@inproceedings{cho-etal-2024-rtsum,
title = "{RTSUM}: Relation Triple-based Interpretable Summarization with Multi-level Salience Visualization",
author = "Cho, Seonglae and
Jang, Myungha and
Yeo, Jinyoung and
Lee, Dongha",
editor = "Chang, Kai-Wei and
Lee, Annie and
Rajani, Nazneen",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-demo.5",
doi = "10.18653/v1/2024.naacl-demo.5",
pages = "53--60",
abstract = "In this paper, we present RTSum, an unsupervised summarization framework that utilizes relation triples as the basic unit for summarization. Given an input document, RTSum first selects salient relation triples via multi-level salience scoring and then generates a concise summary from the selected relation triples by using a text-to-text language model. On the basis of RTSum, we also develop a web demo for an interpretable summarizing tool, providing fine-grained interpretations with the output summary. With support for customization options, our tool visualizes the salience for textual units at three distinct levels: sentences, relation triples, and phrases. The code, demo, and video are publicly available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cho-etal-2024-rtsum">
<titleInfo>
<title>RTSUM: Relation Triple-based Interpretable Summarization with Multi-level Salience Visualization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seonglae</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Myungha</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinyoung</namePart>
<namePart type="family">Yeo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongha</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nazneen</namePart>
<namePart type="family">Rajani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present RTSum, an unsupervised summarization framework that utilizes relation triples as the basic unit for summarization. Given an input document, RTSum first selects salient relation triples via multi-level salience scoring and then generates a concise summary from the selected relation triples by using a text-to-text language model. On the basis of RTSum, we also develop a web demo for an interpretable summarizing tool, providing fine-grained interpretations with the output summary. With support for customization options, our tool visualizes the salience for textual units at three distinct levels: sentences, relation triples, and phrases. The code, demo, and video are publicly available.</abstract>
<identifier type="citekey">cho-etal-2024-rtsum</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-demo.5</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-demo.5</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>53</start>
<end>60</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RTSUM: Relation Triple-based Interpretable Summarization with Multi-level Salience Visualization
%A Cho, Seonglae
%A Jang, Myungha
%A Yeo, Jinyoung
%A Lee, Dongha
%Y Chang, Kai-Wei
%Y Lee, Annie
%Y Rajani, Nazneen
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F cho-etal-2024-rtsum
%X In this paper, we present RTSum, an unsupervised summarization framework that utilizes relation triples as the basic unit for summarization. Given an input document, RTSum first selects salient relation triples via multi-level salience scoring and then generates a concise summary from the selected relation triples by using a text-to-text language model. On the basis of RTSum, we also develop a web demo for an interpretable summarizing tool, providing fine-grained interpretations with the output summary. With support for customization options, our tool visualizes the salience for textual units at three distinct levels: sentences, relation triples, and phrases. The code, demo, and video are publicly available.
%R 10.18653/v1/2024.naacl-demo.5
%U https://aclanthology.org/2024.naacl-demo.5
%U https://doi.org/10.18653/v1/2024.naacl-demo.5
%P 53-60
Markdown (Informal)
[RTSUM: Relation Triple-based Interpretable Summarization with Multi-level Salience Visualization](https://aclanthology.org/2024.naacl-demo.5) (Cho et al., NAACL 2024)
ACL