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Abstract

We present FastFit, a Python package designed
to provide fast and accurate few-shot classifica-
tion, especially for scenarios with many seman-
tically similar classes. FastFit utilizes a novel
approach integrating batch contrastive learning
and token-level similarity score. Compared to
existing few-shot learning packages, such as
SetFit, Transformers, or few-shot prompting
of large language models via API calls, FastFit
significantly improves multi-class classification
performance in speed and accuracy across vari-
ous English and Multilingual datasets. FastFit
demonstrates a 3-20x improvement in training
speed, completing training in just a few sec-
onds. The FastFit package is now available on
GitHub, presenting a user-friendly solution for
NLP practitioners.1

1 Introduction

Few-shot classification presents a unique challenge,
especially when dealing with a multitude of classes
that share similar semantic meanings. Expanding
the training data can be both time-consuming and
costly. To address this challenge, two primary cat-
egories of tools have been developed: few-shot
prompting of large language models (LLMs) via
API calls, or packages designed for fine-tuning
smaller language models using the limited avail-
able data. However, we recognize the drawbacks
of applying both of these approaches in practice.

Few-shot prompting of LLMs leverages their
multitasking abilities to tackle data scarcity. How-
ever, in the presence of many classes, LLMs en-
counter three major challenges: (1) LLMs struggle
to incorporate demonstrations of all classes within
their context window. (2) Utilization of the long
context for the classification task can be challeng-
ing (Liu et al., 2023). (3) Due to the model size,
and prompt length the inference time is slow.

1FastFit GitHub

Figure 1: Training times (sec) for FastFit, SetFit, and
standard classifier with MPNet model. FastFit training
is 3-20x faster.

In contrast, the approach of fine-tuning smaller
language models capitalizes on their adaptability
to specific tasks, as demonstrated to be effective
in recent works. However, these methods can be
challenging to deploy as they require architectural
adjustments (Yehudai et al., 2023) or, like SetFit,
may prove less suitable for classification with many
classes (Tunstall et al., 2022).

In this work, we present FastFit, a fast and ac-
curate method, and a pip-installable Python pack-
age designed for fine-tuning small language mod-
els in few-shot classification tasks involving many
classes. Through various experiments, we demon-
strate that FastFit training is significantly faster,
providing a 3-20x speedup. This enables training
within seconds, as illustrated in Fig. 1. FastFit out-
performs earlier packages, including SetFit, Trans-
former, and multi-task models like FLAN, or larger
LLMs like LLama-70B, in both English and Multi-
lingual settings.

The core contribution facilitating this speedup
and improvement lies in FastFit’s use of batch con-
trastive training, recognized for its efficiency and
effectiveness (Khosla et al., 2021). This technique
brings same-class texts closer while pushing apart
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all other texts. FastFit also incorporates token-level
text similarity measures that leverage fine-grained
information (Zhang et al., 2020; Khattab and Za-
haria, 2020). Additionally, we integrate text aug-
mentation techniques to enhance the robustness of
the training process (Gao et al., 2021).

The FastFit package is easy to install and use,
interfacing with standard training APIs (See §2).
We hope that FastFit will help make text classifica-
tion easier and faster for the benefit of the whole
community.

2 The FastFit API

The FastFit Python package is avail-
able on PyPI and can be installed with:
$ pip install fast-fit

To utilize FastFit, import the FastFit trainer,
which inherits from the Hugging Face (HF) trainer.
This enables FastFit to be customizable, inheriting
all parameters from the HF trainer. FastFit sup-
ports loading datasets either by directly passing the
dataset or providing file paths.

Here is a simple code example of loading and
training FastFit. In App. §A, we provide a com-
plete code example.

