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Abstract
In neural dependency parsing, as well as in the broader field of NLP, domain adaptation remains a challenging
problem. When adapting a parser to a target domain, there is a fundamental tension between the need to make use
of out-of-domain data and the need to ensure that syntactic characteristic of the target domain are learned. In this
work we explore a way to balance these two competing concerns, namely using domain-weighted batch sampling,
which allows us to use all available training data, while controlling the probability of sampling in- and out-of-domain
data when constructing training batches. We conduct experiments using ten natural language domains and find that
domain-weighted batch sampling yields substantial performance improvements in all ten domains compared to a
baseline of conventional randomized batch sampling.
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1. Introduction

Dependency parsing, like many other machine
learning problems, is sensitive to domain shifts
between training and test data sets (Gildea, 2001;
Petrov and Klein, 2007). To combat the negative
effects of domain shifts when training a parser, sev-
eral domain adaptation techniques have been stud-
ied (e.g., Rosa and Žabokrtský, 2015), although
their effectiveness is often limited (e.g., Dredze
et al., 2007).

A major factor that determines the success of
domain adaptation methods is the amount of train-
ing data that is available in the adaptation-target
domain (e.g., Daumé III, 2007; Dredze et al., 2007).
To overcome the frequent problem of scarcity of
target-domain training data, common techniques
in parsing focus on selecting optimal source data
points to boost performance in the target domain
(Plank and van Noord, 2011; McDonald et al., 2011;
Mukherjee and Kübler, 2017), with both delexical-
ized (Rosa and Žabokrtský, 2015) and lexicalized
(Falenska and Çetinoğlu, 2017) similarity metrics
showing improved data point selection.

Furthermore, to more effectively use all available
source- and target-domain data, discrepancies in
sizes between data sources have been handled
using loss weighting on the different data sources
(Dakota et al., 2021), allowing for noise reduction
and improved information sharing.

Other approaches for encoding more domain-
related information into a parser are to create data-
or task-specific embeddings (Stymne et al., 2018; Li
et al., 2019, 2020), which yield performance gains
across languages and domains. While the further
inclusion of language models into parsing architec-
tures noticeably reduces performance gaps across
domains, it still cannot fully overcome syntactic dif-

ferences (Joshi et al., 2018; Fried et al., 2019; Yang
et al., 2022). The situation is further complicated by
the fact that the source and target domains may be
different from those of the language model (Dakota,
2021).

We focus on a setting in which we have access
to a small amount of annotated data from the target
domain. In order to address the size difference be-
tween the data available for the target domain and
other domains, we investigate a method that allows
the use of all available source and target data dur-
ing training, thus maximizing the available signal.
More specifically, we use domain-weighted batch
sampling (DWBS) to train a domain-expert neural
dependency parser as an alternative to the con-
ventional approach of randomized batch sampling
(RBS).

Since we use some target domain data for train-
ing in our experiments, existing naming conventions
are not easily usable. For this reason, we call data
from the target domain in-domain data and data
from all other domains out-of-domain data (i.e., any
domain that is not the adaptation-target domain);
we also use source data as a synonym for out-of-
domain data. Note that our sampling strategy can
also be used when we do not have any in-domain
data but can determine the most similar domain
among the out-of-domain data.

Our experiments are designed to answer the fol-
lowing two questions:

1. Can we improve parser performance, given
a training data imbalance between in-domain
and out-of domain data, by replacing the stan-
dard batch sampling approach (i.e., RBS) with
DWBS, which uses all available training data
but favors training sentences drawn from the
target evaluation domain?
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2. Does DWBS yield faster training times than
RBS? In other words, does DWBS reduce the
number of sample sentences that a parser
must observe before dev loss stops decreas-
ing?

2. Domain-Weighted Batch Sampling

2.1. Batch Sampling
When training a neural network, there are several
approaches that can be taken to creating batches,
and the chosen approach will impact how a network
converges, memory requirements, and possible
performance among other effects on the model.

