
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 174–184

June 16-21, 2024 ©2024 Association for Computational Linguistics

FastFit: Fast and Effective Few-Shot Text Classification
with a Multitude of Classes

Asaf Yehudai ♢ ♣ , Elron Bandel ♢

IBM Israel Research Lab ♢, Hebrew University of Jerusalem ♣

{first.last}@ibm.com

Abstract

We present FastFit, a Python package designed
to provide fast and accurate few-shot classifica-
tion, especially for scenarios with many seman-
tically similar classes. FastFit utilizes a novel
approach integrating batch contrastive learning
and token-level similarity score. Compared to
existing few-shot learning packages, such as
SetFit, Transformers, or few-shot prompting
of large language models via API calls, FastFit
significantly improves multi-class classification
performance in speed and accuracy across vari-
ous English and Multilingual datasets. FastFit
demonstrates a 3-20x improvement in training
speed, completing training in just a few sec-
onds. The FastFit package is now available on
GitHub, presenting a user-friendly solution for
NLP practitioners.1

1 Introduction

Few-shot classification presents a unique challenge,
especially when dealing with a multitude of classes
that share similar semantic meanings. Expanding
the training data can be both time-consuming and
costly. To address this challenge, two primary cat-
egories of tools have been developed: few-shot
prompting of large language models (LLMs) via
API calls, or packages designed for fine-tuning
smaller language models using the limited avail-
able data. However, we recognize the drawbacks
of applying both of these approaches in practice.

Few-shot prompting of LLMs leverages their
multitasking abilities to tackle data scarcity. How-
ever, in the presence of many classes, LLMs en-
counter three major challenges: (1) LLMs struggle
to incorporate demonstrations of all classes within
their context window. (2) Utilization of the long
context for the classification task can be challeng-
ing (Liu et al., 2023). (3) Due to the model size,
and prompt length the inference time is slow.

1FastFit GitHub

Figure 1: Training times (sec) for FastFit, SetFit, and
standard classifier with MPNet model. FastFit training
is 3-20x faster.

In contrast, the approach of fine-tuning smaller
language models capitalizes on their adaptability
to specific tasks, as demonstrated to be effective
in recent works. However, these methods can be
challenging to deploy as they require architectural
adjustments (Yehudai et al., 2023) or, like SetFit,
may prove less suitable for classification with many
classes (Tunstall et al., 2022).

In this work, we present FastFit, a fast and ac-
curate method, and a pip-installable Python pack-
age designed for fine-tuning small language mod-
els in few-shot classification tasks involving many
classes. Through various experiments, we demon-
strate that FastFit training is significantly faster,
providing a 3-20x speedup. This enables training
within seconds, as illustrated in Fig. 1. FastFit out-
performs earlier packages, including SetFit, Trans-
former, and multi-task models like FLAN, or larger
LLMs like LLama-70B, in both English and Multi-
lingual settings.

The core contribution facilitating this speedup
and improvement lies in FastFit’s use of batch con-
trastive training, recognized for its efficiency and
effectiveness (Khosla et al., 2021). This technique
brings same-class texts closer while pushing apart

174

https://github.com/IBM/fastfit

all other texts. FastFit also incorporates token-level
text similarity measures that leverage fine-grained
information (Zhang et al., 2020; Khattab and Za-
haria, 2020). Additionally, we integrate text aug-
mentation techniques to enhance the robustness of
the training process (Gao et al., 2021).

The FastFit package is easy to install and use,
interfacing with standard training APIs (See §2).
We hope that FastFit will help make text classifica-
tion easier and faster for the benefit of the whole
community.

2 The FastFit API

The FastFit Python package is avail-
able on PyPI and can be installed with:
$ pip install fast-fit

To utilize FastFit, import the FastFit trainer,
which inherits from the Hugging Face (HF) trainer.
This enables FastFit to be customizable, inheriting
all parameters from the HF trainer. FastFit sup-
ports loading datasets either by directly passing the
dataset or providing file paths.

Here is a simple code example of loading and
training FastFit. In App. §A, we provide a com-
plete code example.

