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Abstract

When customers search online for a product
they are not familiar with, their needs are often
expressed through subjective product attributes,
such as “picture quality” for a TV or “easy to
clean” for a sofa. In contrast, the product cata-
log in online stores includes objective attributes
such as “screen resolution” or “material”.

In this work, we aim to find a link between
the objective product catalog and the subjective
needs of the customers, to help customers better
understand the product space using their own
words. We apply correlation-based methods to
the store’s product catalog and product reviews
in order to find the best potential links between
objective and subjective attributes; next, Large
Language Models (LLMs) reduce spurious cor-
relations by incorporating common sense and
world knowledge (e.g., picture quality is in-
deed affected by screen resolution, and 8k is
the best one). We curate a dataset for this task
and show that our combined approach outper-
forms correlation-only and causation-only ap-
proaches.

1 Introduction

Objective catalog attributes have been part of prod-
uct search for decades (Wei et al., 2013; Liberman
and Lempel, 2014; Basu et al., 1998). Objective at-
tributes are a set of pre-specified vocabulary of cata-
log product attributes (e.g., “price”, “size”, “brand”,
“material”), whose values (“$9.90”, “wood”) are
provided by the sellers. These attributes are com-
monly used to to split search space as facets (Wei
et al., 2013; Liberman and Lempel, 2014) or for
product comparison (Vedula et al., 2022, 2023).

Objective attributes play an important role in
defining the technical aspects of the product. How-
ever, customers tend to refer to more subjective at-
tributes (e.g., “value-for-money”, “durable”, “com-
fortable”) when referring to a product in their own
language. Providing this translation to the user is

becoming a key problem in product search and com-
parison (Radlinski et al., 2022), and is even more
critical for products lacking reviews. Specifically,
we outline use cases for both directions: Search
engines for user searches that use subjective terms
can use this translation to correctly apply the appro-
priate filters. Alternatively, online stores can use
the translation to explain overly-technical objective
attributes to users using subjective terms.

Given an objective product catalog as well as
ratings for subjective aspects of products from the
catalog, one could easily compute correlations be-
tween objective and subjective attributes. However,
correlations might be spurious (due to chance), or
they could be attributed to confounding factors. For
example, a high number of HDMI ports is highly
correlated with good picture quality because newer
TVs tend to have many HDMI ports. Showing such
spurious relations to a knowledgeable customer can
lead to distrust.

One could also try to identify causal links be-
tween the objective and subjective attributes using
recent Large Language Models (LLMs). However,
while such causal links might hold true in general,
they may not be applicable to the specific product
catalog. The color of a shoe could potentially af-
fect the ease of cleaning; however, for a catalog
consisting exclusively of shoes made of washable
materials, the impact of color on the ease of clean-
ing becomes marginal.

In this work, we first extract subjective and objec-
tive attribute pairs that have high correlation, based
on Amazon customer rating for subjective aspects.
We then apply LLM-backed causation prediction
to identify promising objective-to-subjective map-
pings. This approach allows us to provide links that
are grounded in both world knowledge as well as
the product catalog. However, often, just mapping
on the attribute level is not informative enough, i.e.
it’s obvious that the shoe material is affecting ease
of cleaning, but, which material is easiest to clean?
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To that end, our defined task is to both identify a
causal relationship as well as the best objective at-
tribute value. Our methods show promising results
compared to several baselines on a dataset curated
specifically for this novel task.
Our contributions are as follows:

• We define a novel causal-mapping task be-
tween objective catalog attributes and values
and subjective, customer-driven attributes.

• We devise a solution that grounds LLMs
with correlation-based methods, outperform-
ing baselines.

2 Related Work

Subjective product attributes in recommenda-
tion systems. A common problem in natural lan-
guage (Pontiki et al., 2016; Do et al., 2019; Nazir
et al., 2020; Liu et al., 2020) is known as Aspect
extraction is extracting these aspects and the senti-
ment towards these aspects, to provide a summary
of these subjective attributes for each product. One
example is Amazon’s ByFeature Star Rating in Fig-
ure 1 that provides a rating for subjective attributes
that are relevant to the product. Unlike Objective
attributes that are objectively true, there is an in-
herent disagreement when it comes to subjective
attributes. For example, a Sofa that is comfortable
for one person may be less comfortable for another.

