization that can benefit from
the proposed research is the United Nations
(UN) where different countries with different lan-
guages interact with each other. Considering au-
tomatic translation in such organizations where
a speech/text is translated into many languages,
detecting and informing the potential ambiguities
to both the speaker/writer and the listener/reader,
would prevent potential misunderstandings, tedious
negotiations, and conflicting actions between the
nations and parties in the long term (Bowe et al.
(2014), Kimmel (2006)).

3https://synaptosearch.com/
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A Normalized mean squared error

The network error is computed using Normalized
mean squared error defined in equation (6):

e(rA, rB) =
1

sA

sA∑

i=0

(riA − riB)
2

rArB

rA =
1

sA

sA∑

i=0

riA

rB =
1

sB

sB∑

i=0

riB

(6)

where riX is the i’th element of representation rX
and sX is the size (number of neurons) of rX .

B Experiment settings

The experiment settings consisted of several op-
tions defined in table 4.

Setting Options

Input type

- Single language across all
auto-encoder models
- All languages only for the
best auto-encoder
- Only relations across lan-
guages
- Whole mapping functions

Input variable
- Reconstruction error
- Reconstruction error dif-
ference

Output
- Ambiguous vs Unambigu-
ous
- Ambiguity type

Model
- Logistic regression
- Neural network

Cross-validation - 10-fold

Table 4: Experiment settings for ambiguity classifica-
tion

C Additional figures

Considering several possibilities of translating
(un)ambiguous sentences, we summarize 6 states
that can be found in table 5 and figure 4.

According to figure 4, for unambiguous sen-
tences, state sU0 is desirable and for ambiguous
source sentences, for all target languages, either of
the states sA0 or sA2 is desirable. In other words,
if a sentence is ambiguous, it should be either am-
biguous in all target languages, or none of them.
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(a) State sA0 (b) State sU0

(c) State sA1 (d) State sU1

(e) State sA2 (f) State sU2

Figure 4: Possible states of the 2-step translation approach proposed in the project. White circles indicate certain
meanings associated to an ambiguous sentence. Black circles indicate a biased meaning from possible meanings of
an ambiguous sentence. Rectangles indicate the internal hidden states of a translation step. Triangles and squares
indicate incorrect translations. For detailed description about the possible states refer to table 5.

Figure 5: Discriminability of reconstruction error along language for the best auto-encoder. Languages other than
Dutch and Chinese are not significantly separable according to the p-value in table 2.
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Table 5: Possible states of the 2-step translation approach proposed in the project.
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Input Text Input
ambiguity

Target
language Back translation

Back-
translation
ambiguity

Error
state

Andrei and Danny
moved the yellow
bag and chair

Amb. Persian Andrew and Danny
transferred the yel-
low bag and the
chair.

Unamb. sA2

Andrei and Danny
held the green chair
and bag

Amb. Italian Andrei and Danny
have the green chair
and the bag.

Unamb. sA2

Andrei looked at
Danny moving a
yellow bag

Amb. Persian Andrew looked at
Danny that the yel-
low bag was rolling
around.

Wrong sA1

Andrei held the bag,
and either the tele-
scope or the chair

Unamb. Persian Andrei kept the bag,
or a telescope or a
chair.

Wrong sU1

Andrei picked up the
chair, or both the bag
and the telescope

Unamb. Italian Andrei took the chair,
either the bag or the
telescope.

Wrong sU1

Danny moved the
telescope that was on
the bag

Unamb. Persian He moved the tele-
scope on the bag.

Amb. sU2

Danny left the chair
while holding a
green bag

Unamb. Italian Danny left the chair
holding a green bag

Amb. sU2

Table 6: Example of possible error states in translation and back translation.
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Figure 6: Data distribution over two main principle
components
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Abstract

This paper presents Multi-Lingual/Task
Demonstration Retrieval (MLT-DR) for
in-context learning with Large Language
Models (LLMs). Our goal is to investigate
how dense demonstration retrieval models
are generalized across languages and tasks.
We first convert 81 tasks into a common
format, covering various languages, task
types, and domains. For 8 English-based tasks
among them, we use machine translation to
create synthetic multi/cross-lingual tasks, by
translating the examples into non-English
languages to explicitly cover more than 130
languages. We then use an instruction-tuned
LLM to estimate utility of demonstrations
for all the tasks to train the demonstration
retrieval models. In our experiments, we show
an interesting counterintuitive observation;
to compute embeddings of demonstrations,
using both the input and ground-truth output
hurts the generalization ability of the retriever
on unseen tasks whose output space is quite
different from those in the seen task set. We
also examine that our retriever robustly works
even with LLMs that we did not touch during
the development of the models.

1 Introduction

In-Context Learning (ICL) is an emergent strategy
to make Large Language Models (LLMs) perform
a task by showing its instruction and demonstra-
tions (i.e., input-output pairs) without fine-tuning
the LLMs (Brown et al., 2020; Zhao et al., 2021).
A crucial research question in this line of work
is how to select demonstrations for a new test in-
put. A well-studied approach is to use a general
or task-specific text encoder to retrieve demonstra-
tions whose inputs are similar to the test input (Liu
et al., 2022). Furthermore, such a text retriever can
be effectively fine-tuned by estimating the utility
of the demonstrations for a specific LLM (Rubin
et al., 2022; Luo et al., 2023).

Li et al. (2023) and Wang et al. (2023) have made
progress towards fine-tuning a single demonstra-
tion retriever for multiple tasks. They have even
shown that the multi-task demonstration retrievers
can be generalized on unseen datasets (that are not
used in fine-tuning the retrievers). The key factor
is that the unseen datasets share the output formats
with those used in the fine-tuning.1 What is the
boundary of the generalization ability?

As an attempt to answer this question, we inves-
tigate capabilities of Multi-Lingual/Task Demon-
stration Retrieval (MLT-DR). We first collect 81
tasks from publicly available datasets,2 covering
diverse languages, task types, and domains. We ap-
ply a data augmentation technique to generate syn-
thetic multi/cross-lingual tasks for 8 English-based
tasks to improve the generalization ability on low-
resource languages, by using machine translation
for more than 130 languages. We then fine-tune a
general multi-lingual text retriever with feedbacks
from an LLM and evaluate fine-tuned models both
on seen and unseen tasks.

The findings in our experiments are summarized
as follows:

• A counterintuitive finding is that using both
the input and ground-truth output to compute
demonstration embeddings hurts the gener-
alization ability on unseen tasks, especially
when the output spaces are semantically non-
trivial.

• The simple translation-based data augmenta-
tion helps preserve the generalization ability
for low-resource languages (and cross-lingual
ICL).

1Sentiment classification in a different domain, natural lan-
guage inference in a different input style, code summarization
for different programming languages, etc.

2We use the two terms, “tasks” and “datasets,” interchange-
ably as in Wang et al. (2023).
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• The fine-tuned retriever can be used for un-
seen LLMs, and thus we believe that our re-
triever will serve as a baseline, a building
block to be combined with various techniques,
starting points to try further fine-tuning, etc.
for future research.

2 Multi-Task Demonstration Retrieval

A multi-task demonstration retriever R is designed
to estimates s(d|x, t), a utility score of a demon-
stration d given an input x and its corresponding
task t (Li et al., 2023; Wang et al., 2023). It is a
common practice to model this as a dense retrieval
model (Karpukhin et al., 2020):

s(d|x, t) = Eq(x, t) · Ec(d, t), (1)

where Eq is an encoder model for the query input,
and Ec for the demonstration candidate. We fine-
tune a general dense retrieval model R0; for our
primary research question, we assume that R0 can
handle many languages and domains in diverse text
formats (like mT5 (Xue et al., 2021)) and is trained
by a general task-agnostic text retrieval objective
(like Izacard et al. (2021)).

Contrastive Learning The dense retriever
model is usually fine-tuned with contrastive learn-
ing (Karpukhin et al., 2020). The previous studies
used various forms of contrastive learning; for
example, Wang et al. (2023) used a combination of
cross-attention and dense-retrieval models with a
knowledge distillation technique. In this work, we
follow a simple and well-established formulation
in Yang et al. (2019). To do this, we construct a
query set Qt and a demonstration candidate set Ct,
by splitting the original training set of the task.

Sampling candidates We first sample demon-
stration candidates (from Ct) for a query input
x ∈ Qt, by combining two types:

• retrieval-based candidates and

• random candidates.

` candidates are given by the baseline retriever R0,
and m candidates by random sampling, resulting
in (`+m)|Qt| query-candidate pairs for the task t.
(`,m) = (10, 10) is the default setting, except that
we use (`,m) = (50, 50) for very small datasets.

Scoring candidates Next, we annotate the use-
fulness of a candidate d to perform the task t for x.
The usefulness is scored by using an LLM:

u(d|x, y, t), (2)

where y is a gold output of x. We employ the incre-
mental utility function in Hashimoto et al. (2024),
where the scores are in the range of [0.0, 1.0];

• u(d|x, y, t) = 0.5 means that d does not affect
the LLM’s prediction,

• u(d|x, y, t) > 0.5 means a positive effect, and

• u(d|x, y, t) < 0.5 means a negative effect.

The utility scores are annotated in a task-specific
fashion as described in Appendix A.1. We use the
utility scores to select positive and hard negative
candidates for the contrastive learning.

Positive candidates For x, a positive candidate
dp satisfies

u(dp|x, y, t) ≥ 0.5 + δ1, (3)

where δ1 ∈ (0.0, 0.5] is a margin to ensure the
quality of dp. The larger the margin value is, the
more significant the contribution of dp is. However,
there is a trade-off; a large margin value reduces the
number of the training examples we can use. We
have tried different values in the development of
our framework, and we empirically set δ1 = 0.05.

Hard negative candidates We pair dp with a set
of hard negative candidates {dn}, such that they
satisfy

u(dp|x, y, t)− u(dn|x, y, t) ≥ δ2, (4)

where δ2 ∈ [0.0, 1.0] is another margin to ensure
the quality difference between the positive and hard
negatives; we empirically set δ2 = 0.1.

Multi-task fine-tuning Consequently, we have
a set of the tuples

(x, dp, {dn}) (5)

for the task. Then the baseline retriever R0 is fine-
tuned to satisfy s(dp|x, t) > s(dn|x, t) by the con-
trastive learning. The fine-tuning process is done
by mixing the tuples from all the tasks we use for
the retriever training.
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3 The Role of Ground-Truth Outputs

There are two major dimensions in the design of
the demonstration retriever in Section 2: what texts
are fed into

1) the query encoder Eq and

2) the candidate encoder Ec.

The former is relatively straightforward; we can
concatenate a task instruction of t and the query
text: [Instruction(t);x] as done in Li et al. (2023)
and also in task-aware retrievers (Asai et al., 2023;
Su et al., 2023).

For the candidate encoder, we find a standard
practice in the previous studies (Rubin et al., 2022;
Li et al., 2023; Luo et al., 2023; Wang et al., 2023);
they concatenate the input and ground-truth output
of the demonstration:

[Instruction(t); din; dout],

where the instruction is used optionally for the
multi-task learning cases. We may think that this is
a natural and reasonable design; however, we cast
doubt on this from a view point of the generaliza-
tion ability on unseen tasks.

Diversity in the output space Let’s think about
tasks whose outputs are specifically designed for
them. Classification is considered to be the most
representative one. For some datasets, the output
space is limited and not ambiguous:

• {“positive”, “negative”, “neutral”} in senti-
ment classification,

• {“entailment”, “contradiction”, “neutral”} in
natural language inference, and

• {“sports”, “music”, ...} in topic classification.

For others, we see diverse, unlimited, and domain-
specific labels: intent classification, relation clas-
sification, etc. It is often the case that such
class labels are represented with simple words or
short phrases, and they are not always comprehen-
sive even for humans. Other example tasks are
slot labeling and named entity recognition, where
slot/entity labels can be arbitrary strings, and the
output format can be designed in various ways (Ra-
man et al., 2022). Is the candidate encoder robust
in the diverse output space?

To answer this question, we compare the follow-
ing three designs for the demonstration representa-
tions by the candidate encoder:

- STD: [Instruction(t); din; dout],

- DESC: [Instruction(t); din; Desc(dout)],

- NO: [Instruction(t); din].

STD is the standard approach in the previous
work as mentioned above.

DESC is to replace dout with its description,
Desc(dout), to explain the meaning of the out-
put (Rastogi et al., 2020; Gao et al., 2023b). We
apply DESC to tasks with symbolic outputs (e.g.,
classification), and manually give a description
for each output candidate. For example, in the
DDI13 relation extraction task, we adapt the origi-
nal definitions of the relation labels in the dataset
paper (Herrero-Zazo et al., 2013); if we cannot find
definitions even in the dataset papers, we refer to
training examples to come up with the descriptions.

NO removes the use of dout, which is counterin-
tuitive against the common practice. During the de-
velopment of DESC, we have observed that it is not
trivial to provide comprehensive descriptions, and
the actual examples themselves clearly tell us the
meaning of the output space (Simard et al., 1992;
Zhang et al., 2020). This motivates us to investigate
NO solely based on the input representations.

4 Experimental Settings

4.1 LLM and Retriever

We use Flan-PaLM2 (S) (Google et al., 2023) as
our main LLM, and follow the prompt design in
Gao et al. (2023a). As the baseline (multi-lingual)
retriever R0, we use the t5x-retrieval code base (Ni
et al., 2022) to fine-tune mT5 large (Xue et al.,
2021) with a general text retrieval objective in Izac-
ard et al. (2021) on the mC4 corpus (Xue et al.,
2021). The retriever has 565M model parameters.

