
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 26–35

June 16-21, 2024 ©2024 Association for Computational Linguistics

EdTec-QBuilder: A Semantic Retrieval Tool for Assembling Vocational
Training Exams in German Language

Alonso Palomino1,3, Andreas Fischer2, Jakub Kuzilek1, Jarek Nitsch4,
Niels Pinkwart1, Benjamin Paaßen1,3

1Educational Technology Lab, DFKI, alonso.palomino@dfki.de
2Forschungsinstitut Betriebliche Bildung (f-bb), andreas.fischer@f-bb.de

3Universität Bielefeld, benjamin.paasen@uni-bielefeld.de
4bfz gGmbH

Abstract
Selecting and assembling test items from a vali-
dated item database into comprehensive exam
forms is an under-researched but significant
challenge in education. Search and retrieval
methods provide a robust framework to assist
educators when filtering and assembling rele-
vant test items. In this work, we present EdTec-
QBuilder1, a semantic search tool developed to
assist vocational educators in assembling exam
forms. To implement EdTec-QBuilder’s core
search functionality, we evaluated eight retrieval
strategies and twenty-five popular pre-trained
sentence similarity models. Our evaluation re-
vealed that employing cross-encoders to re-rank
an initial list of relevant items is best for assist-
ing vocational trainers in assembling examina-
tion forms. Beyond topic-based exam assembly,
EdTec-QBuilder aims to provide a crowdsourc-
ing infrastructure enabling manual exam assem-
bly data collection, which is critical for future
research and development in assisted and auto-
matic exam assembly models.

1 Introduction

Examination forms consisting of validated, high-
quality test items are a crucial tool for estimating
the current competence of students in education.
While much research has covered the task of gen-
erating such items, relatively little research has
focused on assembling new exams from a database
of existing, validated test items (Kurdi et al., 2020).
Exam assembly is a challenging task on its own as
exams need to cover all skills in a given topic com-
prehensively, at multiple levels of difficulty, and
such that the resulting exam is psychometrically
valid (Armendariz et al., 2012; Lane et al., 2015;
Fischer and Neubert, 2015).

To support educational experts in formative exam
assembly, we present EdTec-QBuilder1, a service
1The EdTec-QBuilder system demo version is publicly acces-
sible at: https://www.dfki.de/kiperweb/about.html

Figure 1: The operational flowchart scenario of EdTec-
QBuilder.

and tool to search a database of (validated and high-
quality) test items and assemble them for an exam.
Beyond its practical utility for exam assembly, our
tool is also intended to be a crowdsourcing platform
to collect data on exam assembly processes and
thus provide data for future research on assisted
and automated exam assembly.

Figure 1 summarizes the operational flow of our
tool. After logging in, users query, filter, and anno-
tate relevant items from a validated item database.
While selecting, confirming, and submitting exam
forms, users assess the quality of their search ex-
perience. Finally, search sessions are stored for
analysis and exam assembly model development.

To implement EdTec-QBuilder’s semantic search
functionality, we evaluated the performance of
eight search and retrieval strategies in combina-
tion with the top twenty-five trending pre-trained
sentence similarity models (representing over 176
different combinations, overall; refer to Section 4).
We selected the best-performing strategy and pre-
trained model from our evaluation to include it as a
core search and retrieval module. Our work makes
the following key contributions:

26

https://www.dfki.de/kiperweb/about.html

• A new perspective to tackle the topic-based exam
assembly task, framed as an information retrieval
problem.

• A new data resource to study exam assembly2.
• A system demonstration of the deployed service

and tool used by vocational educators1.
• An extensive evaluation and performance anal-

ysis of popular pre-trained sentence similarity
models for the exam assembly task.

The evaluation and selection of the best-performing
core semantic search functionality can be found
in Section 4. The implementation and features of
EdTec-QBuilder are described in Section 5. Finally,
we discuss future directions and opportunities for
improvement in Section 6.

2 Related Work

Research on assisted and automated exam assembly
can be traced back to the EVALING system (Fa-
iron, 1999), a platform that employed rule-based
and finite state transducers to compile and up-
date language proficiency exams from a question
bank. Piton-Gonçalves and Aluísio (2012) pre-
sented a multidimensional adaptive test architec-
ture and system that selects test items based on
a student’s profile and previous performance. Qin
et al. (2019) utilized named entity recognition to
build a knowledge graph of skills, which a recom-
mendation method harnessed to suggest personal-
ized interview questions. Sangodiah et al. (2016)
used text classification methods to estimate exam
difficulty from question bank’s items via Bloom’s
taxonomy categories. Han (2018) introduced selec-
tion methods for complying with test item criteria
for automated item selection, fostering adaptive
learning and individualized learning. Ruan et al.
(2019) developed a dialog agent to teach factual
knowledge of science and safety. When contrasting
system usage with a flashcard system, students in-
creased their response accuracy significantly when
using the agent. Cole et al. (2020) leveraged clas-
sic natural language processing methods with a
cluster-based test item generation approach aligned
to a dashboard that enables test designers to se-
lect generated questions from the available clus-
ters. Datta et al. (2021) tackled the task of auto-
matically generating an interview question plan
from the applicant’s resume, harnessing knowledge
graphs and integer programming methods. Upad-
2The public data fold available under CC BY license at: https:
//www.dfki.de/kiperweb/about.html#dataset

hyay et al. (2023) employed large language models
to develop a suite for automated item generation
and exam assembly. However, the suite delegates
the assembly process to human experts to ensure
the test items’ quality.

