
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 158–165

June 16-21, 2024 ©2024 Association for Computational Linguistics

pyvene: A Library for Understanding and Improving PyTorch Models
via Interventions

Zhengxuan Wu†, Atticus Geiger‡, Aryaman Arora†, Jing Huang†, Zheng Wang†,
Noah D. Goodman†, Christopher D. Manning†, Christopher Potts†

†Stanford University ‡Pr(Ai)2R Group
{wuzhengx,atticusg,aryamana,hij,peterwz,ngd,manning,cgpotts}@stanford.edu

Abstract

Interventions on model-internal states are fun-
damental operations in many areas of AI, in-
cluding model editing, steering, robustness,
and interpretability. To facilitate such research,
we introduce pyvene, an open-source Python
library that supports customizable interven-
tions on a range of different PyTorch modules.
pyvene supports complex intervention schemes
with an intuitive configuration format, and its
interventions can be static or include trainable
parameters. We show how pyvene provides a
unified and extensible framework for perform-
ing interventions on neural models and shar-
ing the intervened upon models with others.
We illustrate the power of the library via in-
terpretability analyses using causal abstraction
and knowledge localization. We publish our
library through Python Package Index (PyPI)
and provide code, documentation, and tutorials
at https://github.com/stanfordnlp/pyvene.

1 Introduction

When we intervene on a neural network, we make
an in-place change to its activations, putting the
model in a counterfactual state. This fundamen-
tal operation has emerged as a powerful tool for
both understanding and improving models; inter-
ventions of various kinds are key to recent efforts
in model robustness (He et al., 2019), model edit-
ing (Meng et al., 2022) and steering (Li et al.,
2023a), causal abstraction (Geiger et al., 2020,
2021, 2023; Wu et al., 2023) or activation patch-
ing (Chan et al., 2022; Wang et al., 2023), circuit
finding (Conmy et al., 2023; Goldowsky-Dill et al.,
2023), and knowledge tracing (Geva et al., 2023).

As intervention-based techniques have matured,
the need has arisen to run ever more complex inter-
ventions on ever larger models. Currently, there is
no unified and generic intervention-oriented library
to support such research. Existing libraries are of-
ten project-based (see implementations for Wang

Figure 1: An inference-time intervention (Li et al.,
2023a) on TinyStories-33M. The model is prompted
with “Once upon a time there was a”, and is asked to
complete the story. We add a static word embedding (for
“happy” or “sad”) into the MLP output at each decoding
step for all layers with a coefficient of 0.3. pyvene’s
complete implementation is provided. The original and
intervened generations use greedy decoding.

et al. 2023; Geiger et al. 2023 as examples) that lack
extensibility and are hard to maintain and share,
and current toolkits focus on single or non-nested
interventions (e.g., ablation neurons in a single for-
ward pass) and are often limited to interventions
on Transformers (Vaswani et al., 2017) without na-
tively supporting other neural architectures. Some
of these existing libraries (Bau, 2022; Lloyd, 2023;
Fiotto-Kaufman, 2023; Mossing et al., 2024) can

158

https://github.com/stanfordnlp/pyvene

support complex interventions such as exchanging
activations across multiple forward passes yet they
require sophisticated knowledge and heavy imple-
mentations.

To address these limitations, we introduce
pyvene, an open-source Python library that sup-
ports customizable interventions on different neu-
ral architectures implemented in PyTorch. Dif-
ferent from previous libraries (Bau, 2022; Nanda
and Bloom, 2022; Lloyd, 2023; Fiotto-Kaufman,
2023; Mossing et al., 2024), pyvene is intervention-
oriented. It supports complex interventions by ma-
nipulating or exchanging activations across multi-
ple model forward runs while allowing these inter-
ventions to be shared with a serialization configu-
ration file. Specifically, pyvene has a number of
advantages:

1. Intervention as the primitive. The interven-
tion is the basic primitive of pyvene. Inter-
ventions are specified with a dict-based for-
mat, in contrast to previous approaches where
interventions are expressed as code and exe-
cuted during runtime (Bau, 2022; Lloyd, 2023;
Fiotto-Kaufman, 2023; Mossing et al., 2024).
All pyvene intervention schemes and mod-
els are serializable objects that can be shared
through a public model hub such as Hugging-
Face.