The simplest way of creating a batch is to select
training samples in the order in which they appear
in the training data file, which is called sequen-
tial batch sampling (SBS). However, this strategy
may not be optimal since it repeatedly exposes
the network to the same sequence of examples
and thus may cause the network to indirectly learn
specific batch characteristics that are not represen-
tative of the task as a whole (Chollet, 2018), which
can result in catastrophic forgetting (French, 1999;
Dachapally and Jones, 2018). Consequently, it is
more common to create randomized permutations
of the training data at the beginning of every epoch,
which is called randomized batch sampling (RBS).

2.2. Domain-Weighted Batch Sampling
To leverage in-domain and all out-of-domain data,
we extend RBS to domain-weighted batch sampling
(DWBS). This allows for better inclusion of multi-
source out-of-domain data, while still permitting
the target domain to maintain higher influence on
optimization.

To perform DWBS, before training begins the
training data set is partitioned into disjoint in-
domain and out-of-domain subsets. For each
epoch, random permutations of the in-domain and
out-of-domain subsets are separately generated.
Each batch is then constructed by drawing sen-
tences (without replacement) from the two permu-
tations until the batch size is reached. We use the
hyperparameter µ to define the probability of choos-
ing the next sentence from the in-domain permuta-
tion. For example, if µ is equal to 0.45, there is a
45% chance of drawing the next sentence from the
target (in-domain) permutation and 55% of drawing
from the source (out-of-domain) permutation.

During an epoch, eventually we will attempt to
draw from a permutation in which no sentences
remain, at which point the current partially con-
structed batch is discarded and the current epoch
is complete. A side-effect of the DWBS procedure
is that different epochs may have different durations
in terms of number of batches.

Hyperparameter Value
Optimizer Adamw
β1, β2 0.9, 0.99
Correction bias False
Learning rate 0.0001
Weight decay 0.01
Gradient normalization 1
LR scheduler Slanted triangular
Cut fraction 0.2
Decay factor 0.38
Discriminative fine tuning True
Gradual unfreezing True
Batch size 32
Patience batches 200
Max steps 153,600
Embeddings bert-base-cased
Embeddings dim 768

Table 1: Hyperparameters

3. Methodology

3.1. Data

We use Universal Dependency treebanks version
2.12 (Nivre et al., 2020; de Marneffe et al., 2021),
more specifically the English Web Treebank (EWT;
Bies et al., 2012) and the Georgetown University
Multilayer Corpus (GUM; Zeldes, 2017). EWT con-
sists of five domains, and GUM consists of eleven
domains.

From the sixteen domains of EWT and GUM, we
select only the ten domains that each have a mini-
mum of 1000 sentences, to limit negative effects
during training due to different data sizes across
domains. This includes all five of the EWT domains:
answers, email, newsgroup, reviews, weblogs; and
five from GUM: conversation, fiction, interviews,
vlog and whow. We then randomly sub-sample
only 1000 sentences from each domain to create
a balanced data set.

All of our experiments use ten-fold cross valida-
tion, where, for each fold, each domain is split into
800 train, 100 dev, and 100 test sentences. Conse-
quently, when training each domain-expert parser,
there are a total of 8000 train sentences (800 in-
domain and 7200 out-of-domain), and 100 dev and
100 test sentences (all of these in-domain).

3.2. Parser

We use the deep biaffine attention neural depen-
dency parser (Dozat and Manning, 2017) in the im-
plementation by van der Goot et al. (2021b), which
we have modified to allow for DWBS. When train-
ing the parser, we use the default hyperparameters
provided by van der Goot et al., with the only excep-
tion being that we specify early-stopping patience
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(a) Performance of “EWT reviews” parsers

(b) Performance of “GUM fiction” parsers

(c) Parser performance averaged over all ten domains

Figure 1: Performance of the DWBS-trained domain-expert parsers on “EWT reviews” (a), “GUM fiction”
(b), and averaged over all ten domains (c). X-axis: domain-weight hyperparameter µ; y-axis: parser
performance in LAS. Because in our experimental setup we use use ten domains of equal size, whenever
µ = 0.10, DWBS is equivalent to conventional RBS; therefore, in each chart we highlight the baseline
RBS-trained parser in blue, and we highlight the best performing DWBS-trained parser(s) in green.

in terms of batches rather than epochs, because,
when DWBS is enabled, epoch duration varies with
µ and it is also subject to random variation (see
Section 2.2). Batch size, on the other hand, is
a fixed hyperparameter. All hyperparameters are
reported in Table 1.