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

As FastFit utilizes example texts and class
names, it expects the data to have text and label
fields or to map the existing fields to them using the
label_column_name and text_column_name pa-
rameters of the FastFitTrainer. Our trainer also
supports training with either CLS or token-level
similarity metrics, set by the sim_rep parameter.
The trainer allows to modify the number of augmen-
tation repetitions with the num_repeats parameter.
Then after training, we can easily save the model:

• • •
model.save_pretrained("fast-fit")

And later load it for inference, See App. §A.

3 Method

Given a few-shot text classification dataset contain-
ing texts and their corresponding classes denoted
as {xi, yi}Ni=1, let C = {cj}Mj=1 represent all pos-
sible classes. Our task is to classify each xi into a
class yi ∈ C. To achieve this goal we aim to encode
both texts and class names into a shared embedding
space, where they are represented closely, accord-
ing to a similarity metric S, when they belong to
the same class and are represented further apart
when they do not. To accomplish this, we optimize
the following batch contrastive loss:

L =
∑

b∈[B]

−1

|P (b)|
∑

p∈P (b)

log
eS(x

b,xp)/τ

∑
a∈[B]\b e

S(xb,xa)/τ

(1)
Here, {xb}Bb=1 represents a batch of B texts, and

P (b) refers to the set of texts in the same class as
b in the batch, given by P (b) = {c ∈ [B], |, yc =
yb}. The function S is the similarity metric, and
τ is a scalar temperature parameter regulating the
penalty for negative texts.

For each text in the batch, we augment the batch
by including its class name as an additional ex-
ample. Additionally, we repeat the texts in the
batch r times as a data augmentation technique,
following Gao et al. (2021) by treating the dropout
as a minimal augmentation at the representation
level. This method has demonstrated significant
success in generating sentence embeddings, and
we leverage it here to enhance representation for
text classification.

In our data-scarce setting, we employ fine-
grained token-level similarity metrics, leveraging
textual details. This approach, successful in works
like BERT-Score and ColBERT, defines the simi-
larity metric between texts xi and xj as the sum of
cosine similarities between xi and the most similar
tokens in xj . Specifically, with tokens denoted as
x1i , . . . , x

n
i and x1j , . . . , x

m
j respectively, the simi-

larity score is computed as follows:

S(xi, xj) =

n∑

k=1

m
max
l=1

Eθ(x
k
i) · Eθ(x

l
j) (2)

175

where Eθ(x
k
i) is a dense representation of token

xki produced by a parametric encoder model with
parameters θ.

During inference, when provided with a new text,
xu we classify it to the most similar class yi ∈ C
with respect to a similarity metric S. This method
draws inspiration from the way inference is con-
ducted in retrieval systems, eliminating the need
for a classification head and aligning the training
and inference objectives.

4 Experiments

4.1 Datasets

We experiment with three English few-shot text
classification datasets: Hwu64 (Liu et al., 2019a),
Banking77 (Casanueva et al., 2020), and Clinc150
(Larson et al., 2019). The datasets have between
64 and 150 classes. Many classes are semantically
similar, making the classification tasks much harder.
We conduct our experiments in 5/10-shot scenarios
where in the k-shot scenario the training set con-
sisted of k examples per class. See App. §B for
full data statistics.

4.2 Baselines

We compare FastFit with a few classification meth-
ods, including fine-tuning methods, like Standard
and SetFit classifiers, and few-shot promoting of
LLMs including Flan-XXL (Wei et al., 2022), Flan-
ul2 (Tay et al., 2023), llama-2-70b-chat (Touvron
et al., 2023), and Mistral-7b (Jiang et al., 2023).
For all fine-tuning methods, we use small and large
versions, where small is MPNet (110M parame-
ters) (Song et al., 2020), and large is Roberta-large
(355M parameters)(Liu et al., 2019b) or equivalent.

Standard classifier. A simple yet strong base-
line is a standard fine-tuning of an encoder-only
model. Since we assume no validation sets, we
use best practices as described in previous works,
and train for 40 epochs, with a learning rate of
1e− 5, and batch size of 16 (Lin et al., 2023). We
recovered runs that didn’t converge.

