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Abstract

We introduce a goal-oriented conversational
AI system enhanced with American Sign Lan-
guage (ASL) instructions, presenting the first
implementation of such a system on a world-
wide multimodal conversational AI platform.
Accessible through a touch-based interface, our
system receives input from users and seam-
lessly generates ASL instructions by leveraging
retrieval methods and cognitively based gloss
translations. Central to our design is a sign
translation module powered by Large Language
Models, alongside a token-based video retrieval
system for delivering instructional content from
recipes and wikiHow guides. Our development
process is deeply rooted in a commitment to
community engagement, incorporating insights
from the Deaf and Hard-of-Hearing commu-
nity, as well as experts in cognitive and ASL
learning sciences. The effectiveness of our sign-
ing instructions is validated by user feedback,
achieving ratings on par with those of the sys-
tem in its non-signing variant. Additionally, our
system demonstrates exceptional performance
in retrieval accuracy and text-generation qual-
ity, measured by metrics such as BERTScore.
We have made our codebase and datasets
publicly accessible at https://github.com/
Merterm/signed-dialogue, and a demo of
our signed instruction video retrieval sys-
tem is available at https://huggingface.co/
spaces/merterm/signed-instructions.

1 Introduction

Conversational systems have become increasingly
integrated into our everyday lives, yet their accessi-
bility to the Deaf and Hard-of-Hearing (DHH) com-
munity, who predominantly communicate through
signed languages, remains limited (Glasser et al.,
2017, 2020; Bragg et al., 2020). Despite growing
advocacy for more inclusive interactive technolo-
gies from DHH users (Bragg et al., 2019; Blair
and Abdullah, 2020; Kahlon and Singh, 2023), a

Figure 1: An overview of our multimodal dialogue sys-
tem, capable of giving signed instructions to Deaf or
Hard-of-Hearing users in ASL. We first translate task
instructions to an intermediate textual representation
called glosses using Large Language Models; then, we
fetch token-level sign videos to display on the screens
of Amazon Alexa Echo Show.

comprehensive dialogue system tailored for sign
language users has yet to be implemented on a
global scale. In response, within the Alexa Prize
TaskBot Challenge 2 framework, we developed
and launched the first task-oriented, multimodal
dialogue system utilizing ASL, aiming to bridge
the gap between DHH users and personal voice as-
sistants. This system translates touch-based inputs
into ASL video instructions, offering a ground-
breaking approach to interaction fig. This paper
introduces our ASL instruction framework, mark-
ing a significant stride towards integrating conver-
sational systems into the living spaces of sign lan-

140

https://github.com/Merterm/signed-dialogue
https://github.com/Merterm/signed-dialogue
https://huggingface.co/spaces/merterm/signed-instructions
https://huggingface.co/spaces/merterm/signed-instructions


guage users and enhancing accessibility for the
DHH community.

Many signers prefer to use ASL instead of text
due to grammatical and linguistic differences be-
tween spoken and signed languages (Hariharan
et al., 2018; Dangsaart et al., 2008). Yet currently,
systems claiming to be accessible resort to text-
based communication. As an alternative, videos or
avatars of signers are options, yet these technolo-
gies are underutilized. In this paper, we show that
deploying these signed systems on a large scale is,
in fact, possible without much production cost and
makes the system accessible to DHH users.

Further, prior linguistics research has shown that
DHH community members can experience higher
cognitive loads while reading compared to signing
(Traxler, 2000; Kelly, 2003; Luckner and Handley,
2008). In this paper, we investigate effective strate-
gies of multimodal information presentation for the
DHH to reduce cognitive load. With repeated con-
sultations with cognitive scientists, we design the
layout of our system’s user interface specifically
around the cognitive load of signers (see Figure 2).