For each domain, and for each of the ten data
folds, we use the dev sentences to determine when
to stop training, and we then use the test sentences
to evaluate. We evaluate using the scorer from the
CoNLL 2018 shared task (Zeman et al., 2018).

4. Results

In order to evaluate the effectiveness of DWBS, we
perform experiments in which we compare a base-
line model trained using conventional RBS against
domain-expert parsers trained using DWBS. For
each domain, we train domain-expert parsers, with
the domain-weight hyperparameter µ ranging from
0.00 to 1.00 (inclusive), with a step size of 0.05. Re-
member that µ = 0.00 means that each batch will
be sampled exclusively from the out-of-domain par-

TB Domain µ LAS R LAS DW
EWT Answers 0.35 86.78 87.56

Email 0.35 86.70 88.00
Newsgr. 0.40 88.64 89.44
Reviews 0.35 88.27 88.74
Weblog 0.25 89.52 90.56

GUM Convers. 0.35 85.41 86.64
Fiction 0.45 89.86 91.23
Interv. 0.50 88.08 89.14
Vlog 0.60 87.74 88.57
Whow 0.35 90.46 91.11

Table 2: Performance in LAS per domain,
comparing the baseline parser (trained using
RBS) to the highest-LAS-producing domain-expert
parser (trained using DWBS). LAS R: baseline
parser trained using RBS; LAS DW: highest-LAS-
producing domain-expert parser trained using
DWBS; µ: setting resulting in the highest LAS for
the given domain. Improvements of more than 1.00
LAS are bolded.
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Treeb. Domain µ RBS NSC DWBS NSC ∆NSC
EWT Answers 0.35 40.40 40.88 0.48

Email 0.35 39.84 40.00 0.16
Newsgroup 0.40 45.60 45.44 -0.16
Reviews 0.35 40.96 41.36 0.40
Weblog 0.25 47.04 48.00 0.96

GUM Conversation 0.35 45.52 41.20 -4.32
Fiction 0.45 40.56 42.96 2.40
Interview 0.50 45.20 42.00 -3.20
Vlog 0.60 48.16 42.96 -5.20
Whow 0.35 40.40 40.24 -0.16

Table 3: Training duration per domain measured in number of thousands of samples until model conver-
gence, comparing the baseline parser to the highest-LAS-producing domain-expert parser. NSC: number
of thousands of training samples until model convergence; RBS NSC: NSC for the baseline parser trained
using RBS; DWBS NSC: NSC for the highest-LAS-producing domain-expert parser trained using DWBS;
µ: setting yielding the best (in terms of LAS) domain-expert parser for the given domain.

tition of the training data set, while µ = 1.00 means
that training samples will only be drawn from the
in-domain partition. Because our training data set
is composed of ten domains of equal size, DWBS
for µ = 0.10 is equivalent to conventional RBS.

4.1. Effect on Parsing Accuracy

The DWBS-trained parser outperforms the baseline
in all ten domains tested, for some settings of µ.
We provide full results for two domains, plus the
results averaged over all ten domains, in Figure 1;
full results for the remaining domains are supplied
in Appendix A. Table 2 summarizes the results by
giving the LAS for the highest performing DWBS-
trained parser, per domain, and giving the setting
for µ that produced the parser.

The domain which benefits least from DWBS, in
terms of absolute increase in LAS over the base-
line, is EWT reviews, for which the best setting of
µ = 0.35 yields an improvement of 0.47 LAS (see
Figure 1a); the domain benefiting most is GUM fic-
tion, for which the best setting of µ = 0.45 gives an
improvement of 1.37 LAS (see Figure 1b). The av-
erage improvement across all ten domains, using
each domain’s best setting of µ, is 0.95 LAS. As
shown in Table 2, five domains experience gains
of more than 1.00 LAS.