4.2 Tasks

Seen tasks To fine-tune our retrievers, we col-
lect NLP tasks in diverse languages and domains
from publicly available resources like Flan-v1 (Wei
et al., 2021), MTEB (Muennighoff et al., 2023),
those used in Li et al. (2023), and others, resulting
in 81 tasks in total. The complete list of them is
summarized in Table 1. For each task, we manu-
ally write a long task instruction to construct the
prompt for the LLM, and a short task instruction
(i.e., Instruction(t)) for the retriever.
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No. Name Type Languages Source Scoring |Qt| |Ct|
01 WMT14 en→fr (Bojar et al., 2014) Machine translation en, fr Link GLEU 100,000 30,059,732
02 WMT14 fr→en (Bojar et al., 2014) Machine translation en, fr Link GLEU 100,000 30,059,732
03 WMT16 en→de (Bojar et al., 2016) Machine translation de, en Link GLEU 60,000 4,143,251
04 WMT16 de→en (Bojar et al., 2016) Machine translation de, en Link GLEU 60,000 4,143,251
05 WMT16 en→ru (Bojar et al., 2016) Machine translation en, ru Link GLEU 30,000 2,296,592
06 WMT16 ru→en (Bojar et al., 2016) Machine translation en, ru Link GLEU 30,000 2,296,592
07 ANLI r1 (Nie et al., 2020) Natural language inference en [+MT] Link Probability 8,473 8,473
08 ANLI r2 (Nie et al., 2020) Natural language inference en Link Probability 22,730 22,730
09 ANLI r3 (Nie et al., 2020) Natural language inference en Link Probability 30,000 70,459
10 QNLI (Rajpurkar et al., 2018) Natural language inference en Link Probability 30,000 74,543
11 MNLI (Williams et al., 2018) Natural language inference en Link Probability 30,000 100,000
12 WNLI (Levesque et al., 2012a) Natural language inference en Link Probability 317 318
13 MRPC (Dolan and Brockett, 2005) Paraphrase identification en Link Probability 200 3,268
14 PAWS (Zhang et al., 2019) Paraphrase identification en Link Probability 30,000 19,401
15 Tatoeba (Artetxe and Schwenk, 2019) Translation identification sqi, fry, kur, tur, ... Link Probability 30,000 177,554
16 IMDB (Maas et al., 2011) Sentiment classification en Link Probability 12,400 12,400
17 SST2 (Socher et al., 2013) Sentiment classification en Link Probability 30,000 37,149
18 Yelp (Fast.AI) Sentiment classification en Link Probability 30,000 100,000
19 Tweet Sentiment Extraction (Kaggle) Sentiment classification en [+MT] Link Probability 10,000 17,281
20 AfriSenti (Muhammad et al., 2023a) Sentiment classification amh, hau, ibo, ... Link Probability 30,000 33,685
21 TweetEval-emoji (Barbieri et al., 2018) Emoji classification en Link Probability 20,000 25,000
22 TweetEval-emotion (Mohammad et al., 2018) Emotion classification en Link Probability 1,600 1,657
23 DialogEmotion (Kumar et al., 2024) Multi-speaker emotion classification en, hi Link F1 700 799
24 Massive-intent (FitzGerald et al., 2022) Dialog intent classification af, am, ar, az, ... Link Probability 30,000 100,000
25 MTOP-domain (Li et al., 2021) Dialog domain classification de, en, es, fr, ... Link Probability 30,000 43,928
26 MTOP-intent (Li et al., 2021) Dialog intent classification de, en, es, fr, ... Link Probability 30,000 43,928
27 ATIS-intent (Price, 1990) Multi-label dialog intent classification en Link F1 2,000 2,189
28 E2ENLG-reversed (Dušek et al., 2019) Semantic parsing (text to dict) en Link F1 16,662 16663
29 WikiSQL (Zhong et al., 2017) Semantic parsing (text/table to SQL) en Link GLEU 20,000 36,355
30 BC5CDR (Li et al., 2016) Named entity recognition (biomedical) en Link F1 2,000 2,560
31 BioNLP13PC (Ohta et al., 2013) Named entity recognition (biomedical) en Link F1 1,000 1,499
32 JNLPBA (Huang et al., 2020) Named entity recognition (biomedical) en Link F1 9,000 9,346
33 MultiCoNER2 (Fetahu et al., 2023) Named entity recognition de, fa, fr, ... Link F1 30,000 140,824
34 CoNLL2003 (Tjong Kim Sang and De Meulder, 2003) Named entity recognition en Link F1 7,000 7,041
35 MTOP-slot (Li et al., 2021) Dialog slot labeling en, fr, hi Link F1 19,000 19,811
36 SNIPS-slot (Coucke et al., 2018) Dialog slot labeling en Link F1 6,000 7,084
37 ATIS-slot (Price, 1990) Dialog slot labeling en Link F1 2,000 2,478
38 SemRel (Hendrickx et al., 2010) Relation classification (nominals) en [+MT] Link Probability 3,800 4,000
39 DDI13 (Herrero-Zazo et al., 2013) Relation classification (drugs) en Link Probability 8,000 10,779
40 ChemProt (Islamaj Doğan et al., 2019) Relation classification (chemical and protein) en Link Probability 9,000 10,460
41 WordSeg (Bañón et al., 2020) Word segmentation en Link GLEU 30,000 100,000
42 FixPunct (Bañón et al., 2020) Punctuation fix en Link GLEU 30,000 100,000
43 CoLA (Warstadt et al., 2019) Linguistic acceptability judgment en Link Probability 4,175 4,176
44 CoNLL2000 (Tjong Kim Sang and Buchholz, 2000) Syntactic phrase chunking en Link F1 4,000 4,936
45 Pronoun (Rahman and Ng, 2012) Coreference resolution en Link Probability 561 561
46 WSC (Levesque et al., 2012b) Coreference resolution en Link Probability 252 252
47 WinoGrande (Sakaguchi et al., 2019) Sentence completion en Link Probability 20,099 20,099
48 WiC (Pilehvar and Camacho-Collados, 2019) Word sense disambiguation en Link Probability 2,614 2,614
49 Python (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
50 Java (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
51 Go (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
52 PHP (Lu et al., 2021) Code summarization en Link GLEU 30,000 100,000
53 Gigaword (Napoles et al., 2012) Text summarization en Link GLEU 30,000 100,000
54 SAMSum (Gliwa et al., 2019) Dialog summarization en Link GLEU 7,366 7,366
55 iDebate (Wang and Ling, 2016) Debate summarization en [+MT] Link GLEU 859 800
56 MultiHateCheck (Röttger et al., 2022) Hate speech detection/classification en, fr, hi, it, ... Link Probability 20,055 20,055
57 Toxic (Muennighoff et al., 2023) Toxic text detection en Link Probability 24,900 24,900
58 Countfact (O’Neill et al., 2021) Counterfactual review detection de, en, ja Link Probability 7,500 7,718
59 Irony (Van Hee et al., 2018) Irony detection en Link Probability 1,400 1,462
60 Offensive (Zampieri et al., 2019) Offensive text detection en Link Probability 5,000 6,916
61 Sarcasm (Abu Farha et al., 2022) Sarcasm detection ar, en Link Probability 2,500 3,414
62 SQuAD2 (Rajpurkar et al., 2018) Reading comprehension en Link GLEU 30,000 100,119
63 BoolQ (Clark et al., 2019) Reading comprehension en [+MT] Link Probability 4,613 4,614
64 DROP (Dua et al., 2019) Reading comprehension (numerical) en Link Probability 29,635 46,621
65 OpenbookQA (Mihaylov et al., 2018) Reading comprehension en Link Probability 2,478 2,478
66 Cosmos (Huang et al., 2019) Reading comprehension (common sense) en Link Probability 12,531 12,531
67 SciDocs (Cohan et al., 2020) Relevance, re-ranking en Link Probability 30,000 99,159
68 HotpotQA (Yang et al., 2018) Relevance, re-ranking en Link F1 30,000 60,447
69 AI2 ARC-easy (Clark et al., 2018) Closed-book question answering en Link Probability 1,025 1,026
70 AI2 ARC-challenge (Clark et al., 2018) Closed-book question answering en Link Probability 459 460
71 TriviaQA (Joshi et al., 2017) Closed-book question answering en Link Probability 30,000 108,184
72 Math (Saxton et al., 2019) Math question answering en Link Probability 30,000 100,000
73 CommonGen (Lin et al., 2020) Constrained text generation (common sense) en Link GLEU 30,000 37,189
74 SNLI-en (Bowman et al., 2015) Constrained text generation (entailment) en Link GLEU 10,112 33,106
75 PIQA-qgen (Bisk et al., 2019) Question/query generation en [+MT] Link GLEU 7,956 7,957
76 arXiv (Muennighoff et al., 2023) Multi-label topic/category classification en Link F1 30,000 69,113
77 medRxiv (Muennighoff et al., 2023) Topic/category classification en Link Probability 5,000 16,229
78 DBpedia (Lehmann et al., 2014) Topic/category classification en [+MT] Link Probability 5,000 5,000
79 Yahoo (Zhang et al., 2015) Topic/category classification en Link Probability 14,575 14,575
80 AG news (Zhang et al., 2015) Topic/category classification en Link Probability 30,000 89,800
81 TREC (Li and Roth, 2002) Topic/category classification en [+MT] Link Probability 2,626 2,626

Table 1: The list of the 81 tasks used as seen tasks. “[+MT]” in the Languages column means that the dataset is
used for the data augmentation described in Section 5.4.
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Name Type Notes
AfriSenti Zero Sentiment classification Two held-out African languages are targeted, while 12 other African
(Muhammad et al., 2023b) (positive, negative, neutral) languages are used in a seen sentiment classification task (AfriSenti).
GoEmotions Multi-label emotion This is a multi-label fine-grained task, while a 4-way (single-class)
(Demszky et al., 2020) classification (28 classes) classification task (TweetEval-emotion) is included in the seen tasks.
CLINC150 Dialog intent classification Similar tasks (ATIS/MTOP/Massive-intent) are included in the seen
(Larson et al., 2019) (150 classes) tasks, and this is another task with multi-domain fine-grained classes.
Orcas-I Search query intent This is different from those in the seen tasks; the search queries are
(Alexander et al., 2022) classification (5 classes) not always comprehensive and thus rely on retrieval augmentation.
MIT-R Dialog slot labeling Similar tasks (ATIS/MTOP/SNIPS-slot, E2ENLG-reversed) are used
(Dataset link) (8 slot types) in the seen tasks, and this is expected to be the easiest unseen task.
SSENT Polar expression extraction The task format is similar to that of MIT-R, but focuses on polar
(Barnes et al., 2022) (positive, negative) (positive and negative) expressions of hotel reviews in Spanish.
XML-MT Machine translation Machine translation tasks (WMT14/16) are included in the seen tasks,
(Hashimoto et al., 2019) (en→ja, en→fi) but this focuses on two other language pairs and XML-tagged texts.

Table 2: Tasks for the unseen task evaluation. “Notes” explain what aspects we focus on in the evaluation.

AfriSenti (46.30) DDI13 (18.18) ATIS-intent (35.49) MTOP-intent (48.46)
R0 49.24 51.39 52.78 54.98 19.92 23.59 25.52 28.8 70.31 87.16 91.74 95.48 84.22 88.55 90.55 92.55
RSTD +1.24 +2.75 +4.84 +7.29 +8.42 +11.13 +14.90 +14.87 +4.11 +2.79 +3.87 +2.27 +8.10 +5.67 +4.53 +3.11
RDESC +1.28 +3.12 +5.12 +8.03 +5.56 +10.39 +15.67 +15.11 +5.60 +2.41 +3.88 +2.65 +7.86 +5.46 +4.48 +2.92
RNO +1.43 +3.07 +4.97 +7.74 +7.46 +11.06 +12.89 +16.14 +6.61 +3.24 +3.87 +2.87 +8.32 +6.07 +4.97 +3.50

Countfact (26.48) Offensive (53.44) BC5CDR (2.70) PHP (3.00)
R0 41.44 48.80 55.28 63.37 61.15 65.14 63.98 63.76 37.44 55.14 60.45 63.28 13.61 14.44 13.82 11.00
RSTD +5.34 +9.47 +9.79 +6.90 +1.26 +2.21 +3.46 +1.99 +7.87 +4.21 +1.49 -1.08 +1.68 +1.39 +1.54 +0.55
RDESC +4.92 +9.48 +9.81 +4.79 +0.72 +1.80 +4.00 +1.32 +7.76 +4.01 +2.01 -0.83 +1.75 +1.54 +1.51 +1.38
RNO +4.01 +8.92 +10.27 +10.44 +0.73 +2.89 +4.44 +3.66 +7.26 +4.41 +2.55 +0.49 +1.42 +1.20 +1.09 +0.28

Table 3: Seen task results. The four numbers in the R0 rows correspond to the scores by 1,3,5,10-shot ICL with
the baseline retriever R0. The rest of the rows show the absolute improvements by using the fine-tuned retrievers
(RSTD,RDESC, andRNO) based on the three types of the demonstration representations. The score next to the task
name reports the LLM’s zero-shot performance to know its knowledge about the task without any demonstrations.

Unseen tasks To evaluate the generalization abil-
ity of the demonstration retrievers from diverse an-
gles, we use the tasks summarized in Table 2. The
“Notes” in the table explain what kinds of unseen
aspects we would like to test with the retrievers.
For each task, we use the whole training set to con-
struct the candidate set Ct; the AfriSenti Zero task
does not have any training examples, and we use
the AfriSenti task for the candidate set (i.e., a cross-
lingual ICL setting). We describe more details in
Appendix B.

5 Results

We evaluate the retrievers based on k-shot ICL with
k ∈ {1, 3, 5, 10}. Unless otherwise stated, we sim-
ply use the top-k retrieved demonstrations to con-
struct the prompts for the LLM. All the evaluation
scores are in the range of [0, 100], and Appendix C
describes the metric for each task.

5.1 Evaluation on Seen Tasks

We first confirm the effectiveness of the fine-tuned
retrievers on the seen tasks as in the previous stud-

ies (Li et al., 2023; Wang et al., 2023). We use a sen-
timent classification task in 12 African languages
(AfriSenti), a relation extraction task in the biomed-
ical domain (DDI13), two (single/multi-label) dia-
log intent classification tasks (ATIS/MTOP-intent),
two binary (counterfactual/offensive) detection
tasks (Countfact, Offensive), a named entity recog-
nition task in the biomedical domain (BC5CDR),
and a code summarization task (PHP).

Table 3 shows the results. It is consistent with the
previous work that the fine-tuned retrievers perform
significantly better than the baseline retriever. We
hypothesized that the three types of the fine-tuned
retrievers perform similarly on the seen tasks, and
it is true in most of the cases. Overall, we did not
observe the potential advantage of RDESC in the
results.

However, we sometimes see nontrivial gains by
RNO, for example, in the COUNTFACT result.
This is presumably because using the output labels
is severely affected by overfitting. It is also inter-
esting to see that RNO works well even on tasks
with more complex output space like BC5CDR.
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AfriSenti Zero (39.43) GoEmotions (27.92) CLINC150 (70.58) Orcas-I (42.00)
R0 40.50 41.48 41.92 42.97 27.19 29.05 30.66 32.36 91.36 93.53 94.24 95.87 46.30 48.70 51.00 54.30
RSTD -0.51 -0.54 -0.03 -1.37 +0.52 +0.34 -0.48 -1.31 -1.34 -1.60 -1.62 -1.96 -0.90 -1.20 -3.50 -6.00
RDESC -1.00 -0.27 -0.32 -1.81 +0.53 +0.53 -0.04 +0.74 -0.69 -1.31 -1.08 -2.11 +1.40 +0.90 +0.50 -0.30
RNO -0.41 -1.32 -1.25 -0.44 +0.34 +0.61 -0.05 -0.09 +2.35 +2.14 +1.78 +0.40 +0.70 +0.50 -1.00 -0.80

MIT-R (1.09) SSENT (7.38) XML-MT enja (37.71) XML-MT enfi (23.56)
R0 40.14 49.34 54.54 60.46 24.66 27.52 30.33 27.32 52.10 55.54 56.19 56.08 36.43 39.00 39.86 40.00
RSTD +6.44 +6.10 +4.68 +1.83 +3.21 +3.02 -0.21 -2.10 +0.36 +0.93 +0.31 +0.55 -0.23 +0.26 +0.08 -0.43
RDESC +5.63 +5.18 +3.98 +1.78 +3.95 +4.03 +1.38 +1.38 +0.52 +0.57 +1.08 +0.28 -0.06 -0.03 +0.56 -0.22
RNO +5.19 +5.88 +3.99 +2.26 +0.66 +1.35 -1.16 +0.44 +0.85 +0.06 +0.92 +0.02 +0.84 +0.72 +0.60 -2.32

Table 4: Unseen task results with Flan-PaLM 2. The structure of this table is analogous to that of Table 3.

AfriSenti Zero (44.48) GoEmotions (28.26) CLINC150 (92.62) Orcas-I (49.10)
R0 55.83 55.81 54.42 54.03 31.61 33.50 35.57 37.97 96.22 97.22 97.51 97.73 59.00 60.90 61.90 65.4
RNO -0.75 -2.61 -3.00 -3.37 -0.33 +0.34 -0.12 +0.10 +0.54 +0.85 +0.56 +0.56 -0.90 +0.50 +0.80 -0.30

MIT-R (8.60) SSENT (22.40) XML-MT enja (27.94) XML-MT enfi (24.16)
R0 64.93 68.45 72.85 75.25 44.96 50.34 52.22 53.91 58.45 62.51 63.10 63.94 42.90 45.47 45.90 47.34
RNO +3.48 +2.98 +2.23 +1.65 +0.93 +1.49 +1.05 +3.68 +1.37 +0.58 +1.01 +0.97 +0.57 -0.07 -0.40 +0.23

Table 5: Unseen task results with Gemini 1.5 Pro. The structure of this table is analogous to that of Table 3.

5.2 Evaluation on Unseen Tasks

We then evaluate the retrievers on the unseen tasks.
Table 4 shows the results, and below we summarize
the key points.

• All the fine-tuned retrievers perform worse
than R0 on AfriSenti Zero. We hypothesize
that “catastrophic forgetting” is caused by the
fact that the two zero-shot languages (Oromo
and Tigrinya) are never observed in the re-
triever fine-tuning process.

• It is surprising to see that RSTD performs sig-
nificantly worse than R0 on fine-grained clas-
sification tasks whose labels are not easy to
interpret. Especially, it fails on CLINC150,
even when we have successful results on the
intent classification tasks in Table 3. In con-
trast, RNO provides more robust results.

• It matches our expectation that all the fine-
tuned retrievers perform well on MIT-R as
explained in Table 2.

• Overall, the effects of using RDESC are not
conclusive. We see the potential benefit on
Orcas-I (whose label descriptions are helpful
even for humans) and SSENT, while it does
not help on CLINC150. It is possible that
the provided label descriptions are not good
enough, but this nontrivial process itself indi-
cates that RDESC would not be the best way.

Natural Instructions (25.28)
R0 26.59 27.08 26.95 27.04
RNO +0.26 +0.49 +0.81 +0.37

Table 6: Natural Instructions results.

• Based on the SSENT results, using the task
output would be effective for some tasks. An
interesting future work is to consider how to
strike a balance between RSTD and RNO.

More unseen tasks We further perform evalua-
tion on 20 unseen text generation tasks from Su-
per Natural Instructions (Wang et al., 2022) to test
the robustness of the demonstration retriever. The
tasks include machine translation, text summariza-
tion, question answering, paraphrase generation,
etc, and the datasets are not used in fine-tuning
our retrievers. Table 6 shows the average scores
across all the tasks, and we can see some gains by
using RNO. The size of the training set for a task is
limited to around 6,000 examples in Super Natural
Instructions, and thus this might not be the best
setup for ICL; still, our retriever shows the robust
results.

Transfer ability Following the previous
work (Li et al., 2023; Wang et al., 2023), we test
how RNO works with another LLM, Gemini 1.5
Pro (Reid et al., 2024). It should be noted that
we have never touched the new LLM until we
perform the final test evaluation. Table 5 shows the
results, and we can see consistent trends. Gemini
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ATIS-intent COUNTFACT
R0 87.16 91.74 95.48 48.80 55.28 63.37
RNO +3.24 +3.87 +2.87 +8.92 +10.27 +10.44
+cov. +4.85 +4.34 +2.14 +11.13 +12.65 +11.57

AfriSenti Zero SSENT
R0 41.48 41.92 42.97 27.52 30.33 27.32
RNO -1.32 -1.25 -0.44 +1.35 -1.16 +0.44
+cov. -1.12 -0.05 -0.20 +3.07 +1.19 +1.54

Table 7: Coverage-based selection results. k = 1 is not
affected by this method, and we only show the scores
with k = 3, 5, 10.

1.5 pro achieves much better baseline scores than
those of Flan-PaLM 2 (S), but still RNO helps. It
is encouraging that our fine-tuned retriever works
well even for this much stronger LLM.

5.3 Compatibility with Existing Methods
We discuss the potential of using RNO as a basic
building block in diverse scenarios for future work.
In other words, we do not intend to claim that our
retriever should be always used alone, and instead
we believe that our retriever can be used along with
existing methods.

For example, we consider the coverage-based
demonstration selection method in Gupta et al.
(2023), and we apply their “cosine” method to the
top-retrieved candidates by RNO. Table 7 shows
the results, and the method works well with our
retriever.

Other possible future directions are using our
retriever for sequential selection models (Scarlatos
and Lan, 2024; Liu et al., 2024), continual learn-
ing with more tasks and languages, and explicit
adaptation to other LLMs.

