
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System Demonstrations), pages 70–77

June 16-21, 2024 ©2024 Association for Computational Linguistics

jp-evalb: Robust Alignment-based PARSEVAL Measures

Jungyeul Park1 Junrui Wang1 Eunkyul Leah Jo2,3 Angela Yoonseo Park1

1Department of Linguistics, The University of British Columbia, Canada
2Department of Computer Science, The University of British Columbia, Canada

3Faculté des Sciences et Ingénierie, Sorbonne Université, France
jungyeul@mail.ubc.ca {wjr0710,eunkyul,apark03}@student.ubc.ca

Abstract

We introduce an evaluation system designed
to compute PARSEVAL measures, offering a
viable alternative to evalb commonly used for
constituency parsing evaluation. The widely
used evalb script has traditionally been em-
ployed for evaluating the accuracy of con-
stituency parsing results, albeit with the require-
ment for consistent tokenization and sentence
boundaries. In contrast, our approach, named
jp-evalb, is founded on an alignment method.
This method aligns sentences and words when
discrepancies arise. It aims to overcome several
known issues associated with evalb by utiliz-
ing the ‘jointly preprocessed (JP)’ alignment-
based method. We introduce a more flexi-
ble and adaptive framework, ultimately con-
tributing to a more accurate assessment of con-
stituency parsing performance.

1 Introduction

For constituency parsing, whether statistical or neu-
ral, we rely on the evalb implementation1, which
implements the PARSEVAL measures (Black
et al., 1991) as the standard method for evaluat-
ing parser performance. There is also a variant
of the evalb_spmrl implementation specifically
designed for the SPMRL shared task, allowing
the evaluation to consider functional phrase labels
(Seddah et al., 2013, 2014). A constituent in a hy-
pothesis parse of a sentence is labeled as correct if
it matches a constituent in the reference parse with
the same non-terminal symbol and span (starting
and end indexes). Despite its success in evaluat-
ing language technology, evalb faces unresolved
critical issues in our discipline. evalb imposes
constraints, demanding consistent tokenization and
sentence boundary outcomes. Its implementation
assumes equal-length gold and system files with
matching terminal nodes.

1http://nlp.cs.nyu.edu/evalb

In machine translation (MT), sentence alignment
involves identifying corresponding sentences in
two or more languages and linking sentences from
one language to their corresponding counterparts
in another. Sentence alignment has been a subject
of study for many years, leading to the develop-
ment of various algorithms. Early research in this
area relied on statistical methods that used bilin-
gual corpora to create models capturing the lexical
equivalence between words in different languages.
For instance, the Gale-Church algorithm, based
on sentence length, was one such approach (Gale
and Church, 1993). Bleualign introduced a more
advanced iterative bootstrapping approach build-
ing on length-based methods (Sennrich and Volk,
2011). Earlier approaches also aimed to enhance
sentence alignment methodologies by incorporat-
ing lexical correspondences, as seen in hunalign
(Varga et al., 2005) or the IBM-model based lexi-
con translation approach (Moore, 2002). Some at-
tempts involved the integration of linguistic knowl-
edge, heuristics, and various scoring methods to
improve efficiency, as demonstrated by vecalign
(Thompson and Koehn, 2019). Word alignment
methodologies are also employed to establish cor-
respondences between words in one language and
their direct translations in another. Widely used
IBM models (Brown et al., 1993), along with
tools like giza++ (Och and Ney, 2000, 2003) or
BerkeleyAligner (Liang et al., 2006; DeNero and
Klein, 2007), are capable of aligning words.

Syntactic analysis in the current field of lan-
guage technology has been predominantly reliant
on dependencies. Semantic parsing in its higher-
level analyses often relies heavily on dependency
structures as well. Therefore, dependency pars-
ing and its evaluation method have their own ad-
vantages, such as a more direct representation of
grammatical relations and often simpler parsing
algorithms. However, constituency parsing main-
tains the hierarchical structure of a sentence, which

70

http://nlp.cs.nyu.edu/evalb

can still be valuable for understanding the syntactic
relationships between words and phrases. Vari-
ous studies on formal syntax have focused on con-
stituent structures, such as combinatory categorial
grammar (CCG) parsing (Lewis et al., 2016; Lee
et al., 2016; Stanojević and Steedman, 2020; Ya-
maki et al., 2023) or tree-adjoining grammar (TAG)
parsing (Kasai et al., 2017, 2018) (whereas CCG
and TAG also inherently incorporate dependency
structures). In addition, there have been ongoing
studies on constituency parsing, such as the lin-
earization parsing method (Vinyals et al., 2015;
Liu and Zhang, 2017a,b; Fernández-González and
Gómez-Rodríguez, 2020; Wei et al., 2020). If a
method that utilizes constituent structures is de-
signed to achieve the goal of creating an end-to-end
system, it requires more robust evaluation methods
for their constituent structure evaluation.