SetFit. Sentence Transformer Fine-tuning (Set-
Fit) (Tunstall et al., 2022) is a two-stage method for
training a Sentence Transformer model (Reimers
and Gurevych, 2019), specifically designed for
few-shot classification tasks. In the first stage,
the encoder undergoes fine-tuning using triplet
loss, and in the second stage, the classification
head is trained. For the small model we use

paraphrase-mpnet-base-v22, and for the large
model, we used all-Roberta-Large-v13, both
trained with sentence transformer objective before.
We trained the model with a learning rate of 1e−5,
a batch size of 16, for one epoch, based on the
parameters defined in SetFit’s paper.

Flan. Flan language models are fine-tuned on a
diverse range of NLP tasks and datasets, making
them adaptable for various NLP tasks in a few-shot
manner. Here, we experimented with Flan-XXL
(11B) and Flan-ul2 (20B) models. These models
have a 4K tokens context window.

Llama. Llama-2-chat is a set of large language
models developed for conversational applications
and has strong multi-task few-shot capabilities.
Here, we experimented with a Llama model that
supports a 4K tokens context window.

Mistral. Mistral is a strong 7B open-source
large language model. Here, we used the instruct-
tuned version. Mistral supports an 8K tokens con-
text window.

4.3 Experimental Setup
Training Setup. We fine-tune the FastFit model
with a learning rate of 1e − 5, a batch size of 32,
and a maximum sequence length of 128 tokens,
for 40 epochs. We used AdamW optimizer, 16-
bit floating-point (FP16) precision, and applied 4
batch repetitions that acts as augmentations.

All LLMs, except Mistral, have a context win-
dow of 4K. We were able to fit 1 example into
their context for Clinc150 and Banking77, and 3
examples for Hwu64. Mistral, with an 8K con-
text window allows for 2, 3, and 5 examples from
Clinc150, Banking77, and Hwu64, respectively.

Evaluation Setup. Few-shot evaluations can be
noisy due to variations in the small datasets (Dodge
et al., 2020; Zhang et al., 2021). To address this
challenge, we perform all our experiments using
5 random training split variations and report the
mean results.

4.4 Results
In Table 1, we present the results of FastFit, Set-
Fit, and the standard classifier for three datasets
under 5/10-shot settings. FastFit large outperforms
SetFit by 2.1% and the standard classifier by 3.4%.
FastFit small outperforms SetFit by 3.4% and the
standard classifier by 5.1%, achieving compara-
ble results to SetFit large. Notably, FastFit shows

2ST-MPNet
3ST-Roberta-Large

176

https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-roberta-large-v1

Method Size CLINC150 BANKING77 HWU64
Average

5 10 5 10 5 10

FastFit
S 90.2 93.3 80.1 85.4 79.8 84.7 85.6
L 92.2* 94.8* 83.0* 87.9* 82.9* 86.3* 87.9*

SetFit
S 86.9 90.5 74.3 81.9 77.8 81.8 82.2
L 90.7 93.1 79.1 86.4 81.0 84.6 85.8

Classfier
S 86.0 91.4 68.1 80.4 74.4 82.9 80.5
L 89.2 94.0 75.9 86.1 76.3 85.5 84.5

Table 1: Accuracy results of FastFit and baselines on 5/10-shot text classification. Results show that FastFit
outperforms SetFit and standard classfier. Moreover, FastFit small is comparable to SetFit large. Results with * are
statistically significant by t-test (p < 0.05) compared to the large standard classifier.

Model C150 B77 H64 Avg.

Flan-ul2 80.3 71.5 76.2 76.0
Flan-XXL 82.1 72.1 74.9 76.3
Llama-2-13B-chat 53.0 42.6 53.2 49.6
Llama-2-70B-chat 60.8 45.7 62.8 56.4
Mistral-7B 63.5 46.8 71.7 60.7

Table 2: Accuracy results of a few LLMs models. The
Flan models outperform the other LLMs. Llama-70B
scores higher than Llama-13B but less than Mistral,
which has a larger context window.

greater improvement in the 5-shot case compared to
the 10-shot case and for the small model compared
to the large one.