Most of the prior research focuses exclusively on
test item generation, utilizing either classical NLP
methods such as text classification and topic mod-
eling (Brown et al., 2005; Mitkov et al., 2006;
Rus et al., 2011; Heilman and Smith, 2010; Chali
and Hasan, 2015), or deep neural networks and
transformer-based architectures (Du et al., 2017;
Chan and Fan, 2019; Tuan et al., 2020; Qu et al.,
2021; Yoshimi et al., 2023). However, in real sce-
narios, where contextual knowledge, quality con-
trol, and topic alignment with curricular standards
are necessary for effective student skill develop-
ment, it is not sufficient to generate items; we also
need to assemble them to exams that are psychome-
trically suited to test the competencies they ought
to assess. Therefore, in contrast to prior work, our
contribution focuses on assisted exam assembly
rather than item generation. Further, we concep-
tualize exam assembly as an information retrieval
problem.

3 Methods

EdTec-Qbuilder aims to assist in tackling the topic-
based exam assembly task. We formalize the
task as an information retrieval problem. Given
a query q ∈ Q – e.g. a text describing the topic
of a exam – and a database of possible items
B = {x1, . . . , xN}, we wish to compute similar-
ity scores s1 = S(q, x1), . . . , sN = S(q, xN) for
some similarity function S : Q×B → R. Based on
these scores, we rank all possible items from most
similar to least similar and let an educational expert
assemble an exam from the ranked list. In other
words, we support educational experts in exam as-
sembly by assisting them in searching a large item
database according to their query (refer to Figure 1).
Therefore, the similarity function S needs to corre-
spond to educational experts’ notion of relevance.
In other words, S must assign higher similarity val-
ues to the items experts want to include in their
exam. This is precisely the criterion we evaluate in
Section 4.

3.1 Item Database
The item database B for our investigation has been
provided by the bfz group, one of the largest voca-

27

https://www.dfki.de/kiperweb/about.html#dataset
https://www.dfki.de/kiperweb/about.html#dataset

tional training providers in Germany. The database
consists of 2,812 test items across 34 in-demand
vocational training topics. For the purpose of a
freely available version of our tool (the original
2,812 items are proprietary) and to increase the
amount of training data, we augmented the item
database with another 2,812 items generated via
ChatGPT3.523. All generated items were manually
inspected, and duplicates/low-quality items were
removed. The remaining items form the basis for
our tool’s openly available demo version.

Table 1a displays the most prominent topics in
the item database, with their three most used
terms. Specifically, the topics “Professional Coun-
seling/Learning Skills/Self-assessment”, “Business
Knowledge”, “Communication/Negotiation and
Etiquette in the Workplace”, “Information Tech-
nology Competence” and “Presentation and Visu-
alization Techniques” cover 2,329 items, mean-
ing 41.41% of all items. The average length of
the questions is 17.76 words. Overall, the most
used terms throughout the collection correspond
to “company”, “product” and “important”. To es-
timate the difficulty of 2,812 test items of the bfz
data datafold, we fitted a 1parameter item response
theory model to the answers of prior respondents.
Table 1b shows the distribution of the resulting
difficulty values, grouped into three levels: easy,
medium, and hard. We observed that 78.91% of
test items have a medium difficulty, 20.98% were
easy to answer, and only 0.10% were hard. Ta-
ble 1c outlines the question type distribution in the
item database. We observed that 64.83% are multi-
ple and single choice test item types, whereas other
formats are less frequent.

4 Experiments and Analysis

Our experiments aim to evaluate the capability
of various (semantic) search strategies to retrieve
matching test items for typical queries in our item
database4. Due to the lack of historical search
data and insufficient human annotation capacity
that would allow us to obtain ground-truth data,
we opted to use an automated relevance labeling
approach. Using the following approach, we built
a new synthetic TREC-style (Voorhees et al., 2005;
Teufel, 2007; Voorhees et al., 2022) data set of
queries and corresponding relevancy items.
3https://chat.openai.com/
4The experiments were conducted on a macOS with an
ARM64 processor, 32 GB of memory, and 12 physical cores.