5.4 Improved Language Coverage by
Machine Translation

We have observed that the fine-tuning process de-
grades the generalization ability of the retriever on
unseen languages. Our seen task set covers various
languages as shown in Table 1, but still, English is
dominant. How can we make our retriever more
robust from this viewpoint? One solution is to add
more and more tasks in many languages, but it is
not a trivial effort.

To this end, we consider using machine transla-
tion for data augmentation as in the common prac-
tice (Balahur and Turchi, 2014; Lee et al., 2018).
We describe our process below:

1. Select 8 tasks (∼10% of the whole) from the
seen task list in Table 1: ANLI r1, Tweet Sen-

AfriSenti Zero (39.43)
R0 40.50 41.48 41.92 42.97
RNO -0.41 -1.32 -1.25 -0.44
RNO+MT +0.15 +0.39 +0.49 +1.29

ATIS-intent hi,tr (29.67)
R0 62.18 79.09 84.39 89.26
RNO +3.11 +2.44 +2.57 +1.27
RNO+MT +5.72 +3.82 +3.02 +2.47

Table 8: Cross-lingual ICL results with Flan-PaLM 2.

timent Extraction, SemRel, iDebate, BoolQ,
PIQA-qgen, DBpedia, and TREC; all the se-
lected tasks are originally in English.

2. Use Google Translate3 to translate the exam-
ples in the query set Qt and the candidate set
Ct for the selected task; for each example in
Qt, we randomly sample a target languages
(b (> a) for Ct), and consequently we have
multi-lingual query and candidate sets.4

3. Add the multilingual version of the 8 tasks
to the seen task list; note that the new tasks
are separated from the original English ones,
and the utility estimation for the retriever fine-
tuning is done solely within the synthetic data.

By this, the demonstration retriever is exposed to
more than 130 languages during the fine-tuning.

We revisit the evaluation on AfriSenti Zero; this
is considered to be a cross-lingual ICL evaluation,
in that the languages in the query set and the candi-
date set are different. We add another cross-lingual
ICL evaluation with the Hindi and Turkish variants
of the ATIS-intent task, where we use the original
English ATIS-intent for the candidate set.

Table 8 shows the results, and we can see that
RNO with the data augmentation (RNO+MT) per-
forms the best. Hindi and Turkish are included in
seen tasks (e.g., Massive-intent), but still the data
augmentation helps. Note that using the synthetic
data does not degrade the retriever’s performance
on other tasks.

In our checkpoint release, we will also provide a
model that is based on even more languages for the
data augmentation. The model covers more than
230 languages.5

3As of early June 2024, 132 non-English lan-
guages are supported at https://cloud.google.com/
translate/docs/languages.

4In Appendix A.3, we describe details of this process
5https://support.google.com/translate/

answer/15139004
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6 Conclusion

We have presented our multi-lingual and multi-
task demonstration retriever for in-context learn-
ing with LLMs. We showed the counterintuitive
finding to improve the generalization ability of
the demonstration representations, and improved
multi/cross-lingual performance of the retriever by
the translation-based data augmentation. We be-
lieve that our released models will be useful for
future work.

Limitations

Task coverage We did our best to collect as di-
verse tasks as possible. However, we would be
able to find new tasks where our retriever does not
work well. Our future effort will be to improve the
task coverage or seek the use of instruction-tuned
LLMs themselves (Gemini, GPT, Llama, etc.) as a
retriever to leverage their generalization ability.

Short task instruction We assume the use of the
short task instruction for our retriever. To handle
new tasks that are quite different from those in our
task set, we may need to come up with new short
task instructions. In such a case, we suggest that the
users refer to the complete list (in Appendix A.2)
of all the instructions we used, to design the new
instructions.

Translation error in data augmentation No
machine translation systems (including Google
Translate we used in our experiments) are perfect,
and thus we expect that translation errors exist in
our synthetic multi-lingual tasks. To avoid the po-
tential negative effects by the translation errors, we
did not use the synthetic data for validation and
evaluation to test our retriever’s quality.
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Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, and Lucia Specia, editors. 2014. Proceedings

331

https://doi.org/10.18653/v1/2022.semeval-1.111
https://doi.org/10.18653/v1/2022.semeval-1.111
https://doi.org/10.18653/v1/2022.semeval-1.111
https://doi.org/10.1145/3477495.3531737
https://doi.org/10.1145/3477495.3531737
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/2023.findings-acl.225
https://doi.org/10.18653/v1/2023.findings-acl.225
https://doi.org/10.1016/j.csl.2013.03.004
https://doi.org/10.1016/j.csl.2013.03.004
https://doi.org/10.1016/j.csl.2013.03.004
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
http://arxiv.org/abs/1911.11641
http://arxiv.org/abs/1911.11641
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.18653/v1/W16-2200
https://doi.org/10.3115/v1/W14-33


of the Ninth Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
Baltimore, Maryland, USA.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the Surprising
Difficulty of Natural Yes/No Questions. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2924–2936, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have Solved Question An-
swering? Try ARC, the AI2 Reasoning Challenge.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug
Downey, and Daniel S. Weld. 2020. SPECTER:
Document-level Representation Learning using
Citation-informed Transformers.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Dorottya Demszky, Dana Movshovitz-Attias, Jeong-
woo Ko, Alan Cowen, Gaurav Nemade, and Sujith
Ravi. 2020. GoEmotions: A dataset of fine-grained
emotions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4040–4054, Online. Association for Computa-
tional Linguistics.

William B. Dolan and Chris Brockett. 2005. Auto-
matically Constructing a Corpus of Sentential Para-
phrases. In Proceedings of the Third International
Workshop on Paraphrasing (IWP2005).

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A Reading Comprehension Benchmark Re-
quiring Discrete Reasoning Over Paragraphs. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2368–2378, Minneapolis, Minnesota. Association
for Computational Linguistics.
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Appendix

A Seen Tasks

A.1 Task List
Table 1 summarizes the 81 tasks we used to
fine-tune the demonstration retriever. We started
with datasets from Flan-v1 (Wei et al., 2021),
MTEB (Muennighoff et al., 2023), and those in
Li et al. (2023). We then further collected more
datasets whose task formats are not well covered by
our initial collection. In the following, we explain
how to read the table.

Name We give a task name for each of them,
while the names would not exactly match with
those used in previous work.

Type We briefly describe the goal of every task
by commonly-used terminologies.

Languages We collect datasets that use not only
English, but also other languages to make our
demonstration retriever work in as many languages
as possible. Note that our retriever is based on
mT5 (Xue et al., 2021) for the same purpose.

Source We provide the URL where we get the
dataset for each task. The “Link” works only on
PDF readers.

Scoring In the “Scoring candidates” paragraph
in Section 2, we use the LLM to score a demon-
stration’s usefulness for an input. We follow
Hashimoto et al. (2024) to use different scoring
functions, depending on the task types. We use the
following three functions in this work:

• Probability– for tasks like single-class clas-
sification and multiple-choice selection, we
use the probability value for generating the
ground-truth output by the LLM: p(y|x, t, d).

• F1– for tasks like text segmentation and multi-
label classification, we use an F1 score by
comparing the LLM’s prediction (i.e., 1-shot
prediction with d) against the ground-truth
output, so that we can reward partially correct
predictions.

• GLEU– for other text generation tasks, we use
the GLEU score (Wu et al., 2016).

A.2 Task Information
We briefly describe the information about each
of the seen tasks, to mainly present our full (F)
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and short (S) task instructions used in our experi-
ments. For all the data in any languages, we use
the English-based instructions.

No. 01–06 For the standard machine translation
tasks, we use the following task instructions:

F: The goal of this task is to translate from [lan-
guage 1] to [language 2].

S: Translation: [language 1] to [language 2].

No. 07–09 For the ANLI tasks, we use the fol-
lowing task instructions:

F: The goal of this task is to judge if the hypoth-
esis can be concluded, given the context. The
output is "Yes", "No", or "It’s impossible to
say".

S: Natural language inference: context to hypoth-
esis.

No. 10 For the QNLI task, we use the following
task instructions:

F: The goal of this task is to identify if the sen-
tence correctly answers the question. The out-
put is yes or no.

S: Natural language inference: sentence to ques-
tion.

No. 11 For the MNLI task, we use the following
task instructions:

F: The goal of this task is to identify if the
premise entails the hypothesis. The output
is entailment, contradiction, or neutral.

S: Natural language inference: premise to hy-
pothesis.

No. 12 For the WNLI task, we use the following
task instructions:

F: The goal of this task is to identify if text2 is
true or false, given text1.

S: Natural language inference: text1 to text2.

No. 13–14 For the paraphrase identification
tasks, we use the following task instructions:

F: The goal of this task is to identify if sentence1
and sentence2 have the same meaning. The
output is yes or no.

S: Paraphrase identification: sentence1 and sen-
tence2.

No. 15 For the Tatoeba task, we use the following
task instructions:

F: The goal of this task is to identify if sentence1
is a translation of sentence2. The output is
Yes or No.

S: Translation identification: sentence1 and sen-
tence2.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for Tatoeba
evaluation in any ways.

No. 16–18 For the binary sentiment classification
tasks, we use the following task instructions:

F: The goal of this task is to identify the senti-
ment given the text. The output is positive or
negative.

S: Sentiment classification.

No. 19–20 For the three-way sentiment classifi-
cation tasks, we use the following task instructions:

F: The goal of this task is to identify the senti-
ment label of the tweet. The output is positive,
negative, or neutral.

S: Sentiment classification.

No. 21 For the TweetEval-emoji task, we use the
following task instructions:

F: The goal of this task is to identify the emoji
relevant to the tweet. The 20 possible emojis
are ...

S: Emoji generation.

No. 22 For the TweetEval-emotion task, we use
the following task instructions:

F: The goal of this task is to identify the emotion
of the tweet. The 4 possible emotions are
anger, joy, optimism, or sadness.

S: Emotion classification.

No. 23 For the DialogEmotion task, we use the
following task instructions:

F: The goal of this task is to list all the
speaker names who experience the spe-
cific emotion in the conversation. The
output will be a #-separated list like
"speaker_1#speaker_4#speaker_5".

S: Emotion detection: speakers.
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No. 24 For the Massive-intent task, we use the
following task instructions:

F: The goal of this task is to identify the intent la-
bel of the user’s input. The list of the 60 labels
is: alarm_query, alarm_remove, alarm_set, au-
dio_volume_down, audio_volume_mute, ...

S: User input intent classification.

No. 25 For the MTOP-domain task, we use the
following task instructions:

F: The goal of this task is to identify the domain
of the user’s input. There are 11 possible do-
mains: alarm, calling, event, messaging, mu-
sic, news, people, recipes, reminder, timer,
weather.

S: User input domain classification.

No. 26 For the MTOP-intent task, we use the
following task instructions:

F: The goal of this task is to identify the
intent of the user’s input. There are
113 possible intents: ADD_TIME_TIMER,
ADD_TO_PLAYLIST_MUSIC, ...

S: User input domain classification.

No. 27 For the ATIS-intent task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify user’s
intents from abbreviation, aircraft, airfare,
... If multiple intents are identified, the
output will be a #-separated string: in-
tent_1#intent_2#intent_3.

S: Multi-label intent classification.

No. 28 For the E2ENLG-reversed task, we use
the following task instructions:

F: The goal of this task is to extract attributes
given a text about restaurant. The list of the 8
possible attributes are area, customerRating,
eatType, familyFriendly, food, name, near, or
priceRange. The output is a Python dictionary
like {"attribute_1": "value_1", "attribute_2":
"value_2", "attribute_3": "value_3"}

S: Attribute extraction.

No. 29 For the WikiSQL task, we use the follow-
ing task instructions:

F: The goal of this task is to convert the natural
language question into an SQL query, based
on the table.

S: Text/table to SQL generation.

No. 30 For the BC5CDR task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given
text by tagging entities with XML tags.
There are 2 entity types: Chemical, Dis-
ease. Then the output is like "word1 <Chem-
ical>word2 word3</Chemical> word4 <Dis-
ease>word5</Disease>".

S: Named entity extraction: biomedical.

No. 31 For the BioNLP13PC task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There are
4 entity types: Cellular_component, Complex,
Gene_or_gene_product, Simple_chemical.
Then the output is like "word1 <Com-
plex>word2 word3</Complex> word4 <Sim-
ple_chemical>word5</Simple_chemical>".

S: Named entity extraction: biomedical.

No. 32 For the JNLPBA task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 5 entity types: DNA, RNA, cell_line,
cell_type, protein. Then the output is like
"word1 <DNA>word2 word3</DNA> word4
<protein>word5</protein>".

S: Named entity extraction: biomedical.

No. 33 For the MultiCoNER2 task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 33 entity types: AerospaceManufacturer,
AnatomicalStructure, ... Then the output is
like "word1 <Artist>word2 word3</Artist>
word4 <Drink>word5</Drink>".

S: Named entity extraction: Wikipedia.
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No. 34 For the CoNLL2003 task, we use the
following task instructions:

F: The goal of this task is to copy the given text
by tagging entities with XML tags. There
are 4 entity types: Location, Miscellaneous,
Organization, Person. Then the output is like
"word1 <Location>word2 word3</Location>
word4 <Person>word5</Person>".

S: Named entity extraction: news.

No. 35 For the MTOP-slot task, we use the fol-
lowing task instructions:

F: The goal of this task is to copy the
given text by tagging attributes with XML
tags. There are 74 attribute types: AGE,
ALARM_NAME, ... Then the output is like
"word1 <AGE>word2 word3</AGE> word4
<CONTACT>word5</CONTACT>".

S: Attribute extraction.

No. 36 For the SNIPS-slot task, we use the fol-
lowing task instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 39 attribute types: album, artist,
best_rating, ... Then the output is like
"word1 <city>word2 word3</city> word4
<country>word5</country>".

S: Attribute extraction.

No. 37 For the ATIS-slot task, we use the follow-
ing task instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 79 attribute types: aircraft_code, air-
line_code, ... Then the output is like "word1
<airport_code>word2 word3</airport_code>
word4 word5".

S: Attribute extraction.

No. 38 For the SemRel task, we use the follow-
ing task instructions:

F: The goal of this task is to identify relation be-
tween the two entities marked by <e1></e1>
and <e2></e2>. The possible relations are
"e1:Cause e2:Effect", "e1:Effect e2:Cause", ...
If the relation type is not one of the above, the
output will be "Other".

S: Relation classification: e1 and e2.

No. 39 For the DDI2013 task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the relation
type of two drugs mentioned as @DRUG$ in
the text. There are 4 relation types: advise,
effect, int, mechanism. If there is no relation
between the drugs, the answer is false.

S: Relation extraction: @DRUG$ and
@DRUG$.

No. 40 For the ChemProt task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify the rela-
tion of @CHEMICAL$ and @GENE$ (or just
@CHEM-GENE$) in the text. The answer is
true or false.

S: Relation extraction: @CHEMICAL$ and
@GENE$ (or @CHEM-GENE$).

No. 41 For the WordSeg task, we use the follow-
ing task instructions:

F: The goal of this task is to segment the words
in the given characters. The output is like
"word_1 word_2 word_3".

S: Word segmentation.

No. 42 For the FixPunct task, we use the follow-
ing task instructions:

F: The goal of this task is to generate the input
text with punctuation.

S: Text punctuation.

No. 43 For the CoLA task, we use the following
task instructions:

F: The goal of this task is to identify if the input
text is linguistically acceptable or not. The
output is acceptable or unacceptable.

S: Linguistic acceptableness.

No. 44 For the CoNLL2000 task, we use the
following task instructions:

F: The goal of this task is to copy the given
text by tagging syntactic phrases with XML
tags. There are 11 phrase types: ADJP,
ADVP, CONJP, INTJ, LST, NP, PP, PRT,
SBAR, UCP, VP. Then the output is like
"word1 <VP>word2 word3</VP> word4
<NP>word5</NP>".

S: Syntactic phrase chunking.
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No. 45 For the Pronoun task, we use the follow-
ing task instructions:

F: The goal of this task is to identify what the
pronoun corresponds to, given the sentence.
The output is a phrase/entity in the sentence.

S: Coreference resolution: pronoun.

No. 46 For the WSC task, we use the following
task instructions:

F: The goal of this task is to identify if text1 and
text2 are the same in the given context. The
output is yes or no.

S: Text sense equivalence: text1 and text2 in
context.

No. 47 For the WinoGrande task, we use the
following task instructions:

F: The goal of this task is to select one of the
given options to complete the context.

S: Text completion.

No. 48 For the WiC task, we use the following
task instructions:

F: The goal of this task is to identify if the speci-
fied word has the same meaning in sentence1
and sentence2. The output is yes or no.

S: Word sense equivalence: word in sentence1
and sentence2.

No. 49–52 For the code summarization tasks, we
use the following task instructions:

F: The goal of this task is to write comment about
the [language] code.

S: Code summarization: [language].

No. 53 For the Gigaword task, we use the follow-
ing task instructions:

F: The goal of this task is to extract a text seg-
ment that summarizes the input text.

S: Text summarization.

No. 54 For the SAMSum task, we use the follow-
ing task instructions:

F: The goal of this task is to summarize the dia-
logue.

S: Dialogue summarization.

No. 55 For the iDebate task, we use the following
task instructions:

F: The goal of this task is to generate a claim
about the debate topic and the arguments.

S: Claim generation.

No. 56 For the MultiHateCheck task, we use the
following task instructions:

F: The goal of this task is to identify if the in-
put text is hateful or non-hateful, and its ac-
tivity type. The list of "hateful" types are
derog_dehum, derog_impl, ... The list of "non-
hateful" types are counter_quote, counter_ref,
... The output is "hateful:type" or "non-
hateful:type".

