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Abstract
Despite the recent ubiquity of large language models and their high zero-shot prompted performance across a
wide range of tasks, it is still not known how well they perform on tasks which require processing of potentially
idiomatic language. In particular, how well do such models perform in comparison to encoder-only models
fine-tuned specifically for idiomaticity tasks? In this work, we attempt to answer this question by looking at the
performance of a range of LLMs (both local and software-as-a-service models) on three idiomaticity datasets:
SemEval 2022 Task 2a, FLUTE, and MAGPIE. Overall, we find that whilst these models do give competitive
performance, they do not match the results of fine-tuned task-specific models, even at the largest scales (e.g. for
GPT-4). Nevertheless, we do see consistent performance improvements across model scale. Additionally, we
investigate prompting approaches to improve performance, and discuss the practicalities of using LLMs for these tasks.

Keywords: large language models, idiomaticity detection, prompting, scaling

1. Introduction

Large, pre-trained language models (LLMs) are be-
coming increasingly popular in academic, industrial,
and lay spheres due to their ability to perform well
across a range of tasks in a zero-shot or few-shot
prompting set-up, including question answering,
common-sense reasoning (OpenAI, 2023; Gem-
ini Team, 2023), and machine translation (Xu et al.,
2023; Koshkin et al., 2024; Dabre et al., 2023). De-
spite this, there is yet to be an analysis of how
well such models are able to handle potentially id-
iomatic language. Much previous work has shown
that smaller, encoder-only transformer models have
poor performance in identifying and representing
idiomatic expressions when pre-trained on a large
general dataset (Nandakumar et al., 2019; Gar-
cia et al., 2021). However, the performance of
such models increase hugely when they are fine-
tuned on a task-specific dataset containing a large
number of idiomatic expressions (Madabushi et al.,
2021; Zeng and Bhat, 2021). This fine-tuning pro-
cedure, however, requires dedicated hardware and
training, something that isn’t possible with LLMs on
an academic budget.

In this work, we benchmark the performance of
several widely-used LLMs (using both software-
as-a-service remote implementations and local in-
stances) on three in-context idiomaticity detection
datasets; the idiom portion of FLUTE (Chakrabarty
et al., 2022), MAGPIE (Haagsma et al., 2020), and
SemEval 2022 Task 2a (Tayyar Madabushi et al.,

2022). FLUTE and MAGPIE cover English (EN)
only, while the SemEval dataset also includes ex-
pressions in Brazilian Portuguese (PT-BR) and Gali-
cian (GL).

Overall, our experiments show that large LLMs
give competitive performance on idiomaticity
datasets, which can be generally applied due to
the lack of type specific fine-tuning, but neverthe-
less lag in general behind much-smaller finetuned
encoder-only models. We also find that idiomaticity
detection performance still scales with the number
of parameters in the model. Finally, we discuss
a number of considerations affecting the models’
performance and the practicality of using them for
idiomaticity detection, including the training dataset
and the capability of the model to follow instructions
given in the prompt.

2. Datasets

We investigate the performance of LLMs on three
datasets consisting of potentially idiomatic expres-
sions in context. The datasets are chosen to pro-
vide a diverse set of potentially idiomatic expres-
sions which feature a range of morphological forms
and variations across two different tasks: textual
entailment and idiomaticity detection. 1,859 dif-
ferent English target expressions are represented
across the three datasets. We focus on English,
but the inclusion of Semeval 2022 Task 2a allows
us to additionally explore performance across lan-
guages.
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2.1. FLUTE
FLUTE (Chakrabarty et al., 2022) frames the un-
derstanding of four kinds of figurative language
(sarcasm, simile, metaphor and idioms) as a nat-
ural language inference (NLI) task, in which pairs
of literal and figurative sentences are labelled as
either entailing or contradicting one another. The
sentence pairs are generated using a model-in-the-
loop approach, with base text generated by GPT-3
which is then edited by crowdworkers and reviewed
by experts.

For our analysis, we consider only the idiom sec-
tion of the FLUTE dataset, which consists of 1,768
training examples across 479 idioms and a further
250 test examples across 69 idioms. No idiom
appears in both the training and test sets.