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

As FastFit utilizes example texts and class
names, it expects the data to have text and label
fields or to map the existing fields to them using the
label_column_name and text_column_name pa-
rameters of the FastFitTrainer. Our trainer also
supports training with either CLS or token-level
similarity metrics, set by the sim_rep parameter.
The trainer allows to modify the number of augmen-
tation repetitions with the num_repeats parameter.
Then after training, we can easily save the model:

• • •
model.save_pretrained("fast-fit")

And later load it for inference, See App. §A.

3 Method

Given a few-shot text classification dataset contain-
ing texts and their corresponding classes denoted
as {xi, yi}Ni=1, let C = {cj}Mj=1 represent all pos-
sible classes. Our task is to classify each xi into a
class yi ∈ C. To achieve this goal we aim to encode
both texts and class names into a shared embedding
space, where they are represented closely, accord-
ing to a similarity metric S, when they belong to
the same class and are represented further apart
when they do not. To accomplish this, we optimize
the following batch contrastive loss:

L =
∑

b∈[B]

−1

|P (b)|
∑

p∈P (b)

log
eS(x

b,xp)/τ

∑
a∈[B]\b e

S(xb,xa)/τ

(1)
Here, {xb}Bb=1 represents a batch of B texts, and

P (b) refers to the set of texts in the same class as
b in the batch, given by P (b) = {c ∈ [B], |, yc =
yb}. The function S is the similarity metric, and
τ is a scalar temperature parameter regulating the
penalty for negative texts.

For each text in the batch, we augment the batch
by including its class name as an additional ex-
ample. Additionally, we repeat the texts in the
batch r times as a data augmentation technique,
following Gao et al. (2021) by treating the dropout
as a minimal augmentation at the representation
level. This method has demonstrated significant
success in generating sentence embeddings, and
we leverage it here to enhance representation for
text classification.

In our data-scarce setting, we employ fine-
grained token-level similarity metrics, leveraging
textual details. This approach, successful in works
like BERT-Score and ColBERT, defines the simi-
larity metric between texts xi and xj as the sum of
cosine similarities between xi and the most similar
tokens in xj . Specifically, with tokens denoted as
x1i , . . . , x

n
i and x1j , . . . , x

m
j respectively, the simi-

larity score is computed as follows:

S(xi, xj) =

n∑

k=1

m
max
l=1

Eθ(x
k
i ) · Eθ(x

l
j) (2)
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where Eθ(x
k
i ) is a dense representation of token

xki produced by a parametric encoder model with
parameters θ.

During inference, when provided with a new text,
xu we classify it to the most similar class yi ∈ C
with respect to a similarity metric S. This method
draws inspiration from the way inference is con-
ducted in retrieval systems, eliminating the need
for a classification head and aligning the training
and inference objectives.

4 Experiments

4.1 Datasets

We experiment with three English few-shot text
classification datasets: Hwu64 (Liu et al., 2019a),
Banking77 (Casanueva et al., 2020), and Clinc150
(Larson et al., 2019). The datasets have between
64 and 150 classes. Many classes are semantically
similar, making the classification tasks much harder.
We conduct our experiments in 5/10-shot scenarios
where in the k-shot scenario the training set con-
sisted of k examples per class. See App. §B for
full data statistics.

4.2 Baselines

We compare FastFit with a few classification meth-
ods, including fine-tuning methods, like Standard
and SetFit classifiers, and few-shot promoting of
LLMs including Flan-XXL (Wei et al., 2022), Flan-
ul2 (Tay et al., 2023), llama-2-70b-chat (Touvron
et al., 2023), and Mistral-7b (Jiang et al., 2023).
For all fine-tuning methods, we use small and large
versions, where small is MPNet (110M parame-
ters) (Song et al., 2020), and large is Roberta-large
(355M parameters)(Liu et al., 2019b) or equivalent.

Standard classifier. A simple yet strong base-
line is a standard fine-tuning of an encoder-only
model. Since we assume no validation sets, we
use best practices as described in previous works,
and train for 40 epochs, with a learning rate of
1e− 5, and batch size of 16 (Lin et al., 2023). We
recovered runs that didn’t converge.

