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Abstract

A current limitation of Generative AI (GenAI)
is its propensity to hallucinate. While Large
Language Models (LLM) have taken the world
by storm, without eliminating or at least reduc-
ing hallucination, real-world GenAI systems
will likely continue to face challenges in user
adoption. In the process of deploying an enter-
prise application that produces workflows from
natural language requirements, we devised a
system leveraging Retrieval-Augmented Gen-
eration (RAG) to improve the quality of the
structured output that represents such work-
flows. Thanks to our implementation of RAG,
our proposed system significantly reduces hal-
lucination and allows the generalization of our
LLM to out-of-domain settings. In addition,
we show that using a small, well-trained re-
triever can reduce the size of the accompanying
LLM at no loss in performance, thereby mak-
ing deployments of LLM-based systems less
resource-intensive.

1 Introduction

With the advent of Large Language Models
(LLMs), structured output tasks such as converting
natural language to code or to SQL have become
commercially viable. A similar application is trans-
lating a natural language requirement to a work-
flow, a series of steps along with logic elements
specifying their relationships. These workflows
encapsulate processes that are executed automati-
cally upon certain conditions, thereby increasing
employee productivity. While enterprise systems
offer such functionality to automate repetitive work
and standardize processes, the barrier to entry is
high, as building workflows requires specialized
knowledge. Generative AI (GenAI) can lower this
barrier since novice users can specify in natural lan-
guage what they want their workflows to execute.

However, as with any GenAI application, using
LLMs naively can produce untrustworthy outputs.

Figure 1: Sample structured output (JSON) to generate
given a natural language requirement.

Such is the public concern for LLMs producing hal-
lucinations that the Cambridge Dictionary chose
hallucinate as its Word of the Year in 2023 (Cam-
bridge, 2023). Retrieval-Augmented Generation
(RAG) is a well-known method that can reduce hal-
lucination and improve output quality, especially
when generating the correct output requires access
to external knowledge sources (Gao et al., 2024).

In this work, we describe how, in the process
of building a commercial application that converts
natural language to workflows, we employ RAG
to improve the trustworthiness of the output by re-
ducing hallucination. Workflows are represented as
JSON documents where each step is a JSON object.
Figure 1 shows an example of a text requirement
and its associated JSON document. For simplic-
ity, we include only the basic properties needed
to identify a step along with properties indicating
the relationship between steps. Besides the work-
flow steps, there may also be a trigger step that
determines when the workflow should start, and
sometimes this trigger requires a database table
name. Hallucination in this task means generating
properties such as steps or tables that do not exist.

While fine-tuning a sufficiently large LLM can
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produce reasonably good workflows, the model
may hallucinate, particularly if the natural language
input is out-of-distribution. As the nature of enter-
prise users requires them to customize their appli-
cations, in this case by adding their own type of
workflow steps, a commercial GenAI application
needs to minimize the out-of-distribution mismatch.
While one could fine-tune the LLM per enterprise,
this may be prohibitively expensive due to the high
infrastructure costs of fine-tuning LLMs. Another
consideration when deploying LLMs is their foot-
print, making it preferable to deploy the smallest
LLM that can perform the task.

Our contributions are the following:

• We provide an application of RAG in work-
flow generation, a structured output task.

• We show that using RAG reduces hallucina-
tion and improves results.

• We demonstrate that RAG allows deploying
a smaller LLM while using a very small re-
triever model, at no loss in performance.

2 Related Work

Retrieval-Augmented Generation is a common
approach to limit generation of false or outdated
information in classical NLP tasks such as question
answering and summarization (Lewis et al., 2020;
Izacard and Grave, 2021; Shuster et al., 2021). In
the GenAI era, it refers to a process where relevant
information from specific data sources is retrieved
prior to generating text; the generation is then based
on this retrieved information (Gao et al., 2024). Our
work differs from standard RAG as we apply it to
a structured output task. Instead of retrieving facts,
we retrieve JSON objects that could be part of the
JSON output document. Providing plausible JSON
objects to the LLM before generation increases the
likelihood that the output JSON properties exist
and that the generated JSON can be executed.