Chakrabarty et al., 2022 provide benchmark per-
formance metrics using T5 models (Raffel et al.,
2020) on the FLUTE training data, reporting 79.2%
accuracy (0.791 macro-F1). A FigLang22 shared
task using the FLUTE dataset (Saakyan et al.,
2022) attracted several entries, with the best-
performing systems developed by (Gu et al., 2022)
and (Bigoulaeva et al., 2022). The latter adopt a
pipeline approach, improving the T5 baseline by
sequentially fine-tuning on e-SNLI dataset (Cam-
buru et al., 2018) and IMPLI (which incorporates
figurative language) (Stowe et al., 2022), followed
by the task dataset. Using the authors’ published
outputs, we calculate a macro-average F1 of 0.952
on the idiom portion of the FLUTE test set.

2.2. SemEval 2022 Task 2a
SemEval 2022 Task 2a (Tayyar Madabushi et al.,
2022) is a binary classification idiomaticity detec-
tion task, in which a potentially idiomatic noun com-
pound, as used in a given context sentence, must
be labelled as either literal or idiomatic. The dataset
includes compounds across a range of idiomaticity,
including fully compositional (insurance company)
as well as partially (eager beaver) and entirely
opaque (sugar daddy) items. The task offers both
“one-shot" and “zero-shot" settings; the former is
evaluated with new context instances of previously-
seen items, while the latter uses compounds not
present in the training data for evaluation.

The test set for the task contains 50 compounds
each in English (with 916 instances), Brazilian
Portuguese (713 instances) and Galician (713 in-
stances).

Table 1 shows the macro-F1 scores in the zero-
shot and one-shot settings for the baseline mod-
els (fine-tuned multilingual mBERT, per Madabushi
et al., 2021) and the best-performing entries to the
shared task1.

1For the one-shot setting, the best-performing model
is a fine-tuned multilingual XLM-RoBERTa, as described

Setting Reference
Language

EN PT GL All

Zero-Shot Best 0.902 0.828 0.928 0.890
Baseline 0.707 0.680 0.507 0.654

One-Shot Best 0.964 0.894 0.937 0.939
Baseline 0.886 0.864 0.816 0.865

Table 1: Reference scores (Macro F1) for
SemEval 2022 Task 2a.

2.3. MAGPIE
MAGPIE (Haagsma et al., 2020) is a corpus of
instances of potentially idiomatic expressions (PIEs
– expressions which have multiple senses, including
at least one with a high level of idiomaticity), in
which each instance has been annotated as either
idiomatic, literal, or other (proper noun, etc.) by a
group of crowd-sourced workers. The PIEs in the
dataset are chosen from three online dictionaries
and so have a wide range of forms and frequencies.

The final dataset consists of 56,622 annotated
instances, of which 70% are idiomatic, 28% are
literal and 1% are other. In our experiments we use
the test split of the randomly split dataset, which
has 4,840 instances across 1,134 PIEs).

Haagsma et al. (2020) do not provide baseline
models for the MAGPIE data, but several bench-
marks are provided by Zeng and Bhat (2021).

2.4. Construction Artifacts
Recent work by Boisson et al. (2023) has found
that language models tuned for metaphor identifi-
cation (in which they include idiomaticity detection)
on artificially-constructed datasets (i.e. those not
sampled from ‘naturally-occurring’ text) can perform
well when the target expression or the surrounding
context are hidden from the model, “in both cases
close to the model with complete information".

As our experiments employ pre-trained LLMs
without fine-tuning for the idiomaticity detection
task, we anticipate that the concerns highlighted
by Boisson et al. (2023) should not affect our find-
ings. While the training regimes for many of the
models we examine are not public, it seems likely
that they have consumed large quantities of train-
ing data containing ‘naturally distributed’ idiomatic
expressions.

It is also worth noting that we can not rule out the
possibility that these LLMs’ training data includes
the training or test datasets under evaluation2, and
it is likely (for SemEval and MAGPIE) that the con-
text sentences could have been ‘seen’ by the mod-

in Chu et al. (2022).
2The SemEval test set is publicly available only with-

out labels; FLUTE and MAGPIE are public.
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els during training (albeit without idiomaticity mark-
ers), as they are taken from online sources.

3. Models

To be able to compare results from a range
of currently-available LLMs, we evaluate both
software-as-a-service (SaaS) and local instances
of open models. To maximise applicability of our
findings to researchers, we focus on local instances
that can be run on consumer-level hardware (target-
ing a machine with 32GB RAM and 12GB VRAM).