Testbed We randomly generated synthetic
queries by selecting 15 syntactically different
synonyms from the 34 available topic dimensions
of the item database (refer to Table 1a). By
aggregating the top 100 agreeing search results
of 25 trending multilingual and German sentence
similarity models (refer to Appendix A.1), with
the trec-tools library (Palotti et al., 2019), we
constructed a synthetic test dataset for evaluating
our experiments. To attach relevance judgments
to the elements of the test dataset, we calculated
the average similarity score with the available
pre-trained models for each query and item pair.
Pairs with an average similarity score between
0.60 and 0.75 were labeled as moderately relevant;
pairs above 0.75 were labeled as highly relevant.
We acknowledge that this labeling strategy could
introduce a bias as the assumed ground truth is
influenced by the same language models later
used as part of the search strategies. However, the
labeling was obtained by averaging the similarity
scores of all language models, thus reducing the
bias toward any single model and enhancing the
robustness of the obtained labeling.

Evaluation We employed the ranx library (Bas-
sani, 2022) to calculate standard information re-
trieval metrics as an evaluation method to iden-
tify and select the best-performing strategy to in-
clude as a search module in our tool. In ad-
dition to Precision, Recall, F1, and mean aver-
age precision (MAP), we used normalized dis-
counted cumulative gain (nDCG) and mean recip-
rocal rank (MRR). The former expresses the rele-
vance of documents ranked at the top, whereas the
latter expresses relevant documents’ (reciprocal)
rank. Both metrics are better if higher.

Search and retrieval strategies We tested eight
different search and retrieval strategies:

1. BM25: As a baseline method, we fitted a stan-
dard BM25 model (Řehůřek and Sojka, 2010).
BM25 is a probabilistic model that, given a
query, calculates term and inverse document
frequencies to retrieve relevant items.

2. LM+ANN: We employed 25 trending multilin-
gual and German sentence similarity pre-trained
language models (LM) (see Appendix A.1) to
approximate the top nearest neighbors (ANN)
with the NMSLIB library (Boytsov and Naidan,
2013).

3. TF-IDF Weighted Average: To improve the se-

28

https://chat.openai.com/

(a)

Top 5 Topics Avg. Terms
per Item

Unique
Terms

Top 3
Terms Dist.

Professional Counseling,
Learning Skills
Self-assessment

11.96 2495
learn (140)
work (93)

professional (91)
671

Business Knowledge 18.25 2495
company (328)
product (210)

business plan (199)
586

Workplace Communication,
Negotiation & Etiquette 18.75 2490 customer (184)

product (182)
communication (177)

514

Information Technology
Competence 17.01 2064 internet (58)

digital (47)
program (43)

322

Presentation
&

Visualization Techniques
17.45 1014 presentation (241)

audience (184)
represent (86)

236

Total 34 17.76 15023
company (1017)

product (639)
important (492)

5624

(b)

3 2 1 0 1 2 3

Difficulty
Easy
Medium
Hard

(c)
Attribute Dist.

Multiple Choice 1902
Single Choice 1745

Scale 732
Single Choice Matrix 753

Page type 146
Multiple Choice Matrix 144

Word Problem 58
Fill in The Blank 46

Other 125

Source bfz 2812
ChatGPT3.5 2812

Table 1: Summary of (a) topical, (b) test item dificulty, and (c) structural contents of the bfz-EdTec dataset, where
topic categories and top terms are translated in English language

mantic representation of the existing pre-trained
language models, we averaged the embedding
vectors by weighting the term frequency and the
inverse document frequency scores (TF-IDF) of
the represented terms.

4. Query-term expansion: We expanded search
queries and documents with synonym terms as
listed in OdeNet (Siegel and Bond, 2021), the
German language version of Wordnet.

5. Vertical search: To reduce the search space to
only relevant topics, we truncated the search to
the top ten most semantically similar topics in
terms of cosine similarity, where topics were
defined by the item data base (refer to Table 1,
first column).

6. MILP: After computing the top 100 most similar
items to the query according to cosine similarity
of sentence embeddings, we applied the method
of (Mitchell et al., 2011) to re-rank the items
to optimize the nDCG score via mixed integer
linear programming (MILP) with a CBC Solver.

7. LambdaMART: We employed a Lamb-
daMART (Burges, 2010; Chen and Guestrin,
2016) regressor for re-ranking the top 100
most similar items to the query. We evaluated
our model with a ten-cross-validation schema.
The average nDCG score of the model in
cross-validation was 0.35.

8. Cross-encoder: We re-ranked the top 100 most
similar items to the query with a multilin-
gual MS Marco cross-encoder (Reimers and
Gurevych, 2019)5. To re-rank, cross-encoders
concatenate query and items, passing them to a

5amberoad/bert-multilingual-passage-reranking-msmarco

transformer model. With a self-attention mecha-
nism, the transformer learns the importance of
weights across the concatenated inputs, scoring
its relevance. Finally, the model re-orders an
initial list of candidates by its relevance scores.

Note that each strategy may have several repre-
sentatives. Overall, we evaluated 176 different
combinations of search strategies and pre-trained
sentence similarity models.