Table 2 displays the results of few-shot prompt-
ing for several LLMs. The Flan models exhibit
higher performance than other LLMs, likely due
to the presence of many classification datasets in
the Flan dataset, which do not include our test
sets. This observation aligns with findings in zero-
shot classification (Gretz et al., 2023). Although
Llama-70B outperforms Llama-13B, it falls short
of Mistral-7B’s performance, possibly due to Mis-
tral’s larger context length, allowing it to incorpo-
rate more examples per class.

The results suggest that in our setting, where
numerous classes are present, even the best-
performing LLMs we tested (Flan’s) underperform
compared to large standard classifiers and face chal-
lenges compared to FastFit. It’s important to note
that, due to the model’s size and the length of the
few-shot prompt, inference time can be slow, with
throughput exceeding 1 second per input, in con-
trast to about 1 millisecond with FastFit.

5 Multilingual Experiments

5.1 Datasets
To evaluate FastFit’s multilingual classification
abilities we adopt Amazon Multilingual MASSIVE
dataset (FitzGerald et al., 2022). From the 51
available languages, we selected six typologically
diverse languages: English, Japanese, German,
French, Spanish, and Chinese. MASSIVE is a
parallel dataset, with 60 classes (See App. §B).

5.2 Baselines
For multilingual training, we utilized paraphrase-
multilingual-mpnet-base-v2 as a small model and
XLM-Roberta-Large as a large model. Both mod-
els underwent pretraining in a large number of
languages. Notably, to the best of our knowl-
edge, there is no multilingual sentence transformer
model equivalent to Roberta-Large for SetFit train-
ing. Monolingual and XLM-Roberta-Large models
were tested, but they yielded lower performance
than the small model; hence, their results are de-
tailed in Appendix §C. In English experiments, we
maintained the use of monolingual models (see
§4.2), conducting training and evaluation with the
same setup outlined in §4.3.

5.3 Results
In Table 3, we present the results on MASSIVE
in 5/10-shot scenarios using FastFit, SetFit, and
the standard classifier. FastFit consistently out-
performs both SetFit and the standard classifier in
both 5-shot and 10-shot settings, across small and
large models. In the 5-shot scenario, FastFit large
achieve an 8% improvement over SetFit small and
a 12.4% improvement over the standard classifier.
Meanwhile, FastFit small shows a 2.7% improve-
ment over SetFit small and a 7.1% improvement
over the standard classifier. In the 10-shot case,

177

Method Size En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4

Classfier
S 61.2 56.8 59.7 58.4 59.8 61.4 59.5
L 66.4 56.0 65.3 56.6 60.0 61.9 61.0

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4

Classfier
S 72.2 67.7 71.0 68.6 69.7 70.0 69.9
L 77.5 71.2 74.3 71.3 72.5 72.7 73.3

Table 3: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results show that
FastFit consistently outperforms SetFit and the standard classifier. Notably, FastFit small consistently surpasses
SetFit’s small and standard large classifiers. Results marked with an asterisk (*) are statistically significant according
to t-test (p < 0.05) when compared to the large standard classifier.

FastFit large outperforms SetFit small by 3.6% and
the standard large classifier by 2.7%. Similarly,
FastFit small exhibits improvements of 1.9% and
3.5% over SetFit small and the standard classifier,
respectively.

It is noteworthy that FastFit demonstrates im-
provement when scaling from a small to a large
model, with gains of 5.3% and 2.6% in the 5-shot
and 10-shot settings, respectively. This enhance-
ment highlights the fact that FastFit is not model-
specific and thus is highly flexible for different
sizes and types of models, unlike SetFit. Such flex-
ibility is particularly crucial in few-shot settings
where limited examples are available, highlight-
ing the potential to train enhanced classifiers using
domain- or language-specific models. Moreover, if
unlabeled or pairwise data is available, using it for
pretraining can lead to even further improvement.