This paper builds upon our recently introduced
alignment-based algorithm, for computing PAR-
SEVAL measures (Jo et al., 2024), which offers
a novel approach for calculating precision, recall,
and F scores, even in cases of sentence and word
mismatch. The primary objective of this paper is
to replicate the outcomes generated by evalb dur-
ing the evaluation process. This aims to achieve a
comprehensive understanding of the parser’s perfor-
mance by addressing the previous issues of evalb
and preserving its long-standing legacy. It includes
the numbers of gold, test, matched brackets, and
cross brackets, as well as precision, recall, and F
scores. Furthermore, we present the number of
correct POS tags and their tagging accuracy, fol-
lowing a methodology employed by evalb. Our
proposed method jp-evalb is particularly crucial
in end-to-end settings, where deviations from the
gold file may arise due to variations in tokenization
and sentence boundary results.

2 Detailing the jp-evalb Algorithm

To describe the proposed algorithms, we use the
following notations for conciseness and simplicity.
TL and TR introduce the entire parse trees of gold
and system files, respectively. TL is a simplified
notation representing TL(l), where l is the list of to-
kens in L. This notation applies in the same manner
to R. ST represents a set of constituents of a tree
T , and C(T) is the total number constituents of T .
C(tp) is the number of true positive constituents
where STL ∩ STR , and we count it per aligned sen-
tence. The presented Algorithm 1 demonstrates the

pseudo-code for the new PARSEVAL measures.

Algorithm 1 Pseudo-code for jp-evalb
1: function PARSEVALMEASURES (TL and TR):
2: Extract the list of tokens L andR from TL and TR
3: L′,R′← SENTENCEALIGNMENT(L,R)
4: Align trees based on L′ andR′ to obtain TL′ and TR′

5: while TL′ and TR′ do
6: Extract the list of tokens l and r from TL′

i
and TR′

i

7: l′, r′ ← WORDALIGNMENT(l, r)
8: STL ← GETCONSTITUENT(TL′

i(l
′), 0)

9: STR ← GETCONSTITUENT(TR′
i(r

′), 0)
10: C(TL)← C(TL)+ LEN(STL)
11: C(TR)← C(TR)+ LEN(STR)
12: while STL and STR do
13: if (LABEL, STARTL, ENDL,l′j)

= (LABEL, STARTR, ENDR,r′j) then
14: C(tp)← C(tp) + 1
15: end if
16: end while
17: end while
18: return C(TL), C(TR), and C(tp)

Algorithm 2 Pseudo-code for alignment
1: function ALIGNMENT (L,R):
2: while L andR do
3: if Matched CASES (i,j) then
4: L′,R′←L′ + Li,R′ +Rj

5: else
6: while ¬(Matched CASES (i+1,j+1) do
7: if LEN(Li) < LEN(Rj) then
8: L′← L′ + Li

9: i← i+ 1
10: else
11: R′← R′ +Rj

12: j ← j + 1
13: end if
14: end while
15: L′,R′←L′ + L′,R′ +R′

16: end if
17: end while
18: return L′,R′

In the first stage, we extract leaves L and R
from the parse trees and align sentences to obtain
L′ and R′ using the sentence alignment algorithm.
Algorithm 2 shows the generic pattern-matching ap-
proach of the alignment algorithm where sentence
and word alignment can be applied. We define
the following two cases for matched CASES(i,j) of
sentence alignment:

Li(̸⊔) = Rj(̸⊔) (1)

(Li(̸⊔) ≃ Rj(̸⊔)) ∧
(Li+1(̸⊔) = Rj+1(̸⊔) ∨ Li+1(̸⊔) ≃ Rj+1(̸⊔)) (2)

where we examine whether Li is similar to or equal
(≃) to Rj based on the condition that the ratio of
edit distance to the entire character length is less

71

than 0.1 in (2). While the necessity of sentence
alignment is rooted in a common phenomenon in
cross-language tasks such as machine translation,
the intralingual alignment between gold and sys-
tem sentences does not share the same necessity
because L and R are identical sentences that only
differ in sentence boundaries and token. A nota-
tion ̸ ⊔ is introduced to represent spaces that are
removed during sentence alignment when compar-
ing Li and Rj , irrespective of their tokenization
results. If there is a mismatch due to differences
in sentence boundaries, the algorithm accumulates
the sentences until the next pair of sentences repre-
sented as CASE n (i+ 1, j + 1), is matched.

