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Abstract

We describe our system for authorship attri-
bution in the IARPA HIATUS program. We
describe the model and compute infrastruc-
ture developed to satisfy the set of technical
constraints imposed by IARPA, including run-
time limits as well as other constraints related
to the ultimate use case. One use-case con-
straint concerns the explainability of the fea-
tures used in the system. For this reason, we
integrate features from frame semantic pars-
ing, as they are both interpretable and difficult
for adversaries to evade. One trade-off with
using such features, however, is that more so-
phisticated feature representations require more
complicated architectures, which limit useful-
ness in time-sensitive and constrained compute
environments. We propose an approach to in-
crease the efficiency of frame semantic parsing
through an analysis of parallelization and beam
search sizes. Our approach results in a system
that is approximately 8.37x faster than the base
system with a minimal effect on accuracy.

1 Introduction

Authorship attribution aims to identify the correct
author of a document. The IARPA Human Inter-
pretable Attribution of Text using Underlying Struc-
ture (HIATUS) program looks to develop novel
methods to address several of the current limita-
tions of authorship attribution, with specific con-
sideration given to explainability, higher linguis-
tic features, generalizability, and privacy preser-
vation. In information warfare, operatives adopt
local writing patterns in order to infiltrate and influ-
ence populations and manipulate legitimate politi-
cal discourse. While they assume the local patois
and customs of the target audiences they are try-
ing to infiltrate, humans cannot completely erase
all traces of higher-order authorship characteristics
(e.g., socialization, education, culture, and charac-
teristics of their native language). Our system is
designed to detect such infiltrators, but should also

allow distribution of information without revealing
the source. While this approach is tailored towards
meeting the HIATUS requirements, these require-
ments translate into realistic scenarios. For this
reason, we assume that our solutions will be usable
in real world applications, with additional consid-
eration given to external factors (e.g. costs, time,
deployability). Thus, any lessons learned from its
development are directly applicable to any related
production-level system that uses the same features
or focuses on similar tasks.

An overall system should be composed of three
interconnected modules: feature generation, author-
ship attribution, and privacy preservation, with the
latter two possessing explainability requirements.
An underlying challenge in our applications is that
any software must be usable by the Intelligence
Community, which entails strict technical restric-
tions. For this reason, HIATUS systems are re-
quired to be fully contained and executable within
a pre-defined set of environments as defined by
IARPA. This requires a balance between delivering
a highly effective solution and maintaining the abil-
ity to deploy our solution within the bounds of the
technical constraints. Here, we focus on authorship
attribution. We evaluate the speed of the overall
attribution system, and specifically optimize one
of the models for creating features derived from a
semantic parser, since the parser requires several
passes over a sentence, among other limitations,
and thus does not scale sufficiently.

2 Related Work

Authorship analysis refers to a range of tasks that
require modeling language use with the goal of
grouping texts together that are written by the same
author and discriminating among texts that are writ-
ten by different authors (Bischoff et al., 2020). In
order to facilitate authorship analysis, recent work
has focused on extracting authorship embedding
representations from documents, often leveraging
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Large Language Models (LLMs; Rivera Soto et al.,
2021; Stubbemann and Stumme, 2022) or other
deep learning models (Boenninghoff et al., 2019,
2021; Saedi and Dras, 2021) to aggregate author-
ship information.

While capturing sophisticated representations,
the black-box nature of the models do not make
them as inherently usable when explainability is
required. This has resulted in work developing
explainable authorship embeddings (Patel et al.,
2023) where each component corresponds to an
interpretable feature.

The two most common authorship analysis sub-
tasks are authorship attribution and authorship ver-
ification.

2.1 Authorship Attribution
Authorship attribution is a closed-set classification
task where the goal is to decide who in a fixed set
of candidate authors is most likely to have written
a given anonymous text (Fabien et al., 2020; Fer-
racane et al., 2017; Kestemont et al., 2019; Saedi
and Dras, 2021). Contemporary approaches to au-
thorship attribution frequently mirror approaches
used to perform other text classification tasks, such
as employing a CNN classifier, with character n-
grams as input features (Ferracane et al., 2017)
or incorporating pre-trained contextualized embed-
ding model (e.g., a BERT model) with an MLP
prediction layer (Fabien et al., 2020).