Training Times for FastFit, SetFit, and the stan-
dard classifier are illustrated in Figure 1. FastFit ex-
hibits faster training times compared to both SetFit
and the standard classifier, with a 3-20x decrease,
and training ranging between 35-70 seconds (See
more results at App. §D). This can be attributed to
a combination of technical and methodological fac-
tors. The improved implementation includes pre-
training tokenization and FP16 training. Further-
more, the methodological advantage stems from
using batch contrastive training, which leverages
in-batch examples as negatives, in contrast to the
triplet loss utilized by SetFit.

6 FastFit Ablation & Full Training

To further examine the contribution of some of
our method modifications, we compare training
with CLS and token-level similarity metrics, as
well as training with a different number of batch
repetitions. We conduct these experiments on three
datasets: Hwu64, Banking77, and Clinc150, with 5
random splits, and average their results. We assess
the effect of these modifications for both small and
large models, with 5 and 10 shots.

In Table 4, we present the differences in per-
formance caused by our changes; full results are
available in App. §E. The Token-level similarity
metric proves beneficial across all settings, with
a more pronounced effect for smaller models and
when less data is available (5-shot compared to
10-shot). Concerning the number of repetitions,
we observe that, in most cases, adding repetitions
helps. Additionally, it appears that overall, four rep-
etitions are more effective than two. Regarding the
relationship between the number of shots and the
effectiveness of repetition, no clear connection is
apparent. While an increase in the number of shots
enhances effectiveness in small models, the oppo-
site is observed for large models, where the effect
decreases. Nevertheless, it seems that, in general,
larger models benefit more from batch repetition.

Although our primary focus is few-shot classi-
fication, we also wanted to examine the effective-
ness of FastFit when training on the full dataset.
We conducted two sets of experiments. In the first,

178

Model Shot Similarity Level Repetitions

Token 2 4

FastFit-S 5 1.33 -0.28 0.09
FastFit-S 10 0.85 0.09 0.24
FastFit-L 5 0.65 0.72 1.04
FastFit-L 10 0.36 0.55 0.78

Table 4: FastFit ablation experiments; Accuracy dif-
ferences in training with token-level versus CLS sim-
ilarity metrics and increasing augmentations repeti-
tions. Token-level enhancements are more prominent in
smaller models, especially in the 5-shot setting.

Model C150 B77 H64 Avg.

Classfier-L 96.8 93.7 92.1 94.2
FastFit-S 97.1 93.8 92.7 94.5
FastFit-L 97.5 94.2 93.0 94.9

Table 5: FastFit accuracy results when training on the
full data.

Model EN DE JP ES FR CN Avg.

Classfier-B 88.3 85.7 83.9 86.9 86.3 84.9 86.0
mT5-B T2T 87.9 86.2 83.5 86.7 86.9 85.2 86.1
mT5-B Enc 89.0 86.8 85.8 86.8 87.2 85.8 86.9

FastFit-S 88.8 87.4 87.0 87.9 87.6 86.7 87.6
FastFit-L 89.5 88.5 88.5 87.4 88.5 86.7 88.2

Table 6: FastFit and baselines accuracy results on MAS-
SIVE with full data training.

we compared FastFit-small, FastFit-large, and a
large standard classifier on Hwu64, Banking77,
and Clinc150. In the second, we compared FastFit-
small and FastFit-large with a few base-sized multi-
lingual baseline models on Msstive, using the set of
six languages mentioned in §5.1. These baselines
are based on the Msstive paper, where Classifier-B
and mT5-B Encoder are standard classifiers based
on XLM-R-BASE and mT5-Base with 270M and
258M parameters, respectively. mT5-B T2T is a
text-2-text classifier with 580M parameters.

Results in Table 5 demonstrate that when train-
ing on all the data, FastFit-Small outperforms the
large Classifier, and FastFit-Large performs even
better. From Table 6, we can see that FastFit-Small
outperforms all other baselines even with fewer
than half the number of parameters. Moreover,
FastFit-Large further improves performances by
0.6% on average. These results indicate that Fast-
Fit is not only a fast few-shot classifier but can also
outperform even larger classifiers when training on
the full dataset.