In the next stage of Algorithm 1, we align trees
based on L′ and R′ to obtain TL′ and TR′ . By
iterating through TL′ and TR′ , we conduct word
alignment and compare pairs of sets of constituents
for each corresponding pair of TL′

i
and TR′

j
. The

word alignment algorithm adopts a logic similar to
sentence alignment. It involves the accumulation of
words in l′ and r′ under the condition that pairs of
li and rj do not match, often attributed to tokeniza-
tion mismatches. Here, we assume interchange-
ability between notations of sentence alignment
(L) and word alignment (li). We define the fol-
lowing two cases for matched CASES(i,j) of word
alignment:

li = rj (3)

(li ̸= rj) ∧ (li+1 = rj+1) (4)

When deciding whether to accumulate the to-
ken from li+1 or rj+1 in the case of a word mis-
match, we base our decision on the following con-
dition, rather than a straightforward comparison
between the lengths of the current tokens li and rj :
(LEN(l)− LEN(l0..i)) > (LEN(r)− LEN(r0..j))

Finally, we extract a set of constituents,
a straightforward procedure for obtaining con-
stituents from a given tree, which includes the label
name, start index, end index, and a list of tokens.
The current proposed method utilizes simple pat-
tern matching for sentence and word alignment,
operating under the assumption that the gold and
system sentences are the same, with minimal po-
tential for morphological mismatches. This dif-
fers from sentence and word alignment in machine
translation. MT usually relies on recursive editing
and EM algorithms due to the inherent difference
between source and target languages.

3 Word and Sentence Mismatches

Word mismatch We have observed that the ex-
pression of contractions varies significantly, result-
ing in inherent challenges related to word mis-
matches. As the number of contractions and sym-
bols to be converted in a language is finite, we
composed an exception list for our system to cap-
ture such cases for each language to facilitate the
word alignment process between gold and system
sentences. In the following example, we achieve
perfect precision and recall of 5/5 for both because
their constituent trees are exactly matched, regard-
less of any mismatched words. If the word mis-
match example is not in the exception list, we per-
form the word alignment. We can still achieve
perfect precision and recall (5/5 for both) with-
out the word mismatch exception list because their
constituent trees can be exactly matched based on
the word-alignment of {1.0ca 1.1n’t} and {1.0can
1.1not} (Figure 1a).

gold 0This 1.0ca 1.1n’t 2be 3right
system 0this 1.0can 1.1not 2be 3right

The effectiveness of the word alignment ap-
proach remains intact even for morphological mis-
matches where "morphological segmentation is not
the inverse of concatenation" (Tsarfaty et al., 2012),
such as in morphologically rich languages. For ex-
ample, we trace back to the sentence in Hebrew
described in Tsarfaty et al. (2012) as a word mis-
match example caused by morphological analyses:

gold 0B 1.0H 1.1CL 2FL 3HM 4.0H 4.1NEIM
’in’ ’the’ ’shadow’ ’of’ ’them’ ’the’ ’pleasant’

system 0B 1CL 2FL 3HM 4HNEIM
’in’ ’shadow’ ’of’ ’them’ ’made-pleasant’

Pairs of {1.0H 1.1CL, 1CL} (’the shadow’) and
{4.0H 4.1NEIM, 4HNEIM} (’the pleasant’) are word-
aligned using the proposed algorithm, resulting in
a precision of 4/4 and recall of 4/6 (Figure 1b).

Sentence mismatch When there are sentence
mismatches, they would be aligned and merged
as a single tree using a dummy root node: for ex-
ample, @S which can be ignored during evaluation.
In the following example, we obtain precision of
5/8 and recall of 5/7 (Figure 1c).