4.1 Results and Analysis
Table 2 reports each strategy’s top three best-
performing representatives (regarding nDCG) for
the 100 highest-ranked items. We observed that the
most effective strategy for our task is re-ranking an
initial candidate list of relevant items with a cross-
encoder (0.516 nDCG and 0.713 MRR), followed
by a vertical search approach (0.468 nDCG and
0.245 MRR). The least effective strategies were
BM25 and query expansion. Overall, we observed
that using a pre-trained sentence similarity German
language model6 in conjunction with a multilin-
gual cross-encoder5 outperformed all the proposed
strategies with their corresponding pre-trained sen-
tence similarity model.

We conduct a correlation analysis via Kendall’s
τ between the best-performing search runs (re-
fer to A.2) to analyze the differences across the
best-performing strategies’ search results. The
LambdaMART re-ranker and the TF-IDF weighted
average model had the most similar search re-
sults (τ = 0.59). However, considering the nDCG
6deutsche-telekom/gbert-large-paraphrase-cosine

29

https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine

Strategy Pre-trained Language Model nDCG@100 MRR@100 Prec@100 Recall@100 F1@100 MAP@100

Baseline bm25 0.07 0.12 0.05 0.09 0.06 0.01
deutsche-telekom_gbert-large-paraphrase-cosine 0.43 0.20 0.31 0.53 0.37 0.25
deutsche-telekom_gbert-large-paraphrase-euclidean 0.43 0.20 0.31 0.53 0.37 0.24LM+ANN
sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.42 0.24 0.30 0.51 0.36 0.24
deutsche-telekom_gbert-large-paraphrase-cosine 0.32 0.14 0.24 0.40 0.29 0.15
PM-AI_sts_paraphrase_xlm-roberta-base_de-en 0.31 0.18 0.23 0.39 0.28 0.15

TF-IDF
Weighted
Average nblokker_debatenet-2-cat 0.30 0.14 0.22 0.36 0.26 0.13

deutsche-telekom_gbert-large-paraphrase-euclidean 0.26 0.08 0.21 0.33 0.24 0.13
deutsche-telekom_gbert-large-paraphrase-cosine 0.25 0.10 0.20 0.32 0.23 0.13

Query-Term
Expansion

PM-AI_sts_paraphrase_xlm-roberta-base_de-en 0.24 0.10 0.18 0.30 0.22 0.13
deutsche-telekom_gbert-large-paraphrase-euclidean 0.46 0.24 0.34 0.58 0.41 0.26
deutsche-telekom_gbert-large-paraphrase-cosine 0.45 0.23 0.33 0.57 0.40 0.25Vertical Search
sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.44 0.24 0.32 0.55 0.39 0.25
deutsche-telekom_gbert-large-paraphrase-euclidean 0.39 0.26 0.31 0.53 0.37 0.15
deutsche-telekom_gbert-large-paraphrase-cosine 0.38 0.18 0.31 0.53 0.37 0.14

MILP
Re-ranker

sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.38 0.18 0.30 0.51 0.36 0.14
deutsche-telekom_gbert-large-paraphrase-euclidean 0.42 0.32 0.31 0.53 0.37 0.17
deutsche-telekom_gbert-large-paraphrase-cosine 0.41 0.27 0.31 0.53 0.37 0.16

LambdaMART
Re-ranker

sentence-transformers_paraphrase-multilingual-mpnet-base-v2 0.40 0.28 0.30 0.51 0.36 0.16
deutsche-telekom_gbert-large-paraphrase-cosine 0.51 0.70 0.31 0.53 0.37 0.28
deutsche-telekom_gbert-large-paraphrase-euclidean 0.51 0.71 0.31 0.53 0.37 0.28

Cross-encoder
Re-ranker

0_Transformer 0.49 0.70 0.27 0.49 0.34 0.27

Table 2: Performance metrics for the eight search strategies (rows), combined with the respective best-performing
language models, evaluated at a cut-off of 100.

scores, the ranking quality produced by the Lamb-
daMART re-ranker model was 10% better com-
pared to the TF-IDF weighted average. With a
correlation of -0.89, the models that showed the
slightest similarity in terms of the produced rank-
ings were the MILP re-ranker and the BM25 model.

5 Tool Overview

This section presents EdTec-QBuilder, a seman-
tic search service and web tool to support exam
assembly. Figure 2 provides an overview of the
tool. While the frontend is a website implemented
in HTML and JavaScript, the backend is imple-
mented in Python and Flask. Below, we summarize
each of the main components.