Table 2 summarises the models used in our ex-
periments, including the parameter count (where
available), cost to run for SaaS models, and
whether the training dataset is multilingual.

Model Params (billions) Cost ($US per 1000 tokens) Multilingual
GPT-3.5-turbo Unknown 0.0005 Y

GPT-4-turbo Unknown 0.01 Y
GPT-4 Unknown 0.03 Y

Gemini-1.0 Pro Unknown 0.000125 Y
Llama2-7B-chat 7 N/A N

Llama2-13B-chat 13 N/A N
Llama2-70B-chat 70 N/A N

Phi-2 2.5 N/A N
Mistral-7B 7 N/A N

Flan-T5-Small 0.08 N/A Y
Flan-T5-Base 0.25 N/A Y
Flan-T5-Large 0.78 N/A Y

Flan-T5-XL 3 N/A Y
Flan-T5-XXL 11 N/A Y

Table 2: Characteristics of the models evaluated.

3.1. Software-as-a-service Models

3.1.1. OpenAI

OpenAI models are seen to be the current state
of the art in SaaS models. GPT-4 (OpenAI, 2023),
their current largest model, has been shown to
achieve or exceed human-level performance in a
number of commonly used benchmarks. We eval-
uate GPT-3.5-turbo (gpt-3.5-turbo-0613), GPT-4-
turbo (gpt-4-0125-preview) and GPT-4 (gpt-4) in
this work. GPT-3.5 is a smaller model created as a
test run during the development of GPT-4, and GPT-
4-turbo is an optimised and more recent variant of
GPT-4. The parameter counts for these models
are not known, but it is assumed that GPT-4 is
substantially larger than GPT-3.5.

3.1.2. Google

Google provides access to a number of models
of varying size and price through its VertexAI API.
In this work we evaluate the performance of the
Gemini Pro 1.0 model. Gemini Pro is trained on
a multimodal and multilingual dataset and its per-
formance exceeds that of GPT-3.5 on a number of
benchmarks (Gemini Team, 2023).

3.2. Local Models
Additionally, we evaluate the performance of popu-
lar open models that can be run locally. The mod-
els chosen are the Llama2 models, (Touvron et al.,
2023) Llama2-7B-chat and Llama2-13B-chat, Phi-2
(Li et al., 2023; Abdin et al., 2023), and the Capy-
baraHermes3 variant of Mistral-7B (Jiang et al.,
2023).

To ensure that the models can be run on
consumer-level hardware we use quantized vari-
ants of each model with 7B or more parameters.
Quantization (Dettmers et al., 2022; Frantar et al.,
2023) involves converting each parameter from full
16-bit floating point numbers to a set of 2n discrete
values. This massively reduces the size of the
models so they can be run on a wider range of
hardware, with a trade-off of lower performance.
We use Q5_K_S quantisation variants, which
use 5-bit quantization, provided by TheBloke on
Huggingface4. 5 bit quantization has been shown
to have minimal impact on the performance of the
model5.

To run the models we use the Huggingface trans-
formers library (Wolf et al., 2020) for Phi-2 and
llama.cpp6 for all the quantized models.

3.3. Multilingual Models
We also explore the performance of multilingual
models. In particular, we target our exploration to
variants of the Flan-T5 models (Chung et al., 2022):
Flan-T5-Small, Flan-T5-Base, Flan-T5-Large, Flan-
T5-XL, and Flan-T5-XXL.

We are interested in how multilingual models’
performance on idiomatic language-related tasks
differs from monolingual ones. Moreover, we want
to investigate the extent to which the performance
is impacted by model size.

4. Results

Our main results across the three datasets (using
our default prompts) are shown in Table 3. To make
our results representative and generalisable, we
ran the models multiple times, where not computa-
tion or cost prohibitive – all of the Flan models were
run three times, whilst the Gemini Pro and GPT-3.5
models were run twice on SemEval, which is par-
ticularly important for reducing the variance of the
results when testing different prompting methods;
all other models were run once only.