Assumptions To address morphological analysis
discrepancies in the parse tree during evaluation,
we establish the following two assumptions: (i)
The entire tree constituent can be considered a true
positive, even if the morphological segmentation
or analysis differs from the gold analysis, as long

72

(gold) (system)
S(0,4) NP(0,1) DT 0This 0this DT NP(0,1) S(0,4)

VP(1,4) MD 1.0ca 1.0can MD VP(1,4)

RB 1.1n’t 1.1not RB
VP(2,4) VB 2be 2be VB VP(2,4)

AdjP(3,4) JJ 3right 3right JJ AdjP(3,4)

(a) Example of word mismatches

(gold) (system)
PP(0,5) ’in’ 0B 0B ’in’ PP(0,5)

NP(1,5) NP(1,4) ’the’ 1.0H
’shadow’ 1.1CL 1CL ’shadow’ NP(1,4) NP(1,5)

PP(2,4) ’of’ 2FL 2FL ’of’ PP(2,4)

’them’ 3HM 3HM ’them’
AdjP(4,5) ’the’ 4.0H

’pleasant’ 4.1NEIM 4HNEIM ’made-pleasant’

(b) Example of word mismatches with additional morphemes

(gold) (system, merged after alignment)
S(0,6) S(0,5) VB 0Click 0Click VB VP(0,2) S(0,2) @S(0,6)

AdvP(1,2) RB 1here 1here RB AdvP(1,2)

S(2,5) VP(2,5) TO 2To 2To TO VP(2,5) S(2,5) S(2,6)

VP(3,5) VB 3view 3view VB VP(3,5)

NP(4,5) PRP 4it 4it PRP NP(4,5)

. 5. 5. .

(c) Example of sentence mismatches

Figure 1: Example of word and sentence mismatches

as the two sentences (gold and system) are aligned
and their root labels are the same. (ii) The subtree
constituent can be considered a true positive if lexi-
cal items align in word alignment, and their phrase
labels are the same.

4 Usage of jp-evalb

We use the following command to execute the
jp-evalb script:
% python3 jp-evalb.py gold_parsed_file \

system_parsed_file

It generates the same output format as evalb.
We provide information for each column in both
jp-evalb and evalb, while highlighting their dif-
ferences. We note that the IDs in jp-evalb may
not be exactly the same as in evalb due to the
proposed method performing sentence alignment
before evaluation.

Sent. ID, Sent. Len., Stat. ID, length, and
status of the provided sentence, where status
0 indicates ’OK,’ status 1 implies ’skip,’ and
status 2 represents ’error’ for evalb. We do
not assign skip or error statuses.

Recall, Precision Recall and precision of con-
stituents.

Matched Bracket, Bracket gold, Bracket test
Assessment of matched brackets (true posi-
tives) in both the gold and test parse trees,
and their numbers of constituents.

Cross Bracket The number of cross brackets.

Words, Correct Tags, Tag Accuracy
Evaluation of the number of words, correct
POS tags, and POS tagging accuracy.

It’s important to note that the original evalb ex-
cludes problematic symbols and punctuation marks
in the tree structure. Our results include all tokens
in the given sentence, and bracket numbers reflect
the actual constituents in the system and gold parse
trees. Accuracy in the last column of the result
is determined by comparing the correct number
of POS-tagged words to the gold sentence includ-
ing punctuation marks, differing from the original
evalb which doesn’t consider word counts or cor-
rect POS tags. Figure 2 visually depicts the dif-
ference in constituent lists between jp-evalb and
evalb. The original evalb excludes punctuation
marks from its consideration of constituents, result-
ing in our representation of word index numbers in
red for evalb. Consequently, evalb displays con-
stituents without punctuation marks and calculates
POS tagging accuracy based on six word tokens.
On the other hand, jp-evalb includes punctuation
marks in constituents and evaluates POS tagging
accuracy using eight tokens, which includes two
punctuation marks in the sentence. We note that the
inclusion of punctuation marks in the constituents
does not affect the total count, as punctuation marks
do not constitute a constituent by themselves.

73

TOP

S

·

7·

VP

NP

NNP

6,5Monday

NNP

5,4Black

RB

4,3n’t

VBD

3,2was

NP

PRP

2,1it

,

1,

INTJ

RB

0,0No

(a) Example of the parse tree

(’S’, 0, 8, "No , it was n’t Black Monday .")
(’INTJ’, 0, 1, ’No’)
(’NP’, 2, 3, ’it’)
(’VP’, 3, 7, "was n’t Black Monday")
(’NP’, 5, 7, ’Black Monday’)

(b) List of constituents by jp-evalb

(’S’, 0, 6, "No it was n’t Black Monday")
(’INTJ’, 0, 1, "No")
(’NP’, 1, 2, "it")
(’VP’, 2, 6, "was n’t Black Monday")
(’NP’, 4, 6, "Black Monday")

(c) List of constituents by evalb

Figure 2: Difference between jp-evalb and evalb

Additionally, we offer a legacy option, –evalb,
to precisely replicate evalb results. To execute the
script with the evalb option, utilize the following
command:
% python3 jp-evalb.py gold_parsed_file \

system_parsed_file \
-evalb param.prm

This option can utilize the default values from the
COLLINS.prm file if the parameter file is not pro-
vided. It will accurately reproduce evalb results,
even in cases where there are discrepancies such
as Length unmatch and Words unmatch errors
in evalb’s output. These discrepancies are indi-
cated by the Stat. column, which displays either
1 (skip) or 2 (error).

