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Abstract

Micro-enterprises and individual developers
emerge long context analysis demands with
powerful Large Language Models (LLMs).
They try to deploy the LLMs at local, but only
possess various commodity devices and the un-
reliable interconnection between devices. Ex-
isting parallel techniques can not fully perform
in limited environment. The heterogeneity of
devices, coupled with their limited capacity and
expensive communication, brings challenges
to private deployment for maximized utiliza-
tion of available devices while masking latency.
Hence, we introduce HPipe, a pipeline infer-
ence framework that successfully mitigates
LLMs from high-performance clusters to het-
erogeneous commodity devices. By ensuring
a balanced distribution of workloads, HPipe
facilitates the inference through pipelining the
sequences on the token dimension. The eval-
uation conducted on LLaMA-7B and GPT3-2B
demonstrates that HPipe holds the potential for
long context analysis on LLM with heterogene-
ity devices, achieving an impressive speedup in
latency and throughput up to 2.28 times.

1 Introduction

The emergence of LLMs has significantly enhanced
automated content comprehension, as they adeptly
capture semantic information within extensive con-
texts. Enterprises employ techniques such as senti-
ment analysis (Zhang et al., 2023; Deng et al., 2023;
Wang et al., 2023) and content analysis (Gubel-
mann et al., 2023) to harness the potential value to
facilitate the anticipation of user engagement and
strategic decision-making. However, due to the
stringent memory and computational requirements
of LLMs, they are commonly deployed on high-
performance computing clusters. The advanced
devices and high-velocity transmission like NV-
link, boasting transfer rates approaching 900 GB/s,
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enable rapid computation and efficient synchroniza-
tion. While micro-enterprises introduce demands
to leverage the private LLM, they only have in-
consistent weaker devices. The interconnection
among these devices also suffers from limited band-
width. Devices connected via wireless network ex-
hibits transfer rate merely up to 1 GB/s. Thus, the
customized LLM deployment schema for micro-
enterprises deserves further exploration.

For the demands of effective inference, infer-
ence engines (Aminabadi et al., 2022b; Li et al.,
2023) provides hybrid data and pipeline parallelism
(Huang et al., 2019; Narayanan et al., 2021) and
combined with tensor parallelism (Shoeybi et al.,
2019; Jia et al., 2019). In high-performance com-
puting centers, they substantially alleviate compu-
tational and memory pressure, thereby augmenting
inference speed and enhancing throughput.

However, existing methods cannot be directly
applicable to the scenarios of micro-enterprises.
The deployment for the micro-enterprises presents
several problems. 1) Extended text: As LLM sup-
port longer inputs, the expanded context window
brings higher arithmetic pressure. The micro-batch
pipeline struggles to maintain efficiency. Each
stage of the pipeline demands longer processing
durations, and the coarser granularity diminishes
the parallelism. 2) Communication discrepancy:
The conditions for communication between devices
are discrepant. GPUs within a device generally ex-
change data via PCIe, and GPUs between devices
rely on the network. This impedes the efficacy of
communication-intensive methods such as tensor
parallelism. 3) Heterogeneous devices: It is essen-
tial that integrating heterogeneous devices to em-
ploy all available resources for micro-enterprises.
The dual heterogeneity of both computation and
transmission, coupled with expensive communica-
tion, bring challenges to orchestrating the available
devices of micro-enterprises for LLMs deployment.

To address these challenges, we propose HPipe,
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a pipeline inference framework dedicated to con-
tent comprehension for private LLMs. It deploys
the LLMs on heterogeneous devices with pipeline
parallelism on the token dimension. HPipe shields
the heterogeneity of devices by distributing LLMs
based on computing capabilities and transmission
conditions. For extended context, HPipe slices
them into segments by a dynamic programming al-
gorithm and pipelines the computation of segments
to amplify the degree of parallelism. HPipe suc-
cessfully mitigates LLMs from high performance
clusters to heterogeneous devices, achieving up to
a 2.28× increase in both latency and throughput,
alongside a 68.2% reduction in energy consump-
tion compared to other methods.