2. Complex intervention schemes. pyvene sup-
ports interventions at multiple locations, in-
volving arbitrary subsets of neurons, and in-
terventions can be performed in parallel or in
sequence. For generative use of LMs, pyvene
supports interventions at decoding steps. Fur-
thermore, activations can easily be collected
for probe training.

3. Support for recurrent and non-recurrent
models. Existing libraries offer only limited
support for recurrent models. pyvene sup-
ports simple feed-forward networks, Trans-
formers, and recurrent and convolutional neu-
ral models.

In this paper, we provide two detailed case stud-
ies using pyvene as well: (1) we fully reproduce
Meng et al. (2022)’s locating factual associations in
GPT2-XL (Figure 1 in the original paper) in about
20 lines of code, and (2) we show intervention
and probe training with pyvene to localize gender
in Pythia-6.9B. pyvene is published through the

Python Package Index (PyPI),1 and the project site2

hosts more than 20 tutorials that cover interventions
at different levels of complexity with various model
architectures from simple feed-foward models to
multi-modal models.

2 System Design and Architecture

Two primary components of pyvene are the in-
tervenable configuration, which outlines which
model components will be intervened upon, and
the intervenable model, which decorates the origi-
nal torch model with hooks that allow activations
to be collected and overwritten.3 Here is a setup
for performing a zero-out intervention (often called
a zero ablation; Li et al. 2023b) on the 10th, 11th,
and 12th dimensions of the MLP output for 3rd
token embedding of layer 0 in GPT-2:

import torch
import pyvene as pv
built -in helper to get a HuggingFace model
_, tokenizer , gpt2 = pv.create_gpt2 ()
create with dict -based config
pv_config = pv.IntervenableConfig ({

"layer": 0,
"component": "mlp_output",
"intervention_type": pv.VanillaIntervention })

initialize model
pv_gpt2 = pv.IntervenableModel(

pv_config , model=gpt2)
run an intervened forward pass
intervened_outputs = pv_gpt2(

the base input
base=tokenizer(

"The capital of Spain is",
return_tensors="pt"),

the location to intervene at (3rd token)
unit_locations ={"base": 3},
the individual dimensions targetted
subspaces =[10 ,11 ,12],
the intervention values
source_representations=torch.zeros(

gpt2.config.n_embd)
)
sharing
pv_gpt2.save("./tmp/", save_to_hf_hub=True)

The model takes a tensor input base and runs
through the model’s computation graph modifying
activations in place to be other values source. In
this code, we specified source in the forward call.
When source is a constant, it can alternatively be
specified in the IntervenableConfig. To target
complete MLP output representations, one simply
leaves out the subspaces argument. The final line
of the code block shows how to serialize and share
an intervened model remotely through a model hub
such as HuggingFace.

1pip install pyvene
2https://github.com/stanfordnlp/pyvene
3Code snippets provided in the paper can be run on Google

Colab at https://colab.research.google.com/github/
stanfordnlp/pyvene/blob/main/pyvene_101.ipynb.

159

https://github.com/stanfordnlp/pyvene
https://colab.research.google.com/github/stanfordnlp/pyvene/blob/main/pyvene_101.ipynb
https://colab.research.google.com/github/stanfordnlp/pyvene/blob/main/pyvene_101.ipynb

2.1 Interchange Interventions

Interchange interventions (Geiger et al., 2020; Vig
et al., 2020; Wang et al., 2023, also known as acti-
vation patching) fix activations to take on the values
they would be if a different input were provided.
With minor changes to the forward call, we can
perform an interchange intervention on GPT-2:

run an interchange intervention
intervened_outputs = pv_gpt2(

the base input
base=tokenizer(

"The capital of Spain is",
return_tensors = "pt"),

the source input
sources=tokenizer(

"The capital of Italy is",
return_tensors = "pt"),

the location to intervene at (3rd token)
unit_locations ={"sources ->base": 3},
the individual dimensions targeted
subspaces =[10 ,11 ,12]

)

This forward call produces outputs for base but
with the activation values for MLP output dimen-
sions 10–12 of token 3 at layer 0 set to those that ob-
tained when the model processes the source. Such
interventions are used in interpretability research to
test hypotheses about where and how information
is stored in model-internal representations.