SetFit. Sentence Transformer Fine-tuning (Set-
Fit) (Tunstall et al., 2022) is a two-stage method for
training a Sentence Transformer model (Reimers
and Gurevych, 2019), specifically designed for
few-shot classification tasks. In the first stage,
the encoder undergoes fine-tuning using triplet
loss, and in the second stage, the classification
head is trained. For the small model we use

paraphrase-mpnet-base-v22, and for the large
model, we used all-Roberta-Large-v13, both
trained with sentence transformer objective before.
We trained the model with a learning rate of 1e−5,
a batch size of 16, for one epoch, based on the
parameters defined in SetFit’s paper.

Flan. Flan language models are fine-tuned on a
diverse range of NLP tasks and datasets, making
them adaptable for various NLP tasks in a few-shot
manner. Here, we experimented with Flan-XXL
(11B) and Flan-ul2 (20B) models. These models
have a 4K tokens context window.

Llama. Llama-2-chat is a set of large language
models developed for conversational applications
and has strong multi-task few-shot capabilities.
Here, we experimented with a Llama model that
supports a 4K tokens context window.

Mistral. Mistral is a strong 7B open-source
large language model. Here, we used the instruct-
tuned version. Mistral supports an 8K tokens con-
text window.

4.3 Experimental Setup
Training Setup. We fine-tune the FastFit model
with a learning rate of 1e − 5, a batch size of 32,
and a maximum sequence length of 128 tokens,
for 40 epochs. We used AdamW optimizer, 16-
bit floating-point (FP16) precision, and applied 4
batch repetitions that acts as augmentations.

All LLMs, except Mistral, have a context win-
dow of 4K. We were able to fit 1 example into
their context for Clinc150 and Banking77, and 3
examples for Hwu64. Mistral, with an 8K con-
text window allows for 2, 3, and 5 examples from
Clinc150, Banking77, and Hwu64, respectively.

Evaluation Setup. Few-shot evaluations can be
noisy due to variations in the small datasets (Dodge
et al., 2020; Zhang et al., 2021). To address this
challenge, we perform all our experiments using
5 random training split variations and report the
mean results.

4.4 Results
In Table 1, we present the results of FastFit, Set-
Fit, and the standard classifier for three datasets
under 5/10-shot settings. FastFit large outperforms
SetFit by 2.1% and the standard classifier by 3.4%.
FastFit small outperforms SetFit by 3.4% and the
standard classifier by 5.1%, achieving compara-
ble results to SetFit large. Notably, FastFit shows

2ST-MPNet
3ST-Roberta-Large
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Method Size CLINC150 BANKING77 HWU64
Average

5 10 5 10 5 10

FastFit
S 90.2 93.3 80.1 85.4 79.8 84.7 85.6
L 92.2* 94.8* 83.0* 87.9* 82.9* 86.3* 87.9*

SetFit
S 86.9 90.5 74.3 81.9 77.8 81.8 82.2
L 90.7 93.1 79.1 86.4 81.0 84.6 85.8

Classfier
S 86.0 91.4 68.1 80.4 74.4 82.9 80.5
L 89.2 94.0 75.9 86.1 76.3 85.5 84.5

Table 1: Accuracy results of FastFit and baselines on 5/10-shot text classification. Results show that FastFit
outperforms SetFit and standard classfier. Moreover, FastFit small is comparable to SetFit large. Results with * are
statistically significant by t-test (p < 0.05) compared to the large standard classifier.

Model C150 B77 H64 Avg.

Flan-ul2 80.3 71.5 76.2 76.0
Flan-XXL 82.1 72.1 74.9 76.3
Llama-2-13B-chat 53.0 42.6 53.2 49.6
Llama-2-70B-chat 60.8 45.7 62.8 56.4
Mistral-7B 63.5 46.8 71.7 60.7

Table 2: Accuracy results of a few LLMs models. The
Flan models outperform the other LLMs. Llama-70B
scores higher than Llama-13B but less than Mistral,
which has a larger context window.

greater improvement in the 5-shot case compared to
the 10-shot case and for the small model compared
to the large one.