A crucial ingredient of RAG is the retriever since
its output will be part of the LLM input. Compared
to classical methods such as TF-IDF or BM25 that
use lexical information, Dense Retrieval has been
shown to be more effective as it maps the semantics
to a multidimensional space where both queries and
documents are represented (Reimers and Gurevych,
2019; Gao et al., 2021; Karpukhin et al., 2020;
Xiong et al., 2020). These retrievers are often
used in open-domain question answering systems
(Guu et al., 2020; Lee et al., 2019), where both

queries and documents are unstructured data and
thus share the same semantic space. In our case, the
queries are unstructured (natural language) and the
documents (JSON objects) are structured. Our re-
trieval training is similar to Structure Aware DeNse
ReTrievAl (SANTA), which proposes a training
method to align the semantics between code and
text (Li et al., 2023b).

Generating structured data falls within the realm
of Structured Output tasks, which consist of gen-
erating a valid structured output from natural lan-
guage, such as text-to-code, text-to-SQL (Zhong
et al., 2017; Yu et al., 2018; Wang et al., 2020)
or if-then program synthesis (Quirk et al., 2015;
Liu et al., 2016; Dalal and Galbraith, 2020). They
are challenging as they not only require generating
output that can be parsed, but also entities or field
values that exist in a given lexicon; otherwise the
resulting output cannot be interpreted or compiled.
For simple database schemas or small lexicons, this
extra information can be included in the prompt.
However, in our task the available pool of steps that
can be part of a workflow is potentially very large
and customizable per deployment, thereby making
in-context learning impractical.

With the arrival of LLMs, these tasks have be-
come more accessible. In particular, Code LLMs
enable developers to write code faster by providing
instructions to the LLM to generate code snippets
(Chen et al., 2021; Nijkamp et al., 2022; Li et al.,
2023a; Roziere et al., 2023). These models, trained
on large datasets of source code (Kocetkov et al.,
2022), have acquired broad knowledge of many
programming languages and have been shown to
perform better at tasks that necessitate reasoning
(Madaan et al., 2022). Since the JSON schema to
represent workflows is domain-specific, we cannot
use these models off-the-shelf. While fine-tuning
them on a small dataset increases the quality of
results, extra steps are required to reduce hallucina-
tion and support out-of-domain queries.

Lastly, an alternative and complementary tech-
nique to reduce hallucination with LLMs is Guided
Generation using tools such as Outlines (Willard
and Louf, 2023). A sufficiently expressive context-
free grammar could ensure that the steps generated
by the model exist, but it does not provide extra
knowledge as to which steps the flow should in-
clude given the natural language query.
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Figure 2: High-level architecture diagram showing how the user query is used by both the retriever and the LLM to
generate the structured JSON output.

3 Methodology

Figure 2 depicts the high-level architecture of our
RAG system. During initialization, indices of steps
and tables are created using the retriever. When a
user submits a request, the retriever is called to sug-
gest steps and tables. The suggestions are then ap-
pended to the user query to form the LLM prompt.
The LLM is then called to generate the workflow
in the JSON format via greedy decoding.

To build our system, we first train a retriever
encoder to align natural language with JSON ob-
jects. We then train an LLM in a RAG fashion by
including the retriever’s output in its prompt.

3.1 Retriever training

We expect the LLM to learn to construct JSON doc-
uments including the relationship between work-
flow steps, given sufficient examples. The risk of
hallucination comes mainly from the step names
since there are tens of thousands of possible steps
and every customer can add their own steps if the
default set does not meet their needs. In addition,
as some trigger steps require database table names
as a property, these names can also be hallucinated.
We therefore require the retriever to map natural
language to existing step and database table names.