In this work, we follow the holistic definition
of subjective attributes in recommender systems
(RSs) by Radlinski et al. (2022). In their work,
they define the three different forms of subjective
attributes which we further detail in Section 3. In
addition, they list different research challenges but
refrain from solving the problem of search recom-
mendation with subjective attributes. Other solu-
tions address the problem of subjective attributes in
RS in a more implicit approach. Balog et al. (2021)
try to measure how soft the subjective attributes
(i.e., their level of subjectivity) as to try and impact
the subjective attribute rating for a given product.
Zhang et al. (2014) use subjective attributes to ex-
plain why a product was recommended for a given
customer based on their review. Finally, Li et al.
(2019) devise a subjective attribute database to al-
low for search using subjective terms.

This problem can also be formulated as a vocab-
ulary mismatch problem (Gopichand et al., 2020).
Traditionally, this problem was defined as a mis-
match between the user language and the document
language similarly to our use case. However, exist-

ing work solve it through common approaches such
as query expansion, tagging and phrase docs, yet
these approaches are objective in nature and refer to
the same document term in a different manner (e.g.,
synonyms). In contrast, we infer the relation be-
tween subjective attributes and objective attributes
for a specific product type, such as "easy to clean"
and the "black" color for shoes. To the best of our
knowledge this problem had not been previously
addressed by prior work.

Causal inference in recommendation systems.
Causal inference in recommendation systems is a
well-studied area (Liang et al., 2016; Wang et al.,
2020; Gao et al., 2022). Existing recommenda-
tion systems learn the correlation in the data by
trying to predict customer preference, better han-
dling biased or missing data. For example, the
recommender system can offer a phone charger af-
ter buying a phone, but not vice versa. Existing
works utilize traditional causal inference solutions
such as Structural Causal Models (Pearl, 1995) or
potential outcome frameworks (Rubin, 1974).

Recent works (Kıcıman et al., 2023; Zhang et al.,
2023) have evaluated modern Large Lanugage
Models (LLMs) on several causal inference tasks
and shown that on some tasks, these models are
able to outperform traditional approaches by a large
margin. The vast size of these models, together
with the pretraining on the entire text on the web,
allow these models to detect the causal relationship
between objects to some extent.

While these works do not imply that complex
causal reasoning has spontaneously emerged in
LLMs, they do highlight their potential for answer-
ing causal questions that are rooted in common
sense. Thus, in this work we use a recently re-
leased large language model as part of our solution
to detect the causal effect between the subjective
and objective attributes.

3 Problem Definition

An objective product attribute is a property of the
product such as price, brand, size, etc. An attribute
value is an instance of the property, such as ‘blue’
for the color property, or ‘32 inch’ for the size
property. We define a subjective attribute as any
phrase or term describing the product that can be
interpreted differently by two different people. For
example, in the search queries “comfortable bed
sheets” or “great screen quality tv”, “comfortable”
and “great screen quality” are subjective terms.
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Figure 1: An example of a product (left), its objective (middle), and subjective (right) attributes in Amazon.

Figure 2: The pipeline takes the objective and subjective attribute values for all the products of a product type to
discover correlated mappings, find the optimal objective value, and filter using a LLM to only include causal links.

However, “32 inch tv” is an objective search query
since “32 inch” is a factual product attribute: the
TV is either 32 inch or it is not.

In order to understand the different forms of
subjectivity, we adopt the framework proposed by
Radlinski et al. (2022). This framework defines
three distinct forms of subjectivity:

• Degree subjectivity – arises when an ordinal
attribute is translated into a boolean by the
customer (e.g. “cheap” for price, “lightweight”
for weight).

• Compositional subjectivity – occurs when an
attribute is composed of a combination of
more fundamental attributes (e.g., TV “pic-
ture quality” is mapped to “technology” and
“screen resolution”).

• Semantic subjectivity – arises when an at-
tribute is imbued with different meanings by
different customers (e.g., “funny”, “cute”). In-
ferring personal meaning for these attributes
will generally require assessment of specific
items by the customer. Even product experts
may disagree upon which properties lead to
a “cool shirt”; one may like a cartoon design
and another an impressive illustration.

In this work, we consider only two types of sub-
jectivity – degree subjectivity and compositional

subjectivity, as the third type cannot be mapped to
objective facets without inherent personalization,
which we defer to a later work.