We focus on creating a framework that is appli-
cable to a large-scale global platform (in our case,
Amazon Alexa), making it impossible at this time
to access camera footage. We investigate ways of
receiving input with other modalities instead of
voice commands and without camera access. This
leads us to focus on the task of instruction gener-
ation and delivery rather than recognizing signs
produced by the user. We receive input from the
user via touchscreen controls of Amazon Alexa
Echo Show devices so that signers can interact
without using voice commands (see Figure 2 for
the touch screen user interfaces where the user can
interact via buttons to select tasks and navigate
instructions).

To address all of the aforementioned points, in
the following sections, we introduce the compo-
nents of our framework. Our detailed contributions
are as follows:

1. We design a multimodal task-oriented dia-
logue system with signed instructions and de-
ploy it on multimodal devices.

2. We use co-design to build our system, actively
involving community members in the design,
development, and evaluation, ensuring our so-
lutions positively impact the community.

3. We implement a novel Large Language Model
(LLM)-based instruction generation technique

Figure 2: A storyboard of all the screens for an origami
task with ASL video instructions. The first screen from
the top is the landing page with an ASL Task button to
enter the signed section. The second screen shows dif-
ferent recipes and task options. The following screens
show an instruction step. Button interactions are espe-
cially important for signers as the audio is inaccessible.

for zero-shot text-to-sign translation. We use
linguistics rules and cognitive science-based
heuristics for this translation.

4. We make available a standalone library to
translate instruction texts into signed instruc-
tion videos, and we release our dataset used
for the top 200 signs in cooking and wikiHow
domains.
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We hope this effort brings more focus to the
needs of signers and will be a step towards making
large-scale dialogue systems more accessible to all
users.

2 Related Work

With the rise of voice assistant devices, the DHH
community has been mostly left behind. Yet, there
have been multiple lines of work to make them
more accessible. Accessibility of personal assistant
devices to the Deaf and Hard of Hearing commu-
nity has been assessed multiple times before by
Glasser et al. (2017, 2020); Bragg et al. (2020).
In addition, design approaches incorporating the
DHH community have been proposed by Anind-
hita and Lestari (2016); Hariharan et al. (2018). We
build on these in our system design.

Most of the current work in interactive system
design focuses on sign recognition with the help
of cameras. For instance, in Wojtanowski et al.
(2020) Wizard-of-Oz studies have been done where
Alexa is combined with a camera to detect signs.
In SIGNS project1, Alexa recognizes specific ges-
tures for simple task completion (such as getting
the weather forecast with a specific gesture), and
Huang et al. recognized signs for a healing robot.
Even though these systems provide a means for rec-
ognizing signs, they fall short in generating signs,
which we focus on in this paper.

There has been some line of work by Nasihati Gi-
lani et al. (2019) in generating avatars for 6-month-
old babies to learn ASL. Also, Hrúz et al. (2011)
deployed a kiosk with sign recognition and genera-
tion capabilities for Czech Sign Language. How-
ever, these have not resulted in a widely available
system.

On the other hand, sign language processing has
been widely studied under controlled conditions.
Even though sign language generation and trans-
lation tasks are still open problems, transformer-
based models in Yin and Read (2020); Yin et al.
(2021); Moryossef et al. (2021); Inan et al. (2022);
Müller et al. (2023); Lin et al. (2023); Viegas et al.
(2023) have shown that it is possible to automate
them better. As a core contribution, we present a
framework to apply any of these models in large-
scale interactive environments.

In order to make our system useful for signers,
we need to mitigate their cognitive load interpret-
ing instructions from multimodal devices. Models

1https://projectsigns.org/

for the cognitive aptitudes and cognitive loads of
sign language interpreters have been studied before
by Macnamara (2012); Du Toit (2017); Tiselius
(2018); Chambers (2020). These models help guide
the design principles of our system, as the user will
need to focus on multiple modalities simultane-
ously through the visual modality, which increases
cognitive load.