2 Background and Motivation

2.1 Parallelism

Pipeline and tensor parallelism are two popular
methods for accelerating the inference of LLMs
as shown in Fig. 1. Matrix multiplication (Mat-
Mul) contributes to most of the overall computa-
tion amount. Solving a MatMul can be converted
into the solving sum of several smaller MatMul.
Tensor parallelism leverages this by dividing and
distributing the weight matrix to multiple devices
to enable the computation in parallel. Once the
computation completes, devices will communicate
to synchronize the results. Thus, tensor parallelism
is commonly used when the transmission is guar-
anteed. The pipeline mechanism distributes LLMs
across multiple devices, with each device dedicated
to a stage of computation. The request is usually
segmented into micro-batches and processed se-
quentially. Transmission is only required for in-
termediate result. While pipeline is communica-
tion lightweight, pipeline in batch dimension still
bring challenge when LLMs are serving for micro-
enterprises. Memory constraints limit the batch
size of requests, which reduces space of dividing
data and hinders the degree of parallelism. More-
over, as sequence length increases, each pipeline
stage spends more time. The increasing execution
time of stages introduces more idle waiting.

2.2 Utilization of Devices

As the emerging demands of analysis long se-
quence, the context window of LLMs continues
to expand, occasionally surpassing 8000 tokens.
Processing lengthy sequences at once can overbur-
den the devices. Conversely, working with short
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Figure 1: Two popular parallelism approaches: tensor
parallelism (left) and pipeline parallelism (right).
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Figure 2: The FLOPs utilization for a transformer block
with different sequence lengths on RTX3090 GPU.

sequences is prone to underutilizing the computa-
tional power. To explore the relationship between
sequence length and resource utilization, we in-
troduce FLOPs utilization, which refers to the ra-
tio of actual floating-point operations per second
(FLOPs) achieved to the maximum FLOPs sup-
ported by the hardware. Fig. 2 shows the results.As
the sequence length expands, FLOPs utilization ini-
tially improves and undergoes a decrease before
converging. At first, FLOPs utilization increases as
more tokens are fed, leading to full utilization of
resources. The gains are ultimately constrained by
frequent I/O operations. The low-bandwidth mem-
ory access causes the bottleneck as the longer em-
bedding involves. We also find fluctuations when
the length increase. GPUs conduct MatMul by di-
viding matrices into tiles to parallel them on distinct
thread blocks, which refers to a group of threads
computing the same arithmetic operations. There-
fore, MatMul achieves maximum GPU utilization
when the matrix dimensions are divisible by the tile
size. Otherwise, due to tile quantization (Nvidia),
some thread blocks perform wasted computation.
Therefore, selecting the appropriate length for ev-
ery process can increase device utilization.

2.3 Motivation

On the basis of the discussion above, pipeline par-
allelism is advantageous for LLMs inference in
constrained environments. It allows the reduction
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Figure 3: HPipe workflow consists of two phases. In the prepare phase, HPipe determines the optimal schema
of workload distribution and the sequence slicing through dynamic programming. In the run-time phase, HPipe
pipelines the inference on the token dimension as scheduled.

of massive computational loads and only incurs tol-
erant communication. Meanwhile, decoder-based
transformers inherently facilitate pipeline inference.
It enables pipeline on the token dimension for long
context, which does not affect the results as the sub-
sequences are fed in sequentially. The K,V values
of each subsequence are cached for the calcula-
tions of subsequent tokens. Segmenting lengthy
sentences into multiple fragments for fine granular-
ity execution maximizes resource utilization. We
leverage these observations and design HPipe.

3 Method

3.1 Workflow

Fig. 3 shows the HPipe workflow. Taking into ac-
count the specifications of the devices and network
conditions, LLM is properly distributed across mul-
tiple devices to maximize the utilization of each de-
vice and avoid heavy transmission overhead. HPipe
preprocesses the optimal slicing schemes for inputs
of all supporting lengths. Once a sequence S ar-
rives, it is divided into subsequences s0, ..., sm and
executed sequentially across devices. Device di
can handle the computation task for si involving
si+1 and si−1 is processing on di−1 and di+1. This
effectively reconstructs the pipeline, allowing for
parallel on the token dimension.

3.2 Formulation

Assuming that the LLM is composed of n lay-
ers {l1, ...ln}, they are divided into N blocks
{b1, ..., bN} and distributed across N devices.