5 Case Studies

Section 23 of the English Penn treebank Un-
der identical conditions where sentences and words
match, the proposed method requires around 4.5
seconds for evaluating the section 23 of the Penn
Treebank. On the same machine, evalb completes
the task less than 0.1 seconds. We do not claim
that our proposed implementation is fast or faster
than evalb, recognizing the well-established dif-
ferences in performance between compiled lan-
guages like C, which evalb used, and interpreted

languages such as Python, which our current im-
plementation uses. Our proposed method also in-
troduces additional runtime for sentence and word
alignment, a process not performed by evalb. We
present excerpts from three result files generated
by evalb and our proposed method in Figure 3.
The parsed results were obtained using the PCFG-
LA Berkeley parser (Petrov and Klein, 2007). It’s
worth noting that there may be slight variations
between the two sets of results because evalb ex-
cludes constituents with specific symbols and punc-
tuation marks during evaluation. However, as we
mentioned earlier, jp-evalb can reproduce the ex-
act same results as evalb for a legacy reason.

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 8 7 87.50
2 40 0 70.97 73.33 22 31 30 7 40 40 100.00
3 31 0 95.24 95.24 20 21 21 0 31 31 100.00
4 35 0 90.48 86.36 19 21 22 2 35 35 100.00
5 26 0 86.96 86.96 20 23 23 2 26 25 96.15
.....

(a) Example of jp-evalb results considering punctuation
marks during evaluation

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 6 5 83.33
2 40 0 70.97 73.33 22 31 30 7 37 37 100.00
3 31 0 95.24 95.24 20 21 21 0 26 26 100.00
4 35 0 90.48 86.36 19 21 22 2 32 32 100.00
5 26 0 86.96 86.96 20 23 23 2 24 23 95.83
.....

(b) Example of jp-evalb results with the legacy option, which
produces the exact same results as evalb

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 8 0 100.00 100.00 5 5 5 0 6 5 83.33
2 40 0 70.97 73.33 22 31 30 7 37 37 100.00
3 31 0 95.24 95.24 20 21 21 0 26 26 100.00
4 35 0 90.48 86.36 19 21 22 2 32 32 100.00
5 26 0 86.96 86.96 20 23 23 2 24 23 95.83
.....

(c) Example of the original evalb results

Figure 3: Examples of evaluation results on Section 23
of the English Penn treebank

Bug cases identified by evalb We evaluate bug
cases identified by evalb. Figure 4 displays all
five identified bug cases, showcasing successful
evaluation without any failures. In three instances
(sentences 1, 2, and 5), a few symbols are treated as
words during POS tagging. This leads to discrep-
ancies in sentence length because evalb discards
symbols in the gold parse tree during evaluation.
Our proposed solution involves not disregarding
any problematic labels and including symbols as
words during evaluation. This approach implies
that POS tagging results are based on the entire
token numbers. It is noteworthy that evalb’s POS
tagging results are rooted in the number of words,
excluding symbols. The two remaining cases (sen-

74

tences 3 and 4) involve actual word mismatches
where trace symbols (*-num) are inserted into the
sentences. Naturally, evalb cannot handle these
cases due to word mismatches. However, as we
explained, our proposed algorithm addresses this
issue by performing word alignment after sentence
alignment.

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 37 0 77.27 62.96 17 22 27 5 37 30 81.08
2 21 0 69.23 60.00 9 13 15 2 21 17 80.95
3 47 0 77.78 80.00 28 36 35 4 48 43 89.58
4 26 0 33.33 35.29 6 18 17 8 27 19 70.37
5 44 0 42.31 32.35 11 26 34 17 44 33 75.00