User workflow Figure 2a illustrates EdTec-
QBuilder’s user workflow. First, after notifying
users that we will only collect click data from the
user interface and annotations for future research
and development, users land on the search result
page (SERP) interface after successfully authen-
ticating themselves. Second, once in the SERP
view, the web application provides a search bar
where users can browse and search across the test
items in the item database. Third, after triggering a
search, the tool returns the top 100 items relevant to
their query, grouped on pages with ten results each.
We employed a cross-encoder as a re-ranking strat-
egy because it showed the best performance (see

Section 4). Fourth, as illustrated in Figure 2b, to
assemble exams, users click on the test items they
wish to include in their exam. When users click
on an item in the ranked list, the item changes to
green, indicating its inclusion in the exam. Any
selected item can be de-selected by clicking again.
Users can flag items if they consider them outdated
or inconsistent by pressing a red flag button. Fi-
nally, after annotating, users submit the selected
test items to another endpoint, e.g., to publish the
exam or deliver it to a computer-based testing en-
vironment (CBTE). Note that our interface also
crowdsources ground-truth annotation data by in-
ternally logging and sending the selected items to
the tool’s backend (refer to Appendix 4 for more
details about the user interface).

API endpoints We implemented 13 interopera-
ble functionalities coupled with the search and data
collection processes. Figure 2c summarizes the
endpoint’s inter-module coordination. We provide
a JSON Web Token-based service7 to authenticate
and serve client requests from the SERP. After user
authentication, the endpoint validates the users’ cre-
dentials in the user’s database. When a user sub-
mits a query, the query is embedded as a vector
via the deutsche-telekom_gbert-large-paraphrase-
cosine model and the 100 closest items according
to cosine similarity are retrieved via NMSLIB. To
optimize the output of the initial search, the tool
7https://jwt.io/

30

https://jwt.io/

Figure 2: Summary of user workflow (a), API/endpoints architecture (b), SERP user interface (c).

re-ranks the top 100 results with a cross-encoder.
Then, it returns a response in JSON format with
the resulting test items and their corresponding at-
tributes. The client receives the system’s output,
and the SERP maps the JSON into a suitable for-
mat for the visualization of results. The client then
allows users to select relevant items; in the back-
ground, the SERP logs the selected items and sends
this data to the web tool in a JSON format.

6 Conclusions

More than item generation is required to build
high-quality exams in education; items must also
be assembled into comprehensive examination
forms (Lane et al., 2015; Kurdi et al., 2020). We
framed assisted topic-based exam assembly as
an information retrieval problem, evaluating 176
search and retrieval strategies and language model
combinations on a 5,624-item database from the
vocational education domain. The most promising
strategy is to embed queries via language mod-
els, identify the closest 100 items regarding cosine
similarity, and re-rank these 100 results via a cross-
encoder, yielding 0.516 nDCG and 0.713 MRR. In
other words, about half of the top-ranked results

were relevant, and the highest-ranked relevant re-
sult was, on average, on rank 1 or 2. Using the
cross-encoder re-ranking strategy, we developed
EdTec-QBuilder1, a semantic search service and
tool to support exam assembly, which is currently
in use at bfz, one of the leading vocational training
providers in Bavaria. As competencies are known
to be heterogenous constructs, test developers are
well advised to combine items on multiple topics
and items of varying difficulty (Fischer and Neu-
bert, 2015). Future work should investigate leverag-
ing crowdsourced search sessions and developing
models for estimating test item difficulty without
entirely depending on respondent data beforehand.
Lastly, exploring and incorporating large language
models could significantly aid the assembly pro-
cess.

Limitations and Ethics Statement

While EdTec-QBuilder already supports assisted
topic-based exam assembly significantly, some lim-
itations remain. To overcome the cold start problem
and rapidly transfer a tool to our industry partner to
assist them in exam assembly, we based our evalua-
tion on a synthetic and automated labeling scheme

31

instead of using human judgments as ground truth.
However, our tool establishes a research infrastruc-
ture for crowdsourcing ground truth expert data
that can be used to improve or train future assisted
or automatic test assembly models.

Exam assembly is an ethically charged subject mat-
ter because exam results can severely impact stu-
dents’ future learning and prospects. Therefore,
our system does not automate exam assembly but,
instead, serves as a tool for vocational educators
who still have to make the final test item selection
and take responsibility for the assembled exami-
nation form. Our system does not reason about
the item quality but focuses on scoring the simi-
larity between queries and test items. Finally, we
may encounter a popularity bias for items that ed-
ucators prefer in the early use of the system, and
these preferences are “locked in” by using teacher
preferences as training data. Our current training
data is synthetically generated and thereby circum-
vents this particular bias, but future work should
investigate this issue more closely.

References
Anaje Armendariz, Tomás A Pérez, and Javier López-
Cuadrado. 2012. Compiling a test: how to solve calibra-
tion issues. Procedia-Social and Behavioral Sciences,
46:2253–2257.

Elias Bassani. 2022. ranx: A blazing-fast python library
for ranking evaluation and comparison. In ECIR (2),
volume 13186 of Lecture Notes in Computer Science,
pages 259–264. Springer.