We choose to fine-tune a retriever model for two
reasons: to improve the mapping between text and
JSON objects, and to create a better representa-
tion of the domain of our application. While there
exist a myriad of open-source sentence encoders
(Reimers and Gurevych, 2019; Ni et al., 2022), they
have been trained in a setting where both queries
and documents are in the same natural language
semantic space. But in our case, the query or work-
flow requirement is unstructured while the JSON
objects are structured data. Consistent with the
results reported by Li et al. (2023b), who search
code snippets based on text, fine-tuning improves

the retrieval results greatly. Similarly, fine-tuning
a model using our domain-specific data allows the
retriever to learn the nuances and technicalities of
the text and JSON that are particular to our setting.

We use a siamese transformer encoder with mean
pooling similar to Reimers and Gurevych (2019)
to encode both the user query and the step or table
JSON object into fixed-length vectors. We include
a normalization layer in our model so that the re-
sulting embeddings have a norm of 1. We generate
three embeddings vq ∈ Rn, vs ∈ Rn, vt ∈ Rn:

vq = R(q) vs = R(s) vt = R(t) (1)

where q, s, t are the user query, step, and table
respectively. Retriever R can be decomposed as:

R(q) = Norm(MeanPool(Enc(q))) (2)

The retriever model is trained on pairs of user
queries and corresponding steps or tables. Since
table names are used only in certain examples de-
pending on the type of trigger, a query can be
mapped to zero tables. For instance, the work-
flow in Figure 1 has four steps, forming four posi-
tive training pairs, each pair consisting of the same
query and one of the steps in the flow. As the daily
trigger step does not need a table name, the query
is mapped to an empty list of tables.

We also construct negative training pairs by sam-
pling steps or tables that are not relevant to the user
query. We experiment with three different negative
sampling strategies: random, BM25-based, and
ANCE-based (Xiong et al., 2020).

The retriever is trained using a contrastive loss
(Hadsell et al., 2006) to minimize the distance be-
tween positive pairs (Y = 1) and negative pairs
(Y = 0). Given the cosine similarity between
the query and step (or table) vectors, and cosine
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distance D = 1 − cossim(vq, vs), we define con-
trastive loss L as:

L =
1

2

(
Y D2 + (1− Y ) · max(0,

1

2
−D)2

)

(3)
During initialization, we build an index of steps

and tables using FAISS (Douze et al., 2024). When
a user submits a natural language query, we embed
the incoming query using our retriever and use
cosine similarity to retrieve the max K steps and
tables associated with this requirement.

3.2 LLM training
Contrary to end-to-end RAG systems such as Lewis
et al. (2020), we opted to train both the retriever and
LLM separately, for simplicity. We use the trained
retriever to augment our dataset with suggested
step and table names for each example. We then
proceed with standard LLM supervised fine-tuning.

Figure 3: Training example, where the last four lines
are the expected output (in red). The underlined text
comes from the retriever’s output.

By inserting the retriever’s output in JSON for-
mat into the LLM input, we effectively make this
structured output task easier as the LLM can copy
the relevant JSON objects during generation. Fig-
ure 3 shows an example of a training example. Ev-
ery line except the last four make up the LLM
prompt. The suggested tables and steps come be-
fore the user query and are underlined in the figure.
We exclude the most frequent steps from these sug-
gestions as we expect the LLM to memorize them.
Also, in every LLM training example, we assume
the retriever has 100% recall: the steps and table
required to build the structured output are always in
the suggestions, except for the most frequent steps.

As we are showing the LLM thousands of exam-
ples during training, we did not find it necessary to

experiment with complicated or verbose prompts:
we used a short and simple format, similar to Figure
3, to reduce the number of input tokens while mak-
ing it clear that this is a structured output task. As
shown in section 5.2, this approach yielded good
performance.

4 Experiments

As the task we are interested in is part of a commer-
cial enterprise system, we had to devise our own
datasets as well as evaluation metrics.