Figure 4: Evaluation results of bug cases by evalb

Korean end-to-end parsing evaluation We con-
duct a comprehensive parsing evaluation for Ko-
rean, using system-segmented sequences as input
for constituency parsing. These sequences may
deviate from the corresponding gold standard sen-
tences and tokens. We utilized the following re-
sources for our parsing evaluation to simulate the
end-to-end process: (i) A set of 148 test sentences
with 4538 tokens (morphemes) from BGAA0001 of
the Korean Sejong treebank, as detailed in Kim
and Park (2022). In the present experiment, all sen-
tences have been merged into a single text block.
(ii) POS tagging performed by sjmorph.model
(Park and Tyers, 2019) for morpheme segmen-
tation.2 The model’s pipeline includes sentence
boundary detection and tokenization through mor-
phological analysis, generating an input format for
the parser. (iii) A Berkeley parser model for Ko-
rean trained on the Korean Sejong treebank (Park
et al., 2016).3. Figure 5 presents the showcase re-
sults of end-to-end Korean constituency parsing.
Given our sentence boundary detection and tok-
enization processes, there is a possibility of en-
countering sentence and word mismatches during
constituency parsing evaluation. The system results
show 123 sentences and 4367 morphemes because
differences in sentence boundaries and tokenization
results. During the evaluation, jp-evalb success-
fully aligns even in the presence of sentence and
word mismatches, and subsequently, the results of
constituency parsing are assessed.

2https://github.com/jungyeul/sjmorph
3https://zenodo.org/records/3995084

Sent Mt Br Cr Co Tag
ID L St Re Pr Br gd te Br Wd Tg Acc
1 28 0 85.71 85.71 18 21 21 3 29 26 89.66
2 27 0 91.30 84.00 21 23 25 2 28 25 89.29
3 33 0 88.00 88.00 22 25 25 3 35 31 88.57
4 43 0 72.73 72.73 24 33 33 7 43 40 93.02
5 18 0 69.57 84.21 16 23 19 2 19 12 63.16

.....

Figure 5: Evaluation results of the end-to-end Korean
constituency parsing

6 Previous Work

tedeval (Tsarfaty et al., 2012) is built upon the
tree edit distance (ADD and DEL) by Bille (2005),
incorporating the numbers of nonterminal nodes
in the system and gold trees. conllu_eval4 treats
tokens and sentences as spans. In case of a mis-
match in the span positions between the system
and gold files on a character level, the file with a
smaller start value will skip to the next token until
there is no start value mismatch. Similar processes
are applied to evaluating sentence boundaries. For
sparseval (Roark et al., 2006), a head percola-
tion table (Collins, 1999) identifies head-child rela-
tions between terminal nodes and calculates the de-
pendency score. Unfortunately, sparseval is cur-
rently unavailable. evalb, the constituency parsing
evaluation metric for nearly thirty years, despite
inherent problems, has been widely used.

7 Conclusion

Despite the widespread use and acceptance of the
previous PARSEVAL measure as the standard tool
for constituency parsing evaluation, it faces a signif-
icant limitation by requiring specific task-oriented
environments. Consequently, there is still room
for a more robust and reliable evaluation approach.
Various metrics have attempted to address issues
related to word and sentence mismatches by em-
ploying complex tree operations or adopting depen-
dency scoring methods. In contrast, our proposed
method aligns sentences and words as a preprocess-
ing step without altering the original PARSEVAL
measures. This approach allows us to preserve
the complexity of the original evalb implemen-
tation of PARSEVAL while introducing a linear
time alignment process. Given the high compat-
ibility of our method with existing PARSEVAL
measures, it also ensures the consistency and seam-
less integration of previous work evaluated using
PARSEVAL into our approach. Ultimately, this

4https://universaldependencies.org/conll18/
conll18_ud_eval.py

75

https://github.com/jungyeul/sjmorph
https://zenodo.org/records/3995084
https://universaldependencies.org/conll18/conll18_ud_eval.py
https://universaldependencies.org/conll18/conll18_ud_eval.py

new measurement approach offers the opportunity
to evaluate constituency parsing within an end-to-
end pipeline, addressing discrepancies that may
arise during earlier steps, such as tokenization and
sentence boundary detection. This enables a more
comprehensive evaluation of constituency parsing.
All codes and results from the case studies can
be accessed at https://github.com/jungyeul/
alignment-based-PARSEVAL/.

Acknowledgement

This research is based upon work partially sup-
ported by Students as Partners for Eunkyul Leah
Jo, and The Work Learn Program for Angela Yoon-
seo Park at The University of British Columbia.

References

Philip Bille. 2005. A survey on tree edit distance and
related problems. Theoretical Computer Science,
337(1):217–239.