3 A Goal-Oriented Dialogue System with
Signed Instructions

We design a multimodal goal-oriented dialogue
system as part of the Alexa Prize TaskBot Chal-
lenge 2 (Agichtein et al., 2023) and incorporate
signed instructions. The main dialogue system
that we develop follows a typical modular design:
Natural Language Understanding (NLU), Dialogue
Manager (DM), and Natural Language Generation
(NLG). In this setting, we embed signed instruc-
tions into the multimodal NLG module (Figure 3).

Due to privacy regulations, Alexa does not allow
third parties to process user gestures and videos.
Hence, to increase accessibility for signers, we
choose to generate signed instructions instead of
recognizing signs. To support users who cannot—
or prefer not to—provide voice input, our system
has a scrollable touchscreen with buttons. This
enables us to have a full dialogue system for signers
while complying with regulations.

3.1 Task Description
We take as input a task JSON with step-by-step
English text instructions, images, title, main im-
age, and ingredients and output a JSON array of
user interface screens corresponding to the gloss
translations for each step and their corresponding
sign videos (see Appendix A). The tasks are in the
domains of cooking, home improvement, arts and
crafts, and gardening. We provide our signed in-
struction generation as a standalone library for the
camera-ready version of this paper.

3.2 Community Co-Design
To inform our system design choices, we connect
with collaborators from the Deaf and Hard of Hear-
ing (DHH) signing community at Gallaudet Uni-
versity (a prestigious higher education institution
chartered for the DHH community). We incorpo-
rate the feedback from signers into the system’s
design.

The feedback incorporated into our design pro-
cess includes considering the cognitive load of sign-
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Figure 3: The overall architecture of our dialogue system with sign instructions for American Sign Language.
Offline LLM translations make it easier to plug in a signing module into a traditional dialogue architecture.

ers, altering the dimensions of the text, video, and
images used to communicate instructions, choos-
ing which information to present as text versus
signed videos (compare screens in Figure 2 and
Appendix E for the placement of text and signed
videos in the same screen), and updating the design
of the interface for ASL signers.

4 Our Signed Instruction Framework

We employ the framework shown in Figure 1 to
generate signed instructions. We first retrieve in-
structions for a given task, and then we convert each
step into gloss tokens, which are intermediary tex-
tual representations using rule-based sign language
translation algorithms and LLMs. Afterward, we
segment each instruction into separate gloss tokens,
retrieve sign videos for each, and stitch them back-
to-back to create a continuous video sequence. For
each step, we display this sequence of videos and a
picture of the step. The picture for each step gener-
ally shows the result of the action as described in
the sign instructions. This approach is summarized
in Algorithm 1.

4.1 Large Language Model Translation

For the translation of spoken English instructions
to textual representations of ASL (glosses), we
prompt LLMs. Multiple methods exist in im-
plementing text-to-gloss translation: human an-
notation, rule-based automatic translation with
heuristics (Othman and Jemni, 2012a), fine-tuned
transformer-based models (Camgoz et al., 2018;
Yin and Read, 2020), and prompting LLMs (Lee
et al.). We make our system adaptable to all of these
alternatives for text-to-gloss translation. Any one
of these models can be plugged into line 4 of Algo-
rithm 1. We choose LLM translation for our current
system due to its scalability, translation understand-
ability, and ability to adapt to out-of-domain text.

Algorithm 1 Signed Instruction Retrieval

1: G← {}
2: I ← instruction steps
3: for i in I do
4: translated← LLM(i)
5: translated← PRUNE(translated)
6: end for
7: S ← {}
8: for i in translated do
9: for ti in i do

10: S[ti]← SIGN_V IDEO(ti)
11: end for
12: end for
13: V ← [ ]
14: for i in I do
15: for ti in i do
16: V [i]← V [i] + S[ti]
17: end for
18: end for
19: return V

We show in our system evaluation in section §5
that there is a trade-off between using LLMs or
rule-based heuristics for text-to-gloss translation.
Mainly, LLMs generate more diverse translations,
while rule-based heuristics have higher accuracy
depending on the video dataset size.