4.1 Datasets
From internal deployments of our enterprise plat-
form, we extracted around 4,000 examples of de-
ployed workflows and asked annotators to write
natural language requirements for them. In addi-
tion, using deterministic rules, we created around
1,000 samples having simple and few steps in or-
der to teach the model to handle input where the
user is incrementally building their workflow. To
have an unbiased estimate of the quality of results
once the system is deployed, we asked expert users
to simulate interacting with the system through a
simple user interface where they typed their require-
ment. We used these interactions and the expected
JSON documents to create an additional dataset
split, named "Human Eval." Our final metrics are
based on this split instead of the "Test" split, due
to its higher quality and more realistic input. Table
1 shows statistics for all of our in-domain splits.
Not all samples require triggers, and a small subset
require the model to generate tables.

Split Size # Triggers # Tables
Train 2867 823 556
Dev 318 77 44
Test 798 247 163
Human Eval 157 99 60

Table 1: Data statistics for in-domain training and eval-
uation.

A drawback of our data labeling approach is
that these internal datasets are mostly in the IT do-
main, whereas our RAG system can be deployed
in diverse domains such as HR and finance. With-
out assessing the quality of the system in out-of-
distribution settings, we cannot be confident that
the system will behave as expected. We therefore
asked annotators to label five other splits, which
come from other deployments of our enterprise
platform. These are real workflows that have been
created by real users.
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Table 2 includes statistics for these out-of-
domain splits. A measure of how different they
are from our training data is the % of steps that
are not in the set of steps in the "Train" split. This
discrepancy ranges from less than 10% to more
than 70%, highlighting the need to use a retriever
and to customize the indices per deployment.

Split Size # Triggers # Tables % Steps not
in Train

OOD1 146 133 47 49%
OOD2 162 111 21 76%
OOD3 429 226 114 34%
OOD4 42 25 11 33%
OOD5 353 271 26 7%

Table 2: Data statistics for out-of-domain evaluation.

To train the retriever encoder, we create pair ex-
amples out of the 4,000 extracted and 1,000 deter-
ministically generated samples, resulting in around
15,000 pairs in the step names dataset and 1,500 in
the table names dataset. The quality of this encoder
is evaluated on the "Human Eval" split described
above.

4.2 Metrics
We evaluate the entire RAG system using three
metrics, which can all range from 0 to 1:

• Trigger Exact Match (EM) verifies whether
the generated JSON trigger is exactly the same
as the ground-truth, including the table name
if this trigger requires it.

• Bag of Steps (BofS) measures the overlap
between the generated JSON steps and the
ground-truth steps in an order-agnostic fash-
ion, akin to a bag-of-words approach.

• Hallucinated Tables (HT) and Hallucinated
Steps (HS) measure the % of generated ta-
bles/steps that do not exist per workflow, in-
dicating that they were invented by the LLM.
This is the only metric where lower is better.

To evaluate the retriever, we use Recall@15 for
steps and Recall@10 for tables. That is, given a
natural language requirement, we retrieve the top
K steps/tables from their respective indices and
verify whether they cover the set of steps and the
table, if required, included in the JSON document
representing the workflow.

4.3 Models
As this is a production system, we have a trade-off
between model size and performance for both the
LLM and the retriever encoder.

We fine-tune models of different sizes to mea-
sure the impact of model size on the final metrics.
As StarCoderBase (Li et al., 2023a) has been pre-
trained on JSON in addition to many programming
languages and comes in different sizes, we fine-
tune its 1B, 3B, 7B and 15.5B variants. Given our
infrastructure constraints, we could deploy an LLM
of at most 7B parameters. Thus we also fine-tune
other pretrained LLMs of this size: CodeLlama-7B
(Roziere et al., 2023) and Mistral-7B-v0.1 (Jiang
et al., 2023). All the LLMs were fine-tuned using
the same datasets and hyperparameters.

We use all-mpnet-base-v21 as the base retriever
model. As it has only 110M parameters, it is suit-
able for deployment. We compare our fine-tuned
model against different sizes of off-the-shelf GTR-
T5 models (Ni et al., 2022) to see whether larger
encoders impact the performance.