Table 2 displays the results of few-shot prompt-
ing for several LLMs. The Flan models exhibit
higher performance than other LLMs, likely due
to the presence of many classification datasets in
the Flan dataset, which do not include our test
sets. This observation aligns with findings in zero-
shot classification (Gretz et al., 2023). Although
Llama-70B outperforms Llama-13B, it falls short
of Mistral-7B’s performance, possibly due to Mis-
tral’s larger context length, allowing it to incorpo-
rate more examples per class.

The results suggest that in our setting, where
numerous classes are present, even the best-
performing LLMs we tested (Flan’s) underperform
compared to large standard classifiers and face chal-
lenges compared to FastFit. It’s important to note
that, due to the model’s size and the length of the
few-shot prompt, inference time can be slow, with
throughput exceeding 1 second per input, in con-
trast to about 1 millisecond with FastFit.

5 Multilingual Experiments

5.1 Datasets
To evaluate FastFit’s multilingual classification
abilities we adopt Amazon Multilingual MASSIVE
dataset (FitzGerald et al., 2022). From the 51
available languages, we selected six typologically
diverse languages: English, Japanese, German,
French, Spanish, and Chinese. MASSIVE is a
parallel dataset, with 60 classes (See App. §B).

5.2 Baselines
For multilingual training, we utilized paraphrase-
multilingual-mpnet-base-v2 as a small model and
XLM-Roberta-Large as a large model. Both mod-
els underwent pretraining in a large number of
languages. Notably, to the best of our knowl-
edge, there is no multilingual sentence transformer
model equivalent to Roberta-Large for SetFit train-
ing. Monolingual and XLM-Roberta-Large models
were tested, but they yielded lower performance
than the small model; hence, their results are de-
tailed in Appendix §C. In English experiments, we
maintained the use of monolingual models (see
§4.2), conducting training and evaluation with the
same setup outlined in §4.3.

5.3 Results
In Table 3, we present the results on MASSIVE
in 5/10-shot scenarios using FastFit, SetFit, and
the standard classifier. FastFit consistently out-
performs both SetFit and the standard classifier in
both 5-shot and 10-shot settings, across small and
large models. In the 5-shot scenario, FastFit large
achieve an 8% improvement over SetFit small and
a 12.4% improvement over the standard classifier.
Meanwhile, FastFit small shows a 2.7% improve-
ment over SetFit small and a 7.1% improvement
over the standard classifier. In the 10-shot case,
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Method Size En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4

Classfier
S 61.2 56.8 59.7 58.4 59.8 61.4 59.5
L 66.4 56.0 65.3 56.6 60.0 61.9 61.0

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4

Classfier
S 72.2 67.7 71.0 68.6 69.7 70.0 69.9
L 77.5 71.2 74.3 71.3 72.5 72.7 73.3

Table 3: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results show that
FastFit consistently outperforms SetFit and the standard classifier. Notably, FastFit small consistently surpasses
SetFit’s small and standard large classifiers. Results marked with an asterisk (*) are statistically significant according
to t-test (p < 0.05) when compared to the large standard classifier.

FastFit large outperforms SetFit small by 3.6% and
the standard large classifier by 2.7%. Similarly,
FastFit small exhibits improvements of 1.9% and
3.5% over SetFit small and the standard classifier,
respectively.

It is noteworthy that FastFit demonstrates im-
provement when scaling from a small to a large
model, with gains of 5.3% and 2.6% in the 5-shot
and 10-shot settings, respectively. This enhance-
ment highlights the fact that FastFit is not model-
specific and thus is highly flexible for different
sizes and types of models, unlike SetFit. Such flex-
ibility is particularly crucial in few-shot settings
where limited examples are available, highlight-
ing the potential to train enhanced classifiers using
domain- or language-specific models. Moreover, if
unlabeled or pairwise data is available, using it for
pretraining can lead to even further improvement.