Ezra Black, Steve Abney, Dan Flickinger, Claudia
Gdaniec, Ralph Grishman, Phil Harrison, Donald
Hindle, Robert Ingria, Frederick Jelinek, Judith L.
Klavans, Mark Liberman, Mitch Marcus, Salim
Roukos, Beatrice Santorini, and Tomek Strzalkowski.
1991. A Procedure for Quantitatively Comparing
the Syntactic Coverage of English Grammars. In
Speech and Natural Language: Proceedings of a
Workshop Held at Pacific Grove, California, Febru-
ary 19-22, 1991, pages 306–311, Pacific Grove, Cali-
fornia. DARPA/ISTO.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The Mathe-
matics of Statistical Machine Translation: Parameter
Estimation. Computational Linguistics, 19(2):263–
311.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

John DeNero and Dan Klein. 2007. Tailoring Word
Alignments to Syntactic Machine Translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 17–24,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Enriched In-Order Linearization
for Faster Sequence-to-Sequence Constituent Pars-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4092–4099, Online. Association for Computational
Linguistics.

William A. Gale and Kenneth W. Church. 1993. A
Program for Aligning Sentences in Bilingual Corpora.
Computational Linguistics, 19(1):75–102.

Eunkyul Leah Jo, Angela Yoonseo Park, and Jungyeul
Park. 2024. A Novel Alignment-based Approach for
PARSEVAL Measures. Computational Linguistics,
pages 1–10.

Jungo Kasai, Bob Frank, Tom McCoy, Owen Rambow,
and Alexis Nasr. 2017. TAG Parsing with Neural
Networks and Vector Representations of Supertags.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1712–1722, Copenhagen, Denmark. Association for
Computational Linguistics.

Jungo Kasai, Robert Frank, Pauli Xu, William Merrill,
and Owen Rambow. 2018. End-to-End Graph-Based
TAG Parsing with Neural Networks. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1181–1194, New Orleans, Louisiana.
Association for Computational Linguistics.

Mija Kim and Jungyeul Park. 2022. A note on con-
stituent parsing for Korean. Natural Language Engi-
neering, 28(2):199–222.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global Neural CCG Parsing with Optimality Guar-
antees. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2366–2376, Austin, Texas. Association
for Computational Linguistics.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 221–231, San Diego,
California. Association for Computational Linguis-
tics.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by Agreement. In Proceedings of the Human
Language Technology Conference of the {NAACL},
Main Conference, pages 104–111, New York City,
USA. Association for Computational Linguistics.

Jiangming Liu and Yue Zhang. 2017a. Encoder-
Decoder Shift-Reduce Syntactic Parsing. In Proceed-
ings of the 15th International Conference on Parsing
Technologies, pages 105–114, Pisa, Italy. Association
for Computational Linguistics.

Jiangming Liu and Yue Zhang. 2017b. Shift-Reduce
Constituent Parsing with Neural Lookahead Features.
Transactions of the Association for Computational
Linguistics, 5:45–58.

Robert C. Moore. 2002. Fast and Accurate Sentence
Alignment of Bilingual Corpora. In Proceedings of
the 5th Conference of the Association for Machine

76

https://github.com/jungyeul/alignment-based-PARSEVAL/
https://github.com/jungyeul/alignment-based-PARSEVAL/
https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/https://doi.org/10.1016/j.tcs.2004.12.030
https://aclanthology.org/H91-1060
https://aclanthology.org/H91-1060
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
http://www.cs.columbia.edu/~mcollins/papers/thesis.ps
https://aclanthology.org/P07-1003
https://aclanthology.org/P07-1003
https://doi.org/10.18653/v1/2020.acl-main.376
https://doi.org/10.18653/v1/2020.acl-main.376
https://doi.org/10.18653/v1/2020.acl-main.376
https://aclanthology.org/J93-1004
https://aclanthology.org/J93-1004
https://doi.org/10.1162/coli{_}a{_}00512
https://doi.org/10.1162/coli{_}a{_}00512
https://doi.org/10.18653/v1/D17-1180
https://doi.org/10.18653/v1/D17-1180
https://doi.org/10.18653/v1/N18-1107
https://doi.org/10.18653/v1/N18-1107
https://doi.org/10.1017/S1351324920000479
https://doi.org/10.1017/S1351324920000479
https://aclweb.org/anthology/D16-1262
https://aclweb.org/anthology/D16-1262
http://www.aclweb.org/anthology/N16-1026
https://aclanthology.org/N06-1014
https://aclanthology.org/N06-1014
https://aclanthology.org/W17-6315
https://aclanthology.org/W17-6315
https://transacl.org/ojs/index.php/tacl/article/view/927
https://transacl.org/ojs/index.php/tacl/article/view/927

Translation in the Americas on Machine Transla-
tion: From Research to Real Users, pages 135–244,
Tiburon, CA, USA. Springer-Verlag.