2.2 Addition Interventions

In the above examples, we replace values in the
base with other values (VanillaIntervention).
Another common kind of intervention involves up-
dating the base values in a systematic way:

noising_config = pv.IntervenableConfig ({
"layer": 0,
"component": "block_input",
"intervention_type": pv.AdditionIntervention })

noising_gpt2 = pv.IntervenableModel(
config , model=gpt2)

intervened_outputs = noising_gpt2(
base=tokenizer(

"The Space Needle is in downtown",
return_tensors = "pt"),

target the first four tokens for intervention
unit_locations ={"base": [0, 1, 2, 3]},
source_representations = torch.rand(

gpt2.config.n_embd , requires_grad=False))

As in this example, we add noise to a represen-
tation as a basic robustness check. The code
above does this, targetting the first four input
token embeddings to a Transformer by using
AdditionIntervention. This example serves as
the building block of causal tracing experiments as
in Meng et al. 2022, where we corrupt embedding
inputs by adding noise to trace factual associations.
Building on top of this, we reproduce Meng et al.’s
result in Section 3. pyvene allows Autograd on
the static representations, so this code could be the

basis for training models to be robust to this noising
process.

2.3 Activation Collection Interventions
This is a pass-through intervention to collect activa-
tions for operations like supervised probe train-
ing. Such interventions can be combined with
other interventions as well, to support things like
causal structural probes (Hewitt and Manning,
2019; Elazar et al., 2020; Lepori et al., 2023). In
the following example, we perform an interchange
intervention at layer 8 and then collect activations
at layer 10 for the purposes of fitting a probe:

set up a upstream intervention
probe_config = pv.IntervenableConfig ({

"layer": 8,
"component": "block_output",
"intervention_type": pv.VanillaIntervention })

add downstream collector
probe_config = probe_config.add_intervention ({

"layer": 10,
"component": "block_output",
"intervention_type": pv.CollectIntervention })

probe_gpt2 = pv.IntervenableModel(
probe_config , model=gpt2)

return the activations for 3rd token
collected_activations = probe_gpt2(

base=tokenizer(
"The capital of Spain is",
return_tensors="pt"),

unit_locations ={"sources ->base": 3})

2.4 Custom Interventions
pyvene provides a flexible way of adding new inter-
vention types. The following is a simple illustration
in which we multiply the original representation by
a constant value:

multiply base with a constant
class MultInt(pv.ConstantSourceIntervention):

def __init__(self , ** kwargs):
super().__init__ ()

def forward(self , base , source=None ,
subspaces=None):
return base * 0.3

pv.IntervenableModel ({
"intervention_type": MultInt},
model=gpt2)

The above intervention becomes useful when study-
ing interpretability-driven models such as the Back-
pack LMs of Hewitt et al. (2023). The sense vectors
acquired during pretraining in Backpack LMs have
been shown to have a “multiplication effect”, and
so proportionally decreasing sense vectors could
effectively steer the model’s generation.

2.5 Trainable Interventions
pyvene interventions can include trainable param-
eters. RotatedSpaceIntervention implements
Distributed Alignment Search (DAS; Geiger et al.
2023), LowRankRotatedSpaceIntervention is a

160

more efficient version of that model, and
BoundlessRotatedSpaceIntervention imple-
ments the Boundless DAS variant of Wu et al.
(2023). With these primitives, one can easily train
DAS explainers.