Meanwhile, the input sequence will be segmented
into M subsequences in the token dimension. We
use tij to denote the execution time of each stage in
the pipeline, which is the computation time of each
subsequence si in device dj plus the transmission
time to the successor dj+1. The computation of the
embedding for subsequences consists of two steps:
computing the initial embedding for tokens and
combining information from the previous tokens
with the relevance scores. The transmission time
is related to the size of the intermediate activation
derived by the last layer lj and the bandwidth B.
The execution time tij can be presented as :

tij = tc

(
si,

i−1∑

m=1

sm; dj

)
+ tt(lj , si, B). (1)

We use tc to denote the whole computation la-
tency for given si and the previous subsequences
s1, ..., si−1, and tt to denote the transmission time.

Our goal is finding a balanced workload par-
tition {b1, ..., bN} and the proper slicing scheme
{s0, ..., sM} that achieves optimal latency T ∗

O to
close the ideal state as shown in Fig. 3. To improve
the efficiency of pipeline, it is essential to equalize
the stage execution times. We establish a constraint
to progressively approach the optimal schema:

T ∗ ≤ max
i∈N

{
M∑

j=0

tij

}
+ (N − 1) max

0≤i<M,
0≤j<N

{tij}. (2)

The first term is the complete inference latency on
the slowest device; The second term is the over-
head brought by the pipeline execution, which is
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determined by the slowest stage. The constraint
allows us to determine the optimal solution by re-
stricting the upper limit of latency. It is obvious
that the slowest device and device tij dominates
the total latency. Hence, eliminating the gap be-
tween devices and stages will facilitate the pipeline
inference. We equalize the pipeline inference by
distribution balance and sequence schedule.

3.3 Distribution Balance
A balanced model partition minimizes the impact
of heterogeneity present in both devices and trans-
mission conditions. We first optimize the pipeline
by distributing the LLMs to align with capabili-
ties of devices while considering transmission over-
head. We take layer as the partition granularity
instead of transformer block, which provides the
opportunity to explore more balanced partition.

The objective of balance distribution is to find
the the N − 1 cut points to partition a LLM into
N subsets. Each has consecutive layers and is as-
signed to a specific device. In the heterogeneous
environment, this can be established as a device
placement problem and has been proven as NP-
hard in (Benoit and Robert, 2008). To address
this challenge, we make the assumption that the
sequence of devices remains constant, that is, the
block bj corresponds to the device dj . Since the
LLM is composed of repeating blocks, the con-
stant sequence of devices barely loses the optimal
solution, and the problem can be simplified.

The execution time for processing the layers
from la+1 to lb on device dm encompasses two
components: the cumulative computation time of
the layers and the communication time to transfer
the intermediate activation. It can be obtained by:

T (a, b,m) =
b∑

k=a

tcomp(lk; dm) + tcomm(lj ,m). (3)

For the optimal partition, it can be broken into
an optimal sub-pipeline consisting of layers from l1
through lk with m− 1 devices followed by a single
stage with layers lk+1 to lb on device dm. Using the
optimal sub-problem property, we can determine
a placement scheme that strives to equalize the
execution time among devices in stepwise manner:

A[b][m] = min
1≤k<j

{max{A[k][m−1], T (k+1, b,m)}},
(4)

where A[b][m− 1] is the time taken by the slowest
stage of the optimal sub-pipeline from l1 to lb with

former m − 1 edge devices. Algorithm 1 in Ap-
pendix A.1 shows the pseudocode of how we use
dynamic programming to obtain balanced partition.

3.4 Sequence Schedule
With the balanced workload distribution, the execu-
tion time of the sequence on the devices is similar.
Thus, pipeline efficiency now is determined by the
most expensive subsequence. We further improve
the pipeline by optimally slicing the sequence.

Some studies (Zheng et al., 2023; Li et al., 2021)
observed that executing time of token is linearly
increase as the location index grows since more pre-
vious tokens involves in computation. Therefore,
an ideal slicing should include longer slices at the
beginning and shorter slices toward the end. Fur-
thermore, the granularity of dividing the sequence
also is of significance, as discussed in Section 2.2.
Employing a finer-grained slicing approach, char-
acterized by smaller values of |si| results in the un-
derutilization of the computational power of GPUs.
In contrast, adopting a coarser slicing approach,
involving higher values of |si|, reduces the number
of pipeline stages, which decreases the degree of
parallelism and may overburden the devices. Thus,
it is necessary to find the most suitable slicing gran-
ularity to fully leverage devices.

The tm = max{tij} is the key to minimize the
overall latency. We enumerate possible tm to find
the optimal slicing S∗ from slicing space S:

T ∗ ≤ min
tm

{max
i∈N

{min
S∗∈S

{
M∑

j=0

tij |tij ≤ tm}}+ (N − 1)tm}.