Our instructions consist of WholeFoods recipes2

and WikiHow tasks3. First, we aggregate all the
instruction steps of the task in a JSON construct
(given in Appendix A), then using the OpenAI chat
API we prompt gpt-3.5-turbo to “translate each
step to American Sign Language gloss", and re-
quest the result in a JSON format.4 We then ag-

2www.wholefoodsmarket.com/recipes
3www.wikihow.com
4Our parameters for the API call are, temperature=1, max

tokens=1000, top p=1, frequency penalty=0, and presence
penalty=0.
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gregate all these steps for all recipes and tasks.
For recipes, we do not translate the ingredients to
glosses, as our community outreach surveys indi-
cate that users prefer to see the ingredients written
statically on the screen instead of signed versions
(see Figure 1 for a reference of text-to-gloss trans-
lation steps).

After these instructions are generated, we have
an additional stage of manual correction of LLM-
generated glosses using rule-based heuristics for
quality5. We also remove the punctuation in
glosses, capitalize them, and concatenate the
fingerspellings—in which fingers form individual
letters to spell out words—if annotated using the
hyphen notation (i.e. “F-I-N-G-E-R"). Here, we
check that the glosses are unique across the tasks,
they are all present in the available video dictionary,
and they follow the general rules of ASL.

4.2 Sign Video Processing

We process the videos in four steps. First, we col-
lect sign videos corresponding to all the glosses in
our instruction set from an online platform. Then
we store these videos, retrieve them on the fly while
presenting instructions, and stitch them together.
We give the details of these steps in the following
paragraphs.

Sign Video Collection For video collection, we
use widely available American Sign Language sign
dictionary videos from video sharing platforms
with Creative Commons licenses online 6. We
mainly use videos from Lifeprint, but if they do
not contain a specific sign video, we use the ASL-
Dictionary on YouTube as the backup source. If
neither of these sources has a sign available, we
first check if the gloss can be deconstructed into
other signs or fingerspelled. If so, we check the
videos for the deconstructed versions and concate-
nate them into a single video. If these options are
not available and the gloss is crucial to the meaning
of the instruction, then we search for a synonym.
If it is not crucial to the meaning of the instruction,
then we drop the gloss.

Video Storage We generate a dictionary for all
the available sign glosses (found in Appendix Sec-
tion A) and upload all the videos with their gloss

5this curation step can be omitted for the deployment of
larger systems with bigger task sets, where it might be infeasi-
ble to go over each task step and glosses manually.

6Lifeprint.com, and the ASLDictionary chan-
nel accessible on YouTube: https://youtube.com/
@smartsigndictionary

as their filename to an Amazon AWS S3 bucket for
storage.

Gloss-by-Gloss Sign Retrieval During a user’s
live use of the system for signed instructions, we
retrieve videos on a token level using the video
URL by cross-referencing its gloss filename. As
the last step, after retrieving all the video URLs
on the fly for each gloss in each instruction, we
concatenate all of the URLs corresponding to the
glosses together and then present them on the user
interface of the app as a single stream of a video
(see Figure 2).

5 System Evaluation

We evaluate our system both quantitatively and
qualitatively. Because this is the first deployment of
a task-oriented signed multimodal dialogue system,
we chiefly compare the system with the non-signed
portion of our task-oriented dialogue system. We
first evaluate the performance of our LLM text-to-
gloss translation and discuss the trade-offs of using
an LLM for translation. Then, we evaluate our
algorithm using traditional information retrieval
metrics. Finally, we compare user ratings and pro-
vide detailed qualitative analyses by an expert who
is fluent in ASL.

Automatic Metrics

BLEU ROUGE METEOR ChrF WER1 2 3 4

9.52 1.59 0.42 0.16 0.11 0.11 23.99 2.146

F1 Recall Precision

BERTScore 0.80 0.81 0.79

Table 1: This table shows the automatic metric results
between LLM and rule-based translations. Tasks on
the web do not contain readily available ground-truth
glosses. BERTScore is the best indicator of translation
success.