3https://huggingface.co/argilla/Capyb
araHermes-2.5-Mistral-7B

4https://huggingface.co/TheBloke
5See https://github.com/ggerganov/llama

.cpp/pull/1684.
6https://github.com/ggerganov/llama.c

pp

https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B
https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B
https://huggingface.co/TheBloke
https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
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SemEval FLUTE MAGPIE
GPT-3.5-Turbo 0.645 0.820 0.559
GPT-4-turbo 0.668 0.936 0.860
GPT-4 0.636 0.936 0.896
Gemini 1.0 Pro 0.672 0.924 0.721
Phi-2 0.447 0.458 0.531
Llama2 (7B-chat) 0.479 0.373 0.314
Llama2 (13B-chat) 0.505 0.602 0.483
CapybaraHermes-2.5-Mistral-7B 0.539 0.812 0.587
Flan-T5-Small 0.333 0.333 0.203
Flan-T5-Base 0.390 0.764 0.213
Flan-T5-Large 0.424 0.872 0.290
Flan-T5-XL 0.452 0.956 0.456
Flan-T5-XXL (11.3B) 0.514 0.940 0.753
baseline 0.654 0.791 0.872
best 0.890 0.952 0.955

Table 3: Main results of our models across the three idiomaticity datasets. All results presented are
macro-average F1 scores over the two classes. Baseline results are taken from Madabushi et al. (2021),
Chakrabarty et al. (2022) and Zeng and Bhat (2021). ‘Best’ results (in all cases using models fine-tuned
on the task training data) are taken from Chu et al. (2022), Bigoulaeva et al. (2022) and Zeng and Bhat

(2021). For SemEval, the ‘zero-shot’ setting is reported.

Comparing the results with the baseline and best-
performing models, we can see that while the per-
formance of large, contemporary LLMs may be
higher than out-of-the-box encoder-only models,
there is still a gap between them and the results
which can achieved by encoders fine-tuned to the
particular tasks. However, given the work of Bois-
son et al. (2023) on construction artifacts within
datasets for idiomaticity detection, the ability of
LLMs to disambiguate a wide-range of PIEs without
additional fine-tuning shows the general ability of
these models to detect idiomaticity, which may not
have been achieved by fine-tuned encoders.

4.1. Model Scaling

With the exception of the Mistral-7B model, there
is a significant gap in performance between the
smaller, locally-run models and the larger SaaS
models. We can also see the same trend for
our Llama2 models, where the larger Llama2-13B
model outperforms the smaller Llama2-7B one on
all datasets and splits. From the results of the Flan-
T5 model variants, as shown in Figure 1, there is
a clear trend that increasing model size leads to
improved performance. This trend appears to slow
down somewhat after model size reaches around
3B parameters (Flan-T5-XL), though performance
on the MAGPIE dataset continues to grow.

Figure 1: Performance on the three datasets for
different Flan-T5 model sizes.

4.2. Prompts

Due to the differing input formats required by the
various models, we use slightly different prompts.
Here, we show our default prompts used for the
GPT models. For SemEval and MAGPIE, we use:

“Disambiguate whether the given expression is
used idiomatically or literally in the given context,
returning ’i’ if the expression is being used idiomat-
ically or ’l’ if literally. Expression: <PIE>. Context:
<target sentence>. Only return one letter (i or l).”

For the FLUTE entailment task, we use:
“Disambiguate whether the second sentence fol-

lows from the first, returning ’entailment’ if it does,
and ’contradiction’ if not. Sentence 1: <premise
sentence> Sentence 2: <hypothesis sentence>.”
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EN
Default 0.739
“Expert in language use” 0.635
“Expert in language use” + Idiomatic vs. Compositional 0.717
“Expert in Idiomatic Language” 0.538
No “Only return one letter (i or l).” 0.633

Table 4: Results (macro F1) on the English test
set of SemEval with GPT-3.5-turbo using prompt

engineering.

4.3. Prompt Engineering
We investigate the effect of several prompt vari-
ations on performance for GPT-3.5-turbo on the
English SemEval test set. As part of the OpenAI
API, there are two prompts: “system” and “user”.
We first tried using the system prompt to define the
task for the model, but obtained better performance
using only the user prompt – this aligns with the
experiences of others that GPT-3.5 often doesn’t
follow the system prompt well, unlike GPT-47.

We present our results for this in Table 4. Note
that variation between runs using the same prompt-
ing strategy is high (up to 0.04 F1), which leads
to difficulty in discerning the effect of changing the
prompt.