Leonid Boytsov and Bilegsaikhan Naidan. 2013. Engi-
neering efficient and effective non-metric space library.
In Similarity Search and Applications - 6th International
Conference, SISAP 2013, A Coruña, Spain, October 2-4,
2013, Proceedings, volume 8199 of Lecture Notes in
Computer Science, pages 280–293. Springer.

Jonathan Brown, Gwen Frishkoff, and Maxine Eskenazi.
2005. Automatic question generation for vocabulary
assessment. In Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Meth-
ods in Natural Language Processing, pages 819–826,
Vancouver, British Columbia, Canada. Association for
Computational Linguistics.

Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning, 11(23-
581):81.

Yllias Chali and Sadid A. Hasan. 2015. Towards topic-
to-question generation. Computational Linguistics,
41(1):1–20.

Ying-Hong Chan and Yao-Chung Fan. 2019. A recur-

rent BERT-based model for question generation. In
Proceedings of the 2nd Workshop on Machine Reading
for Question Answering, pages 154–162, Hong Kong,
China. Association for Computational Linguistics.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794.

Brian S Cole, Elia Lima-Walton, Kim Brunnert,
Winona Burt Vesey, and Kaushik Raha. 2020. Tam-
ing the firehose: Unsupervised machine learning for
syntactic partitioning of large volumes of automatically
generated items to assist automated test assembly. Jour-
nal of Applied Testing Technology, pages 1–11.

Soham Datta, Prabir Mallick, Sangameshwar Patil, In-
drajit Bhattacharya, and Girish Palshikar. 2021. Gener-
ating an optimal interview question plan using a knowl-
edge graph and integer linear programming. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1996–2005,
Online. Association for Computational Linguistics.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading com-
prehension. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1342–1352, Vancouver,
Canada. Association for Computational Linguistics.

Cédrick Fairon. 1999. A web-based system for auto-
matic language skill assessment: Evaling. In Computer
Mediated Language Assessment and Evaluation in Nat-
ural Language Processing.

Andreas Fischer and Jonas Neubert. 2015. The multi-
ple faces of complex problems: A model of problem
solving competency and its implications for training
and assessment. Journal of Dynamic Decision Making,
1(6):1–14.

Kyung Chris Tyek Han. 2018. Components of the item
selection algorithm in computerized adaptive testing.
Journal of Educational Evaluation for Health Profes-
sions, 15.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question generation.
In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 609–617,
Los Angeles, California. Association for Computational
Linguistics.

Ghader Kurdi, Jared Leo, Bijan Parsia, Uli Sattler, and
Salam Al-Emari. 2020. A systematic review of au-
tomatic question generation for educational purposes.
International Journal of Artificial Intelligence in Educa-
tion, 30:121–204.

Suzanne Lane, Mark R Raymond, and Thomas M Hala-
dyna. 2015. Handbook of test development. Routledge.

Stuart Mitchell, Michael OSullivan, and Iain Dunning.
2011. Pulp: a linear programming toolkit for python.

32

https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-030-99739-7_30
https://doi.org/10.1007/978-3-642-41062-8_28
https://doi.org/10.1007/978-3-642-41062-8_28
https://aclanthology.org/H05-1103
https://aclanthology.org/H05-1103
https://doi.org/10.1162/COLI_a_00206
https://doi.org/10.1162/COLI_a_00206
https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/D19-5821
https://doi.org/10.18653/v1/2021.naacl-main.160
https://doi.org/10.18653/v1/2021.naacl-main.160
https://doi.org/10.18653/v1/2021.naacl-main.160
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.11588/jddm.2015.1.23945
https://doi.org/10.11588/jddm.2015.1.23945
https://doi.org/10.11588/jddm.2015.1.23945
https://doi.org/10.11588/jddm.2015.1.23945
https://aclanthology.org/N10-1086
https://aclanthology.org/N10-1086

The University of Auckland, Auckland, New Zealand,
65.

Ruslan Mitkov, Ha Le An, and Nikiforos Karamanis.
2006. A computer-aided environment for generating
multiple-choice test items. Natural language engineer-
ing, 12(2):177–194.

Joao Palotti, Harrisen Scells, and Guido Zuccon. 2019.
Trectools: an open-source python library for informa-
tion retrieval practitioners involved in trec-like cam-
paigns. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1325–1328.

Jean Piton-Gonçalves and Sandra Maria Aluísio. 2012.
An architecture for multidimensional computer adap-
tive test with educational purposes. In Proceedings of
the 18th Brazilian Symposium on Multimedia and the
Web, WebMedia ’12, page 17–24, New York, NY, USA.
Association for Computing Machinery.

Chuan Qin, Hengshu Zhu, Chen Zhu, Tong Xu, Fuzhen
Zhuang, Chao Ma, Jingshuai Zhang, and Hui Xiong.
2019. Duerquiz: A personalized question recommender
system for intelligent job interview. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19,
page 2165–2173, New York, NY, USA. Association for
Computing Machinery.