S: Hate speech detection.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for Multi-
HateCheck evaluation in any ways.

No. 57 For the Toxic task, we use the following
task instructions:

F: The goal of this task is to identify if the input
text is "toxic" or "not toxic".

S: Toxic conversation detection.

No. 58 For the Countfact task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the input
text is counterfactual or not-counterfactual.

S: Counterfactual review detection.

No. 59 For the Irony task, we use the following
task instructions:

F: The goal of this task is to identify if the input
tweet is irony or not. The output is Irony or
Non-irony.

S: Irony tweet detection.

No. 60 For the Offensive task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the in-
put tweet is offensive or not. The output is
Offensive or Non-offensive.

S: Offensive tweet detection.
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No. 61 For the Sarcasm task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if an input
text is sarcastic or non-sarcastic.

S: Sarcastic text detection.

No. 62 For the SQuAD2 task, we use the follow-
ing task instructions:

F: The goal of this task is to extract an answer
phrase from the context to answer the question.
If the question cannot be answered, then the
output is "unanswerable".

S: Question answering.

No. 63 For the BoolQ task, we use the following
task instructions:

F: The goal of this task is to answer the question,
given the title and text.

S: Question answering.

No. 64 For the DROP task, we use the following
task instructions:

F: The goal of this task is to answer the question,
given the context.

S: Question answering.

No. 65 For the OpenbookQA task, we use the
following task instructions:

F: The goal of this task is to answer the question
based on the fact. The output is one of the
given options.

S: Multiple-choice question answering.

No. 66 For the Cosmos task, we use the follow-
ing task instructions:

F: The goal of this task is to answer the question,
given the context. The output is one of the
given options.

S: Multiple-choice question answering.

No. 67 For the SciDocs task, we use the follow-
ing task instructions:

F: The goal of this task is to identify if the can-
didate title is topically "Relevant" or "Not rel-
evant" to the query title of a scientific docu-
ment.

S: Relevance: candidate title to query title.

We note that we used the test set of this task, and
therefore our retrievers cannot be used for SciDocs
evaluation in any ways.

No. 68 For the HotpotQA task, we use the fol-
lowing task instructions:

F: The goal of this task is to identify documents
that are relevant to answering the question
(QUESTION). The output is a #-separated list
of the document IDs like "DOC_2#DOC_4".

S: Relevance: document IDs to question.

No. 69–70 For the AI2 ARC tasks, we use the
following task instructions:

F: The goal of this task is to answer the question.
The output is one of the given options.

S: Multiple-choice question answering.

No. 71 For the TriviaQA task, we use the follow-
ing task instructions:

F: The goal of this task is to answer the question.

S: Question answering.

No. 72 For the Math task, we use the following
task instructions:

F: The goal of this task is to solve the math prob-
lem.

S: Math problem solution.

No. 73 For the CommonGen task, we use the
following task instructions:

F: The goal of this task is to generate a short text
by using all the words in the input text.

S: Text generation: using all words.

No. 74 For the SNLI-en task, we use the follow-
ing task instructions:

F: The goal of this task is to generate a text that
can be entailed by the input text.

S: Text generation: entailment.

No. 75 For the PIQA-qgen task, we use the fol-
lowing task instructions:

F: The goal of this task is to generate a query
that leads to the input text.

S: Query generation.
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No. 76 For the arXiv task, we use the following
task instructions:

F: The goal of this task is to identify all the cate-
gories about the arXiv article. There are 147
categories: astro-ph, astro-ph.CO, ... The out-
put is a list of the categories separated by #
like "category_1#category_2#category_3".

S: Multi-label category classification.

This task is based on a very large dataset, and we
used a part of it (train_0.jsonl.gz).

No. 77 For the medRxiv task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the cate-
gory of the medRxiv article. There are 51
categories: addiction medicine, allergy and
immunology, ...

S: Category classification.

No. 78 For the DBpedia task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the topic
of the input text. The output is one of the
14 topics: Company, Educational Institution,
Artist, Athlete, ...

S: Topic classification.

No. 79 For the Yahoo task, we use the following
task instructions:

F: The goal of this task is to identify the topic
about the community QA. The output is one
of the 10 topics: Society & Culture, Science
& Mathematics, Health, ...

S: Topic classification.

No. 80 For the AG news task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the topic of
the titled text. The output is one of the 4 topics:
World, Sports, Business, Science/Tech.

S: News topic classification.

No. 81 For the TREC task, we use the following
task instructions:

F: The goal of this task is to identify what type
of thing the question is asking about. The
output is one of the 6 types: description, entity,
abbreviation, human, numeric, location.

S: Question topic classification.

A.3 Multi-lingual Data Augmentation
We describe details about the data augmentation
presented in Section 5.4.

ANLI r1 The original input and output of this
task are formatted as follows:

x = context: "context" hypothesis: "hypothesis"

y = Yes

We apply the translation to context and hypothesis,
and keep the others in English. We set (a, b) =
(10, 20) for the target language sampling.

Tweet Sentiment Extraction The original input
and output of this task are formatted as follows:

x = text

y = neutral

We apply the translation to text, and keep the others
in English. We set (a, b) = (4, 8) for the target
language sampling.

SemRel The original input and output of this task
are formatted as follows:

x = ... <e1>...</e1> ... <e2>...</e2> ...

y = e1:Effect e2:Cause

We apply the translation to ... <e1>...</e1> ...
<e2>...</e2> ..., and keep the others in English.
We filter out translated examples that result in not
having the entity markers of e1 and e2. We set
(a, b) = (10, 20) for the target language sampling.

iDebate The original input and output of this task
are formatted as follows:

x = debate topic: "debate topic" arguments: "ar-
guments"

y = claim

We apply the translation to debate topic, arguments,
and claim, and keep the others in English. We set
(a, b) = (20, 80) for the target language sampling.

BoolQ The original input and output of this task
are formatted as follows:

x = title: "title" text: "text" question: "question"

y = answer

We apply the translation to title, text, question, and
answer, and keep the others in English. We set
(a, b) = (10, 20) for the target language sampling.
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PIQA-qgen The original input and output of this
task are formatted as follows:

x = text

y = query

We apply the translation to text and query, and keep
the others in English. We set (a, b) = (10, 20) for
the target language sampling.

DBpedia The original input and output of this
task are formatted as follows:

x = text

y = Educational Institution

We apply the translation to text, and keep the others
in English. We set (a, b) = (10, 20) for the target
language sampling.

TREC The original input and output of this task
are formatted as follows:

x = text

y = human

We apply the translation to text, and keep the others
in English. We set (a, b) = (20, 40) for the target
language sampling.

B Unseen Tasks

Table 2 summarized the unseen tasks we used in
our experiments, and in this section we provide
further details of the tasks.

AfriSenti Zero For this task, we use the follow-
ing task instructions:

F: The goal of this task is to identify the senti-
ment label of the tweet. The output is positive,
negative, or neutral.

S: Sentiment classification.

These are identical to those of the AfriSenti task.

GoEmotions For this task, we use the following
task instructions:

F: The goal of this task is to identify emotions in
the text from admiration, amusement, anger,
... If multiple emotions are identified, the
output will be a #-separated string: emo-
tion_1#emotion_2#emotion_3.

S: Multi-label emotion classification.

CLINC150 For this task, we use the following
task instructions:

F: The goal of this task is to identify an in-
tent given a user input. There are 150 in-
tents: "current_location" "oil_change_when"
"oil_change_how" ... Then the output is an
intent label.

S: User input intent classification.

Unlike the previous work (Zhang et al., 2020;
Hashimoto et al., 2024), we excluded all the out-of-
scope examples from this task, and soley focus on
the intent classification aspect.

Orcas-I For this task, we use the following task
instructions:

F: The goal of this task is to identify the intent
of the query with the search results (titles and
URLs). The output is one of the 5 labels:
Abstain, Factual, Transactional, Navigational,
Instrumental.

S: Query intent classification.

MIT-R For this task, we use the following task
instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 8 attribute types: Amenity, Cuisine,
Dish, Hours, Location, Price, Rating, Restau-
rant_Name. Then the output is like "word1
<Rating>word2 word3</Rating> word4 <Lo-
cation>word5</Location>".

S: Attribute extraction.

SSENT For this task, we use the following task
instructions:

F: The goal of this task is to copy the given
text by tagging attributes with XML tags.
There are 2 attribute types: Positive and Neg-
ative. Then the output is like "word1 <Nega-
tive>word2 word3</Negative> word4 <Posi-
tive>word5</Positive>".

S: Attribute extraction.

XML-MT For this task, we use the following
task instructions:
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F: The goal of this task is to translate an XML-
tagged text from English to [target language]
by preserving the XML structure. Both the in-
put and output are like "word1 <tag-A>word2
word3</tag-A> word4 <tag-B>word5</tag-
B>".

S: Translation: English to [target language].

C Evaluation Metrics

This section describes the evaluation metric used
for each task in our evaluation. All the scores are
in the range of [0, 100].

C.1 Seen Tasks
AfriSenti We use the label matching accuracy
for this task.

DDI13 We use an F1 score based on precision
and recall of the non-false classes.

ATIS-intent We use a corpus-level F1 score for
the multi-label classification task.

MTOP-intent We use the label matching accu-
racy for this task.

Countfact We use a corpus-level F1 score based
on precision and recall of the “counterfactual”
class.

Offensive We use a corpus-level F1 score based
on precision and recall of the “Offensive” class.

BC5CDR We use a corpus-level F1 score based
on precision and recall of the labeled entities.

PHP We use a corpus-level BLEU (Papineni
et al., 2002) score for this text generation task.

C.2 Unseen Tasks
AfriSenti Zero We use the label matching accu-
racy for this task.

GoEmotions We use a corpus-level F1 score for
the multi-label classification task.

CLINC150 We use the label matching accuracy
for this task.

Orcas-I We use the label matching accuracy for
this task.

MIT-R We use a corpus-level F1 score based on
precision and recall of the labeled attributes.

SSENT We use a corpus-level F1 score based on
precision and recall of the labeled attributes.

XML-MT We use the structured BLEU met-
ric (Hashimoto et al., 2019).
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Abstract

We present our systems for the three tasks
and five languages included in the MRL 2024
Shared Task on Multilingual Multi-task Infor-
mation Retrieval: (1) Named Entity Recogni-
tion, (2) Free-form Question Answering, and
(3) Multiple-choice Question Answering. For
each task, we explored the impact of selecting
different multilingual language models for fine-
tuning across various target languages, and im-
plemented an ensemble system that generates
final outputs based on predictions from multi-
ple fine-tuned models. All models are large lan-
guage models fine-tuned on task-specific data.
Our experimental results show that a more bal-
anced dataset would yield better results. How-
ever, when training data for certain languages
are scarce, fine-tuning on a large amount of
English data supplemented by a small amount
of “triggering data” in the target language can
produce decent results.1

1 Introduction

In this paper, we present our submission for the
MRL 2024 shared task2. The shared task in-
cludes the following three tasks: Named Entity
Recognition (NER), Free-form Question Answer-
ing (FFQA), and Multiple-choice Question Answer-
ing (MCQA). Each task involves a final test set for
five languages: Igbo, Swiss German, Turkish, Azer-
baijani, and Yorùbá. Our systems are designed to
support all of these languages simultaneously.

Our systems leveraged the remarkable success
of transformer-based (Vaswani et al., 2017), pre-
trained Language Models (LMs) such as BERT
(Devlin et al., 2019) and T5 (Raffel et al., 2019),
which have demonstrated outstanding performance
in various Natural Language Processing (NLP)
tasks in recent years. These models, with their
large number of parameters and pre-training on vast

∗∗Corresponding author
1Our codes will be made available at this link.
2The website of the shared task is available at this link.

datasets, have proven to be highly effective in ex-
tracting and representing information possessed by
input sequences (Brown et al., 2020). Their strong
generalization capabilities make them well-suited
for fine-tuning on specific tasks, such as NER and
translation. Multilingual pre-trained LLMs, like
XLM-RoBERTa (Conneau et al., 2019), mT5 (Xue
et al., 2021), and their variants, which were trained
on extensive multilingual datasets, are particularly
effective for multilingual tasks. These models cap-
ture semantic structures/knowledge shared across
languages, enhancing their ability to transfer knowl-
edge between languages. Fine-tuning these mod-
els for specific tasks allowed us to fully utilize
their rich token-level and sentence-level seman-
tic representations, which are essential for tasks
requiring detailed language understanding. For
instance, NER benefits from the token-level granu-
larity learned during pretraining (Yan et al., 2019),
while FFQA and MCQA require robust sentence-
level comprehension, which these models provide
(Robinson et al., 2023; Myrzakhan et al., 2024).
The combination of pre-training on extensive mul-
tilingual corpora and task-specific fine-tuning en-
abled our system to achieve decent performance
across all five target languages.

During the fine-tuning phase, in addition to
hyper-parameter selection, our systems employed
other strategies to promote a smoother and faster-
converging learning process, such as using data
from languages closely related to the target lan-
guages, applying curriculum learning (Bengio et al.,
2009), and interleaving data from various lan-
guages to enhance model performance and smooth
the learning process.

The experiment results show that different base
models with a similar number of parameters ex-
hibit varying advantages for different languages af-
ter fine-tuning. Ensembling the outputs from each
model results in better and more robust overall per-
formance. Additionally, given the limited availabil-
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Figure 1: This figure illustrates the process of Curricu-
lum Learning. Shorter data pieces appear earlier in the
epoch, while longer data pieces are introduced later.

ity of data for certain languages, leveraging large
amounts of task-specific data in English— which is
the easiest to obtain— along with smaller amounts
of data in the target language, allows knowledge
transfer from English to the target language. This
approach outperforms fine-tuning exclusively on
the limited data available in the target language.

2 Background

In this section, we provide a brief overview of the
background knowledge for the three tasks involved
in the shared task, along with the three techniques
we employed to facilitate the learning process.

Named Entity Recognition NER is an NLP task
that focuses on identifying and categorizing spe-
cific tokens or phrases in a text as belonging to pre-
defined entity types, such as persons (PER), orga-
nizations (ORG), locations (LOC), dates (DATE),
and other relevant categories. A named entity refers
to a real-world object or concept that can be recog-
nized by its proper name within the text. For exam-
ple, in the sentence "Barack Obama visited Paris
in 2015," the named entities are "Barack Obama"
(person), "Paris" (location), and "2015" (date). In
this shared task, we only consider three entity tags:
persons, organizations, and locations.

Free-form Question Answering FFQA involves
providing answers to natural language questions
based on the information given. This task assumes
an information-seeking scenario, where users ask
questions without knowing the answer in advance,
and the system is responsible for finding a relevant
answer based on information presented in the pas-
sage (if one exists). In this task, the system is given
a question, a title, and a passage, and must either

generate a text sequence for the correct answer or
indicate that there is no answer for the question
based on information available in the passage by
generating the text sequence “no answer”. For ex-
ample, consider the passage: "Tom went to the
supermarket and bought two apples." If the ques-
tion is "What did Tom buy in the supermarket?",
the system should return the answer "Two apples."
However, if the question is "Which supermarket
did Tom visit?", the system should respond with
"no answer," as the passage does not specify the
name of the supermarket.

Multiple-choice Question Answering Similar
to FFQA, MCQA assumes a scenario where users
seek information by asking questions without
knowing the answer and are given a question, title,
and passage. However, unlike FFQA, the MCQA
system is also provided with four potential options,
and its task is to identify the correct one based on
the information in the passage. For instance, con-
sider the passage: "Tom went to the supermarket
and bought two apples." If the question is "How
many apples did Tom buy?" and the four options
are "A. 1", "B. 2", "C. 3", and "D. 4", the system
should return "B".

Curriculum Learning Curriculum learning
(Bengio et al., 2009) is a machine learning strat-
egy that gradually introduces a model to progres-
sively more challenging data pieces over multiple
training iterations. This method can often produce
better results compared to using a randomly shuf-
fled training set. This approach is effective in the
sense that, the model begins by learning general
concepts through simpler examples, and then in-
crementally incorporates more detailed and com-
plex information as more difficult examples are
introduced. For our systems, we define "difficulty"
by the length of the input text, where longer text
equates to greater complexity and comes later in
the epoch, as shown in Figure 1. Since curriculum
learning is a paradigm that focuses solely on the
selection and ordering of training data, it can be
integrated with various other machine learning tech-
niques, like Interleaving Multilingual Data Pieces
which we will introduce later in this section.

Knowledge Transfer Knowledge transfer in mul-
tilingual LLMs refers to the model’s ability to
leverage information, patterns, or representations
learned in one language to enhance its performance
or understanding in another. This happens because

347



Figure 2: This figure illustrates the process of interleav-
ing multilingual data. Each coloured tile represents a
single data sample from a different language. This pro-
cess is repeated for each data sample in every language,
ensuring that each sample appears only once per epoch.

multilingual LLMs develop shared representations
of concepts that can be applied across different lan-
guages. To facilitate the knowledge transfer for
our base models, we fine-tuned the base models on
diverse multilingual data. This includes a relatively
small amount of data for the target languages, ad-
ditional data for languages closely related to the
target languages, and a large amount of data from
high-resource languages like English.

Interleaving Multilingual Data Pieces Inter-
leaving Multilingual Data Pieces is a machine learn-
ing technique used to train multilingual models
by interleaving data from various languages dur-
ing training. This approach promotes cross-lingual
knowledge transfer by encouraging the model to
develop shared linguistic representations and struc-
tures, which improves its ability to generalize
across languages. It is especially effective in cross-
lingual information retrieval scenarios, allowing
the model to utilize common features across lan-
guages and enhance performance in low-resource
language settings. An illustration of this approach
can be found in Figure 2

3 Methods

In this section, we provide a detailed illustration
of each system we implemented for the three tasks
involved in MRL 2024.