In the example below, we show a single gradient
update for a DAS training objective that localizes
the capital associated with the country in a one-
dimensional linear subspace of activations from
the Transformer block output (i.e., main residual
stream) at the 8th layer by training our intervention
module to match the gold counterfactual behavior:

das_config = pv.IntervenableConfig ({
"layer": 8,
"component": "block_output",
"low_rank_dimension": 1,
"intervention_type":

pv.LowRankRotatedSpaceIntervention })

das_gpt2 = pv.IntervenableModel(
das_config , model=gpt2)

last_hidden_state = das_gpt2(
base=tokenizer(

"The capital of Spain is",
return_tensors="pt"),

sources=tokenizer(
"The capital of Italy is",
return_tensors="pt"),

unit_locations ={"sources ->base": 3}
)[-1]. last_hidden_state [:,-1]

gold counterfacutual label as " Rome"
label = tokenizer.encode(

" Rome", return_tensors="pt")
logits = torch.matmul(

last_hidden_state , gpt2.wte.weight.t())

m = torch.nn.CrossEntropyLoss ()
loss = m(logits , label.view(-1))
loss.backward ()

2.6 Training with Interventions

Interventions can be co-trained with the intervening
model for techniques like interchange intervention
training (IIT), which induce specific causal struc-
tures in neural networks (Geiger et al., 2022):

pv_gpt2 = pv.IntervenableModel ({
"layer": 8},
model=gpt2)

enable gradients on the model
pv_gpt2.enable_model_gradients ()
run counterfactual forward as usual

In the example above, with the supervision signals
from the training dataset, we induce causal struc-
tures in the residual stream at 8th layer.

2.7 Multi-Source Parallel Interventions

In the parallel mode, interventions are applied to
the computation graph of the same base example
at the same time. We can perform interchange inter-
ventions by taking activations from multiple source

examples and swapping them into the base’s com-
putation graph:

parallel_config = pv.IntervenableConfig ([
{"layer": 3, "component": "block_output"},
{"layer": 3, "component": "block_output"}],
intervene on base at the same time
mode="parallel")

parallel_gpt2 = pv.IntervenableModel(
parallel_config , model=gpt2)

base = tokenizer(
"The capital of Spain is",
return_tensors="pt")

sources = [
tokenizer("The language of Spain is",

return_tensors="pt"),
tokenizer("The capital of Italy is",

return_tensors="pt")]

intervened_outputs = parallel_gpt2(
base , sources ,
{"sources ->base": (
each list has a dimensionality of
[num_intervention , batch , num_unit]
[[[1]] ,[[3]]] , [[[1]] ,[[3]]])}

)

In the example above, we interchange the activa-
tions from the residual streams on top of the second
token from the first example (“language”) as well as
the fourth token from the second example (“Italy”)
into the corresponding locations of the base’s com-
putation graph. The motivating intuition is that
now the next token might be mapped to a semantic
space that is a mixture of two inputs in the source
“The language of Italy”. (And, in fact, “Italian” is
among the top five returned logits.)

2.8 Multi-Source Serial Interventions

Interventions can also be sequentially applied, so
that later interventions are applied to an intervened
model created by the previous ones:

serial_config = pv.IntervenableConfig ([
{"layer": 3, "component": "block_output"},
{"layer": 10, "component": "block_output"}],
intervene on base one after another
mode="serial")

serial_gpt2 = pv.IntervenableModel(
serial_config , model=gpt2)

intervened_outputs = serial_gpt2(
base , sources ,
src_0 intervenes on src_1 position 1
src_1 intervenes on base position 4
{"source_0 ->source_1": 1,
"source_1 ->base" : 4}

)

In the example above, we first take activations at the
residual stream of the first token (“language”) at the
3rd layer from the first source example and swap
them into the same location during the forward run
of the second source example. We then take the
activations of the 4th token (“is”) at layer 10 at
upstream of this intervened model and swap them

161

into the same location during the forward run of the
base example. The motivating intuition is that the
first intervention will result in the model retrieving
“The language of Italy” and the second interven-
tion will swap the retrieved answer into the output
stream of the base example. (Once again, “Italian”
is among the top five returned logits.)

2.9 Intervenable Model

The IntervenableModel class is the backend for
decorating torch models with intervenable config-
urations and running intervened forward calls. It
implements two types of hooks: Getter and Setter
hooks to save and set activations.