7 Related Work

For fine-tuning baselines, we focus on readily avail-
able methods. , including SetFit with its pack-
age, a standard classifier accessible through HF
Transformers (Wolf et al., 2019), or LLMs through
API calls. However, there are various few-shot
classifiers, and we will briefly discuss a couple of
them. QAID (Yehudai et al., 2023) proposed pre-
and fine-tuning training stages with unsupervised
and supervised loss, using ColBERT architecture,
achieving SOTA results. T-Few (Liu et al., 2022), a
parameter-efficient fine-tuning method based on T0
(Sanh et al., 2021), claims to be better and cheaper
than In-Context Learning.

Regarding few-shot prompting of LLMs ap-
proaches, a question arises about whether our re-
sults will withstand stronger LLMs or improved
prompting techniques. According to Loukas et al.
(2023) we can deduce that FastFit outperforms
GPT4 (OpenAI et al., 2023) with a fraction of the
cost. Additionally, Milios et al. (2023) demonstrate
that retrieval-based few-shot prompts can lead to
improved results. However, it’s worth noting that
currently, these models remain slow and costly.

8 Conclusions

In this paper, we introduce FastFit, a novel few-
shot text classification method accompanied by
a Python package. Our results demonstrate that
FastFit outperforms large language models (LLMs)
such as Flan-XXL and Llama-2-chat-70B, as well
as fine-tuning methods, including both standard
and SetFit classifiers, readily available in existing
packages. Notably, FastFit exhibits fast training
and inference. We provide evidence that these re-
sults hold for both Multilingual and full-data train-
ing setups. We hope that FastFit’s speed and sim-
plicity will enhance its usability.

References
Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,

Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. arXiv
preprint arXiv:2003.04807.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron

179

http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305

Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,
Swetha Ranganath, Laurie Crist, Misha Britan,
Wouter Leeuwis, Gokhan Tur, and Prem Natara-
jan. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with 51
typologically-diverse languages.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Shai Gretz, Alon Halfon, Ilya Shnayderman, Orith
Toledo-Ronen, Artem Spector, Lena Dankin, Yan-
nis Katsis, Ofir Arviv, Yoav Katz, Noam Slonim,
and Liat Ein-Dor. 2023. Zero-shot topical text clas-
sification with LLMs - an experimental study. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 9647–9676, Singapore.
Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2021. Super-
vised contrastive learning.

Stefan Larson, Anish Mahendran, Joseph J Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K Kummerfeld, Kevin Leach, Michael A
Laurenzano, Lingjia Tang, et al. 2019. An evalua-
tion dataset for intent classification and out-of-scope
prediction. arXiv preprint arXiv:1909.02027.

Yen-Ting Lin, Alexandros Papangelis, Seokhwan Kim,
Sungjin Lee, Devamanyu Hazarika, Mahdi Namaz-
ifar, Di Jin, Yang Liu, and Dilek Z. Hakkani-Tür.
2023. Selective in-context data augmentation for
intent detection using pointwise v-information. In
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning. ArXiv,
abs/2205.05638.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language
models use long contexts.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019a. Benchmarking natural lan-
guage understanding services for building conversa-
tional agents. arXiv preprint arXiv:1903.05566.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach.

Lefteris Loukas, Ilias Stogiannidis, Odysseas Dia-
mantopoulos, Prodromos Malakasiotis, and Stavros
Vassos. 2023. Making llms worth every penny:
Resource-limited text classification in banking. Pro-
ceedings of the Fourth ACM International Confer-
ence on AI in Finance.