(5)

tm restricts each slice to have the similar execu-
tion time, which lead to minimum pipeline latency.
Since the optimization of sequence S can derive
from S − sn, we employ a dynamic programming
algorithm to produce an optimal slicing schema in
all possible tm. The details are provided in Ap-
pendix A.2 Algorithm 2.

4 Evaluation

4.1 Experimental Setup
We established the HPipe prototype with a com-
putational cluster of two host machines. The first
machine contains four Pascal100 (P100), while the
second is fitted with two RTX3090 . Communica-
tion between hosts is via a wired network with a
bandwidth of 1000 Mbps, and intra-host commu-
nication is via PCIe. We use this heterogeneous
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Figure 4: The latency and throughput of different ap-
proach on the LLaMA-7B (left) and GPT3-2B (right).

cluster to mimic a commodity hardware setup. We
evaluate HPipe on GPT3-2B, LLaMA-7B. The length
of the input sequence is set as 2048 tokens to simu-
late content analysis for long sequence. The batch
size of GPT3-2B and LLaMA-7B are set as 12 and 6.

4.2 Performance

We compare HPipe (HP) with the following method
(1) Base: LLM is uniformly distributed across
each GPU, and inference is performed sequentially
across the cluster. (2) GPipe (GP) (Huang et al.,
2019): Evenly distribute the LLM across GPU and
pipeline the inference with micro-batch (3) GP-B:
GPipe with the workload distribution proposed by
HPipe. (4) Megatron-LM (MG) (Shoeybi et al.,
2019): combine tensor parallelism with GPipe (5)
Terapipe (Li et al., 2021): Evenly distribute the
LLM across GPU and pipeline the inference on
the token dimension. (6) TP-T: Combine tensor
parallelism with TeraPipe.

4.2.1 Latency and Throughput
Fig. 4 presents the latency and throughput of dif-
ferent methods. Harnessing multiple devices for
parallelism allows efficient LLM inference. On
LLaMA-7B, HP markedly reduces latency to 2.24s,
achieving a speedup of 9.06× compared to Base. It
also increases the throughput from 0.56k to 5.03k
tokens/s, greatly improving the efficiency. GP
pipelines inference in micro-batch. The coarse
granularity of parallel remains room for optimiza-
tion. MG introduces tensor parallelism to share the
computation but is limited to the transmission cost.
While small volumes of synchronized data enable
acceleration through tensor parallelism, larger vol-
umes suffer from significant transmission overhead,
thereby impeding performance. With a balanced
workload distribution, GP-B and HP demonstrate
the latency reduction of 51~56% and the through-
put enhancement of 2.06~2.28×. These improve-
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Figure 5: The Energy consumption of cluster during
inference on the LLaMA-7B (left) and GPT3-2B. (right)

ments are attributed to judiciously managing the
computing resources of the cluster. What is more,
pipelining on the token dimension further expedites
the inference, a result of the smaller execution gran-
ularity achieved by HPipe. It facilitates higher par-
allelism degree, minimizes device idle time, and op-
timizes device utilization during inference, leading
to latency reduction by 33.1~39.3%. Comparsion
of TP and TP-T shows tensor parallelism is not suit-
able to combine with pipeline on token dimension.
This is because slicing tokens into fine-granularity
segments introduces more frequent synchroniza-
tion, which causes additional overhead.

4.2.2 Energy Consumption
Energy consumption is an important metric of infer-
ence performance. Fig. 5 shows the least dynamic
energy consumption that HPipe takes. The opti-
mization of GP, MG and TP does not consider the
power characteristics of different types of devices
so that the workload is processed in an energy-
lavish manner. In contrast, by jointly optimizing
the trade-off between computation and communica-
tion provided devices’ computing capabilities and
network conditions, HPipe achieves the lowest en-
ergy costs. It comes that HPipe finds the sequence
length that approximates the maximum utilization
of cluster execution through a two-step optimiza-
tion. The inference is executed under high resource
utilization, thus reflecting less energy consumption.