Training Times for FastFit, SetFit, and the stan-
dard classifier are illustrated in Figure 1. FastFit ex-
hibits faster training times compared to both SetFit
and the standard classifier, with a 3-20x decrease,
and training ranging between 35-70 seconds (See
more results at App. §D). This can be attributed to
a combination of technical and methodological fac-
tors. The improved implementation includes pre-
training tokenization and FP16 training. Further-
more, the methodological advantage stems from
using batch contrastive training, which leverages
in-batch examples as negatives, in contrast to the
triplet loss utilized by SetFit.

6 FastFit Ablation & Full Training

To further examine the contribution of some of
our method modifications, we compare training
with CLS and token-level similarity metrics, as
well as training with a different number of batch
repetitions. We conduct these experiments on three
datasets: Hwu64, Banking77, and Clinc150, with 5
random splits, and average their results. We assess
the effect of these modifications for both small and
large models, with 5 and 10 shots.

In Table 4, we present the differences in per-
formance caused by our changes; full results are
available in App. §E. The Token-level similarity
metric proves beneficial across all settings, with
a more pronounced effect for smaller models and
when less data is available (5-shot compared to
10-shot). Concerning the number of repetitions,
we observe that, in most cases, adding repetitions
helps. Additionally, it appears that overall, four rep-
etitions are more effective than two. Regarding the
relationship between the number of shots and the
effectiveness of repetition, no clear connection is
apparent. While an increase in the number of shots
enhances effectiveness in small models, the oppo-
site is observed for large models, where the effect
decreases. Nevertheless, it seems that, in general,
larger models benefit more from batch repetition.

Although our primary focus is few-shot classi-
fication, we also wanted to examine the effective-
ness of FastFit when training on the full dataset.
We conducted two sets of experiments. In the first,
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Model Shot Similarity Level Repetitions

Token 2 4

FastFit-S 5 1.33 -0.28 0.09
FastFit-S 10 0.85 0.09 0.24
FastFit-L 5 0.65 0.72 1.04
FastFit-L 10 0.36 0.55 0.78

Table 4: FastFit ablation experiments; Accuracy dif-
ferences in training with token-level versus CLS sim-
ilarity metrics and increasing augmentations repeti-
tions. Token-level enhancements are more prominent in
smaller models, especially in the 5-shot setting.

Model C150 B77 H64 Avg.

Classfier-L 96.8 93.7 92.1 94.2
FastFit-S 97.1 93.8 92.7 94.5
FastFit-L 97.5 94.2 93.0 94.9

Table 5: FastFit accuracy results when training on the
full data.

Model EN DE JP ES FR CN Avg.

Classfier-B 88.3 85.7 83.9 86.9 86.3 84.9 86.0
mT5-B T2T 87.9 86.2 83.5 86.7 86.9 85.2 86.1
mT5-B Enc 89.0 86.8 85.8 86.8 87.2 85.8 86.9

FastFit-S 88.8 87.4 87.0 87.9 87.6 86.7 87.6
FastFit-L 89.5 88.5 88.5 87.4 88.5 86.7 88.2

Table 6: FastFit and baselines accuracy results on MAS-
SIVE with full data training.

we compared FastFit-small, FastFit-large, and a
large standard classifier on Hwu64, Banking77,
and Clinc150. In the second, we compared FastFit-
small and FastFit-large with a few base-sized multi-
lingual baseline models on Msstive, using the set of
six languages mentioned in §5.1. These baselines
are based on the Msstive paper, where Classifier-B
and mT5-B Encoder are standard classifiers based
on XLM-R-BASE and mT5-Base with 270M and
258M parameters, respectively. mT5-B T2T is a
text-2-text classifier with 580M parameters.