Aristides Milios, Siva Reddy, and Dzmitry Bahdanau.
2023. In-context learning for text classification with
many labels. ArXiv, abs/2309.10954.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,

180

http://arxiv.org/abs/2204.08582
http://arxiv.org/abs/2204.08582
http://arxiv.org/abs/2204.08582
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2023.findings-emnlp.647
https://doi.org/10.18653/v1/2023.findings-emnlp.647
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2004.11362
https://api.semanticscholar.org/CorpusID:256808612
https://api.semanticscholar.org/CorpusID:256808612
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://api.semanticscholar.org/CorpusID:265128933
https://api.semanticscholar.org/CorpusID:265128933
https://api.semanticscholar.org/CorpusID:262063582
https://api.semanticscholar.org/CorpusID:262063582

Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak,
Debajyoti Datta, Jonathan D. Chang, Mike Tian-
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng-Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Févry, Jason Alan
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali
Bers, Thomas Wolf, and Alexander M. Rush. 2021.
Multitask prompted training enables zero-shot task
generalization. ArXiv, abs/2110.08207.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-

Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier
Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster,
Huaixiu Steven Zheng, Denny Zhou, Neil Houlsby,
and Donald Metzler. 2023. Ul2: Unifying language
learning paradigms.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Lewis Tunstall, Nils Reimers, Unso Eun Seo Jo, Luke
Bates, Daniel Korat, Moshe Wasserblat, and Oren
Pereg. 2022. Efficient few-shot learning without
prompts.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Asaf Yehudai, Matan Vetzler, Yosi Mass, Koren Lazar,
Doron Cohen, and Boaz Carmeli. 2023. Qaid: Ques-
tion answering inspired few-shot intent detection.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
{bert} fine-tuning. In International Conference on
Learning Representations.

181

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2205.05131
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2209.11055
http://arxiv.org/abs/2209.11055
http://arxiv.org/abs/2109.01652
http://arxiv.org/abs/2109.01652
https://api.semanticscholar.org/CorpusID:208117506
https://api.semanticscholar.org/CorpusID:208117506
http://arxiv.org/abs/2303.01593
http://arxiv.org/abs/2303.01593
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF

A Full Code Example

Any dataset can be loaded directly from Hugging-
face Hub, For example:

• • •
from datasets import load_dataset
dataset =
load_dataset("mteb/banking77")

Then fast fit library can sample it down to the 5
or 10 shot format:

• • •
from fastfit import sample_dataset

dataset["train"] =sample_dataset(
dataset["train"],
label_column="label",
num_samples=5

)

Then once the data is ready it can be serve as
input to the Fast-Fit trainer together with other im-
portant inputs:

• • •
from fastfit import FastFitTrainer

trainer = FastFitTrainer(
model_name_or_path=

"roberta-large",
label_column_name="label_text",
text_column_name="text",
dataset=dataset,

)

model = trainer.train()
results = trainer.evaluate()

Then we can save the model:

• • •
model.save_pretrained("fast-fit")

And could be loaded for inference with:

• • •
from fastfit import FastFit from
transformers import (

AutoTokenizer,
pipeline

)

model = FastFit.from_pretrained(
"fast-fit"

)
tokenizer =
AutoTokenizer.from_pretrained(

"roberta-large"
)

classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer

)

print(classifier("Hello World!"))

B Data Statistics

In Table 7, we provide the data statistics for the
classification datasets used in our work.

Dataset #Train #Vaild #Test #Intents #Domains

Clinc150 15,000 3,000 4,500 150 10
BankingG77 8,622 1,540 3,080 77 1
Hwu64 8,954 1,076 1,076 64 21
MASSIVE 11,514 2,033 2,974 60 18

Table 7: Data statistics of the few-shot classification
datasets.

C Multilingual Results

In Table 10, we present the experimental results
using various backbone models for SetFit. We
evaluated three models: (1) Monolingual sentence-
transformer (ST) large, referred to as ST-L. (2)
Regular Multilingual RoBERTa-large, denoted as
XLM-R-L or simply L. (3) RoBERTa-Base Mul-
tilingual sentence-transformer model, labeled as
ST-XB.

The results indicate that ST-L encounters diffi-
culties with all non-English datasets, resulting in
overall inferior performance. XLM-R-L exhibits
lower proficiency in English but demonstrates im-
proved results across all other languages. Lastly,
ST-XB, with a comparable size to the small models

182

(125M vs. 110M), achieved similar, albeit slightly
lower, results. These findings underscore SetFit’s
dependence on ST pre-trained models and highlight
its limitations when such a model is unavailable, as
in this experiment.