3.1 Models Included

XLM-RoBERTa XLM-RoBERTa (Conneau
et al., 2019) is a transformer-based masked
language model, which is a multilingual version
of the RoBERTa model, designed to handle text
in multiple languages by extending the BERT
architecture.

Afro-XLMR AfroXLMR (Alabi et al., 2022) is
a variant of the XLM-RoBERTa model specifi-
cally tailored for African languages. While XLM-
RoBERTa is designed to work across 100 lan-
guages, it may underperform for African languages
due to limited data in these languages during train-
ing. AfroXLMR addresses this by focusing on
improving the model’s performance in African
linguistic contexts, by using MLM adaptation of
XLM-R-large model on 17 African languages, cov-
ering the major African language families and three
high-resource languages. Previous work(Adelani
et al., 2022) has empirically demonstrated that this
model performs strongly in NER for African lan-
guages.

mT5 The mT5 (Multilingual Text-to-Text Trans-
fer Transformer) (Xue et al., 2021) is a variant of
the T5 (Text-to-Text Transfer Transformer) archi-
tecture. mT5 is pre-trained on a massive multi-
lingual dataset covering 101 languages from the
Common Crawl corpus, which enables it to per-
form a wide range of natural language processing
tasks. It operates using a text-to-text framework,
where all tasks are framed as feeding text inputs
and generating text outputs.

mT0 The mT0 (Multilingual T0) (Muennighoff
et al., 2023) is a variant of the T0 model, designed
to extend its zero-shot and few-shot learning ca-
pabilities to a multilingual context. It is based on
the T5 architecture but trained to follow natural
language instructions using multilingual data, al-
lowing it to generalize across a wide range of lan-
guages and tasks without requiring task-specific
training.

AfriTeVa V2 AfriTeVa V2 (Oladipo et al., 2023)
is a multilingual sequence-to-sequence model de-
rived from the T5 architecture, designed to support
African languages. AfriTeVa V2 was pretrained
on Wura which contains 20 languages, including
16 African languages, including Yorùbá and Igbo,
alongside globally spoken languages like English
and French.

3.2 Named Entity Recognition

We fine-tuned three models for the NER
task: xlm-roberta-large, afro-xlmr-large,
and afro-xlmr-large-76L. A linear layer was
added to the final hidden states of the Transformer
encoder for each model, followed by a softmax ac-
tivation to predict the probability distribution for
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each token.
During training, each input sequence was first

tokenized, meaning that each token was either tok-
enized as a whole or split into multiple tokens. For
tokens that form parts of a word, only the first to-
ken is used for prediction. For example, if the word
"eating" is tokenized into "eat" and "ing," only the
prediction for "eat" will be considered as the final
prediction for the word "eating" and the loss will
be calculated only for the token “eat”

For the tokens in the test set, we gathered predic-
tions from each model and applied majority voting.
The prediction that occurred most frequently was
selected as the final output for that token. In the
case of a tie, where all three models produced dif-
ferent predictions, we chose the prediction from
afro-xlmr-large, which is the best-performing
model in the development phase.

3.3 Free-form Question Answering
We fine-tuned two models for the Free-form Ques-
tion Answering task: mT5 Large and AfriTeVa V2
Large. The models were trained using a sequence-
to-sequence (seq2seq) text generation approach.
During training, the model was optimized to mini-
mize the cross-entropy loss between the predicted
tokens and the actual target tokens. The input data
formatting template is shown in Table 1.

For the final submission, we chose to use the
fine-tuned AfriTeVa V2 Large for the two African
languages and mT5 Large for the other three non-
African languages. This decision was based on the
fact that AfriTeVa V2 Large is specifically adapted
for African languages, while mT5, being designed
for more general language tasks, performs better
with non-African languages.

3.4 Multiple-choice Question Answering
We finetuned 3 models for the Multiple-choice
Question Answering task: mT5 Large, mT0 Large
and AfriTeVa V2 Large. The models were trained
using the seq2seq text generation approach. Sim-
ilar to the finetuning for FFQA, The input data
formatting template is shown in Table 1

During the fine-tuning phase, we modified the
target output that the model was optimized to pre-
dict. Instead of solely predicting the letter corre-
sponding to the correct choice, we adjusted the
model to predict both the letter and the text as-
sociated with the choice. For example, given the
passage: "Tom went to the supermarket and bought
two apples." and the question: "How many apples

FFQA
Task: free-form QA
Context: [Passage]
Question: [Question]

MCQA
Context: [Passage]
Question: [Question]
A. [Text of choice A]
B. [Text of choice B]
C. [Text of choice C]
D. [Text of choice D]

Table 1: Input templates for MCQA and MMQA.

did Tom buy?" with the four options: "A. 1", "B. 2",
"C. 3", and "D. 4", rather than training the model to
predict only the letter "B," we trained it to predict
"B. 2". During inference, we extracted the first
token generated (the letter) as the final prediction.
This adjustment led to improved performance and
faster convergence during the development phase
compared to using the original target text.

For each question in the test set, we collected pre-
dictions from each model and applied majority vot-
ing. The prediction that occurred most frequently
was selected as the final answer for that question.
In case of a tie, where all three models produced
different predictions, we chose the prediction from
mT5 Large, as it was the best-performing model
during the development phase.

4 Experiment

In this section, we provide detailed information
about our implementation, including the computa-
tional resources used to run the experiments, the
specifics of the training process, and the datasets
used to train the models for each of the three tasks.
Additionally, we will present the results on the test
set provided by the organizers of this shared task,
along with an analysis of the experimental results.

4.1 Setup

We used one Nvidia A100 80G GPU for all ex-
periments. We used the Trainer of huggingface
transformers to fine-tune all the models.

4.2 Datasets

This section lists all the datasets used to train mod-
els for each of the three tasks. All datasets are
publicly available. For datasets that were not asso-
ciated with any papers, we listed them in the Ap-
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Models AZ YO TR IG ALS Avg Mdn

Named Entity Recognition

Ours 0.821 0.857 0.826 0.093 0.789 0.677 0.821
CUNI 0.573 0.805 0.778 0.740 0.704 0.720 0.740

Free Form Question Answering

Ours 0.421 0.361 0.399 0.331 0.421 0.377 0.399
0-shot Llama-3.1-instruct 7B 0.536 0.468 0.472 0.536 0.425 0.485 0.472
4-shot Llama-3.1-instruct 7B 0.501 0.373 0.451 0.520 0.435 0.452 0.451
0-shot Llama-3.1-instruct 70B 0.540 0.508 0.491 0.491 0.478 0.498 0.491
4-shot Llama-3.1-instruct 70B 0.506 0.436 0.460 0.616 0.488 0.513 0.488
0-shot gemma-2 27b 0.448 0.490 0.423 0.347 0.474 0.434 0.448
4-shot gemma-2 27b 0.453 0.458 0.425 0.449 0.478 0.458 0.453
0-shot aya-101 13B 0.398 0.444 0.370 0.318 0.419 0.390 0.398
4-shot aya-101 13B 0.404 0.451 0.364 0.453 0.422 0.434 0.422
0-shot o1-preview 0.535 0.525 0.520 0.428 0.458 0.480 0.520

Multiple Choice Question Answering

Ours 0.969 0.853 0.816 0.969 0.777 0.879 0.853
FT mT5 large 0.966 0.848 0.810 0.965 0.778 0.876 0.848
FT mT0 large 0.966 0.824 0.830 0.965 0.769 0.869 0.830
FT AfriTeVa V2 large 0.807 0.784 0.592 0.949 0.580 0.772 0.784
0-shot Llama-3.1-instruct 7B 0.969 0.731 0.884 0.954 0.788 0.849 0.884
4-shot Llama-3.1-instruct 7B 0.931 0.737 0.701 0.933 0.782 0.827 0.782
0-shot Llama-3.1-instruct 70B 0.979 0.896 0.939 0.959 0.917 0.932 0.939
4-shot Llama-3.1-instruct 70B 0.976 0.881 0.966 0.963 0.923 0.932 0.963
0-shot gemma-2 27b 0.979 0.891 0.946 0.963 0.886 0.925 0.946
4-shot gemma-2 27b 0.983 0.905 0.932 0.967 0.898 0.932 0.932
0-shot aya-101 13B 0.969 0.881 0.905 0.967 0.834 0.906 0.905
4-shot aya-101 13B 0.969 0.860 0.871 0.967 0.834 0.898 0.871
0-shot o1-preview 0.976 0.911 0.973 0.967 0.922 0.941 0.967

Table 2: The final results of each model on the test set for each task.

pendix B. For the final submission, we integrated
the validation set provided by the organizers into
our training set to reduce the gap between the train-
ing set and the test set.

4.2.1 Named Entity Recognition
We used data of 10 languages from 5 datasets
to fine-tune models for the NER task. For each
dataset, we masked out NER tags that were not
included in this shared task.

MasakhaNER 2.0 MasakhaNER 2.0 (Adelani
et al., 2022) is a human-annotated NER dataset for
20 African languages. For our study, we utilized the
Yorùbá and Igbo data in this dataset. Additionally,
we included data in Naija, Hausa, and chiShona to

facilitate knowledge transfer.
We chose to include Naija, Hausa, and chiShona

in our training data because Hausa and Naija are
the top two transfer languages for Yorùbá, while
chiShona is the best transfer language for Igbo
(with Yorùbá as the second-best), as shown in the
study by Adelani et al..

CoNLL03 CoNLL03 (Tjong Kim Sang and
De Meulder, 2003) consists of annotations of NER
tags across English and German languages. In our
experiments, we used the data from both languages.

Turkish Wiki NER Dataset Turkish Wiki NER
dataset (Altinok, 2023) is an NER dataset which
contains 20,000 manually annotated sentences se-
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lected from TWNERTC dataset (Sahin et al., 2017).

UZNER UZNER(Yusufu et al., 2023) is a bench-
mark manually dataset specifically designed for
NER tasks in the Uzbek language.

4.2.2 Free-form Question Answering

XTREME-UP XTREME-UP (Ruder et al.,
2023) is a benchmark focus on the scarce data
across 88 languages and 9 tasks. We used the In-
donesian and English data of the “qa in lang” task
in this dataset.

MLQA MLQA (Lewis et al., 2019) is an extrac-
tive QA evaluation benchmark contain across 7
languages. We used German data of this dataset.

XQuAD XQuaAD (Artetxe et al., 2019) is a
cross-lingual question answering dataset composed
of paragraphs and question-answer pairs selected
from SQuAD v1.1 (Rajpurkar et al., 2016) trans-
lated into ten languages. We used German and
Turkish data of this dataset.

NaijaRC NaijaRC (Aremu et al., 2024) is a
multiple-choice reading comprehension dataset
consisting of questions from high school reading
comprehension exams in three native Nigerian lan-
guages. We used the Igbo, Yorùbá, and Hausa data
from this dataset.

Belebele Belebele (Bandarkar et al., 2024) is a
multilingual multiple-choice machine reading com-
prehension dataset. We transformed it into an
FFQA dataset by removing the multiple-choice op-
tions and setting the text associated with the correct
option as the target answer. We used the Azerbai-
jan, Igbo, Indonesian, English, German, Turkish,
Uzbek, Yorùbá, and Hausa data from this dataset.
We filtered out some questions if the question is
not a closed question.

4.2.3 Multiple-choice Question Answering

Belebele For MCQA, we used the data from the
same set of languages as for the FFQA dataset.

Cosmos QA Cosmos QA (Huang et al., 2019)
is a commonsense-based reading comprehension
dataset in English, formulated as multiple-choice
questions.

RACE RACE (Lai et al., 2017) is a large-scale
reading comprehension dataset in English

4.3 Results

The Table 2 demonstrates the final results of our
model and other LLMs applied to these tasks. Cur-
rently, there is a lack of final results from the offi-
cial leaderboard. We will only include the FFQA
and MCQA results.

4.3.1 Free-form Question Answering
Our model achieved an average F1 score of 0.377
across all five languages. The performance varied
across languages, with the highest scores observed
for Azerbaijani and Swiss German (both 0.421),
followed by Turkish (0.399), Yorùbá (0.361), and
Igbo (0.331).

Compared to the baseline models, our sys-
tem’s performance was generally lower. The best-
performing baseline was the 4-shot Llama-3.1-
instruct 70B model, with an average F1 score of
0.513. The 0-shot o1-preview model also per-
formed well, achieving the highest score for Azer-
baijani (0.535) and competitive scores for other
languages.

4.3.2 Multiple-choice Question Answering
Our MCQA system demonstrated strong perfor-
mance, achieving an average accuracy of 0.879
across all languages. The system performed ex-
ceptionally well on Azerbaijani (0.969) and Igbo
(0.969), followed by Yorùbá (0.853), Turkish
(0.816), and Swiss German (0.777).

Among the individual models we fine-tuned,
mT5 large performed the best with an average ac-
curacy of 0.876, closely followed by mT0 large at
0.869. The AfriTeVa V2 large model, despite being
specifically adapted for African languages, showed
lower overall performance (0.772) but performed
well on Igbo (0.949).

Our ensemble system outperformed all of our
individual fine-tuned models, demonstrating the
effectiveness of the ensemble approach. How-
ever, some of the larger baseline models, partic-
ularly the 0-shot o1-preview and the 4-shot ver-
sions of Llama-3.1-instruct 70B and gemma-2 27b,
achieved higher average accuracies (0.941, 0.932,
and 0.932 respectively).

4.3.3 Named Entity Recognition
Our NER system demonstrated strong performance
across most languages in the shared task and
achieved the highest F1 scores for four out of the
five languages (Azerbaijani, Yorùbá, Turkish, and
Swiss German) among all participant teams.
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4.4 Analysis

4.4.1 Named Entity Recognition
Investigate Igbo Anomaly A detailed analysis
of our model’s behaviour on Igbo data is crucial.
This could include examining the training data and
the model predictions.

Ensemble Method Refinement Given the strong
performance of our system in most languages, fur-
ther refinement of our base methods could poten-
tially improve the final results, especially if we can
address the models’ performance issue on Igbo. In-
corporating elements from our system and CUNI’s
system might result in a more robust and univer-
sally effective NER model for diverse languages.

4.4.2 Free-form Question Answering
Language-specific performance Our system’s
performance varied across languages, with better
results for Azerbaijani and Swiss German com-
pared to African languages like Yorùbá and Igbo.
This disparity might be due to differences in the
quality or quantity of training data available for
each language.

Gap with larger models The significant perfor-
mance gap between our system and larger models
like Llama-3.1-instruct 70B highlights the advan-
tage of massive pre-training and model size in tack-
ling complex FFQA tasks.

Zero-shot vs. few-shot Interestingly, for some
baseline models (e.g., Llama-3.1-instruct 7B), the
zero-shot performance was better than the few-
shot performance. This suggests that for some
languages, providing examples might not always
lead to improved performance and could potentially
introduce biases.

4.4.3 Multiple-choice Question Answering
Strong overall performance Our MCQA sys-
tem demonstrated robust performance across all
languages, with particularly high accuracies for
Azerbaijani and Igbo. This suggests that our ap-
proach of fine-tuning multilingual models and us-
ing ensemble methods is effective for MCQA tasks.

Ensemble effectiveness The superior perfor-
mance of our ensemble system compared to in-
dividual fine-tuned models validates our approach
of combining predictions from multiple models to
improve overall accuracy.

Language-specific variations The performance
variations across languages (e.g., lower accuracy
for Swiss German) indicate that language-specific
challenges persist even in MCQA tasks. This could
be due to factors such as linguistic complexity,
dataset quality, or the model’s pre-training data
distribution.

Competitiveness with larger models While
some larger baseline models outperformed our sys-
tem, the performance gap is smaller compared to
the FFQA task. This suggests that our approach
is particularly effective for MCQA, where the task
structure might allow for better utilization of fine-
tuning on limited data.

AfriTeVa V2 performance The specialized
AfriTeVa V2 model showed strong performance
on Igbo but underperformed on non-African lan-
guages. This highlights the trade-off between
language-specific models and more general multi-
lingual models.

5 Conclusion

Our study on multilingual multi-task information
retrieval revealed key insights across NER, FFQA,
and MCQA tasks. In the MCQA task, our en-
semble models demonstrated particular strength,
outperforming individual fine-tuned models. This
underscores the benefits of combining predictions
from multiple models to boost accuracy and ro-
bustness. For NER, our system showed strong
performance across most languages, achieving the
highest F1 scores in four out of five languages com-
pared to the other participating systems. However,
we observed a significant performance drop for
Igbo, highlighting the challenges of consistent per-
formance across diverse languages. We observed
variable performance across tasks, with challenges
particularly evident in FFQA and significant differ-
ences across languages, especially in low-resource
settings. This variability was also present in NER,
where our model’s performance on Igbo lagged
significantly behind other languages.

Looking forward, our findings suggest sev-
eral promising areas for improvement. Enhanc-
ing FFQA performance through better fine-tuning
strategies and exploring cross-lingual transfer meth-
ods is crucial. Developing task-specific model ar-
chitectures that can better capture the nuances of
each task while maintaining multilingual capabil-
ities could lead to significant advances. Improv-
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ing data augmentation and efficient fine-tuning ap-
proaches, especially for low-resource languages,
remains a key challenge. Increasing model inter-
pretability will be vital to better understand and ad-
dress performance discrepancies across languages
and tasks. For NER, investigating the causes of the
performance anomaly in Igbo and refining our en-
semble method could create a more universally ef-
fective model across diverse languages. While our
approach shows promise, particularly for MCQA
and most languages in NER, there is substantial
room for further research. The goal remains to
develop robust, multilingual, multi-task informa-
tion retrieval systems that can overcome language
barriers, address performance inconsistencies, and
improve access to global information across a wide
range of languages and task types.
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A Prompt

A.1 Zero-Shot Prompt
A.1.1 FFQA Prompt

You are an AI assistant designed
to answer questions based on
given passages.