Results in Table 5 demonstrate that when train-
ing on all the data, FastFit-Small outperforms the
large Classifier, and FastFit-Large performs even
better. From Table 6, we can see that FastFit-Small
outperforms all other baselines even with fewer
than half the number of parameters. Moreover,
FastFit-Large further improves performances by
0.6% on average. These results indicate that Fast-
Fit is not only a fast few-shot classifier but can also
outperform even larger classifiers when training on
the full dataset.

7 Related Work

For fine-tuning baselines, we focus on readily avail-
able methods. , including SetFit with its pack-
age, a standard classifier accessible through HF
Transformers (Wolf et al., 2019), or LLMs through
API calls. However, there are various few-shot
classifiers, and we will briefly discuss a couple of
them. QAID (Yehudai et al., 2023) proposed pre-
and fine-tuning training stages with unsupervised
and supervised loss, using ColBERT architecture,
achieving SOTA results. T-Few (Liu et al., 2022), a
parameter-efficient fine-tuning method based on T0
(Sanh et al., 2021), claims to be better and cheaper
than In-Context Learning.

Regarding few-shot prompting of LLMs ap-
proaches, a question arises about whether our re-
sults will withstand stronger LLMs or improved
prompting techniques. According to Loukas et al.
(2023) we can deduce that FastFit outperforms
GPT4 (OpenAI et al., 2023) with a fraction of the
cost. Additionally, Milios et al. (2023) demonstrate
that retrieval-based few-shot prompts can lead to
improved results. However, it’s worth noting that
currently, these models remain slow and costly.

8 Conclusions

In this paper, we introduce FastFit, a novel few-
shot text classification method accompanied by
a Python package. Our results demonstrate that
FastFit outperforms large language models (LLMs)
such as Flan-XXL and Llama-2-chat-70B, as well
as fine-tuning methods, including both standard
and SetFit classifiers, readily available in existing
packages. Notably, FastFit exhibits fast training
and inference. We provide evidence that these re-
sults hold for both Multilingual and full-data train-
ing setups. We hope that FastFit’s speed and sim-
plicity will enhance its usability.
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A Full Code Example

Any dataset can be loaded directly from Hugging-
face Hub, For example:

• • •
from datasets import load_dataset
dataset =
load_dataset("mteb/banking77")

Then fast fit library can sample it down to the 5
or 10 shot format:

• • •
from fastfit import sample_dataset

dataset["train"] =sample_dataset(
dataset["train"],
label_column="label",
num_samples=5

)

Then once the data is ready it can be serve as
input to the Fast-Fit trainer together with other im-
portant inputs:

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

Then we can save the model:

• • •
model.save_pretrained("fast-fit")

And could be loaded for inference with:

• • •
from fastfit import FastFit from
transformers import (

AutoTokenizer,
pipeline

)

model = FastFit.from_pretrained(
"fast-fit"

)
tokenizer =
AutoTokenizer.from_pretrained(

"roberta-large"
)

classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer

)

print(classifier("Hello World!"))

B Data Statistics

In Table 7, we provide the data statistics for the
classification datasets used in our work.

Dataset #Train #Vaild #Test #Intents #Domains

Clinc150 15,000 3,000 4,500 150 10
BankingG77 8,622 1,540 3,080 77 1
Hwu64 8,954 1,076 1,076 64 21
MASSIVE 11,514 2,033 2,974 60 18

Table 7: Data statistics of the few-shot classification
datasets.

C Multilingual Results

In Table 10, we present the experimental results
using various backbone models for SetFit. We
evaluated three models: (1) Monolingual sentence-
transformer (ST) large, referred to as ST-L. (2)
Regular Multilingual RoBERTa-large, denoted as
XLM-R-L or simply L. (3) RoBERTa-Base Mul-
tilingual sentence-transformer model, labeled as
ST-XB.