Fanyi Qu, Xin Jia, and Yunfang Wu. 2021. Asking ques-
tions like educational experts: Automatically generating
question-answer pairs on real-world examination data.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 2583–
2593, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45–50, Valletta,
Malta. ELRA. http://is.muni.cz/publication/
884893/en.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association
for Computational Linguistics.

Sherry Ruan, Liwei Jiang, Justin Xu, Bryce Joe-Kun
Tham, Zhengneng Qiu, Yeshuang Zhu, Elizabeth L Mur-
nane, Emma Brunskill, and James A Landay. 2019.
Quizbot: A dialogue-based adaptive learning system
for factual knowledge. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
pages 1–13.

Vasile Rus, Paul Piwek, Svetlana Stoyanchev, Brendan
Wyse, Mihai Lintean, and Cristian Moldovan. 2011.
Question generation shared task and evaluation chal-
lenge: Status report. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation,
ENLG ’11, page 318–320, USA. Association for Com-
putational Linguistics.

Anbuselvan Sangodiah, Rohiza Ahmad, and Wan Fa-
timah Wan Ahmad. 2016. Integration of machine learn-
ing approach in item bank test system. In 2016 3rd
International Conference on Computer and Information
Sciences (ICCOINS), pages 164–168.

Melanie Siegel and Francis Bond. 2021. OdeNet: Com-
piling a German wordnet from other resources. In Pro-
ceedings of the 11th Global Wordnet Conference (GWC
2021), pages 192–198.

Simone Teufel. 2007. An overview of evaluation meth-
ods in trec ad hoc information retrieval and trec question
answering. Evaluation of text and speech systems, pages
163–186.

Luu Anh Tuan, Darsh Shah, and Regina Barzilay. 2020.
Capturing greater context for question generation. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 34(05):9065–9072.

Shriyash Upadhyay, Chris Callison-burch, and Etan
Ginsberg. 2023. Learn with martian: A tool for cre-
ating assignments that can write and re-write them-
selves. In Proceedings of the 17th Conference of the
European Chapter of the Association for Computational
Linguistics: System Demonstrations, pages 267–276,
Dubrovnik, Croatia. Association for Computational Lin-
guistics.

Ellen M Voorhees, Donna K Harman, et al. 2005. TREC:
Experiment and evaluation in information retrieval, vol-
ume 63. MIT press Cambridge.

Ellen M Voorhees, Ian Soboroff, and Jimmy Lin. 2022.
Can old trec collections reliably evaluate modern neural
retrieval models?

Nana Yoshimi, Tomoyuki Kajiwara, Satoru Uchida,
Yuki Arase, and Takashi Ninomiya. 2023. Distractor
generation for fill-in-the-blank exercises by question
type. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 4:
Student Research Workshop), pages 276–281, Toronto,
Canada. Association for Computational Linguistics.

A Appendix

A.1 Pre-trained sentence similarity models
Details

Table 3 displays the complete list of pre-trained
semantic sentence similarity models used in the
experiments.

The language models in this list were the top-
trending pre-trained sentence similarity language
models as of December 1, 2023, according to hug-
gingface8. These models were evaluated in combi-
nation with the eight search strategies in Section 4.
8https://huggingface.co/models?pipeline_tag=
sentence-similarity&language=de&sort=trending

33

https://doi.org/10.1145/2382636.2382644
https://doi.org/10.1145/2382636.2382644
https://doi.org/10.1145/3292500.3330706
https://doi.org/10.1145/3292500.3330706
https://doi.org/10.18653/v1/2021.emnlp-main.202
https://doi.org/10.18653/v1/2021.emnlp-main.202
https://doi.org/10.18653/v1/2021.emnlp-main.202
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1109/ICCOINS.2016.7783208
https://doi.org/10.1109/ICCOINS.2016.7783208
https://www.aclweb.org/anthology/2021.gwc-1.22
https://www.aclweb.org/anthology/2021.gwc-1.22
https://doi.org/10.1609/aaai.v34i05.6440
https://doi.org/10.18653/v1/2023.eacl-demo.30
https://doi.org/10.18653/v1/2023.eacl-demo.30
https://doi.org/10.18653/v1/2023.eacl-demo.30
https://doi.org/10.18653/v1/2023.acl-srw.38
https://doi.org/10.18653/v1/2023.acl-srw.38
https://doi.org/10.18653/v1/2023.acl-srw.38
https://huggingface.co/models?pipeline_tag=sentence-similarity&language=de&sort=trending
https://huggingface.co/models?pipeline_tag=sentence-similarity&language=de&sort=trending