Figure 1 highlights pyvene’s support for LMs.
Interventions can be applied to any position in the
input prompt or any selected decoding step.

The following involves a model with recurrent
(GRU) cells where we intervene on two unrolled
recurrent computation graphs at a time step:

built -in helper to get a GRU
_, _, gru = pv.create_gru_classifier(

pv.GRUConfig(h_dim =32))
wrap it with config
pv_gru = pv.IntervenableModel ({

"component": "cell_output",
intervening on time
"unit": "t",
"intervention_type": pv.ZeroIntervention},
model=gru)

run an intervened forward pass
rand_b = torch.rand(1,10, gru.config.h_dim)
rand_s = torch.rand(1,10, gru.config.h_dim)
intervened_outputs = pv_gru(

base = {"inputs_embeds": rand_b},
sources = [{"inputs_embeds": rand_s}],
intervening time step
unit_locations ={"sources ->base": (6, 3)})

A hook is triggered every time the corresponding
model component is called. As a result, a vanilla
hook-based approach, as in all previous libraries
(Bau, 2022; Lloyd, 2023; Fiotto-Kaufman, 2023;
Mossing et al., 2024), fails to intervene on any
recurrent or state-space model. To handle this lim-
itation, pyvene records a state variable for each
hook, and only executes a hook at the targeted time
step.

3 Case Study I: Locating Factual
Associations in GPT2-XL

We replicate the main result in Meng et al. (2022)’s
Locating Factual Associations in GPT2-XL with
pyvene. The task is to trace facts via interventions
on fact-related datasets. Following Meng et al.’s
setup, we first intervene on input embeddings by
adding Gaussian noise. We then restore individual
states to identify the information that restores the

results. Specifically, we restore the Transformer
block output, MLP activation, and attention output
for each token at each layer. For MLP activation
and attention output, we restore 10 sites centered
around the intervening layer (clipping on the edges).
Our Figure 2 fully reproduces the main Figure 1
(p. 2) in Meng et al.’s paper. To replicate their ex-
periments, we first define a configuration for causal
tracing:

def tracing_config(
l, c="mlp_activation", w=10, tl=48):

s = max(0, l - w // 2)
e = min(tl, l - (-w // 2))
config = IntervenableConfig(

[{"component": "block_input"}] +
[{"layer": l, "component": c}

for l in range(s, e)],
[pv.NoiseIntervention] +
[pv.VanillaIntervention]*(e-s))

return config

With this configuration, we corrupt the subject to-
ken and then restore selected internal activations to
their clean value. Our main experiment is imple-
mented with about 20 lines of code with pyvene:

trace_results = []
_, tokenizer , gpt = pv.create_gpt2("gpt2 -xl")
base = tokenizer(

"The Space Needle is in downtown",
return_tensors="pt")

for s in ["block_output", "mlp_activation",
"attention_output"]:

for l in range(gpt.config.n_layer):
for p in range (7):

w = 1 if s == "block_output" else 10
t_config , n_r = tracing_config(l, s, w)
t_gpt = pv.IntervenableModel(t_config , gpt)
_, outs = t_gpt(base , [None] + [base]*n_r ,

{"sources ->base": ([None] + [[[p]]]*n_r ,
[[[0, 1, 2, 3]]] + [[[p]]]* n_r)})

dist = pv.embed_to_distrib(gpt ,
outs.last_hidden_state , logits=False)

trace_results.append(
{"stream": s, "layer": l, "pos": p,
"prob": dist [0][-1][7312]})

4 Case Study II: Intervention and Probe
Training with Pythia-6.9B

We showcase intervention and probe training with
pyvene using a simple gendered pronoun predic-
tion task in which we try to localize gender in
hidden representations. For trainable intervention,
we use a one-dimensional Distributed Alignment
Search (DAS; Geiger et al., 2023), that is, we seek
to learn a 1D subspace representing gender. To
localize gender, we feed prompts constructed from
a template of the form “[John/Sarah] walked be-
cause [he/she]” (a fixed length of 4) where the
name is sampled from a vocabulary of 47 typically
male and 10 typically female names followed by
the associated gendered pronoun as the output to-
ken. We use pythia-6.9B (Biderman et al., 2023)