Expert impersonation is motivated by work which
has shown that prompting LLMs to impersonate
domain experts can lead to higher performance
(Salewski et al., 2024). As such, we tried two ap-
proaches; starting the prompt with “You are an ex-
pert in language use.” or “You are an expert in
idiomatic language.”. However, we find that nei-
ther of these approaches lead to improved perfor-
mance. Interestingly, replacing the word “Literal"
with “Compositional" did seem to have a positive
effect. We found that removing the instruction to ex-
plicitly return only one letter (‘i’ or ‘l’) led the model
to occasionally return other outputs, which causes
a drop in performance (as we treat such responses
as invalid). For the English subset, this is the case
for 3% of outputs (28 out of 916 examples).

4.3.1. Language Prompts

Since SemEval has test data in English, Por-
tuguese, and Galician, we experiment with a) ex-
plicitly stating the language of the sentence in the
prompt, and b) translating the prompt using a com-
mercial machine translation tool. We perform this
analysis for GPT-3.5-turbo, Gemini 1.0 Pro, and
Flan-T5-XXL, with results shown in Table 5.

For Gemini 1.0 Pro and Flan-T5-XXL we see per-
formance improvement for Galician under both of

7https://community.openai.com/t/what-i
s-the-difference-between-putting-the-a
i-personality-in-system-content-and-i
n-user-content/194938

GPT-3.5-turbo Gemini 1.0 Flan-T5-XXL
PT GL PT GL PT GL

Default 0.553 0.587 0.582 0.604 0.464 0.411
Language Prompt 0.554 0.604 0.561 0.640 0.479 0.457
Translated 0.541 0.512 0.549 0.665 0.573 0.477

Table 5: GPT 3.5-turbo, Gemini 1.0, and
Flan-T5-XXL results for Portuguese and Galician

on SemEval using multilingual prompts.

these approaches, with higher performance when
translating the prompt. We hypothesise that both
English and Portuguese are likely well-represented
in the model training data, and LLMs in general
work well in multilingual settings (Shi et al., 2022).
However, Galician is likely to be both rare and poten-
tially confused with Portuguese when the language
is not specified, or when there is less text in that
language available in the prompt. It would be inter-
esting to experiment further with similar language
pairs.

Not shown here is that we recorded reduced per-
formance for English across all three models when
specifying the language in the prompt (0.739 to
0.674 for GPT-3.5-turbo, 0.771 to 0.732 for Gem-
ini 1.0 Pro, 0.716 to 0.706 for Flan-T5-XXL). It is
possible that additional prompt tokens specifying
the language may act as a ‘distractor’ when it is the
de facto default, and the nature of the generative
models means that we can anticipate variation in
responses to identical prompts.

4.4. Few-shot Prompting
The “one-shot” setting of SemEval 2022 Task 2a
(in which further examples of the target PIE in con-
text are made available) allows for the investiga-
tion of passing examples to the model through the
prompt. We thus experiment with doing so for GPT-
3.5-turbo, Gemini 1.0 and Flan-T5-XXL. We try two
configurations: passing one example per PIE (one-
shot), and passing all the examples that are avail-
able in the dataset (few-shot)8. These results are
shown in Table 6.

Interestingly, the impact of few-shot prompting
varies across the models. Flan-T5-XXL benefits
the most from this, with stark and consistent perfor-
mance improvements across the three settings and
across all three languages – the overall F1 jumps
from 0.580 in the Zero Shot setting to 0.805 in the
Few Shot setting.

Further to this we analyse the performance of
all size Flan-T5 models, and present a heatmap
illustrating the impacts on performance stemming
from zero-shot and few-shot scenarios in Table 7.

8Where available, the one-shot training data has one
idiomatic example for each PIE, and one literal example.
However, for some PIEs just one of these is present.

https://community.openai.com/t/what-is-the-difference-between-putting-the-ai-personality-in-system-content-and-in-user-content/194938
https://community.openai.com/t/what-is-the-difference-between-putting-the-ai-personality-in-system-content-and-in-user-content/194938
https://community.openai.com/t/what-is-the-difference-between-putting-the-ai-personality-in-system-content-and-in-user-content/194938
https://community.openai.com/t/what-is-the-difference-between-putting-the-ai-personality-in-system-content-and-in-user-content/194938
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Model Setting EN PT GL All