Your task is to provide accurate
and concise answers to
questions using only the
information provided in the
passage.

If the passage doesn ’t contain
enough information to answer
the question , respond with ’
The passage does not provide
sufficient information to
answer this question.’
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Do not use any external knowledge
or make assumptions beyond

what is explicitly stated in
the passage. Response should
be in one line without any
additional information and
response in source language.

Passage: {Passage}

Question: {Question}

Your answer:

A.1.2 MCQA Prompt

You are an AI assistant designed
to answer multiple -choice
questions.

Your task is to select the most
appropriate answer from the
given options (A, B, C, D)
based on the question provided
.

Analyze the question and options
carefully before making your
selection.

Your response should only contain
the letter of the correct

option (A, B, C, or D).
If none of the options seem

correct or if there isn ’t
enough information to make a
selection , respond with ’
Unable to determine the
correct answer based on the
given options.’

Passage: {Passage}
Question: {Question}
Options:
A) {OptionA}
B) {OptionB}
C) {OptionC}
D) {OptionD}
Answer:

A.2 Few-Shot Prompt

A.2.1 FFQA Prompt

You are an AI assistant designed
to answer questions based on

given passages.
Your task is to provide accurate

and concise answers to
questions using only the
information provided in the
passage.

If the passage doesn ’t contain
enough information to answer
the question , respond with ’
The passage does not provide
sufficient information to
answer this question.’

Do not use any external knowledge
or make assumptions beyond

what is explicitly stated in
the passage. Response should
be in one line without any
additional information and
response in source language.

Passage: {Passage1}
Question: {Question1}
Answer: {Answer1}

Passage: {Passage2}
Question: {Question2}
Answer: {Answer2}

Passage: {Passage3}
Question: {Question3}
Answer: {Answer3}

Passage: {Passage4}
Question: {Question4}
Answer: {Answer4}

Passage: {Passage}
Question: {Question}
Answer: "

A.2.2 MCQA Prompt

You are an AI assistant designed
to answer multiple -choice
questions.

Your task is to select the most
appropriate answer from the
given options (A, B, C, D)
based on the question provided
.

Analyze the question and options
carefully before making your
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selection.
Your response should only contain

the letter of the correct
option (A, B, C, or D).

If none of the options seem
correct or if there isn ’t
enough information to make a
selection , respond with ’
Unable to determine the
correct answer based on the
given options.’

Passage: {Passage1}
Question: {Question2}
Options:
A) {OptionA1}
B) {OptionB1}
C) {OptionC1}
D) {OptionD1}
Answer: A)

Passage: {Passage2}
Question: {Question2}
Options:
A) {OptionB2}
B) {OptionA2}
C) {OptionC2}
D) {OptionD2}
Answer: B)

Passage: {Passage3}
Question: {Question3}
Options:
A) {OptionC3}
B) {OptionB3}
C) {OptionA3}
D) {OptionD3}
Answer: C)

Passage: {Passage4}
Question: {Question4}
Options:
A) {OptionD4}
B) {OptionB4}
C) {OptionC4}
D) {OptionA4}
Answer: D)

Passage: {Passage}
Question: {Question}
Options:

A) {OptionA}
B) {OptionB}
C) {OptionC}
D) {OptionD}
Answer:

B Additional Datasets

B.1 NER
LocalDoc/azerbaijani-ner-dataset3

B.2 FFQA
LocalDoc/databricks-dolly-azerbaijan (closed qa)4

3https://huggingface.co/datasets/LocalDoc/azerbaijani-
ner-dataset

4https://huggingface.co/datasets/LocalDoc/databricks-
dolly-azerbaijan
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Abstract
We present the joint CUNI and LMU sub-
mission to the MRL 2024 Shared Task on
Multi-lingual Multi-task Information Retrieval.
The shared task objective was to explore how
we can deploy modern methods in NLP in
multi-lingual low-resource settings, tested on
two sub-tasks: Named-entity recognition and
question answering. Our solutions to the sub-
tasks are based on data acquisition and model
adaptation. We compare the performance of
our submitted systems with the translate-test
approach which proved to be the most use-
ful in the previous edition of the shared task.
Our results show that using more data as well
as fine-tuning recent multilingual pre-trained
models leads to considerable improvements
over the translate-test baseline. Our code
is available at https://github.com/ufal/
mrl2024-multilingual-ir-shared-task.

1 Introduction

Over the past few years, large language models
(LLMs) have attracted a fair share of attention from
the research community. This is mainly caused by
the remarkable in-context learning properties these
models exhibit, especially in languages where there
is plenty of data available (Wei et al., 2022).

Very recently, research advances have shown
promising results in low-resource language pro-
cessing by leveraging LLMs trained primarily on
English data (Cahyawijaya et al., 2024; Nguyen
et al., 2024, inter alia). Meanwhile, massively mul-
tilingual approaches also started to deliver good
results (Zaratiana et al., 2024; Üstün et al., 2024).
The MRL 2024 Shared Task on Multi-lingual Multi-
task Information Retrieval aims to build upon this
trend in tasks of named-entity recognition (NER;
§ 2) and question answering (QA; § 3) for Alsatian,
Azerbaijani, Igbo, Indonesian, Turkish, Uzbek, and
Yoruba.

∗ Part of KH’s work on this paper was done during a
research visit to CUNI.

In both subtasks, our submissions include fine-
tuned mulitlingual models, compared to a translate-
test baseline (Helcl and Libovický, 2023).

2 Named Entity Recognition

The goal of the NER subtask was to detect and clas-
sify words and phrases into one of three categories:
person (PER), organization (ORG), and location
(LOC). Unlike the previous year’s edition, date and
time entities were omitted from the task.

For development, the organizers released vali-
dation data in Alsatian, Azerbaijani, Turkish, and
Yoruba, each of around 120 sentences.

We experiment with the translate-test approach
and compare it with the most recent massively mul-
tilingual models (§ 2.1). We collect additional train-
ing data for the shared languages (§ 2.2) and fine-
tune the best-scoring multilingual model (§ 2.3).

2.1 Baseline Models

Translate-test. Using the label-projection
method from Helcl and Libovický (2023), we
translate the validation data to English, then test
two pre-trained models on them: An English
SpaCy pipeline1 and (English-only) GliNER2

(Zaratiana et al., 2024). See Table 1, “Translate
+ Spacy” and “Translate + GliNER” for the
respective validation set results.

Multilingual Models. We further test a multi-
lingual baseline model from the UniversalNER
project (Mayhew et al., 2024), as well as multi-
lingual GliNER3 (Zaratiana et al., 2024) on the
original validation data. The model from Univer-
salNER is a version of XLM-Rlarge, fine-tuned on
all of the project’s annotated training data. Multi-
lingual GliNER is an open-type NER model inti-
tialised from mDeBERTa-v3base (He et al., 2023)

1en_core_web_lg
2urchade/gliner_large-v2.1; 459M parameters
3urchade/gliner_multi-v2.1; 209M parameters
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Method als aze tur yor Avg.

Translate + Spacy 43.7 51.7 42.6 52.0 47.5
Translate + GliNER 30.7 48.2 46.9 44.1 42.5

Universal NER 56.9 67.8 62.9 55.0 62.5
Multiling. GliNER 61.5 67.8 63.5 63.0 64.3

↱ + tuning 71.5 69.2 74.2 74.0 72.2

Table 1: Results of the explored methods on the shared
task validation data.

and fine-tuned on Pile-NER (Zhou et al., 2024).
The validation set results from these models are
also listed in Table 1. Based on these initial results,
we select Multilingual GliNER for further tuning.

2.2 Datasets

For fine-tuning Multilingual GliNER, we use a se-
lection of NER datasets in different languages. We
found relevant data for all target languages except
Alsatian and decided to use Standard German data
instead.

MasakhaNER2. Adelani et al. (2022) provide a
high-quality NER dataset for 20 African languages.
The data includes labels for person, organisation,
location and date in the BIO format. Since the
shared task does not include date labels, we discard
those from the data before feeding it to our model.
We use the Yoruba (6.8k) and Igbo (7.6k) training
splits for the final tuned model. The validation
splits (around 1k each) are also used for evaluation
during model fine-tuning.

PolyglotNER. PolyglotNER (Al-Rfou et al.,
2015) is a large, automatically created NER dataset
for 40 languages. It includes labels for person, or-
ganisation, and location. We convert the labels to
the BIO format before training. We use parts of
the Turkish and German subsets in the final tuned
model. In order to keep the training data to a simi-
lar size as Yoruba and Igbo, we only take around
10k examples for the training itself, and around 1k
examples for validation during model fine-tuning.

LocalDoc NER. LocalDoc NER (LocalDoc,
2024) is an extensive collection of Azerbaijani
NER data with 24 entity types. Since the shared
task data includes only the target entities person,
organisation, and location, we discard all other
entity types, and transform the data to the BIO for-
mat, before feeding the data to our model. Since
this leaves us with a somewhat large proportion
of “empty” examples (with no labels other than

Parameter Value

Learning rate 5× 10−6

Weight decay 0.01
Epochs 5
Batch size 16
Warmup ratio 0.1

Table 2: Hyperparameters used for the final tuned
GliNER model.

“O”), we then discard such examples with a 50-50
chance. The original dataset includes almost 100k
examples, but we only use around 10k examples
for training in order to keep a similar proportion
of training data as the other languages. We use an
additional 1k examples for validation during model
fine-tuning.

Additional Datasets. We further experimented
with UZNER (Yusufu et al., 2023) and SwissNER
(Vamvas et al., 2023) data for Uzbek and Swiss
German, respectively, but found that including this
data did not noticeably improve performance on
the validation languages, so the final tuned model
does not include them.

2.3 Model Tuning

We attempt tuning with different combinations of
data, different learning rates, weight decay, and
number of epochs. Table 2 shows the hyperpa-
rameters used in the selected model. Due to the
comparatively small size of the base model (209M
parameters), and limited training data especially
for the smallest sets used, each training run is quite
fast: Between one and two hours depending on
epochs and data mix, on a single GPU.

2.4 Results

The validation results are presented in Table 1. The
fine-tuned GliNER scores the best on all languages
in the validation set, on average 8 F1 points better
than the pre-trained version. Multilingual mod-
els, even without fine-tuning, significantly outper-
formed translate-test baselines.

Based on these results, we submitted outputs of
the fine-tuned GliNER to the shared task.

Table 3 shows test set results released by the
organisers. Although our model is actually out-
paced on most of the test languages by the system
from McGill, we win on consistency, for an aver-
age performance lead of 4.2 F1 points. Our result
on Azerbaijani falls furthest behind, which may in-
dicate that the distribution of the LocalDoc dataset
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Team als az ig tr yo Avg.

CUNI 70.4 57.3 73.9 77.8 80.5 71.9
McGill 78.9 82.1 9.3 82.6 85.7 67.7
Ifeoma 0.8 2.0 2.0 4.0 0.8 1.9

Table 3: Results on the NER test set. The value for each
language is the F1 metric.

was too different from the shared task set.

3 Question Answering

The goal of this task is to answer questions within
a given context in two scenarios: First, select the
correct answer from a set of four choices (multiple-
choice questions). Second, generate a free-form
answer in natural language (open questions).

The organizers provided 200 multiple-choice
questions for all languages except Uzbek. All cor-
rect options in the development data were labeled
as “A”. To balance the dataset, we shuffle the or-
dering of the options in the data and report the
performance on this shuffled dataset. Additionally,
around 100 single-reference open questions for all
languages were provided.

We experiment with LLMs in the zero-shot setup
both in the task languages and when translating the
test into English (§ 3.1). Then, we collect QA
datasets that are available for the task languages
(§ 3.2). We use the data to fine-tune the models
(§ 3.3). Finally, we experiment with ensembling of
the models outputs in the zero-shot setup (§ 3.4).

3.1 Zero-shot LLMs

We select a few multilingual LLMs tested on both
the original and translated validation sets: Aya-
101 (Üstün et al., 2024) and 4 versions of the
LLaMA model (Touvron et al., 2023). Aya-101
is an encoder-decoder model trained in multiple
tasks and 101 languages, while LLaMA is a causal
language model.

Multiple Choice Questions. For this task, we
extract the probability score for each option: “A),”
“B),” “C),” or “D).” To do so, we use a prompt
consisting of the context, the question, and the
answer options. This is followed by “The correct
answer is:”. This way, we increase the chance that
the next generated token is one of the answer letters.
We translate this prompt into each task language
so that the prompt and the question are in the same
language.

We know the next token might not necessarily
be in our range, as Wang et al. (2024) state. To
overcome this, we use the system prompt: “You
are an assistant trained to read the following context
and answer the question with one of the options A),
B), C) or D).”. Upon inspection of the generated
text, we found a minimal number of cases (1-2)
where the generated answer starts with a different
token.

We extract the probabilities of the four tokens
corresponding to the options, and re-normalize
them with softmax. Then, we choose the option
with the maximum score. Another strategy is to
generate text using nucleus sampling and extract
the first label. This results in slightly lower accu-
racy for all languages; therefore, we use the proba-
bility scores.

Open Questions. For the open-question scenario,
we use a different system prompt: “You are an
assistant trained to read the following context and
provide a succinct, accurate, and clear response in
the same language.” The user prompt consists only
of the context and the question.

We use temperature 0.6, nucleus sampling with
top p of 0.9, and maximum new tokens 80.

Translate test. We translate the multiple choice
validation set into English using NLLB-200-3.3B
(Team et al., 2022) and then use the same men-
tioned models as a baseline. Long samples are split
into sentences with an English SpaCy pipeline4 to
fit the NLLB context size. The translations are then
appropriately concatenated to have the context and
the questions together. The prompt is in English,
while in the multilingual case, it is translated into
each input language.

3.2 Datasets

We use additional datasets for multiple-choice ques-
tions to fine-tune the LLaMA models and Aya-101.
Similarly to the NER task, we use Standard Ger-
man data instead of Alsatian, but we do not have
Azerbaijani data. We also use additional English
data. The domain of some datasets is broader than
that of this shared task because these datasets can
test for knowledge or include multiple-choice sen-
tence completion. We standardize the format of all
the datasets, including this shared task dataset: we
combine the short text with the question and add

4en_core_web_sm
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the prefixes “A),” “B),” “C),” and “D)” to the four
possible answers.

MMLU. MMLU (Hendrycks et al., 2021b)
(Hendrycks et al., 2021a) contains English multiple-
choice questions testing various branches of knowl-
edge. In contrast to this shared task, it does not
contain a separate text with the information to an-
swer the question. Moreover, some samples are
about sentence completion, or the context is not
always sufficient to answer the question. This set
contains 115700 English samples.

AFRIMMLU. AFRIMMLU (Adelani et al.,
2024) is a translation of MMLU in several African
languages. We use the Igbo and Yoruba splits,
which contain 608 examples.

M_MMLU. M_MMLU (Dac Lai et al., 2023) is
a machine-translated version of MMLU. We use the
Indonesian portion, which contains 14798 samples.

MMLU_TR. M_MMLU (Alhajar, 2024) is a
Turkish machine-translated version of MMLU
which contains 15263 samples.

Belebele. Belebele (Bandarkar et al., 2024) is
a multiple-choice question dataset about reading
comprehension. Each sample contains a short text,
a question, and four possible answers (from 1 to
4, converted to A, B, C, and D). We use 900 sam-
ples for the following languages: Tosk Albanian
(language code ALS), German, English, Igbo, In-
donesian, Turkish, Uzbek, and Yoruba.

EXAMS. EXAMS (Hardalov et al., 2020) is a
dataset that contains high school-level multiple-
choice questions. Each sample has a short test,
a question, and four possible answers. However,
the short text does not answer the question, as the
dataset aims to test knowledge. We use 1964 Turk-
ish samples.

QASC. QASC (Khot et al., 2020) is a multiple-
choice question dataset about grade school science
questions. We use 9060 unique English samples
with a short fact, a question, and eight possible
answers. To adapt it for this task, we randomly
discard four wrong answers from each sample and
relabel the remaining ones.

NaijaRC. NaijaRC (Aremu et al., 2024) is a
multiple-choice question dataset about reading
comprehension. As the dataset for this shared task,
NaijaRC contains a short text, a question, and four

Model Method als aze ibo tur yor Avg.

LLaMA
score 83.0 83.5 88.0 88.2 87.5 86.0
gen. 80.5 81.0 86.5 89.2 87.5 83.7

Aya 101 score 85.5 96.0 95.0 88.2 90.5 91.0
gen. 88.0 95.0 92.5 89.2 87.5 90.5

Table 4: Comparison of the score versus generate (gen.)
method in the zero-shot multilingual inference. LLaMA
model refers to 3.1 8B version.

possible answers. We used 89 Igbo samples and
191 Yoruba samples.

3.3 Model Tuning

In the multiple-choice task scenario, we fine-tune
the models using Low-Rank Adaptation (LoRA;
Hu et al., 2021). We format the data in the same
way as in the zero-shot experiments. After the
context, questions, and multiple choices, we repeat
the correct answer with “The right answer is X):”
prepended.

For training the model using LoRA, we set rank
r to 64, scaling factor α to 16. We use a dropout of
0.1, with no bias, and we only adapt the attention
layers. We tested the fine-tuned models on the open
task with the prompt mentioned in Section 3.1.