We consider the following setting: Assume we
are given a set of products of the same product type
(e.g., televisions) from a catalog, each with its ob-
jective attributes and their corresponding values. In
addition, a subset of the products are rated for a set
of subjective attributes. In practice, such ratings
can be procured through features such as Amazon’s
ByFeature Star Rating (Figure 1), or through ana-
lyzing review texts using Aspect-based Sentiment
Analysis methods.

We define the following binary classification
task: In the context of a product type, given a
subjective attribute, an objective attribute and a
value (e.g., {“Picture Quality”, “Screen Resolu-
tion”, “4K”}), determine whether there is a causal
relation between the subjective and objective at-
tributes, and if so, whether the value is the best
option out of all the objective attribute’s values.
(e.g. “Screen resolution directly affects picture
quality for TVs and 4K is the best resolution out of
{720P, 1080P, 4K}”).
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4 Methodology

Our approach combines statistical correlation-
based methods and Large Language Models
(LLMs). We leverage the strengths of LLMs while
grounding their outputs with customers feedback
from the products.

Our pipeline is demonstrated in Figure 2. We
are given a product type (e.g., a television). Then,
we apply the following steps:

1. We retrieve from the catalog all specific prod-
ucts of the given product type and their corre-
sponding objective attributes.

2. For each product, we also retrieve rated sub-
jective attributes. We use the Amazon ByFea-
ture attributes and their corresponding ratings
(see Figure 1).

3. We apply correlation-based methods to find
objective attribute values that are most pos-
itively correlated with subjective attributes
(e.g., the screen resolution value that leads
to the best picture quality TV).

4. We apply LLMs to eliminate objective at-
tributes that do not directly impact the sub-
jective attribute they are correlated with and
validate the best objective attribute value se-
lection, as detailed below.

Correlation-based methods (Step 3). We con-
struct an indicator variable for each objective at-
tribute value to indicate its presence or absence
in a given product. We then calculate the Point-
biserial correlation coefficient between the indica-
tor variable and the average rating of the subjective
attribute. For each subjective attribute, we select
objective attribute values that exhibit a positive cor-
relation with it.

It is worth noting that in the Amazon catalog,
the sentiment towards the subjective attribute is in-
ferred from the subjective attribute’s rating, which
is a continuous number at the scale of 1-5 (see
Figure 1).

LLMs as an external source of knowledge
(Step 4). LLMs have proven to be a powerful tool
for acquiring external knowledge and capturing the
complexity of natural language. When trying to es-
tablish causal relationships between objective and
subjective attributes, LLMs can serve as an exter-
nal source of knowledge to supplement traditional
statistical approaches.

In our pipeline, we use the LLM to assess
whether there is a direct causal relationship be-
tween the objective and subjective attribute pair,

rather than mere correlation. Second, to validate
using world-knowledge that the objective attribute
value is the most appropriate value when multi-
ple options are available (e.g., for screen resolu-
tion, 4K is indeed superior to 1080P, 720P). For
each mapping identified in the previous step, we
prompt the LLM, asking both whether (1) the ob-
jective attribute indeed directly affects the subjec-
tive attribute, and (2) whether value identified by
our correlation-based mapping is indeed the best
choice.

We use a 5-shot in-context learning setup (see
Appendix B for details). These examples provide
the LLM with the necessary context. We have also
asked the LLM to include the reasons leading to
the final answer, consistent with chain-of-thought
approaches (Wei et al., 2022).

5 Experimental Study

Our goal in this section is to assess whether our
method can discover the best objective attribute
value for improving a subjective attribute.

5.1 Dataset

We chose 12 product types from diverse product
categories (electronics, textile, etc.) and collected
their corresponding individual products. For each
product type, we identified 10 popular objective
attributes (the ones used most often as filters during
product search for this type). For each product
type we also collected 10 subjective attributes and
their ratings for individual products from Amazon
ByFeature, as previously described. Altogether,
this resulted in 1200 potential relationships and 54
unique subjective attributes.

For each objective-subjective relation, an anno-
tator1 was asked to evaluate if the mapping reflects
a causal relationship independently from the cata-
log (see the annotation guideline in Appendix C).
17.7% of all the relations are causal links. The
causal link ratio ranges between 37.5% for Sofa to
2.4% for Keyboard, showing that some products
can better benefit from this mapping than others.