Please see Appendix A for training details for
both the LLM and the retriever encoder.

5 Results

5.1 Retriever encoder

Table 3 shows the results of retrieval on the "Human
Eval" split for both steps and tables. Scaling the
size of the off-the-shelf encoders, as we did with
GTR-T5, does not yield significant improvements
on both retrieval metrics. A similar observation
was made by Neelakantan et al. (2022) for code
retrieval. What was crucial to significantly improve
the performance was fine-tuning the encoder.

Model (# Params) Step Table
Recall@15 Recall@10

gtr-t5-base (110M) 0.505 0.489
gtr-t5-large (355M) 0.575 0.511
gtr-t5-xl (1.24B) 0.579 0.489
gtr-t5-xxl (4.8B) 0.561 0.489
all-mpnet-base-v2 (110M) 0.425 0.170

+ Random 0.640 0.752
+ BM25 0.537 0.586
+ ANCE 0.556 0.699
+ All 0.743 0.766

Table 3: Evaluation of different encoders on step and
table retrieval. The last four rows represent encoders
fine-tuned using different negative sampling strategies.

Due to deployment considerations, we fine-tune
the smallest encoders (110M parameters), and
found that all-mpnet-base-v2 yielded the best per-
formance after fine-tuning with all negative sam-
pling strategies.

1https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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Trigger Bag of Hallucinated Hallucinated
Model EM Steps Steps Tables
No Retriever
StarCoderBase-1B 0.580 0.645 0.157 0.192
StarCoderBase-3B 0.551 0.648 0.140 0.214
StarCoderBase-7B 0.547 0.669 0.137 0.206
StarCoderBase (15.5B) 0.632 0.662 0.160 0.194
With Retriever
StarCoderBase-1B 0.591 0.619 0.072 0.044
StarCoderBase-3B 0.615 0.641 0.017 0.030
StarCoderBase-7B 0.664 0.672 0.019 0.042
StarCoderBase (15.5B) 0.667 0.667 0.040 0.016
CodeLlama-7B 0.623 0.617 0.039 0.108
Mistral-7B-v0.1 0.596 0.617 0.049 0.045

Table 4: Performance of various model types and sizes on the "Human Eval" split. Lower is better for the
hallucination metrics. Results within 0.005 of the best score are highlighted in bold.

5.2 Retrieval-Augmented Generation

Our main objective is to reduce hallucination while
keeping the overall performance high given our in-
frastructure constraints. Table 4 shows that without
a retriever (only LLM fine-tuning), the % of hal-
lucinated steps and tables can be as high as 21%
on the "Human Eval" split. Using a retriever, this
decreases to less than 7.5% for steps and less than
4.5% for tables with all StarCoderBase LLMs. All
models produce valid JSON documents following
the expected schema, thanks to fine-tuning.

Without a retriever, scaling the size of the Star-
CoderBase models improves the Bag of Steps and
Trigger Exact Match metrics, albeit unevenly. Scal-
ing also helps with RAG, but we observe more
consistent improvements. This suggests that larger
LLMs can better copy and paste retrieved steps and
tables during generation.

The smallest RAG fine-tuned model (1B) hallu-
cinates significantly more than its larger counter-
parts. Among the other three variants, the 7B ver-
sion gives us the best trade-off, as the performance
difference between 7B and 15.5B is marginal. An-
other observation is that the 3B version trained with
RAG is competitive even with the 15.5B version
without RAG on the Trigger EM and Bag of Steps
metrics, while keeping hallucination low. This is a
key lesson as we could deploy a 3B RAG fine-tuned
model if we had more limited infrastructure.

Lastly, we compare the RAG fine-tuned
StarCoderBase-7B to fine-tuning more recent
LLMs of the same size. Despite also fine-tuning
them with RAG, CodeLlama-7B and Mistral-7B-
v0.1 produce worse results across all metrics, even
compared to the smaller StarCoderBase-3B. We
suspect that pre-training on large amounts of natu-
ral language data may be detrimental to our task.