D Training Run Times Results

Here we present more training run time results for
FastFit, SetFit, and a standard classifier. In 2 we
present the run time for the small and large settings.
In Table 9 we show the average training run time
results.

Figure 2: Training times (sec) for FastFit, SetFit, and
standard classifier. FastFit training is faster both for the
small model (top) and for the large model (bottom).

Table 8: Results

Model Small Large

5-shot 10-shot 5-shot 10-shot

FastFit 35.5 73.2 72.7 151.0
SetFit 384.1 1530.5 767.1 3073.7
classifier 112.0 294.8 230.6 606.7

Table 9: Training times (sec) for FastFit, SetFit, and
standard classifier.

E Ablation Results

Here, we present the results for the ablations asso-
ciated with Table 4. The first ablation is designed
to measure the effect of the similarity metrics. Ta-
ble 11 shows the results of the experiments with
both CLS and token-level similarity metrics. In
Table 12, we present the results without augmen-
tation repetitions (1), and with 2 and 4 repetitions.
Both ablations support our claim that the token-
level similarity metric and an increased number of
augmentation repetitions help.

F Short Video

Click here for our short presentation.

183

https://www.youtube.com/watch?v=UqLGxpnd5YA

Method Model En De Ja Es Fr Zh Average

5-shot

FastFit
S 72.3 65.0 68.7 65.9 68.0 68.4 68.1
L 77.6* 70.5* 73.7* 71.7* 73.1* 73.7* 73.4*

SetFit S 67.9 62.2 66.8 64.0 65.0 66.7 65.4
ST-L 74.0 50.3 41.3 53.6 52.1 39.6 51.8
L 66.1 60.8 64.8 50.1 61.3 43.6 57.8
ST-XB 74.0 62.3 64.8 62.0 62.3 65.1 65.1

10-shot

FastFit
S 77.6 70.5 73.7 71.7 73.1 73.7 73.4
L 79.2* 74.8* 77.4 74.1* 75.7* 74.9* 76.0*

SetFit S 74.7 69.8 73.5 71.4 72.0 72.9 72.4
ST-L 78.3 61.4 53.4 64.0 63.2 48.3 61.4
L 74.5 69.1 72.5 69.7 70.7 59.2 69.3
ST-XB 78.3 68.7 72.9 70.1 70.5 72.3 72.1

Table 10: Accuracy results for FastFit and baselines across six languages, under 5/10-shot settings. Results with few
SetFit versions but no one surpasses SetFit small. We experimenting here with sentence-transformer (ST) large
monolingual, multilingual base, and non-ST multilingual large.

Method Shots Sim.
metric

C150 B77 H64 Average

FastFit-small

5 CLS 88.9 78.6 78.5 82.0
5 TOK. 90.2 80.0 79.7 83.3
10 CLS 92.4 84.7 83.8 86.9
10 TOK. 93.3 85.4 84.7 87.8

FastFit-large

5 CLS 91.6 81.7 82.4 85.2
5 TOK. 92.3 82.9 82.4 85.9
10 CLS 94.1 87.6 86.3 89.4
10 TOK. 94.8 88.0 86.4 89.7

Table 11: Ablation results with CLS and token-level similarity metrics. The average results that scored the highest
for each model size and shot number are highlighted in bold.

Method Shots Repet. C150 B77 H64 Average

FastFit-small
5 1 90.3 80.3 79.1 83.2
5 2 89.8 79.8 79.2 82.9
5 4 90.2 80.0 79.7 83.3

FastFit-small
10 1 93.3 85.3 84.1 87.6
10 2 93.2 85.3 84.5 87.6
10 4 93.3 85.4 84.7 87.8

FastFit-Large
5 1 91.6 82.0 81.0 84.8
5 2 92.0 82.4 82.3 85.6
5 4 92.3 82.9 82.4 85.9

FastFit-Large
10 1 94.2 87.3 85.2 88.9
10 2 94.6 87.7 86.1 89.5
10 4 94.8 88.0 86.4 89.7

Table 12: Ablation results with varying repetition numbers. The bolded values represent the highest-scoring average
results for each model size and shot number.

184