Overall, the best setting of µ ranges between
0.25 (EWT weblog) and 0.60 (GUM vlog). GUM
domains tends to prefer higher values of µ. In other
words, those domains profit more from training ex-
amples from the same domain, which is an indica-
tion that each of those domains is different from
all others, either in terms of syntactic structure or
annotation.

4.2. Effect on Training Duration

Our hypothesis wrt training times is that the more
target-domain sentences that are included in train-
ing batches, the faster the parser should converge,
since the training sentences should be more con-
sistent and also more similar to the dev data. This
hypothesis is supported by findings that alternative
batch sampling techniques to RBS which are sim-
ilarly motivated to DWBS yield significantly faster
network training times on several tasks (Loshchilov
and Hutter, 2016).

We show the average number of training exam-
ples until model convergence for the highest-LAS-
producing µ per domain in Table 3. In contrast to
the results presented in the previous subsection
in which all ten domains show an improvement in
LAS, the domains are evenly split on training time
reduction with five seeing a reduction and five ex-
periencing an increase. The greatest increase is
experienced by the GUM fiction domain, which re-
quires 2400 more sentences than the baseline to
achieve parser convergence, while the greatest de-
crease is experienced by the GUM vlog domain,
which shows a decrease of 5200 sentences until
convergence. The average change in training sam-
ples is a decrease of 864 sentences. The high vari-
ability of differences in training duration suggests
that DWBS does not reliably reduce the number of
samples required to achieve parser convergence.
This may suggest that our target domain data do
not always have high internal consistency, which
is in line with findings by Zeldes and Schneider
(2023), who observed considerable differences in
cross-domain parsing between EWT and GUM.

Interestingly, four out of the five domains showing
decreased training times are GUM domains. Since
GUM domains also prefer higher values of µ, this
could suggest that sampling more target sentences
reduces training time.
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5. Conclusion

In this work we investigated the effectiveness of
domain-weighted batch sampling (DWBS) when
training a neural dependency parser. DWBS is a
technique for constructing training batches that can
be used in cases when the domain that a parser
will be evaluated on is known and there is also train-
ing data available in the evaluation domain. We
conducted experiments using ten English domains
and found that DWBS produced higher performing
parsers than RBS in all ten domains. This finding
suggests that when the preconditions for perform-
ing DWBS are met, it should be preferred to RBS
when training a neural dependency parser.

The success of DWBS for neural dependency
parsing suggests several directions for future work:
In the present experiment while training each
model, the domain-weight parameter µ was held
constant for the full duration of training. An alterna-
tive is to begin training with µ equal to the baseline
setting, and then gradually increase µ as training
progresses. This will simulate gradually fine-tuning
the parser in the target domain. A second area of
future work is to experiment with methods of au-
tomatically classifying domains (e.g., in the style
of Mukherjee et al., 2017; Mukherjee and Kübler,
2017), which would allow for the discovery of more
syntactically useful domain groupings. Finally, we
will investigate the effectiveness of domain embed-
dings (van der Goot and de Lhoneux, 2021; van der
Goot et al., 2021a; Li et al., 2019, 2020), an alter-
native approach to domain adaptation in depen-
dency parsing that can be combined with domain-
weighted batch sampling.
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A. Complete Parsing Results

(a) Performance of “EWT answers” parsers

(b) Performance of “EWT email” parsers

(c) Performance of “EWT newsgroup” parsers

(d) Performance of “EWT reviews” parsers

(e) Performance of “EWT weblog” parsers

Figure 2: Parser performance in the five English Web Treebank domains. X-axis: domain-weight
hyperparameter µ; y-axis: parser performance (LAS). Baseline RBS-trained parser in blue, and best
performing DWBS-trained parser in green.
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(a) Performance of “GUM conversation” parsers

(b) Performance of “GUM fiction” parsers

(c) Performance of “GUM interview” parsers

(d) Performance of “GUM vlog” parsers

(e) Performance of “GUM whow” parsers

Figure 3: Parser performance in the five Georgetown University Multilayer Corpus domains. X-axis:
domain-weight hyperparameter µ; y-axis: parser performance (LAS). Baseline RBS-trained parser in
blue, and best performing DWBS-trained parser in green.
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