Gemini Pro 1.0
Zero-shot 0.766 0.590 0.600 0.672
One-shot 0.706 0.625 0.711 0.688
Few-shot 0.685 0.642 0.745 0.693

GPT-3.5-turbo
Zero-shot 0.739 0.563 0.579 0.645
One-shot 0.645 0.542 0.553 0.594
Few-shot 0.686 0.545 0.566 0.614

Flan-T5-XXL
Zeroshot 0.629 0.464 0.411 0.514
Oneshot 0.810 0.665 0.732 0.749
Fewshot 0.845 0.713 0.828 0.805

Best Zero-shot 0.964 0.894 0.937 0.939

Table 6: Results on SemEval using few-shot
prompting.

Small Base Large XL XXL

Oneshot (EN) 0.432 0.079 0.199 0.348 0.182
Oneshot (PT) 0.388 0.011 0.227 0.228 0.202
Oneshot (GL) 0.526 0.049 0.053 0.185 0.321
Oneshot (ALL) 0.443 0.054 0.162 0.264 0.235

Fewshot (EN) 0.516 -0.003 0.332 0.404 0.217
Fewshot (PT) 0.391 0.000 0.093 0.285 0.249
Fewshot (GL) 0.576 0.000 0.137 0.354 0.417
Fewshot (ALL) 0.489 -0.001 0.227 0.352 0.291

Table 7: Enhancements in Macro F1 scores
(positive values) and declines (negative values)
when compared to the performance in zero-shot

conditions across all Flan-T5 models.

The smallest models benefited the most from
seeing one or more examples before inference. In
the best cases, performance in English improved
by 0.432 in the one-shot setting and 0.516 in the
few-shot setting. Interestingly, few-shot prompt-
ing can be seen to improve performance across
Portuguese and Galician examples in all model
settings, apart from T5-FLAN-Base and Large
where there is little, or no improvement. It appears
that Flan-T5-Base seems to be least improved by
prompting with examples, with a negative effect
on performance in few-shot prompting settings. In
the one-shot setting, improvement in model perfor-
mance is minor. The Large, XL and XXL models
also benefited from one- and few-shot prompting,
with Flan-T5-XL seeing the most performance en-
hancement. It appears that whilst models follow
“bigger is better" in zero-shot settings, they do not
necessarily follow this pattern under one/few-shot
prompting. In fact, the best performance in the few-
shot setting is with T5-Small, which at only 80M pa-
rameters achieves an overall F1 of 0.821, the best
performance of any of the models we have eval-
uated in this paper. This is in significant contrast
to performance on MAGPIE and FLUTE, where
zero-shot performance is very low. The model is
likely learning some artefacts from the data such
as predicting only one label for a given PIE in the
SemEval dataset.

Gemini 1.0 Pro also achieves consistent (though
smaller) performance improvements from Zero

Shot to One Shot to Few Shot, but the performance
for English reverses this pattern. We also see a
big jump in performance between Zero Shot and
One Shot for Galician, which we again attribute
to the rarity of this language and its similarity with
Portuguese.

GPT-3.5-turbo is hindered by providing examples.
The reasons for this are unclear, but this may be
linked to the inability shown by GPT-3.5 to follow
system prompts. If the model is not successfully
following longer prompts then they may effectively
introduce noise and lead to worse performance, as
we saw when comparing results with and without
system prompts.

5. Discussion

5.1. Task Labelling
The majority of the models we examined achieved
high performance on the FLUTE dataset. We at-
tribute this to the nature of FLUTE’s evaluation be-
ing distinct from MAGPIE and SemEval. For the
latter two, the model is asked to label ‘idiomatic’ or
‘literal’ use of a given idiom, whereas, in the FLUTE
STS task, the model is required to pick out the con-
tradiction or entailment relationship between two
sentences.

This means that a model might not necessarily re-
quire ‘knowledge’ of the target idiom to succeed, but
could determine the relationship between the two
sentences from other information, as facilitated by
contextualised embeddings (Boisson et al., 2023).
Moreover, the model is likely to have encountered
similar tasks during its pre-training. Flan-T5 models
are instruction-refined versions of T5 (Raffel et al.,
2020; Chung et al., 2022), that have undergone
exposure to over 1000 tasks during its fine-tuning
process alone. Among these tasks are evaluations
of entailment and contradiction judgments, akin to
FLUTE, such as SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), CB (de Marneffe et al., 2019)
and numerous other reasoning tasks (for details
see Raffel et al., 2020; Chung et al., 2022).