5.3 OOD evaluation

We want our approach to perform well on OOD sce-
narios without further fine-tuning the retriever or
the LLM. Table 5 assesses the performance of our
chosen RAG fine-tuned StarCoderBase-7B model
on the five OOD splits described by Table 2.

Split Trigger EM BofS HS HT
OOD1 0.662 0.619 0.063 0.051
OOD2 0.645 0.612 0.020 0.151
OOD3 0.562 0.743 0.014 0.033
OOD4 0.400 0.671 0.011 0.154
OOD5 0.774 0.770 0.005 0.063
Avg. 0.647 0.714 0.018 0.066
No RAG Avg. 0.544 0.629 0.020 0.428
Human Eval 0.664 0.672 0.019 0.042

Table 5: Performance of RAG fine-tuned
StarCoderBase-7B on OOD splits.

We observe that on average, thanks to the re-
triever, all the OOD metrics are similar to the in-
domain results represented by the "Human Eval"
split. We use a weighted average based on the
number of samples per split.

To quantify the effect of suggesting step and
table names, we evaluate the RAG fine-tuned
StarCoderBase-7B model without suggestions in
row "No RAG Avg.". All metrics worsen sig-
nificantly while the "Hallucinated Steps" remains
roughly the same. Upon inspection, we see that the
RAG fine-tuned model has learned to be conserva-
tive in generating steps when it does not receive
suggestions, relying only on steps that it has seen
during training. On the other hand, the "Halluci-
nated Tables" metric is significantly worse as the
model is more creative when it comes to tables.
Please see Appendix B for supplementary detail.
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5.4 Error Analysis

When investigating error patterns found in the gen-
erated workflows, we observe issues arising from
failures both on the retriever and the LLM.

For complex flows where steps that are used less
frequently need to be retrieved, if a crucial compo-
nent is not in the retriever’s suggestions, it becomes
difficult for the LLM to generate a valid workflow
in line with the user query. To improve the re-
triever’s recall, we can decompose the query into
shorter texts to make the retrieval step more precise
for each step. This would mean performing several
retrieval calls, potentially one per step, instead of
making one single retrieval call as we are doing
now.

In some cases, the LLM did not produce the de-
sired structure. This is more often seen when using
steps that determine the logic of the workflow, such
as IF, TRY, or FOREACH. These are important errors
that can be addressed by synthetic data generation
after analyzing which steps are being missed. For
examples of perfect output and when the retriever
and LLM fail, please refer to Appendix C.

5.5 Impact on Engineering

The obtained results led us to make several deci-
sions that impacted the scalability and modular-
ity of the system. Since the best overall perfor-
mance was given by a 7B-parameter model, we
could have a larger batch size for incoming user
requests, thereby increasing the system throughput
given a single GPU. This implies a trade-off in la-
tency as larger queries (in number of tokens) result
in larger number of generated tokens, sometimes
causing large queries to become a bottleneck if they
are included in a batch with many shorter queries.
Our stress tests and user research reveal that the
current system overall response time is acceptable.

Obtaining good results after fine-tuning a very
small encoder for the retriever (110M parameters),
allowed us to deploy it on the same GPU with neg-
ligible effect on the larger LLM. But we could even
deploy the retriever on CPU due to its small size.
A benefit of not performing joint training between
the retriever and the LLM is that the retriever can
be reused for other use cases involving similar data
sources. Moreover, decoupling them allows clearer
separation of concerns and independent optimiza-
tion by separate team members. Nevertheless, for
scientific purposes, it is still worthwhile to experi-
ment with joint training.

We have several ideas to reduce the system re-
sponse time: changing the structured output format
from JSON to YAML to reduce the number of to-
kens, leveraging speculative decoding (Leviathan
et al., 2023; Chen et al., 2023; Joao Gante, 2023),
and streaming one step at a time back to the user
instead of the entire generated workflow.