162

0 10 20 30 40

Th
e*

Sp
ac

e*
Ne

ed
*

le
*

is
in

do
wn

to
wn

single restored layer in GPT2-XL

p(Seattle)

0.25

0.50

0.75

0 10 20 30 40

Th
e*

Sp
ac

e*
Ne

ed
*

le
*

is
in

do
wn

to
wn

center of interval of 10 patched mlp layer

p(Seattle)

0.25

0.50

0.75

0 10 20 30 40

Th
e*

Sp
ac

e*
Ne

ed
*

le
*

is
in

do
wn

to
wn

center of interval of 10 patched attn layer

p(Seattle)

0.2

0.4

0.6

0.8

Figure 2: We reproduce the results in Meng et al. (2022)’s Figure 1 of locating early sites and late sites of factual
associations in GPT2-XL in about 20 lines of pyvene code. The causal impact on output probability is mapped for
the effect of each Transformer block output (left), MLP activations (middle), and attention layer output (right) .

0 10 20 30

EO
S

<n
am

e>
wa

lke
d

be
ca

us
e

Trained Intervention (DAS)

layers

IIA

0

0.25

0.50

0.75

1

0 10 20 30

EO
S

<n
am

e>
wa

lke
d

be
ca

us
e

Trained Linear Probe

layers

ACC

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Results of interchange intervention accuracy
(IIA) with the trainable intervention (DAS) and accu-
racy with the trainable linear probe on different model
components when localizing gender information.

in this experiment, which achieves 100% accuracy
on the task. We then train our interventions and
probes at the Transformer block output at each
layer and token position. For intervention training,
we construct pairs of examples and train the inter-
vention to match the desired counterfactual output
(i.e., if we swap activations from an example with
a male name into another example with a female
name, the desired counterfactual output should be
“he”). For linear probe training, we use activation
collection intervention to retrieve activations to pre-
dict the pronoun gender with a linear layer.

As shown in Figure 3, a trainable intervention

finds sparser gender representations across layers
and positions, whereas a linear probe achieves
100% classification accuracy for almost all compo-
nents. This shows that a probe may achieve high
performance even on representations that are not
causally relevant for the task.

5 Limitations and Future Work

We are currently focused on two main areas:

1. Expanding the default intervention types and
model types. Although pyvene is extensi-
ble to other types, having more built-in types
helps us to onboard new users easily.

2. pyvene is designed to support complex inter-
vention schemes, but this comes at the cost of
computational efficiency. As language models
get larger, we would like to investigate how to
scale intervention efficiency with multi-node
and multi-GPU training.

6 Conclusion

We introduce pyvene, an open-source Python li-
brary that supports intervention-based research on
neural models. pyvene supports customizable in-
terventions with complex intervention schemes as
well as different families of model architectures,
and intervened models are shareable with others
through online model hubs such as HuggingFace.
Our hope is that pyvene can be a powerful tool for
discovering new ways in which interventions can
help us explain and improve models.

References

David Bau. 2022. BauKit. https://github.com/
davidbau/baukit.

163

https://github.com/davidbau/baukit
https://github.com/davidbau/baukit

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In International Confer-
ence on Machine Learning (ICML).

Lawrence Chan, Adrià Garriga-Alonso, Nicholas
Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-
skaya, Ansh Radhakrishnan, Buck Shlegeris, and
Nate Thomas. 2022. Causal scrubbing: a method for
rigorously testing interpretability hypotheses. Align-
ment Forum Blog post.

Arthur Conmy, Augustine N Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. 2023. Towards automated circuit discov-
ery for mechanistic interpretability. In Advances in
Neural Information Processing Systems (NeurIPS).

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2020. Amnesic probing: Behavioral ex-
planation with amnesic counterfactuals. In Transac-
tions of the Association of Computational Linguistics
(TACL).

Jaden Fiotto-Kaufman. 2023. nnsight. https://github.
com/JadenFiotto-Kaufman/nnsight.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. In Advances in Neural Information Process-
ing Systems (NeurIPS).