Next, we identify the best objective attribute
value (“4K”) for a certain subjective attribute
(“screen quality”). We compute the average ByFea-
ture rating for the subjective attribute, given by
thousands of Amazon customers, for products with
each attribute value separately. For each objec-

1done by domain expert employees using web search if
necessary
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tive attribute (“resolution”), we choose the attribute
value with the maximal average ByFeature rating.
We note that while this process could in theory be
affected by confounders (i.e., the product groups
we compare could be different in other important
dimensions), we believe this is a reasonable heuris-
tic that works well in practice.

5.2 Baseline Methods

Correlation-only. The mapping of objective at-
tributes to subjective ones is accomplished solely
through the use of Point-biserial correlation coef-
ficients, similar to the beginning of our pipeline.
Here, for each subjective attribute and objective at-
tribute, we select the objective attribute value with
the highest correlation to the subjective attribute.
For the causality task, we consider any attribute
that has a value with a positive correlation (i.e.,
correlation higher than 0) to a subjective attribute
to be a causal link, which may result in many false
positives.
Matching-only. Matching is a widely used ap-
proach for estimating causal effects, particularly
in observational studies (Rubin, 1976). Matching
methods employ a comparison between treated and
control units with similar observed characteristics
to estimate the effect of a treatment and address
potential confounding factors. In our study, we con-
sider each objective attribute value as a separate
treatment variable and estimate the effect of that
variable on the subjective attribute, while consid-
ering all other objective attributes of the product
as product characteristics. Then, based on the ob-
jective attributes of each product, we match it to
the most similar product, differing by the objec-
tive attribute value that is considered as a treatment.
By comparing the sentiment towards subjective
attributes, we are able to calculate the individual
treatment effect (ITE) for each pair of products.
These individual effects are then aggregated over
all product pairs to estimate the average treatment
effect (ATE), which serves as a measure of the
causal effect. Finally, we output the objective at-
tributes with values that have the greatest causal
effect on the subjective attribute.

Formally, for each subjective attribute s and ob-
jective attribute o that is considered as a treatment
we estimate the ATE(o, s) as follows:

ATE(o, s) =
1

N

N∑

p=1

ITE(o, s, p)

Method Precision Recall F1
Correlation-only 8.45 7.5 7.94
Matching-only 10.6 6.25 7.87

Hybrid-Corr-Match 10.52 3.96 5.75
OpenAssistant 2.23 7.92 3.48
GPT3.5-Turbo 9.45 13.86 11.24

Corr-LLM-OA (ours) 26.78 29.7 28.16
Corr-LLM-GPT (ours) 73.52 24.752 37.03

Table 1: Test results of different mapping approaches.

Where N is the total number of matched pairs of
products and ITE(o, s, p) is the individual treat-
ment effect of the objective attribute o on the sub-
jective attribute s for product pair p = (t, c):

ITE(o, s, p) = R(s, t)−R(s, c)

R(s, t) is the average rating of the subjective
attribute s for the treated product t in pair p, and
R(s, c) is the average rating of the subjective at-
tribute s for the control product c in pair p. Note
that treated and control products differ only by the
objective attribute o.
Hybrid correlation-matching. We begin by ap-
plying the Correlation-only method to identify the
highly correlated objective attributes per subjective
attribute. We then restrict our focus to the objective
attributes that were found to be correlated. Finally,
we employ the Matching-only method to filter out
any objective attributes that do not have a causal ef-
fect on the subjective attribute. By narrowing down
the set of product characteristics (i.e., objective at-
tribute), we are able to find more matching product
pairs as the similarity criterion is more precise.
LLM-only. We rely solely on the LLM predic-
tion to predict both the causality indicator and the
most appropriate value of the objective attribute.
Although powerful, LLMs may suffer from biases
that are inherent in their training data and are not
grounded on the datasets in question. Consequently,
biased predictions may occur, particularly when at-
tempting to predict the best value for the objective
attribute. We consider the following language mod-
els: (a) Open-Assistant: a 12B-parameter open-
source LM, (Köpf et al., 2023) and (b) GPT3.5-
Turbo also known as ChatGPT.