One real-world application is forensic linguis-
tics, where authorship attribution may be applied
within the context of a legal process to help detect
a text’s most likely author among several suspects
(Ainsworth and Juola, 2019; Fobbe, 2020).

2.2 Authorship Verification
Authorship verification, in contrast, is an open-set
similarity-based task in which the goal is to com-
pute a measure of authorial similarity between any
two texts (Boenninghoff et al., 2021; Stubbemann
and Stumme, 2022). Authorship verification is of-
ten performed as an embedding task where the in-
put is a document, similar to authorship attribution,
but the output is an authorship fingerprint vector,
unlike the categorical output in the former. The
distance between the authorship fingerprint vectors
of any two documents is then used as a measure of
authorial similarity. Document embedding models
based on extending and fine-tuning Transformers
have been used (Rivera Soto et al., 2021; Stubbe-
mann and Stumme, 2022), as well as models that

employ other neural architectures (Boenninghoff
et al., 2019, 2021; Saedi and Dras, 2021).

3 System Task and Constraints

3.1 Task

While HIATUS consists of three separate tasks, we
focus on the first task consisting of feature space
generation. The task is to generate document vec-
tors of authors that accurately and distinctly en-
code individual authors’ “fingerprints.” The vector
representations need to be able to capture enough
information about an author to enable the system to
perform a successful authorship attribution, regard-
less of other considerations such as genre, topic, or
domain.

3.2 Data

While the system is ultimately ingesting and run-
ning on HIATUS specific data, during development
we experiment with open-source data sets. This al-
lows for easier in-depth experimentation and com-
parison with existing approaches. We experiment
with a small subset of the Reddit Million User
Dataset (Baumgartner et al., 2020; Rivera Soto
et al., 2021) to reduce our runtime experiments with
the Frame Semantic Transformer (see section 3.3).
Reddit is a good proxy as it is noticeably diverse
in authors and writing styles, which resembles our
ultimate use case. We select a further subset of
authors consisting of eight sentences from 50 dif-
ferent authors as our query authors and include an
additional 350 authors as our candidate pool. The
goal is to rank the correct authors highly over the
stack of 400 total authors.

3.3 Features

Contemporary approaches to authorship analysis
often use contextualized word embeddings, pro-
duced by a Transformer, as input features to the
authorship analysis model (e.g., Stubbemann and
Stumme, 2022). This type of input feature has
yielded good results in many cases, but it has the
drawback of lacking interpretability in the sense
that feature attributions to individual words will
be of limited use to someone trying to understand
an authorship prediction. Instead, feature attribu-
tions to higher-level language structures, such as
syntactic, semantic, and discourse features, will be
more useful when the system needs to explain a
prediction.
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Our system employs several higher-level input
features in order to enable a more interpretable
system that does not rely exclusively on contex-
tualized word embeddings. While the full system
uses syntactic-dependency, semantic, stylometric,
rhetorical style, and additional document features,
our current work focuses on semantic features us-
ing the FrameNet annotation scheme (Ruppenhofer
et al., 2016). Previous work has used semantic
frames as input features for authorship attribution
(Hedegaard and Simonsen, 2011a). We extend
this by predicting and incorporating both semantic
frame and fame elements using the T5 generative-
based Frame Semantic Transformer (FST; Chanin,
2023) into our authorship model.

FrameNet annotation of a sentence consists of
two steps: (1) annotation of each frame evok-
ing word in the sentence (that is covered by the
FrameNet lexicon) for a semantic frame (simi-
lar to word sense identification), and (2) annota-
tion of frame elements per frame evoking word
(akin to annotating verb valency, but general-
ized to all word classes). For example, consider
the sentence: “John suffered an injury.” In the
first step, we identify that “suffered” evokes the
Catastrophe frame and “injury” evokes the
Medical_conditions frame. Then in the sec-
ond step, with respect to the former frame, we
identify that the Patient frame element is “John”
and the Undesirable_event frame element
is “an injury,” and with respect to the latter frame
we identify that Patient frame element is again
“John.”

3.4 Evaluation

We evaluate the system for speed and quality, as
we are constrained by a time limit and architecture
specified by HIATUS. We compare run times of
the frame semantic parser along with its perfor-
mance on frame semantic analysis and authorship
attribution.