5.2. Practicalities
In contrast with fine-tuned classification models,
as prompted models are capable of open-ended
generation, they may not output a response in the
format requested. While the output may be readily
interpretable by a human reader, this is not practi-
cal when evaluating large numbers of responses.
Prompting for specific formats is easier for mod-
els which have undergone more instruction tuning
(Ouyang et al., 2022; Rafailov et al., 2023), and is a
key reason why the Mistral-7B model outperforms
the Llama2 7B variant.
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Prompted, generative models produce outputs
which are subject to variation when they are repeat-
edly given the same prompt. While the user may
have some control over this behaviour through ‘tem-
perature’ parameters, this variability is inherent to
generative models. When converting the outputs of
such models to a labelling decision, this variability
will also affect the results.

Despite their generally higher performance than
the local models and their advantages when it
comes to prototyping, there are a number of con-
siderations specific to SaaS models which may be
significant. These include:

1. Cost – The larger models have a higher per-
1000-tokens cost, which may lead to some
evaluations being cost-prohibitive. Evaluating
GPT-4 on the (relatively small) SemEval test
set, for example, costs $11. Running evalua-
tion on this model, especially across multiple
runs for prompt tuning, etc. may potentially
price out researchers with lower budgets.

2. Safety Features – Commercial SaaS models
frequently include features designed to limit
models and users’ capability to process or gen-
erate content which may cause harm. These
features may also impact on researchers’ abil-
ity to use the tools, as they produce what are ef-
fectively false positives. For example, when us-
ing the VertexAI API for experiments with Gem-
ini Pro, the API consistently refused to gener-
ate responses for a small number of prompts.
These included certain contexts for the expres-
sion street girl which referred to prostitution or
sexualization, but also the FLUTE sentence
pair “Your brother is mature and behaves in an
adult manner. Your brother is a big baby." for
the expression to be a big baby9. We treat any
such responses as incorrect in our statistics.

3. Service Changes – Changes to the underlying
model can be made by the third party at any
time, and can significantly impact the perfor-
mance of the models and the consistency of
results. Whilst undertaking this work the de-
fault gpt-3.5-turbo model changed from one
released in June 2023, to one released in Jan-
uary 2024.

4. Rate limits – For larger datasets, the rate lim-
its of commercial APIs can become an issue.
As it is still not fully released, for a significant
amount of time during the creation of this work,
the daily rate limit for GPT-4-turbo was lower
than the number of tokens in MAGPIE, which
prevented us from completing any evaluation
runs for this model and dataset combination.

9Replacing the word ‘adult’ with ‘grown-up’ convinced
the service to generate a response.

6. Conclusion

In this work we have evaluated the performance of
various large language models on three idiomatic-
ity datasets (SemEval 2022 Task 2a, FLUTE, and
MAGPIE). We have investigated locally-run mod-
els up to 13B parameters, as well as significantly
larger models (GPT-3.5, GPT-4, and Gemini 1.0
Pro) accessed through commercial APIs. We per-
form an extensive analysis of the impact of sev-
eral factors on performance; model size, prompt
engineering and few-shot prompting. In addition,
we discuss considerations for practitioners wish-
ing to use these models in their own work, with
emphasis on cost and practicalities such as the
variability of outputs and the impacts of decisions
made by the companies operating these services.
Our overall findings are as follows: 1) LLMs at the
highest scale are able to achieve competitive re-
sults for idiomaticity detection, and performance
on FLUTE in particular seems to have saturated,
but these general models do not match the per-
formance of (much-smaller) encoder models fine-
tuned for the specific idiomaticity detection tasks
of SemEval and MAGPIE. 2) The performance of
prompted, generative LLMs seems to scale con-
sistently with parameter count for these datasets,
indicating the potential of even bigger models to
achieve further increases in performance. 3) While
they are based on a relatively small set of examples,
our experiments with multilingual models suggest
that performance gains can be obtained by speci-
fying the target language, translating prompts and
by providing examples. However, the efficacy of
these modifications depends on the model used
and the language in question; they appear to harm
performance for English (which is, presumably, the
most-represented language in the model training
regimens) while producing the largest benefit for
the much rarer Galician.
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