4.2.3 Memory Footprint
We record the memory footprint of devices as
shown in Table 1. Tensor Parallelism can reduce
the memory pressure by distributing the weight.
MeanWhile, with balanced workload distribution,
LLMs are apportioned among machines according
to their computing capabilities, thereby mitigating
the memory burden per machine as the increased
devices. We also find that the memory of P@4
and R@1 is relatively lower compared to peer de-
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Table 1: Memory footprint of different methods dur-
ing inference on devices. OOM means device is out
of memory during the runtime. P denotes P100 and
R denotes RTX3090

Model Methods
Memory footprints (MB)

P@1 P@2 P@3 P@4 R@1 R@2

LLaMA-7B

Base 11479 11479 11019 11019 11461 11461
GP 7031 7031 6593 6593 5509 5509

GP-B 2897 3135 3655 3031 9691 10739
MG 5851 5851 5493 5493 5943 5943
TP 5459 5459 4505 4505 4957 4957

TP-P 4869 4869 4583 4583 5013 5013
HP 1873 2977 3143 1991 8713 10087

GPT3-2B

Base OOM OOM OOM OOM - -
GP 7031 7031 6593 6593 5509 5509

GP-B 3665 3505 3495 3177 8525 8627
MG 4695 4695 4595 4595 5057 5043
TP 6601 6601 6629 6629 6681 6681

TP-P 4952 4952 5032 5032 5433 5437
HP 4693 4651 3153 2953 9757 9855

vices. This disparity is attributed to the inclusion
of the heterogeneous communication environment.
Devices with higher communication overhead are
allocated fewer layers to offset the increased bur-
den of communication, which is reflected in the
memory with fewer parameters.

4.3 Resource Utilization
To affirm HPipe in leveraging computational re-
sources, we visualize the inferences in Fig. 6,
which are measured on LLaMA-7B and batch size is
set as 1. Fig. 6a shows the result of equal distri-
bution of the LLM, along with the evenly slicing
of sequences. RTX3090 exhibits a tiny execution
time compared to P100, ascribed to LLM distribu-
tion failing to fully harness the device’s capabili-
ties. RTX3090 rapidly completes the computation
task of each subsequence and falls into a waiting
state for the next subsequence. A significant por-
tion of the computational resources remain idle.
Moreover, uniform slicing sequences lead to longer
execution times for subsequent subsequences, caus-
ing a bottleneck in the pipeline efficiency. Fig.
6b demonstrates that HPipe schedules the execu-
tion of subsequences. Computationally powerful
devices are burdened with heavier computational
tasks, which gives an approximate execution time
for each subsequence. Meanwhile, increasingly
shorter subsequences balance the pipeline.

5 Related Work

Parallel acceleration on deep neural networks has
been widely studied. Only using the data paral-
lelism (Hou et al., 2022; Zhang et al., 2021; Ma
et al., 2023) is not enough as parameters of LLMs
expand. Pipeline parallelism (Huang et al., 2019;
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Figure 6: The performance of the pipeline inference
with or without HPipe. Distinct colored blocks rep-
resent the execution time of subsequences. The gaps
between blocks are the communication time for trans-
ferring intermediate activation.

Aminabadi et al., 2022a; Li et al., 2021) and ten-
sor parallelism (Shoeybi et al., 2019; Bian et al.,
2021) distribute the model to multiple GPUs, thus
reducing the memory burden of the device and
allowing efficient scaling of LLM inference. On
the basis of them, lots of work achieve inference
speedup. Byte-Transformer (Zhai et al., 2023) pro-
poses a padding-free algorithm that liberates infer-
ence from redundant computations on zero padded
tokens when faced with variable-length sequences.
Kernel fusion (Choi et al., 2022; Dao et al., 2022)
optimized CUDA kernels to reduce memory access
and improve computation speed. These methods
focus on latency-oriented scenarios with advanced
devices, limiting their deployment to easily acces-
sible hardware with weaker computing capability
and memory storage. In comparison, this paper
derives the parallelism schema on a heterogeneous
cluster of commodity devices to cater to the private
application requirements. In addition, techniques
proposed by HPipe are orthogonal to the optimized
methods, including quantization (Dettmers et al.,
2022) and kernel optimization (Li et al., 2022),
hence they can be combined with them for better
performance.