Text-to-Gloss Translation Analysis In this sec-
tion, we analyze the performance of LLM-based
translations using traditional automatic text metrics
(see Table 1). As also described in section § 4.1, we
experiment with two translation strategies: 1) LLM
translations and 2) rule-based gloss translations
with heuristics. We use the rule-based heuristics
strategy as ground truth in our results here because
no human-annotated ASL ground truth exists for
our datasets, and the accuracy of rule-based transla-
tions is high when compared to human annotations
in the works of Othman and Jemni (2012b, 2019).
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In order to generate rule-based glosses, we use
the Algorithm given in Appendix B. Automatic
evaluation metrics for sign translations do not yet
exist. Hence, we present results using traditional
automatic evaluation metrics such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Banerjee and Lavie, 2005), ChrF (Popović, 2015),
and BERTScore (Zhang et al., 2020) between LLM-
generated glosses and the rule-based glosses. In
this case, BERTScore is more insightful than tradi-
tional metrics because the semantic representation
of tokens is more important in glossing than the
specific n-gram differences.

For our system, we deploy with LLM-based
translations and are able to scale from only 1-3
tasks with ASL expert manual annotations to 150
supported tasks with LLM-based translations. As
shown in Figure 3, the LLM translations happen of-
fline as all of our tasks are pre-determined. Right af-
ter the tasks are translated to ASL glosses, we have
a quality control stage before they are presented
to the user. So, our overall translation pipeline is
a human-in-the-loop system. During the duration
of our dialogue system’s deployment, we observe
that using LLMs reduces the time spent on the man-
ual checking process by human annotators from 10
minutes per instruction sentence to 1 minute per
sentence.

Retrieval Metrics No automatic evaluation
mechanism exists for signed interactive systems;
hence, in this section, we introduce two retrieval
metrics—Hit Rate and Recall@1—for our Signed
Instruction Retrieval Algorithm (see Algorithm 1)
with the two translation modules separately. Fur-
thermore, we also present an analysis of the
changes in Hit Rate and Recall@1 in response to
increases in the available video dataset size in Fig-
ure 4.

We use the following simplified definitions of
Hit Rate and Recall@1:

Hit Rate =
# glosses w/ videos

total # of glosses
(1)

Recall@1 =
# glosses w/ videos

# synonyms of glosses w/o videos

+ # glosses w/ videos
(2)

Essentially, Hit Rate measures how accurate
the system is in finding videos for a given token,
and Recall@1 tells how precise the system selects
videos corresponding to a token among a set of

Figure 4: These plots show the changes in Hit Rate and
Recall@1 for our signed instruction retrieval algorithm
as the available video set increases in size. Two lines
represent two methods of translation from text to gloss.
In a constrained setup with limited sign video storage,
these plots show how many videos are needed with
different translation strategies. Overall, LLMs have
more diverse translations, while rule-based heuristics
provide more accurate translations changing with the
video dataset size.

synonyms. For instance, for a task step consist-
ing of glosses “CHOCOLATE CHOP ADD DOUGH MIX
STIR” if the system has only videos for CHOP, ADD,
COMBINE, and STIR, then the Hit Rate will be 0.5,
as three out of six glosses do not have videos; and
Recall@1 will be 3/4, where the denominator also
contains any synonym of a gloss that does not have
a corresponding video (MIX and COMBINE are con-
sidered synonyms in this case). Hit Rate and Re-
call@1 are complimentary metrics where Hit Rate
shows the direct presence of sign videos while Re-
call@1 indirectly shows how diverse the glosses
and selected videos are due to the inclusion of syn-
onyms in the denominator where multiple glosses
may exist for the same video that we have in our
database. We give detailed mathematical defini-
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tions for both of these metrics in Appendix C.
Looking at the resulting plots in Figure 4, we can

make several claims. For Hit Rate, both of the trans-
lation strategies produce similar results because
our video database covers a majority of glosses
present in the restricted domain of cooking and
wikiHow tasks. For Recall@1, there is a dramatic
difference between LLMs and heuristics. This hap-
pens because rule-based heuristics use nearly the
same tokens from the text, while LLMs can gener-
ate synonymous glosses for a given token. For a
more example-driven explanation, please refer to
Appendix D.