Table 7 and 8 contains the preliminary results of
the test set. These were the only submissions that
were publicly listed on Codabench.

Multilingual Fine-tuning. We compile the train-
ing dataset from all datasets listed in the previous
section, except for EXAMS, which we omit so
Turkish is not overrepresented.

Monolingual Fine-tuning. We fine-tune the mul-
tilingual models with monolingual data to make a
comparison. We train each model for 8 epochs with
a learning rate of 2 · 10−4 and tested on the same
language. Since we do not have Azerbaijani data,
this language is not included. For Alsatian, we use
Standard German and Tosk Albanian (ALS), which
was included by accident because of the same un-
official abbreviation as the ISO code for Alsatian.

3.4 Ensembling

For the multiple-choice scenario, we experiment
with model ensembling to increase robustness.

Three Models. We combine the scores of our
best models: LLaMA 3.0 70B, LLaMA 3.1 70B,
and Aya 101. Each model outputs scores for each
answer choice. We merge the scores with either
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Model als aze ibo tur yor Avg.

Translate-test
LLaMA 3.0 8B 55.0 80.0 86.0 87.7 74.0 76.5
LLaMA 3.1 8B 52.0 81.5 87.5 85.1 75.5 76.3

Aya 101 49.0 79.0 85.0 81.0 73.5 73.5

Multilingual Zero-Shot

LLaMA 3.0 8B 84.5 88.0 91.5 90.8 80.5 87.3
LLaMA 3.0 70B 92.5 96.5 93.0 95.4 83.5 92.2
LLaMA 3.1 8B 83.0 83.5 88.0 88.2 87.5 86.0

LLaMA 3.1 70B 92.5 96.5 93.0 95.4 83.5 92.2
Aya 101 85.5 96.0 95.0 88.2 90.5 91.0

Multilingual Tuned LLaMA 3.1 8B 78.0 94.5 89.5 85.6 79.0 85.3

Monolingual Tuned LLaMA 3.1 8B 85.0 — 95.0 80.5 82.5 —
Aya 101 85.5 — 91.0 73.8 85.0 —

Three Models hard 92.0 99.5 94.5 96.4 92.0 94.9
soft 93.0 99.5 95.5 96.4 92.5 95.4

Three Prompts Aya 101 86.5 97.0 94.5 89.7 90.5 91.7
LLaMA 3.1 70B 92.5 97.5 91.5 96.4 89.5 93.5

Table 5: Results for the multiple choice model on the validation set, using the score method

Model Metric als aze ibo tur yor ind uzb Avg.

Multilingual Zero-Shot

LLaMA 3.1 8B
ChrF 27.7 61.7 37.7 52.3 25.3 42.2 49.6 42.3

RougeL 9.1 55.3 28.7 35.9 15.9 35.5 38.8 31.3
BERTscore 64.5 83.6 70.3 67.0 66.2 69.7 72.4 70.5

LLaMA 3.1 70B
ChrF 32.1 69.5 57.0 53.4 33.2 41.7 56.9 49.1

RougeL 22.5 70.7 43.2 46.3 23.4 36.4 46.4 41.3
BERTscore 85.0 96.1 86.5 91.1 82.8 83.5 87.1 87.5

Aya 101
ChrF 22.4 53.2 24.5 42.0 34.8 44.1 60.2 40.2

RougeL 16.7 52.4 25.0 39.2 29.1 43.6 48.1 36.3
BERTscore 82.5 91.6 83.5 89.1 84.8 86.5 87.8 86.5

Multilingual Tuned LLaMA 3.1 8B
ChrF 24.6 34.0 22.0 22.8 17.9 39.8 31.1 27.5

RougeL 15.2 31.2 15.5 19.3 13.1 33.0 19.2 20.9
BERTscore 67.9 72.1 65.1 50.3 63.9 72.5 64.7 65.22

Table 6: Results for the open question models on the validation set.

Team als az ig tr yo Avg.

isidoratourni 0.92 0.98 0.98 0.97 0.92 0.95
CUNI 0.92 0.98 0.98 0.96 0.86 0.93

McGill NLP Group 0.78 0.97 0.97 0.82 0.85 0.88

Table 7: Preliminary results of multiple-choice ques-
tions leaderboard, extracted from Codabench. The final
column is the weighted accuracy.

Team als az ig tr yo Avg.

CUNI 0.43 0.61 0.68 0.55 0.47 0.54
McGill NLP Group 0.42 0.42 0.33 0.4 0.36 0.38

Table 8: Preliminary results of open questions leader-
board, extracted from Codabench. The final column is
the weighted average of all the metrics.

hard or soft voting. In hard voting, we select the
choice with the highest score for each model and
then choose the final answer with a majority vote.
In soft voting, we average the scores for each choice
and then select the one with the maximum score.

Three Prompts. Since the models produce an-
swers in different formats, we use two additional
prompts. In addition to the original, “The correct
answer is: ”, we add “It is: ” and the empty prompt.
We translate the prompts into the shared task lan-
guages and use them with the model. We average
the probabilities for the respective prompts and
return the option with the maximum score.

3.5 Results

Table 4 shows the difference between the scoring
method and the generated for the multiple-choice
tasks. The results were much better with scoring,
allowing us more flexibility, such as using soft vot-
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ing in ensembling models.
After tuning the models, we observe a perfor-

mance drop in every language. We believe this is
due to a domain mismatch between the training and
shared task test data. Therefore, we decided to pro-
ceed with the zero-shot setup. Table 5 shows the
performance on the validation set in the multiple-
choice task. For the submission, three models soft
voting was selected as the best submission.

Table 6 contains the result from the open task,
with the best submission being LLaMA 3.1 70B
(zero-shot).

4 Conclusions

We presented our submissions to the MRL Shared
Task on Multi-lingual Multi-task Information Re-
trieval. Our methods based on data acquisition
and fine-tuning of multilingual pre-trained models
achieve good results compared to the translate-test
approach, which was the key idea of the winning
system from 2023 (Helcl and Libovický, 2023). For
NER, we achieved our best results by finetuning
state-of-the-art models specifically for the shared
task languages and entities. In the QA subtask, we
achieved our best results using the LLMs in the
zero-shot setup.
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Abstract

Large language models (LLMs) demonstrate
exceptional proficiency in both the comprehen-
sion and generation of textual data, particularly
in English, a language for which extensive pub-
lic benchmarks have been established across
a wide range of natural language processing
(NLP) tasks. Nonetheless, their performance
in multilingual contexts and specialized do-
mains remains less rigorously validated, rais-
ing questions about their reliability and gen-
eralizability across linguistically diverse and
domain-specific settings. The second edition
of the Shared Task on Multilingual Multitask
Information Retrieval aims to provide a com-
prehensive and inclusive multilingual evalua-
tion benchmark which aids assessing the ability
of multilingual LLMs to capture logical, fac-
tual, or causal relationships within lengthy text
contexts and generate language under sparse
settings, particularly in scenarios with under-
resourced languages. The shared task consists

of two subtasks crucial to information retrieval:
Named entity recognition (NER) and read-
ing comprehension (RC), in 7 data-scarce lan-
guages: Azerbaijani, Swiss German, Turkish
and Yorùbá, which previously lacked annotated
resources in information retrieval tasks. This
year specifally focus on the multiple-choice
question answering evaluation setting which
provides a more objective setting for compar-
ing different methods across languages.

1 Introduction

Recent advancements in organizing online knowl-
edge facilitated by Large Language Models (LLMs)
have fundamentally reshaped the way we approach
information retrieval. This functionality creates ex-
citing potential for new applications for education
and media supporting seamless access to informa-
tion on diverse subjects. However, this functional-
ity is largely to limited in high-resourced languages,
preventing equal access to potential applications in
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many under-resourced or studied languages across
the world (Yong et al., 2023). Recently, initiatives
for creating standardized benchmarks for evaluat-
ing natural language processing (NLP) systems in
a more linguistically inclusive setting had been pro-
posed by corpora like XTREME (Hu et al., 2020)
and XTREME-UP (Ruder et al., 2023). Although
these data sets bring together large multilingual cor-
pora they lack in generative human prepared data
related to information access.

The 2nd Shared Task on Multi-lingual Multi-task
Information Retrieval (MMIR), provides a bench-
mark for evaluating multi-lingual large language
models (LLMs) in terms of their applicability for
information retrieval in various under-resourced
and typologically diverse languages. Purely con-
structed using human annotated data consisting of
examples of reading comprehension questions and
named entity recognition in various context and
languages, MMIR benchmark presents a challeng-
ing new task for testing and improving LLMs. As
evaluation resource we use Wikipedia which we
find representative of the inclusion of languages
online. We pick five languages with varying de-
grees of resources and linguistic typology from
three different language families: Azerbaijani and
Turkish (Turkic), Igbo and Yoruba, (Niger-Congo)
and Swiss German (Germanic), and produce an-
notations in two tasks crucial for IR: named en-
tity recognition (NER) and reading comprehension
(RC). We present our data curation and annotation
process as well as the findings of the evaluation
in the resulting benchmark including prominent
LLMs trained on multi-lingual multi-task settings:
LLAMA (Dubey et al., 2024), Aya (Üstün et al.,
2024) and Gemini (Reid et al., 2024). Extending
the data sets and competition from 2023, this year’s
edition allowed submissions both in open-ended
and multiple-choice question answering to allow
a more fine-grained and objective analysis. we re-
ceived 3 submissions in the multiple-choice and
2 submissions in the open-ended RC tasks. The
NER task also received 2 submissions. We provide
more details on the data sets and a comparison of
competing systems.

2 Tasks

MMIR shared task provides a multi-task evaluation
format to assess information retrieval capabilities
of LLMs in terms of two tasks: named entity recog-
nition (NER) and reading comprehension (RC).

Narendrabhai Damodardas Modi ni Mínśítà àgbà
India ke.rìnlá àti mínísítà àgbà tí India ló.wó.

ló.wó. lati o.dun 2014. O je. oloselu kan lati
Bharatiya Janata Party , agbari-is.e. oluyo. o.da ara ilu

Hindu kan. Oun ni Prime Minister ako.ko. ni ita ti Ile-
igbimo. jo. ti Orile. -ede India lati s.e.gun awo. n ofin ite. lera
meji pe. lu opoju to kun ati ekeji lati pari die. sii ju o.dun
marun ni o. fiisi le.hin Atal Bihari Vajpayee .

Table 1: Example of named entities in Yorùbá language.
PER , LOC , and ORG are in colours red, green, and

blue respectively. We make use of Label Studio for
annotation (Tkachenko et al., 2020-2022).

2.1 Named Entity Recognition (NER)
Named Entity Recognition (NER) is a classifica-
tion task that identifies text phrases referring to
specific entities or categories (e.g., dates, names
of people, organizations, or locations). This is es-
sential for systems handling entity look-ups for
tasks like knowledge verification, spell-checking,
or localization. Our training data in the shared task
relies on the XTREME-UP dataset (Ruder et al.,
2023) which is the most comprehensive data set
that combines annotated data from MasakhaNER
(Adelani et al., 2021b) and MasakhaNER 2.0 (Ade-
lani et al., 2022) in a wide range of under-resourced
languages including: Amharic, Ghomálá, Bambara,
Ewe, Hausa, Igbo, (Lu)Ganda, (Dho)Luo, Mossi
(Mooré), Nyanja (Chichewa), Nigerian Pidgin, Kin-
yarwanda, Shona, Swahili, Tswana (Setswana),
Twi, Wolof, Xhosa, Yorùbá and Zulu.

The objective of the system is to tag the named
entities in a given text, either as a person (PER),
organization (ORG), or location (LOC). The NER
data this year remains as same with 2023.

2.2 Reading Comprehension (RC)
RC is a challenging task often requiring different
levels of natural language comprehension and rea-
soning for answering a given question based on a
span of information distributed across a given con-
text. Here we focus on the information-seeking sce-
nario where questions can be asked without know-
ing the answer. It is the system’s task to locate
a suitable answer passage (if any). We provide 4
options for each question, where the systems are
asked to pick one of the 4 answers as the correct
one. Examples can be found in Table 2.

Information-seeking question-answer pairs typi-
cally display limited lexical and morphosyntactic
overlap between the question and answer, as they
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Context Question Options

Zaqatala" qәzeti redaksiyası 1923-cü ilin mart
ayından fәaliyyәtә başlamışdır. İlk әvvәllәr "Za-
qatala kәndlisi" adlanan qәzet sonralar "Kolx-
ozun sәsi", "Bolşevik kolxozu uğrunda", "Qır-
mızı bayraq" vә s. başlıqlarla fәaliyyәt
göstәrmişdir. 1991-ci ilin oktyabr ayından isә
"Zaqatala" adı ilә fәaliyyәtini davam etdirir. Hal-
hazırda "Zaqatala" qәzeti redaksiyasında 5 nәfәr
çalışır.

İndi qәzetdә neçә nәfәr
çalışır?

(1) İndi "Zaqatala"
qәzetindә 5 nәfәr
işlәyir. (2) "Zaqatala"
qәzetinin hal-hazırki
işçi sayı 7-dir. (3) İndi
"Zaqatala" qәzetindә
20 nәfәr işlәyir. (4)
"Zaqatala" qәzetinin
işçilәrinin sayı bilinmir.

Noch de jüngere Version isch de Eurytos vom
Herakles töödt woore. Us Raach nämmli, well
de em sini Töchter Iole nöd hett wöle gee, hett
er d Stadt Oichalia eroberet, de Eurytos und all
sini Söö töödt und d Iole graubt.

Was isch de Grund gsi
für di tötig vom Eury-
tos?

(1) Will de Eurytos de
Herakles ermordet het.
(2) Will das eh jüngeri
Version vo de Gschicht
isch gsi. (3) Will de Eu-
rytos am Herakles nöd
sis Töchterli - d Iole -
het welle geh. (4) Will
de Eurytos vom Herak-
les töödt woore isch.

A bi Aisha Adamu Augie ni Zaria, Ipinle Kaduna,
Nigeria, Augie-Kuta je. o.mo.binrin oloogbe Sen-
ator Adamu Baba Augie (oloselu / olugbohun-
safefe), ati Onidajo

˙
Amina Augie (JSC). Augie-

Kuta bere si ni nife
˙

si fo
˙
toyiya nigbati baba re

˙fun u ni kame
˙
ra ni o

˙
do

˙
.

Ki ni ibas.epo
˙

to wa
laarin Aisha Adamu
Augie ati Senator
Adamu Baba Augie?

(1) Aisha Adamu j
ìyàwó Senator Adamu
Baba Augie (2) Aisha
Adamu je

˙
o
˙
mo

˙
fun

Senator Adamu Baba
Augie (3) Aisha Adamu
je
˙

àbúrò Senator Adamu
Baba Augie (4) Aisha
Adamu j o

˙
bàkan Senator

Adamu Baba Augie

Table 2: Examples from the RC validation data in different languages. Correct answers indicated in bold.
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Language Family

Azerbaijani Turkic
Igbo Niger-Congo

Swiss German Indo-European
Turkish Turkic
Yorùbá Niger-Congo

Table 3: List of languages and language families.

are composed independently. This makes them
ideal for evaluating languages with diverse typo-
logical features. In this task, the system receives
a question, title, and passage, and must either pro-
vide the correct answer or indicate that no answer
is present in the passage. Currently, the XTREME-
UP benchmark includes data in Indonesian, Ben-
gali, Swahili, and Telugu (Ruder et al., 2023), re-
quiring competing systems to infer information
from different language annotations. Our bench-
mark also contains correct text answers from 2023
edition (Tinner et al., 2023) for open-ended RC
evaluation. This year we extend the benchmark
in four languages with multiple-choice RC annota-
tions. We allow both types of output for submission
to the shared task.

3 Languages

Table 3 provides an overview of the variety in our
data set in terms of language families.

3.1 Azerbaijani (AZ)

Azerbaijani, part of the Turkic language family, is
mainly spoken in Azerbaijan and Iran. It shares
many linguistic traits with other Turkic languages,
particularly those in the Western Oghuz group like
Turkish, Gagauz, and Turkmen. Azerbaijani fea-
tures agglutinative morphology, uses a Subject-
Object-Verb (SOV) word order, and lacks gender
in its grammar. In Azerbaijan, the Latin script has
been used since 1991, while Iranian Azerbaijanis
use the Arabic script. This study’s data preparation
focuses on texts in the Latin script.

3.2 Igbo (IG)

Igbo, part of the Benue-Congo group within the
Niger-Congo language family, is spoken by over
27 million people, primarily in southeastern Nige-
ria, as well as parts of Equatorial Guinea and
Cameroon. While there are several dialects, Cen-
tral Igbo, standardized in 1962, is the most widely

used. Standard Igbo includes 28 consonants and 8
vowels, with two tones: high (marked by an acute
accent) and low (marked by a grave accent), though
these tones are usually not represented in writing.
Igbo has been featured in various language bench-
marks, such as MasakhaNER (Adelani et al., 2021b,
2022), AfriQA (Ogundepo et al., 2023), Masakha-
POS (Dione et al., 2023), AfriSenti (Muhammad
et al., 2023).

3.3 Swiss German (ALS)
Swiss German, part of the Alemannic dialects
within the Germanic language family, poses a sig-
nificant challenge for multilingual NLP due to its
non-standardized nature. It varies greatly in lexi-
con, phonetics, morphology, and syntax, with no
official orthography. Individuals often write words
based on their interpretation of phonetics, result-
ing in inconsistent spellings. Unlike Standard Ger-
man, Swiss German is not an official language of
Switzerland and is primarily used in spoken or in-
formal contexts, with formal writing done in Stan-
dard German. Due to this, textual resources are
scarce. A notable exception is a text corpus for
PoS tagging, compiled from sources like Aleman-
nic Wikipedia, novels, reports, and articles (Hollen-
stein and Aepli, 2014). Further resources are only
available in spoken format, including the SDS-200
corpus (Plüss et al., 2022), Swiss Parliaments Cor-
pus (Plüss et al., 2020), SwissDial corpus (Dogan-
Schönberger et al., 2021), Radio Rottu Oberwal-
lis corpus (Garner et al., 2014), ArchiMob corpus
(Samardžić et al., 2016), SST4SG-350 (Plüss et al.,
2023).