For our own method (Section 4), we also test the
performance of both OpenAssistant and GPT3.5-
Turbo as the underlying LLMs, which we refer as
Corr-LLM-OA and Corr-GPT-LLM, respectively.
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Method Precision Recall F1
Correlation-only 33.8 16.32 22.01
Matching-only 23.4 13.75 17.32

Hybrid-Corr-Match 21.05 10.0 13.55
OpenAssistant 22.01 53.74 31.23
GPT3.5-Turbo 44.59 44.89 44.74

Table 2: Ablation for causality only, catalog agnostic.

5.3 Results

The results are shown in Table 1. One can see that
solutions that do not combine world knowledge
with the grounding from the catalog lead to poor
precision and recall. These solutions are unable to
effectively find the best objective attribute values
for a given subjective attribute. While the GPT3.5-
Turbo baseline outperforms the classical solutions,
the grounding to the catalog drastically increases
its precision from 9.45% to 73.52% and F1 from
11.24% to 37.03% with our Corr-LLM-GPT. We
also see a similar significant increase for OpenAs-
sistant in both precision and recall when grounding
it to the catalog through our Corr-LLM-OA. These
results may not be sufficient to be directly shown
to customers, but drastically reduces the cost of ex-
pert validation. Moreover, the results could further
be improved with newer versions of LLMs.

As an ablation test, we also gauge the ability of
each component to discover the catalog-agnostic
causality links (described in Section 5.1). The
results in Table 2 show that the correlation-only
outperforms the classical causality solution. The
latter is unable to find a significant number of prod-
uct matchings, which in turn, leads to noisy re-
sults. The LLM-only components, also used as the
causality component in our solutions, are able to
find more causality links. Our analysis shows that
grounding the LLMs to the product catalog leads
to an increase in precision but a drop in recall. It
reduces LLM hallucinations while also eliminating
causality links that do not exist in the catalog. For
example, the color of an apron may impact how
easy it is to clean. Yet, if the catalog mostly con-
sists of aprons from an easy to clean material, no
matter the color, then there will be no correlation
between the color and ease of cleaning of aprons
in the catalog.

6 Observations

Below we describe two interesting phenomena we
observe in the data.

Contextualized mapping. Our framework pro-

duces mappings that link objective attributes to
different subjective attributes. One can see that the
mapping indeed depends on the context (that is,
the product type). For example, when the query is
"storage box", the objective attribute "color" does
not appear to have a direct impact on any of the
subjective attributes, and therefore is not mapped to
any of them. However, when the query is changed
to "shoes", the attribute "color" is mapped to the
subjective attribute "easy to clean", and for the
query "measuring cup", it is mapped to "easy to
read". This demonstrates the ability of our frame-
work to create tailored mappings that are specific to
the context, rather than providing a static mapping
for all queries (see more examples in Table 3).

Customer expectations in product reviews.
While most inconsistencies between the LLM and
the correlation-based method seem to originate
from the difference between the general opinion
and the products available in the Amazon catalog,
we find that there are a few inconsistencies that
originate from customer bias. For instance, our
findings indicate that metal chairs are often rated
as more "lightweight" than plastic chairs, despite
the latter being objectively lighter. Similarly, cus-
tomers rate ashtrays made of Crystal as sturdier
than those made of Metal, although Metal is gener-
ally considered sturdier.

We posit that these discrepancies can be ex-
plained by the fact that customers evaluate a prod-
uct based on their preconceived expectations of
it. Therefore, when evaluating a Crystal ashtray,
customers may rate it as sturdy relative to their
expectations of it being fragile, rather than in com-
parison to ashtrays made of Metal. Such divergent
expectations can skew product ratings and make
it difficult to make objective product comparisons.
Consequently, in those rare cases, relying solely on
customer feedback without considering individual
expectations can lead to erroneous conclusions and
hinder accurate product comparisons. Therefore,
incorporating the world knowledge embedded in
the LLM, such as the fact that Metal is heavier than
Plastic, is crucial to account for such biases.

7 Conclusions

In this work, we define a novel task of map-
ping objective product catalog attributes to sub-
jective product aspects. We show that combin-
ing correlation-based and causation-based meth-
ods (with state-of-the-art LLMs for causality) out-
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Method Query Objective att. type Objective att. value Subjective att.