Overall, the Recall@1 for our Algorithm has
a minimum of around 80% and a maximum of
98%—as observed in Figure 4. This shows that
our algorithm can easily be deployed as part of dia-
logue systems with signed instructions regardless
of whether we use LLMs or rule-based heuristics
translations.

User Rating Comparisons Our system inter-
acted with a large number of public users for over
a period of six months. Because this is the first
task-oriented dialogue system with signed instruc-
tions, it increases our user outreach on international
platforms by a large margin. However, adding this
functionality could decrease overall user ratings if
they do not deem the interface usable or are unsure
about what ASL is. Thus, we examine the ratings
before and after adding the signed instructions to
our system. As shown in Appendix 7, our user
ratings remain constant after adding support for
this feature. Thus, we find that, besides making
task-oriented systems accessible to a larger audi-
ence, adding support for signed instructions does
not decrease user ratings.

Expert Qualitative Analysis One author fluent
in ASL evaluated the system with special regard
to the usability and clarity of the information pre-
sented. This evaluator noted two primary strengths:
1) the multimodal instructional support provided
by having both the ASL descriptions and the in-
structional images available, particularly for the
step-by-step tasks such as origami folding; 2) the
ease of processing and attending to multiple modal-
ities given the clear layout without overwhelming
the user. To expand, giving the user the option
to attend to the signed content or the referent of
the images (e.g., step-by-step origami folding) al-
lowed them to rely on each form of information
to the extent they prefer. The clear layout does

not overwhelm the user with too many streams of
information. It also allows for sufficient process-
ing of either sign videos, images, or both without
distracting the user.

The primary limitation of the current system lies
in the segmented nature of the ASL videos. Cur-
rently, there is a lack of smooth transitions between
signs, and different signers present each sign within
one instruction. The flow of the signs appears dis-
jointed, consequently impeding clear understand-
ing. The absence of step-by-step visuals in certain
tasks necessitates increased reliance on signing.
The disjointed nature of the current signing videos
rendered some tasks less comprehensible.

Overall, the multimodal presentation of signing
alongside informative images enhances accessibil-
ity and suggests that a dynamic display of signed
content will greatly enhance future task-oriented
dialogue systems. For future iterations of our sys-
tem, we plan to incorporate either human models
signing the entire content or synthesized avatars
(Quandt, 2020; Quandt et al., 2022).

6 Conclusion

In this work, we discussed a multimodal, task-
oriented dialogue system designed to generate
ASL instructions on a platform with global reach.
Emphasizing the critical importance of Deaf and
Hard-of-Hearing (DHH) community engagement
throughout the development cycle, our approach
integrates extensive feedback from both the signing
community and experts in the field. Our system not
only marks a significant technological milestone
but also enriches the dialogue on how video-based
ASL instruction delivery can be effectively scaled
internationally. We observed a nuanced prefer-
ence among signers for avatar-based instructions—
a finding underscored by our expert analysis. Our
system has improved the landscape of conversa-
tional AI, making it accessible and responsive to
the unique needs of the DHH community.

We make the code available for our pipeline
and encourage future researchers to incorporate
it into their own task-oriented systems to increase
accessibility. We hope that this system is a step
towards developing dialogue systems that can un-
derstand and generate signs for all signed lan-
guages. We encourage everybody to interact with
signed tasks by visiting https://huggingface.
co/spaces/merterm/signed-instructions.
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A Input Constructs

Here we show the JSON format of the tasks:
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Here is the dictionary of all the available glosses that have corresponding videos on the system.
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B Rule-based Gloss Translation
Algorithm

We give the pseudocode for the rule-based heuris-
tics algorithm as follows:

Algorithm 2 Rule-based Heuristic Glosses

1: heuristic_glosses← []
2: for sentence in task[′task_texts′] do
3: sentence← UPPERCASE(sentence)
4: text← TOKENIZE(sentence)
5: pos_tagged← POSTAGGING(text)
6: for token in pos_tagged do
7: if IsNotDesiredPOS(token[1]) then
8: REMOVETOKEN(pos_tagged, token)
9: end if

10: end for
11: for i in range(LENGTH(pos_tagged)) do
12: pos_tagged[i] ←

(LEMMATIZE(pos_tagged[i][0]),
pos_tagged[i][1])

13: end for
14: sentence← ""
15: for token in pos_tagged do
16: sentence← sentence+ token[0] + ””
17: end for
18: sentence← STRIP(sentence)
19: heuristic_glosses.APPEND(sentence)
20: end for
21: return heuristic_glosses

C Detailed Mathematical Definitions for
Retrieval Metrics

To define Hit Rate and Recall@1 more precisely,
we first introduce some requisite definitions:

• D: set of glosses in our dictionary
• n: total number of task instructions
• I = {i0, i1, ..., in}: set of all task instructions
• mk: total number of glosses in instruction k
• ik ∈ I =< gk0, gk1, ..., gkmk

>
• gkl ∈ ik: gloss in instruction ik (ordered)
• syn(g): the set of synonyms found for gloss
g using wordnet.synsets

We formalize our simplified definitions of Hit
Rate and Recall@1 below, using our notation. Note
that because we take into account repeated glosses
in our instruction set, the sets below are multisets
and thus contain repeated elements that are factored
into the cardinality of the set.

Hit Rate =
|gkl : gkl ∈ D, ik ∈ I, gkl ∈ ik|
|gkl : ik ∈ I, gkl ∈ ik|

(3)

Recall@1 =
|gkl : gkl ∈ D, ik ∈ I, gkl ∈ ik|
|gkl : gkl ∈ D, ik ∈ I, gkl ∈ ik|

+ |gkl : gkl /∈ D, ik ∈ I, gkl ∈ ik|
(4)

D Detailed Examples for Retrieval
Metrics

For example, for the instruction, “Chop choco-
late and add to batter. Stir until incorporated.”,
the LLM generates, “CHOCOLATE CHOP ADD
DOUGH MIX STIR”, while heuristics generates
“CHOP CHOCOLATE ADD BATTER STIR UNTIL
INCORPORATE”. Here, it can be seen that LLM
produces DOUGH (a synonym of “batter” for our
purposes), while heuristics directly uses the same
wording. This adds diversity to the generated
glosses, and as the number of videos increases, it
positively affects the score of LLMs. For the heuris-
tics algorithm, as the tokens are never changed into
synonyms, even after a lot of videos are added to
the set, the algorithm cannot retrieve videos and
gets lower Recall@1 scores.
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E Interface Details

We show more screenshots of details in the interface in Figures 5, and 6.

Figure 5: These are the screens for an alternative task of a classic blondies recipe. The main difference for recipes is
that at each step, relevant ingredients are shown in addition to the signed instruction video. This is to ensure less
cognitive load on the user. Also, the first panel shows the ASL button that exists in supported recipes.

Figure 6: This figure demonstrates the screenshots of our signed multimodal dialogue bot for the recipe of Mapo
Tofu. This example is chosen to stress the fact that certain international recipes that have terms that may not exist
in ASL are also supported in the bot. In these cases, the ingredients are written on the screen and the instructions
are signed without the specific terminologies, like "tofu", and images are shown to aid with grounding the referred
ingredient.
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F User Rating Analysis

We show a plot of 7-day averages of user ratings before and after adding support for signed instructions in
Figure 7.

Figure 7: User ratings of our system before and after adding support for instructions in ASL. Here, we show the
week before and after adding signed instructions. Reaching out to real users and communities that use signed
languages is the main goal of our system. Adding ASL support allows our system to engage with a larger audience
without decreasing overall user ratings.
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