3.4 Turkish (TR)
Turkish, the most widely-resourced language in
the Turkic family, is known for its agglutinative
morphology and Subject-Object-Verb (SOV) word
order. It has no grammatical gender but includes a
complex case system. Verbs are inflected to show
tense, mood, and person, while personal pronouns
are used for person reference. Key linguistic fea-
tures include vowel harmony, palatalized conso-
nants, and phonemic vowel length, which influ-
ences word meaning. Turkish lacks definite or
indefinite articles, relying on context for clarity.
Despite its uniqueness compared to Indo-European
languages, its use of the Latin script allows for eas-
ier comparisons. Corpus studies in Turkish include
plenty monolingual (Aksan et al., 2012) and par-
allel resources (Tyers and Alperen, 2010; Cettolo
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et al., 2012; Ataman, 2018). Turkish NLP resources
include many inclusive tree banks, such as for
Universal Dependencies (Sulubacak et al., 2016;
Sulubacak and Eryiğit, 2018), semantic parsing
(Şahin and Adalı, 2018) and a WordNET (Ehsani
et al., 2018). It is also included in prominently used
public multilingual benchmarks including the mc4
corpus (Raffel et al., 2019), and it is recognized in
benchmarks, such as for machine translation (Cet-
tolo et al., 2013; Bojar et al., 2017) and morpho-
logical analysis (Pimentel et al., 2021). There are
also annotated resources for Turkish which were
created through automatic annotation using label
transfer from other languages or translating exist-
ing resources, in tasks including natural language
inference (Conneau et al., 2018), NER (Sahin et al.,
2017), and summarization (Scialom et al., 2020).

# Sentences/ # Tokens
# Passages

Lang Task Val Test Val Test

AZ NER 126 124 7,774 8,200
RC-OE 202 291 13,268 25,487
RC-MC 202 291 16,147 31,447

IG NER 711 143 54,526 11,668
RC-OE 202 748 15,620 58,963
RC-MC 202 748 21,987 79,761

ALS NER 130 166 8,761 11,610
RC-OE 202 651 16,949 50,045
RC-MC 202 651 21,113 58,182

TR NER 113 151 7,375 11,736
RC-OE 197 148 16,336 12,384
RC-MC 197 148 22,059 16,169

YO NER 100 303 4,166 11,490
RC-OE 202 673 20,497 67,816
RC-MC 202 673 22,891 79,529

Table 4: Dataset statistics for the validation and test
splits. NER annotations are at the sentence level while
RC questions include passages and questions related to
the passage. RC-MC denote the multiple-choice setting
where the question is accompanied with 4 potential
answers for systems to pick the correct answer.

3.5 Yorùbá (YO)

Yorùbá part of the Volta-Niger subgroup of the
Niger-Congo language family, is spoken by over 45
million people, primarily in southwestern Nigeria,
as well as in Benin and Togo. It ranks among the
top five most spoken African languages, after Nige-
rian Pidgin, Swahili, Hausa, and Amharic (Eber-
hard et al., 2021). Yorùbá makes use of the Latin
script with modified alphabet: it omits the letters

“c,q,v,x,z” and adds “e. , gb, o. , s.”. The language
is tonal, the tones includes high, low, and neutral.
The high (as in à) and low (as in á) tones are in-
dicated when writing texts in the language. The
tones are important for the correct understanding
and pronunciation of the words in Yorùbá. Despite
the importance of the tones, many texts written on-
line do not support the writing of the tonal marks,
and this may pose a challenge on some downstream
NLP applications e.g. machine translation (Adelani
et al., 2021a) and text-to-speech (Ogunremi et al.,
2023).

4 Data Preparation

The textual data for the generative task are based
on Wikimedia downloads1. RC annotations
are prepared by sampling articles, splitting
into paragraph-wise for question and answer
annotations. In the extension of the benchmark this
year, we annotate additional questions and wrong
answer options for creating the multiple-choice
QA setting (Tinner et al., 2023). For the NE
annotation, we ensure we sample only biographical
articles and also only include articles available in
all six languages.
We use Label Studio for RC and NER annotation
(Tkachenko et al., 2020-2022) with the tag set
(Person (PER), Organization (ORG), Location
(LOC)) and ensure an annotation overlap of 2%
for NER. The question-answer pairs were always
produced from two separate annotators. We
recruited two annotators per language, for IG and
TR respectively four annotators contributed, and
five persons annotated YO. The resulting data
statistics for the validation and test splits can be
found in Table 4. The scripts used to obtain the
data, as well as pre- and post-processing methods
required to create and export Label Studio annota-
tion projects is included in this GitHub repository 2.

5 Experimental Methodology

5.1 Baseline Systems
GPT-4 OpenAI (2023) is a large-scale, multi-
modal AI model capable of processing both text
and image inputs to generate text outputs. GPT-
4 achieves human-like performance on various
professional and academic benchmarks. It is a

1https://dumps.wikimedia.org/
2https://github.com/Fenerator/

wikiDataProcessingForQAandNER
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Transformer-based model, pre-trained to predict
the next word in a sequence. A post-training align-
ment phase enhances its factual accuracy and en-
sures it behaves according to specific guidelines.
Key to its development was creating infrastruc-
ture and optimization methods that scale reliably.
The instruction training is based on Reinforcement
Learning from Human Feedback (RLHF), similar
to InstructGPT (Ouyang et al., 2022).

Gemini-1.5 Pro (Reid et al., 2024) is a mid-size
multimodal model optimized for scalability across
various tasks, performing on par with the 1.0 Ultra,
the largest model to date. It introduces a break-
through feature in long-context understanding, with
a standard 128,000 token context window. Built on
cutting-edge research in Transformer and Mixture
of Experts (MoE) architecture, Gemini 1.5 uses
multiple smaller "expert" neural networks instead
of a single large one, enhancing efficiency and per-
formance.

LLAMA-3.2 (Touvron et al., 2023) is a set of
large language models (LLMs) that have been pre-
trained and fine-tuned, with 1B and 3B models
handling multilingual text only, while the 11B and
90B models accept both text and image inputs and
produce text outputs.

Claude 3.5 SonnetV2 is an AI language model
developed by Anthropic, designed to handle com-
plex tasks and conversations while prioritizing user
safety and ethical AI use. It is named after Claude
Shannon, a pioneer in information theory. The
model is built with a focus on creating helpful, hon-
est, and harmless interactions, with an emphasis on
reducing biased or harmful outputs. Its architecture
supports advanced reasoning, summarization, and
in-depth conversations, making it ideal for a wide
range of applications.

Prompt Template

mT0 <CONTEXT> <QUESTION>
GPT-4 I will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>

Table 5: Zero-shot prompt template used to obtain open-
ended answers from the systems.

Prompt Template

mT0 <CONTEXT> <QUESTION>
GPT-4 I will provide you with a passage and a ques-

tion, please provide a precise answer
Passage: <CONTEXT>
Question: <QUESTION>
Answers:
<A> ...
<B> ...
<C> ...
<D> ...

Table 6: Zero-shot prompt template used to obtain an-
swers in the multiple-choice setting.

5.2 Evaluation

We evaluate and report results in the generative
task using ROGUE-L (Lin and Hovy, 2003), chrF
(Popović, 2015), chrF+, chrF++ (Popović, 2017),
and BERTScore (Zhang et al., 2019) F1 computed
with RoBERTaBase (Liu et al., 2019) 3 embed-
dings. Implementation is based on HuggingFace’s
evaluate library4. Overall performance in the NER
task is computed in terms of precision, recall and
F-1 scores using the CoNLL Evaluation Scripts5,
implemented in accordance with (Tjong Kim Sang
and Buchholz, 2000). We obtain a final score per
task and system by weighting the performance per
language inversely by the total number of tokens in
the test sets per language.

5.3 Submissions

The shared task received five submissions in the
NER task, including CUNI-LMU (Charles Univer-
sity and LMU Munich) and McGill (McGill Uni-
versity) with system descriptions, and three sub-
missions without descriptions, labeled as (Ifeoma,
Omkar, SandboxAQ. RC task received three submis-
sions in the multiple-choice QA subtask (RC-MC),
from McGill, SandboxAQ and CUNI, and two sub-
missions in the open-ended RC task by CUNI and
McGill (RC-OE).

6 Results

We evaluate the overall system performance on the
generative task using automatic metrics weighted
by the number of articles in the test set contain-
ing individual context used for answering the RC
questions Table 7 and Table 9. Detailed results per

3https://huggingface.co/roberta-base
4https://github.com/huggingface/evaluate
5https://github.com/sighsmile/conlleval
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System ChrF ChrF+ ChrF++ RougeL BERT F1

Claude 3.5 SonnetV2 0.51 0.50 0.47 0.42 0.89
GPT-4 0.45 0.44 0.42 0.36 0.87
Gemini 1.5 Pro 0.42 0.41 0.38 0.40 0.86
Llama 3.2 90B 0.45 0.43 0.41 0.41 0.87
CUNI 0.48 0.46 0.45 0.42 0.88
McGill 0.33 0.32 0.31 0.36 0.84

Table 7: RC-OE system evaluation. Results indicate weighted average of the metrics over 6 languages. Results are
weighted by the number of paragraphs in the testset.

system and language for the open-ended RC task
are presented in Table 8. We also present NER
results for the system submission in Table 10.

NER The winning system in the NER task is
McGill University system which deploys an en-
semble of XLM-R-Large (Conneau et al., 2020),
AfroXLMR (Alabi et al., 2022), and AfroXLMR-
76L (Adelani et al., 2024) models fine-tuned on
the collection of NER data sets, if we consider
the median performance, winning 4 (out of the 5
languages).

RC-OE The RC-OE task is a competitive chal-
lenge and both McGill and CUNI, although
CUNI has a slightly better performance. In this
case, McGill system is comprised of fine-tuned
mt5-large (Xue et al., 2021) and AfriTeVA V2
large (Oladipo et al., 2023) models, fine-tuned as
ensemble on the publicly available multilingual QA
data sets. CUNI system , on the other hand, uses an
ensemble of LLAMA models and Aya-101 (Üstün
et al., 2024). In the overall evaluation, we find
CUNI system performs best across languages.

RC-MC The winning team for the multi-choice
QA is SandboxAQ achieving an average perfor-
mance of 95% accuracy score. The performance of
the CUNI team is competive with only −2.0 point
less than that of the winner. On the otherhand,
McGill team came third with worse overall result
especially for ALS.

7 Conclusion and Future Work

We presented a new multi-lingual multi-task bench-
mark on information retrieval from Wikipedia in
five languages from typologically-diverse and low-
resourced language families in the open-ended or
multiple-choice QA and NER tasks. We organized
a shared task to call for system development on
this challenging benchmark where we conducted

a detailed analysis on how state-of-the-art LLMs
perform in language understanding and generation
under low-resourced settings. In addition to find-
ing strong evidence on fall backs in both under-
standing and generation capabilities of LLMs in
low-resourced languages, we also find it crucial
to invest in better automatic evaluation metrics for
generation in different languages. While we do not
find this task to be solved, we plan to keep the com-
petition open and promote more investment into the
progress of information retrieval for languages with
non-prominent and low-resourced characteristics.

Limitations

We have presented a multilingual evaluation bench-
mark for information retrieval which was created
relying on Wikipedia articles in different languages.
Using Wikipedia has inherent limitations such as
limitations in variety of content and styles across
languages making it challenging to ensure a uni-
form difficulty level for comprehension questions.
Additionally, relying solely on Wikipedia may in-
troduce biases, as certain languages might have
more comprehensive or detailed articles than oth-
ers. Moreover, evaluating language models on
Wikipedia-centric benchmarks may not fully reflect
their generalization abilities, as the models might
excel at leveraging the more structured and well-
formulated information found on Wikipedia but
may struggle more with more diverse and unstruc-
tured text from other sources. These limitations
underscore the need for diverse and contextually
rich benchmarks to provide a comprehensive as-
sessment of LLMs across multiple languages.

Ethics Statement

All annotators were provided with clear instruc-
tions and guidelines to ensure the responsible and
unbiased annotation of the data. We ensured eth-
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System Language ChrF ChrF+ ChrF++ RougeL BERT F1

CUNI ALS 0.37 0.37 0.34 0.24 0.85
CUNI AZ 0.55 0.55 0.52 0.51 0.92
CUNI IG 0.63 0.63 0.61 0.62 0.91
CUNI TR 0.48 0.48 0.45 0.43 0.90
CUNI YO 0.38 0.38 0.36 0.35 0.86

McGill ALS 0.32 0.31 0.30 0.32 0.84
McGill AZ 0.29 0.27 0.26 0.33 0.85
McGill IG 0.35 0.35 0.34 0.39 0.83
McGill TR 0.24 0.24 0.23 0.26 0.83
McGill YO 0.34 0.34 0.33 0.39 0.84

Claude 3.5 SonnetV2 ALS 0.33 0.34 0.31 0.20 0.84
Claude 3.5 SonnetV2 AZ 0.59 0.58 0.55 0.50 0.91
Claude 3.5 SonnetV2 IG 0.68 0.68 0.66 0.65 0.92
Claude 3.5 SonnetV2 TR 0.51 0.51 0.47 0.41 0.89
Claude 3.5 SonnetV2 YO 0.42 0.41 0.39 0.36 0.86

Gemini 1.5 Pro ALS 0.36 0.35 0.32 0.29 0.84
Gemini 1.5 Pro AZ 0.51 0.50 0.47 0.48 0.90
Gemini 1.5 Pro IG 0.45 0.44 0.42 0.48 0.87
Gemini 1.5 Pro TR 0.42 0.41 0.37 0.35 0.87
Gemini 1.5 Pro YO 0.38 0.37 0.35 0.36 0.86

Llama 3.2 90B ALS 0.41 0.40 0.37 0.32 0.86
Llama 3.2 90B AZ 0.52 0.51 0.48 0.49 0.91
Llama 3.2 90B IG 0.45 0.45 0.44 0.48 0.86
Llama 3.2 90B TR 0.47 0.46 0.43 0.42 0.90
Llama 3.2 90B YO 0.44 0.43 0.41 0.43 0.87

Table 8: RC-OE system evaluations for all languages.

ical practices by providing clear guidelines and
obtaining informed consent. We appreciate their
contributions, and ethical treatment remains a key
focus in our research.

Acknowledgements

We thank Google Deepmind Gemini Academic
Program for the compute provided for conduct-
ing our analysis. We also thank HumanSignal for
providing us access to Label Studio’s Enterprise
version which allowed us execute the large-scale
collaboration to perform human annotations in mul-
tiple tasks. Lastly, we thank Damilola Oluwaseun
Oloyede, Nagihan Lule, Ece Yurtseven, Mehmet
Can Dadan, and Saliha Muradoglu for their contri-
butions to the dataset creation.

References
David Adelani, Hannah Liu, Xiaoyu Shen, Nikita Vassi-

lyev, Jesujoba Alabi, Yanke Mao, Haonan Gao, and
En-Shiun Lee. 2024. SIB-200: A simple, inclusive,
and big evaluation dataset for topic classification in
200+ languages and dialects. In Proceedings of the
18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 226–245, St. Julian’s, Malta.
Association for Computational Linguistics.

David Adelani, Graham Neubig, Sebastian Ruder,
Shruti Rijhwani, Michael Beukman, Chester Palen-
Michel, Constantine Lignos, Jesujoba Alabi, Sham-
suddeen Muhammad, Peter Nabende, et al. 2022.
Masakhaner 2.0: Africa-centric transfer learning for
named entity recognition. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4488–4508.

David Adelani, Dana Ruiter, Jesujoba Alabi, Damilola
Adebonojo, Adesina Ayeni, Mofe Adeyemi, Ayo-
dele Esther Awokoya, and Cristina España-Bonet.
2021a. The effect of domain and diacritics in Yoruba–

372

https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2024.eacl-long.14
https://aclanthology.org/2021.mtsummit-research.6


System ALS AZ IG TR YO Avg.
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Table 9: RC-MC system evaluation. Results indicate weighted average of the metrics over 5 languages. Results are
weighted by the number of paragraphs in the test set.
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pre rec F1 pre rec F1 pre rec F1
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Table 10: Test results for NER. Averages are weighted by number of tokens per language. Best results are in bold.
Avg: Average. Med: Median.
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Manfred Vogel, and Mark Cieliebak. 2023. STT4SG-
350: A speech corpus for all Swiss German dialect
regions. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1763–1772, Toronto,
Canada. Association for Computational Linguistics.

Michel Plüss, Manuela Hürlimann, Marc Cuny, Alla
Stöckli, Nikolaos Kapotis, Julia Hartmann, Mal-
gorzata Anna Ulasik, Christian Scheller, Yanick
Schraner, Amit Jain, Jan Deriu, Mark Cieliebak, and
Manfred Vogel. 2022. SDS-200: A Swiss German
speech to Standard German text corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 3250–3256, Marseille,
France. European Language Resources Association.

Michel Plüss, Lukas Neukom, and Manfred Vogel. 2020.
Swiss parliaments corpus, an automatically aligned

swiss german speech to standard german text corpus.
ArXiv, abs/2010.02810.
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