6 Conclusion

This paper introduces HPipe, an inference frame-
work to accelerate the content analysis with LLMs
prototyped on the cluster of commodity devices. It
effectively integrates computing resources, allow-
ing a fine-granularity pipeline on heterogeneous
devices. HPipe demonstrates the potential to ac-
celerate LLMs inference with long sequence input,
offering a solution for LLMs deployment in hetero-
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geneous commodity hardware environments.
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A Appendix

A.1 Workload distribution Algorithm

Algorithm 1 shows the pseudocode of balance
workload distribution to shield the heterogeneity
of cluster. Line 1-2 initializes the execution time
of different numbers of layers assigned to the first
device. Line 3-5 outlines the dynamic program-
ming approach for balanced workload distribution.
A[N ][j] record the the minimum execution time
of the stages that assign the first N layers to the
first j layers, which is determined by the lesser as-
signment of the first k layers of the model to the
first n − 1 devices and the k + 1 to m layers to
the device n. The cut-off points are recorded in pi.
Line 6-9 derives the workload distribution schema
according to the cut points.

Algorithm 1 Workload distribution
Input: Computation and communication time
per layer of each device.
Output: Minimal slowest execution time
A[N ][M ] and corresponding workload distri-
bution schema.

1: for i from 1 to N do
2: calculate A[i][1] using (3)
3: for j from 2 to M do
4: A[N ][j] ← min1≤k≤N{max{A[k][j −

1], T (k+1, N, j)}}
5: pi ← argmin1≤k≤N{max{A[k][j −

1], T (k+1, N, j)}}
▷ Dynamic programming for the balance

workload distribution
6: i← N, p← {}
7: while i > 0 do
8: p.append(pi)
9: i← i− pi ▷ Derive the workload

distribution scheme
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Figure 7: The latency of the pipeline inference with
uniform slice from 1 to 128 in the token dimension and
the sequence schedule (SS). (a) GPT3-2B (b) LLaMA-7B

A.2 Sequence Slicing Algorithm

Algorithm 2 shows the detail of sequence slicing.
Line 4-13 shows the iteration that finds the opti-
mal slicing with tmax. Each time we slice a sub-
sequence in the front and treat the remaining se-
quence as a new sequence until the sequence is
divided. The least latency of a sequence with dif-
ferent lengths is stored in L[scur] and the length of
the just segmented subsequence is stored in S[scur].
Line 16-19 derives the optimal sequence slicing
based on the record in S. Line 20-22 gets the op-
timal slicing scheme among the enumeration of
different tmax.

A.3 Dynamic Sequence Schedule

We conduct an ablation study on the dynamic se-
quence schedule (SS) introduced in Section 3.4. To
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Algorithm 2 Sequence slicing
Input: The maximum execution time of slices
tmax, execution time for slices of different
lengths G. Arrays to record the latency and
trace the sequence slicing L, S
Output: The optimal slicing {s0, ..., sn}

1: T ← all possible latency in G
2: T ∗ ←∞, S∗ ← None
3: for tmax in T do
4: for scur from 1 to N do
5: L[scur]←∞
6: for sstep from 1 to scur do
7: lstep ← G[scur][scur − sstep]
8: ltotal ← L[scur − sstep] + lstep
9: if scur ≤ tmax && ltotal <L[scur]

then
10: L[scur]← ltotal
11: S[scur]← sstep

▷ Dynamic programming for the optimal
slicing under the tmax

12: i← |S|, S ← {}
13: while i > 0 do
14: S.append(S[i))
15: i← i− S[i] ▷ Derive the sequence

slicing
16: T = (M − 1) ∗ tmax + L[N ]
17: if T < T ∗ then
18: T ∗ ← T , S∗ ← S ▷ Select the

optimal schema S∗

contrast the inference latency of the slicing scheme
determined by the sequence schedule with that of a
heuristic that slices the input sequence uniformly,
we tested both the GPT3-2B and LLaMA-7B models
using a sequence length of 2048 tokens. The batch
sizes were set at 12 and 6, respectively. In the uni-
form slicing approach, the entire input was sliced
on the token dimension, with the number of slices
ranging from 1 to 128. We measured the inference
latency for each slicing configuration. The findings
are illustrated in Fig. 7 and align with our hypothe-
ses. Pipelines with fine granularity suffer from
GPU underutilization, whereas those with coarser
granularity present large pipeline bubbles, culmi-
nating in increased inference latency. Moreover,
due to the mask mechanism of the decoder-based
transformer, the uniform slice hides the discrep-
ancy in computational volume between front and
rear subsequences. HPipe with a proper sequence
schedule outperforms the best uniform slicing con-
figuration.

9