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models par-
tially embed theories of lexical entailment and nega-
tion. In Proceedings of the Third BlackboxNLP Work-
shop on Analyzing and Interpreting Neural Networks
for NLP, Online.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh
Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. 2022. Inducing causal
structure for interpretable neural networks. In Inter-
national Conference on Machine Learning (ICML).

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah D. Goodman. 2023. Find-
ing alignments between interpretable causal variables
and distributed neural representations. In Causal
Learning and Reasoning (CLeaR).

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual as-
sociations in auto-regressive language models. In
Empirical Methods in Natural Language Processing
(EMNLP), Singapore.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing model behav-
ior with path patching. arXiv:2304.05969.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. 2019.
Parametric noise injection: Trainable randomness
to improve deep neural network robustness against
adversarial attack. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR).

John Hewitt and Christopher D Manning. 2019. A struc-
tural probe for finding syntax in word representations.
In North American Chapter of the Association for
Computational Linguistics (NAACL).

John Hewitt, John Thickstun, Christopher Manning, and
Percy Liang. 2023. Backpack language models. In
Association for Computational Linguistics (ACL).

Michael A Lepori, Thomas Serre, and Ellie Pavlick.
2023. Uncovering intermediate variables in trans-
formers using circuit probing. arXiv:2311.04354.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023a. Inference-
time intervention: Eliciting truthful answers from a
language model. In Advances in Neural Information
Processing Systems (NeurIPS).

Maximilian Li, Xander Davies, and Max Nadeau. 2023b.
Circuit breaking: Removing model behaviors with
targeted ablation. arXiv:2309.05973.

Evan Lloyd. 2023. graphpatch. https://github.com/
evan-lloyd/graphpatch.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems (NeurIPS).

Dan Mossing, Steven Bills, Henk Tillman, Tom Dupré la
Tour, Nick Cammarata, Leo Gao, Joshua Achiam,
Catherine Yeh, Jan Leike, Jeff Wu, and William
Saunders. 2024. Transformer debugger. https:
//github.com/openai/transformer-debugger.

Neel Nanda and Joseph Bloom. 2022. Trans-
formerlens. https://github.com/neelnanda-io/
TransformerLens.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. 2020. Investigating gender bias in language
models using causal mediation analysis. In Advances
in Neural Information Processing Systems (NeurIPS).

Kevin Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: A circuit for indirect object
identification in GPT-2 small. In International Con-
ference on Learning Representations (ICLR).

164

https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://transacl.org/index.php/tacl/article/view/2423
https://transacl.org/index.php/tacl/article/view/2423
https://github.com/JadenFiotto-Kaufman/nnsight
https://github.com/JadenFiotto-Kaufman/nnsight
https://papers.nips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://papers.nips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://proceedings.mlr.press/v162/geiger22a.html
https://proceedings.mlr.press/v162/geiger22a.html
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
https://arxiv.org/abs/2303.02536
https://aclanthology.org/2023.emnlp-main.751
https://aclanthology.org/2023.emnlp-main.751
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/1811.09310
https://arxiv.org/abs/1811.09310
https://arxiv.org/abs/1811.09310
https://aclanthology.org/N19-1419.pdf
https://aclanthology.org/N19-1419.pdf
https://aclanthology.org/2023.acl-long.506
https://arxiv.org/pdf/2311.04354.pdf
https://arxiv.org/pdf/2311.04354.pdf
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/abs/2306.03341
https://arxiv.org/pdf/2309.05973.pdf
https://arxiv.org/pdf/2309.05973.pdf
https://github.com/evan-lloyd/graphpatch
https://github.com/evan-lloyd/graphpatch
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://github.com/openai/transformer-debugger
https://github.com/openai/transformer-debugger
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2211.00593

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christo-
pher Potts, and Noah Goodman. 2023. Interpretabil-
ity at scale: Identifying causal mechanisms in Alpaca.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

165

https://arxiv.org/abs/2305.08809
https://arxiv.org/abs/2305.08809