The results indicate that ST-L encounters diffi-
culties with all non-English datasets, resulting in
overall inferior performance. XLM-R-L exhibits
lower proficiency in English but demonstrates im-
proved results across all other languages. Lastly,
ST-XB, with a comparable size to the small models

182



(125M vs. 110M), achieved similar, albeit slightly
lower, results. These findings underscore SetFit’s
dependence on ST pre-trained models and highlight
its limitations when such a model is unavailable, as
in this experiment.

D Training Run Times Results

Here we present more training run time results for
FastFit, SetFit, and a standard classifier. In 2 we
present the run time for the small and large settings.
In Table 9 we show the average training run time
results.

Figure 2: Training times (sec) for FastFit, SetFit, and
standard classifier. FastFit training is faster both for the
small model (top) and for the large model (bottom).

Table 8: Results

Model Small Large

5-shot 10-shot 5-shot 10-shot

FastFit 35.5 73.2 72.7 151.0
SetFit 384.1 1530.5 767.1 3073.7
classifier 112.0 294.8 230.6 606.7

Table 9: Training times (sec) for FastFit, SetFit, and
standard classifier.

E Ablation Results

Here, we present the results for the ablations asso-
ciated with Table 4. The first ablation is designed
to measure the effect of the similarity metrics. Ta-
ble 11 shows the results of the experiments with
both CLS and token-level similarity metrics. In
Table 12, we present the results without augmen-
tation repetitions (1), and with 2 and 4 repetitions.
Both ablations support our claim that the token-
level similarity metric and an increased number of
augmentation repetitions help.

F Short Video

Click here for our short presentation.
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Method Model En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4
ST-L 74.0 50.3 41.3 53.6 52.1 39.6 51.8
L 66.1 60.8 64.8 50.1 61.3 43.6 57.8
ST-XB 74.0 62.3 64.8 62.0 62.3 65.1 65.1

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4
ST-L 78.3 61.4 53.4 64.0 63.2 48.3 61.4
L 74.5 69.1 72.5 69.7 70.7 59.2 69.3
ST-XB 78.3 68.7 72.9 70.1 70.5 72.3 72.1

Table 10: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results with few
SetFit versions but no one surpasses SetFit small. We experimenting here with sentence-transformer (ST) large
monolingual, multilingual base, and non-ST multilingual large.

Method Shots Sim.
metric

C150 B77 H64 Average

FastFit-small

5 CLS 88.9 78.6 78.5 82.0
5 TOK. 90.2 80.0 79.7 83.3
10 CLS 92.4 84.7 83.8 86.9
10 TOK. 93.3 85.4 84.7 87.8

FastFit-large

5 CLS 91.6 81.7 82.4 85.2
5 TOK. 92.3 82.9 82.4 85.9
10 CLS 94.1 87.6 86.3 89.4
10 TOK. 94.8 88.0 86.4 89.7

Table 11: Ablation results with CLS and token-level similarity metrics. The average results that scored the highest
for each model size and shot number are highlighted in bold.

Method Shots Repet. C150 B77 H64 Average

FastFit-small
5 1 90.3 80.3 79.1 83.2
5 2 89.8 79.8 79.2 82.9
5 4 90.2 80.0 79.7 83.3

FastFit-small
10 1 93.3 85.3 84.1 87.6
10 2 93.2 85.3 84.5 87.6
10 4 93.3 85.4 84.7 87.8

FastFit-Large
5 1 91.6 82.0 81.0 84.8
5 2 92.0 82.4 82.3 85.6
5 4 92.3 82.9 82.4 85.9

FastFit-Large
10 1 94.2 87.3 85.2 88.9
10 2 94.6 87.7 86.1 89.5
10 4 94.8 88.0 86.4 89.7

Table 12: Ablation results with varying repetition numbers. The bolded values represent the highest-scoring average
results for each model size and shot number.

184