6 Conclusion

We propose an approach to deploy a Retrieval-
Augmented LLM to reduce hallucination and allow
generalization in a structured output task. Reduc-
ing hallucination is a sine qua non for users to
adopt real-world GenAI systems. We show that
RAG allows deploying a system in limited-resource
settings as a very small retriever can be coupled
with a small LLM. Future work includes improv-
ing the synergy between the retriever and the LLM,
through joint training or a model architecture that
allows them to work better together.

Ethical Considerations

While our work proposes an approach to reduce
hallucination in structure output tasks, we do not
claim that the risk of harm due to hallucination is
eliminated. Our deployed system includes a layer
of post-processing to clearly indicate to users the
generated steps that do not exist and urge them to
fix the output before continuing their work.

Acknowledgements

We thank our ServiceNow colleagues who worked
hard in building the aforementioned system, from
project managers to quality engineers. We also
thank the several colleagues who reviewed an ear-
lier version of this paper: Lindsay Brin, Hessam
Amini, Erfan Hosseini, and Gabrielle Gauthier-
Melançon, as well as the NAACL reviewers, for
their valuable feedback.

References
Cambridge. 2023. Why hallucinate? https://

dictionary.cambridge.org/editorial/woty.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,

234

https://dictionary.cambridge.org/editorial/woty
https://dictionary.cambridge.org/editorial/woty
http://arxiv.org/abs/2302.01318
http://arxiv.org/abs/2302.01318


Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Dhairya Dalal and Byron V Galbraith. 2020. Evaluating
sequence-to-sequence learning models for if-then pro-
gram synthesis. arXiv preprint arXiv:2002.03485.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,
35:16344–16359.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
pages 6894–6910. Association for Computational
Linguistics (ACL).

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language models: A
survey.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Proceed-
ings of the 37th International Conference on Machine
Learning, pages 3929–3938.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
CVPR 2006, pages 1735–1742.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In EACL 2021-16th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 874–880.
Association for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Joao Gante. 2023. Assisted generation: a new direction
toward low-latency text generation.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics.

Denis Kocetkov, Raymond Li, LI Jia, Chenghao Mou,
Yacine Jernite, Margaret Mitchell, Carlos Muñoz Fer-
randis, Sean Hughes, Thomas Wolf, Dzmitry Bah-
danau, et al. 2022. The stack: 3 tb of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6086–6096.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In Proceedings of
the 34th International Conference on Neural Infor-
mation Processing Systems, pages 9459–9474.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Xinze Li, Zhenghao Liu, Chenyan Xiong, Shi Yu,
Yu Gu, Zhiyuan Liu, and Ge Yu. 2023b. Structure-
aware language model pretraining improves dense
retrieval on structured data. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 11560–11574, Toronto, Canada. Association
for Computational Linguistics.

Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng
Chen, and Dawn Song. 2016. Latent attention for
if-then program synthesis. Advances in Neural Infor-
mation Processing Systems, 29.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1384–1403.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

235

http://arxiv.org/abs/2401.08281
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://doi.org/10.57967/hf/0638
https://doi.org/10.57967/hf/0638
http://arxiv.org/abs/2211.17192
http://arxiv.org/abs/2211.17192
https://doi.org/10.18653/v1/2023.findings-acl.734
https://doi.org/10.18653/v1/2023.findings-acl.734
https://doi.org/10.18653/v1/2023.findings-acl.734


Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith
Hall, Ming-Wei Chang, et al. 2022. Large dual en-
coders are generalizable retrievers. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9844–9855.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878–888.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP). Association
for Computational Linguistics.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela,
and Jason Weston. 2021. Retrieval augmentation
reduces hallucination in conversation. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 3784–3803.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Brandon T Willard and Rémi Louf. 2023. Effi-
cient guided generation for llms. arXiv preprint
arXiv:2307.09702.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N Bennett, Junaid Ahmed, and
Arnold Overwijk. 2020. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