Corr-LLM-GPT

shoes color blue easy to clean
measuring cup color gold easy to read

ashtray material ceramic heat resistance
apron material polyester blend wrinkle-free

Correlation-only
chair material metal lightweight

ashtray material crystal sturdy

Table 3: Examples of objective-subjective attribute pairs mapped by our method and the Correlation-only method.

performs correlation-only and causation-only ap-
proaches. We also demonstrate that our mapping
may depend on the product category, (e.g., color of
shoes affects ease of cleaning, TV color does not).

As future work, we outline the problem of incor-
porating customer expectations in product reviews.
We posit that customers sometimes rate subjective
aspects based on expectation from the product it-
self rather than the broad product category, making
direct comparison between ratings inaccurate. We
believe that subjectivity is an under-studied area
that could benefit many AI domains involving natu-
ral language, and hope this work would spur further
research on this important and complex topic.
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Unfortunately, eliminating these links leads to the
loss of several valid links generated by the LLM,
which cannot be grounded although being truthful.

Furthermore, our approach utilizes a constrained
set of subjective attributes, limited to those that
have been rated by customers, rather than encom-
passing all subjective attributes expressed naturally
in customer reviews. Consequently, this constraint
might lower the richness and diversity of the trans-
lation produced by our method. Also, in this work
we focused on finding the best objective attribute
value for a given subjective attribute. While this
can be useful in many scenarios where the customer
is interested in the best option, there may be cases
where several objective attribute values may apply.

In future work, we intend to extract subjective
attributes directly from open-ended reviews written
by customers, which will allow for a more diverse
translation. In addition, we wish to extend our
framework to multiple objective attribute values, as
well as support semantic subjective attributes.

B Prompt Template

For each product type, determine if the attribute
value is the best option among the given attribute
options with respect to the specified subjective
aspect. Also, if the attribute does not directly affect
the aspect, answer ’no’. Always end your answer
with ’yes’ or ’no’.

Product: TV
Attribute type: Resolution
Attribute value: 4k
Attribute options: 4k, 8k, 1080p, 720p
Subjective aspect: Picture quality
Answer: Among the given attribute options, 8k
TVs have better picture quality than 4k TVs. The
answer is ’no’.

Product: Chair
Attribute type: Material
Attribute value: Plastic
Attribute options: Iron, Plastic, Stone
Subjective aspect: Light weight
Answer: Chairs made of plastic are lighter than
those made of stone or iron. The answer is ’yes’.

Product: Shoes
Attribute type: Color
Attribute value: Blue
Attribute options: Yellow, Blue, Black
Subjective aspect: Comfort
Answer: The color of the shoes does not affect
their comfort, so this attribute is irrelevant to the
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aspect of comfort. The answer is ’no’.

Product: Headphones
Attribute type: Water Resistance Level
Attribute value: Water-proof
Attribute options: Water-proof, Non-water-proof
Subjective aspect: Easy to install
Answer: The water resistance level of the head-
phones does not affect how easy to install they are,
so this attribute is irrelevant to this aspect. The
answer is ’no’.

Product: Headphones
Attribute type: Water Resistance Level
Attribute value: Water-proof
Attribute options: Water-proof, Non-water-proof
Subjective aspect: For working out
Answer: Water-proof headphones are more
suitable for working out because they are more
resistant to sweat and water damage. The answer
is ’yes’.

Product: {product_type}
Attribute type: {objective_attribute_type}
Attribute value: {objective_attribute_value}
Attribute options: {objective_attribute_options}
Subjective aspect: {subjective_attribute}
Answer:

C Annotation Guideline

Your role is to evaluate if there is a direct causal
relationship between a specific objective attribute
and a given subjective aspect for different prod-
uct queries. Specifically, given a query (e.g. TV),
please determine whether the objective attribute
(e.g. resolution) directly affects the subjective as-
pect (e.g. picture quality).

Here are some examples to guide your evalua-
tions:

• Bedding set material and softness: A causal
relationship exists, as materials like Cotton are
generally softer than Polyester, for example.

• Shoe color and ease of cleaning: There is a
causal relationship, as light-colored shoes may
be more difficult to clean, for example.

• Chair color and sturdiness: There is no causal
relationship, as the color has no impact on the
sturdiness of the chair.
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