Franz Josef Och and Hermann Ney. 2000. Improved
Statistical Alignment Models. In Proceedings of the
38th Annual Meeting of the Association for Com-
putational Linguistics, pages 440–447, Hong Kong.
Association for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–51.

Jungyeul Park, Jeen-Pyo Hong, and Jeong-Won Cha.
2016. Korean Language Resources for Everyone.
In Proceedings of the 30th Pacific Asia Conference
on Language, Information and Computation: Oral
Papers (PACLIC 30), pages 49–58, Seoul, Korea.
Pacific Asia Conference on Language, Information
and Computation.

Jungyeul Park and Francis Tyers. 2019. A New Anno-
tation Scheme for the Sejong Part-of-speech Tagged
Corpus. In Proceedings of the 13th Linguistic An-
notation Workshop, pages 195–202, Florence, Italy.
Association for Computational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved Inference
for Unlexicalized Parsing. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 404–411, Rochester, New York. Association
for Computational Linguistics.

Brian Roark, Mary Harper, Eugene Charniak, Bon-
nie Dorr, Mark Johnson, Jeremy Kahn, Yang Liu,
Mari Ostendorf, John Hale, Anna Krasnyanskaya,
Matthew Lease, Izhak Shafran, Matthew Snover,
Robin Stewart, and Lisa Yung. 2006. SParseval:
Evaluation Metrics for Parsing Speech. In Pro-
ceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06),
pages 333–338, Genoa, Italy. European Language
Resources Association (ELRA).

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 Shared Task on Parsing
Morphologically-rich Languages. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 103–
109, Dublin, Ireland. Dublin City University.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 Shared
Task: A Cross-Framework Evaluation of Parsing

Morphologically Rich Languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Rico Sennrich and Martin Volk. 2011. Iterative, MT-
based Sentence Alignment of Parallel Texts. In Pro-
ceedings of the 18th Nordic Conference of Compu-
tational Linguistics (NODALIDA 2011), pages 175–
182, Riga, Latvia. Northern European Association
for Language Technology (NEALT).

Miloš Stanojević and Mark Steedman. 2020. Max-
Margin Incremental CCG Parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Brian Thompson and Philipp Koehn. 2019. Vecalign:
Improved Sentence Alignment in Linear Time and
Space. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1342–1348, Hong Kong, China. Association for Com-
putational Linguistics.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2012. Joint Evaluation of Morphological Segmen-
tation and Syntactic Parsing. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
6–10, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Dániel Varga, Lázló Németh, Péter Halácsy, András Kor-
nai, Viktor Trón, and Viktor Nagy. 2005. Parallel cor-
pora for medium density languages. In Proceedings
of the RANLP (Recent Advances in Natural Language
Processing), pages 590–596, Borovets, Bulgaria.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015. Gram-
mar as a Foreign Language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2773–2781. Curran Associates,
Inc.

Yang Wei, Yuanbin Wu, and Man Lan. 2020. A Span-
based Linearization for Constituent Trees. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3267–
3277, Online. Association for Computational Lin-
guistics.

Ryosuke Yamaki, Tadahiro Taniguchi, and Daichi
Mochihashi. 2023. Holographic CCG Parsing. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 262–276, Toronto, Canada. As-
sociation for Computational Linguistics.

77

http://www.aclweb.org/anthology/N/N09/N09-1069
http://www.aclweb.org/anthology/N/N09/N09-1069
http://aclweb.org/anthology/Y/Y16/Y16-2002.pdf
https://www.aclweb.org/anthology/W19-4022
https://www.aclweb.org/anthology/W19-4022
https://www.aclweb.org/anthology/W19-4022
http://www.aclweb.org/anthology/N/N07/N07-1051
http://www.aclweb.org/anthology/N/N07/N07-1051
http://www.lrec-conf.org/proceedings/lrec2006/pdf/116_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/116_pdf.pdf
https://www.aclweb.org/anthology/W14-6111
https://www.aclweb.org/anthology/W14-6111
http://www.aclweb.org/anthology/W13-4917
http://www.aclweb.org/anthology/W13-4917
http://www.aclweb.org/anthology/W13-4917
https://aclanthology.org/W11-4624
https://aclanthology.org/W11-4624
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
http://www.aclweb.org/anthology/P12-2002
http://www.aclweb.org/anthology/P12-2002
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2023.acl-long.15