Pre-trained Language Model
1 sentence-transformers/paraphrase-multilingual-mpnet-base-v2
2 aari1995/German_Semantic_STS_V2
3 sentence-transformers/LaBSE
4 PM-AI/bi-encoder_msmarco_bert-base_german
5 efederici/e5-base-multilingual-4096
6 intfloat/multilingual-e5-base
7 clips/mfaq
8 PM-AI/sts_paraphrase_xlm-roberta-base_de-en
9 deutsche-telekom/gbert-large-paraphrase-euclidean
10 LLukas22/all-MiniLM-L12-v2-embedding-all
11 LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all
12 sentence-transformers/distiluse-base-multilingual-cased-v1
13 sentence-transformers/distiluse-base-multilingual-cased-v2
14 deutsche-telekom/gbert-large-paraphrase-cosine
15 shibing624/text2vec-base-multilingual
16 Sahajtomar/German-semantic
17 setu4993/LaBSE
18 symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
19 and-effect/musterdatenkatalog_clf
20 nblokker/debatenet-2-cat
21 setu4993/LEALLA-large
22 dell-research-harvard/lt-wikidata-comp-de
23 ef-zulla/e5-multi-sml-torch
24 barisaydin/text2vec-base-multilingual
25 meta-llama/Llama-2-7b-chat-hf

Table 3: The full list of tested pre-trained language
models.

A.2 Kendall Tau Correlation Analysis
To understand how much the different search strate-
gies (in combination with the respective best-
performing language odel) agree in their search
results, we calculated Kendall’s τ coefficients (refer
to Section 4.1). Figure 3 summarizes the correla-
tion coefficients when comparing the best search
run outputs.

A.3 Search Results Page
An essential component of our search service and
tool is the search results page (SERP), which allows
and simplifies browsing and assembling test items
from the item database. The SERP will also enable
us to gather expert crowdsourced data from manual
exam assembly processes, which was nonexistent
at the time of development (refer to Section 5).

User Interface Client: The user interface client
of the SERP primarily consists of 12 major ele-
ments. Figure 4 summarizes these major compo-
nents. After the search module retrieves relevant
test items from the database, the response is sent
to the user interface client in JSON format. Then,
users can select and determine for each query what
items are relevant (Figure 4a, the item filtering
mode). Once relevant items are identified, the users
validate their selections by leaving or removing
them (Figure 4b, the validation mode). The user
interface requests the intent of the exam and ex-

Figure 3: The averaged Kendall τ rank correlation co-
efficient across all the best-performing search runs for
each search strategy.

plicit feedback about the quality of the search. The
feedback is collected by grading the search expe-
rience from one to five stars. Finally, when users
finish validating their selection, a submit button
sends the selected items to another endpoint, e.g.
a computer-based testing environment. All the in-
teractions and annotations are securely stored in
the database. When users accept the general data
protection regulation policy, we inform them that
we only collect relevant judgments and annotations
that we will use later for future improvements and
development of exam assembly models.

Crowdsourcing Functionality: In addition to
serving as a user interface, the SERP interface
stores selected and not-selected items for each
query and sends them back to an internal API end-
point. We will later use the stored interactions
to develop assisted and automatic exam assembly
models further. Figure 5 summarizes an example of
a compressed version of an interaction captured and
stored in the search service database. The system
stores the search queries, the IDs of the elements
marked as relevant, all elements not selected but
displayed in the user interface, the selected filters,
the value of the feedback, and the intention of the
query (for more details, refer to 5).

A.4 Backend
As mentioned in section 5, the backend of the
search service is fully implemented as a Flask web

34

https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://huggingface.co/aari1995/German_Semantic_STS_V2
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/PM-AI/bi-encoder_msmarco_bert-base_german
https://huggingface.co/texonom/e5-base-multilingual-4096
https://huggingface.co/intfloat/multilingual-e5-base
https://huggingface.co/clips/mfaq
https://huggingface.co/PM-AI/sts_paraphrase_xlm-roberta-base_de-en
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-euclidean
https://huggingface.co/LLukas22/all-MiniLM-L12-v2-embedding-all
https://huggingface.co/LLukas22/paraphrase-multilingual-mpnet-base-v2-embedding-all
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2
https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine
https://huggingface.co/shibing624/text2vec-base-multilingual
https://huggingface.co/Sahajtomar/German-semantic
https://huggingface.co/setu4993/LaBSE
https://huggingface.co/symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
https://huggingface.co/and-effect/musterdatenkatalog_clf
https://huggingface.co/nblokker/debatenet-2-cat
https://huggingface.co/setu4993/LEALLA-large
https://huggingface.co/dell-research-harvard/lt-wikidata-comp-prod-ind-ja
https://huggingface.co/ef-zulla/e5-multi-sml-torch
https://huggingface.co/barisaydin/text2vec-base-multilingual
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Figure 4: EdTec-QBuilder’s search results page fuctionality details (contents automatically translated to English
language).

Figure 5: A compressed representation of the captured
interactions, as stored in the backend database of the
search service.

application. All the API endpoints are implemented
in the Flask framework. All the search sessions are
securely stored in an SQLite9 database. The back-
end is mounted on an Amazon EC2 instance with
four processor cores, 15GB of total memory, and a
storage drive of 16 GB.

9https://www.sqlite.org/

35

https://www.sqlite.org/