236



A Training details for LLM and retriever

All LLMs were fine-tuned using the same set of hy-
perparameters. We use the AdamW optimizer with
a learning rate of 5e − 4, β1 = 0.9, β2 = 0.999
and weight decay of 0.01. Models were trained for
5,000 steps with a cosine learning rate scheduler
with 100 warmup steps. We use an effective batch
size of 32 for all models, using gradient accumula-
tion when the batch size would not fit on a single
GPU. We trained all models using LoRA (Hu et al.,
2021) with r = 16, α = 16 and a dropout rate of
0.05. All models were trained with flash-attention
(Dao et al., 2022) on a single A100 80GB GPU.

We fine-tuned the retriever model using the
SentenceTransformers framework (Reimers and
Gurevych, 2019). We use the AdamW optimizer
(Loshchilov and Hutter, 2018) and a learning rate
of 2e− 5. We use a batch size of 128 and train the
model for 10 epochs.

B Differences in generation with and
without suggestions

To understand the impact of suggesting step and
table names during generation, for each OOD split,
we inspect the % of unique steps and % of unique
table names that are hallucinated with and without
suggestions.

Table 6 shows that without suggestions, the RAG
fine-tuned StarCoderBase-7B tends to generate sig-
nificantly fewer unique step names. Receiving sug-
gestions allows the model to copy the suggestions,
thereby increasing the diversity of what it gener-
ates. In addition, without suggestions a greater
percentage of the unique step names it generates
are invented.

No suggestions With suggestions
Split # unique % H # unique % H

steps steps
OOD1 52 40% 100 13%
OOD2 38 34% 96 13%
OOD3 122 37% 269 9%
OOD4 20 5% 32 9%
OOD5 88 17% 151 3%

Table 6: Statistics of generated step names in terms
of uniqueness and hallucination. H refers to unique
hallucinated step names.

We also see that even with suggestions, there is
still an important gap in the percentage of unique
step names that are hallucinated, as in some splits
more than 10% of unique steps are invented. While
the overall hallucination rate is less than 2%, as

shown in Table 5, there are cases where the retriever
does not suggest what is expected or the LLM does
not take into account the suggestions.

No suggestions With suggestions
Split # unique % H # unique % H

tables tables
OOD1 40 70% 22 14%
OOD2 31 71% 19 21%
OOD3 61 64% 44 9%
OOD4 11 54% 9 22%
OOD5 38 68% 29 17%

Table 7: Statistics of generated table names in terms
of uniqueness and hallucination. H refers to unique
hallucinated table names

When it comes to table names, there are similar
and different observations, as shown in Table 7. As
in the case of step names, without suggestions a
greater percentage of unique table names are in-
vented. However, when provided with suggestions,
the model is more conservative as it generates fewer
unique table names. This may be an artifact of the
data, where there is less diversity of tables used
compared to step names.

C Sample perfect output and errors

Figure 4 shows three user queries along with their
generated workflows. The first one is a compli-
cated workflow where the LLM is able to follow
exactly the structure described in the user query,
and is able to use the steps that the user expected.
In this case, the retriever suggests only the step
post_incident_details, as the rest are consid-
ered common steps.

In the second example, the retriever fails to sug-
gest the send_slack_message step. The result-
ing workflow is not entirely wrong but it is of
lesser quality as the LLM uses the common step
send_notification, which is not what the user
expected.

In the last example, the LLM shows that it does
not sufficiently understand the semantics of the task.
The word Try in the user query should have made
it use the TRY and CATCH flow logic, but the LLM
seems to ignore this word, resulting in a workflow
that does not reflect what the user asked for.
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(a) Perfect output (b) Retrieval error (c) LLM error

Figure 4: Examples where both the retriever and the LLM worked perfectly and where each of them failed:
(a) All expected step names were suggested and used by the LLM. (b) The retriever did not suggest the step
send_slack_message and therefore the LLM used the common step send_notification instead. (c) The LLM
should have used the TRY step as the parent to all the steps, but it did not fully understand the user query.
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