Frame Semantic Analysis To evaluate the gen-
eration of our frame semantic features, we tested
the system on the test partition of FrameNet em-
ployed in other recent work (e.g., Swayamdipta
et al. (2017); Chanin (2023)), consisting of 2,420
sentences collected from different documents. We
provide runtime for each configuration, and we
also provide trigger identification accuracy, frame
identification accuracy, and argument identifica-
tion F1 score. Trigger identification corresponds

to marking each word in the input sentence that
evokes a semantic frame; frame identification cor-
responds to classifying the particular frame that is
evoked by each trigger; and argument identification
corresponds to delimiting the spans of each frame
element.

Authorship Attribution Evaluation We provide
two standard metrics: Precision@K (here k=8) and
mean reciprocal rank (MRR). Precision@K is cal-
culated by creating the vector representations for
selected sentences in the Reddit data, computing
cosine pairwise similarities, and ranking them. In
addition, we record runtime speeds for the different
implemented configurations.

3.5 Technical Constraints

HIATUS imposes several runtime constraints that
any implemented system must run within. This
means we must replicate the evaluation infrastruc-
ture in our own environment to ensure our deployed
systems fits within these constraints and runs as ex-
pected after submitting for evaluation. Other con-
straints include no external network connections
(e.g., no access to external APIs), thus all binaries
and required libraries must be available locally at
runtime and additional considerations should be
given to cost and speed.

While we focus here on only one of three tasks,
Docker images for each of the tasks cannot exceed
50GB and must enable dynamic data flow between
the required components / tasks during evaluation
within the single chosen instance (e.g., generated
features must be accessible for other tasks at run-
time). Additionally, each system evaluation must
be completed in 12 hours or less. A possible lim-
itation of our system is that the longest document
in the validation set is 350 words, which limits
our ability to test if the system can successfully be
executed on longer documents at evaluation time.

Figure 1 illustrates the official evaluation infras-
tructure of HIATUS and all sub components that
undergo official testing. Although we focus on the
evaluation protocol for evaluating authorship em-
beddings, the same process applies to all task areas.
The performance and inference speed are evaluated
once the Docker container is loaded into the infra-
structure environment (listed as “Performer Model
Docker”). If the Docker container completes the
entire inference within the 12 hour time limit, the
evaluation process is initialized.

The evaluation process is initiated by loading the
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Figure 1: HIATUS evaluation infrastructure. Image reproduced from the Evaluation Plan with permission.

Docker container and sending it to the the Ama-
zon Elastic Container Registry (ECR). Amazon
ECR allows for ease of storing and deploying the
individual Docker containers within the architec-
ture. Once stored in ECR, an AWS Simple Queue
Service (SQS) notifies the official metrics harness
to begin the process of generating metrics. Here,
test documents are passed to the Docker container.
When the system completes inference, official met-
rics are logged and saved to an AWS S3 storage
instance, which are then accessible to be displayed
on the official metric dashboard.

In the case where the Docker container does not
finish inference within the allotted time, no met-
rics are produced or logged, resulting in a failed
system run. This is one reason why speed optimiza-
tion is necessary after a system is built to ensure a
complete successful run within the time constraint.

4 Implemented Architecture

4.1 Base Architecture

The designed infrastructure allows for continuous
development and integration to support model de-
velopment, storing training and testing data, and
strategic GPU and memory optimization for train-
ing LLMs.

The data stream first ingests multi-line JSON
files, where each line in a file is a single document
written by an author in the corpus. Subsequently,

the feature extraction modules are run on each doc-
ument to generate a vector that includes psycho-
metric, dependency, rhetorical style, and additional
document features used to create document em-
bedding. Each embedding is saved to the AWS
Elastic Block Storage (EBS) for later retrieval on
and are accessible for any subsequent downstream
applications.

4.2 Architecture Modifications
When testing the complete system in an environ-
ment with the limitations specified by HIATUS, it
became clear that there were two parts of the archi-
tecture that needed to be modified: 1) generating
unique authorship embeddings came with a large
storage price as features are placed directly into the
EBS volume on the EC2 instance where the model
performs inference and generates new features, 2)
the frame semantic parser requires several passes
over each sentence, which poses a problem in terms
of runtime efficiency.

To alleviate large storage requirements, an AWS
S3 cloud storage is secured and mounted to the
EC2 instance in which the system is run end-to-end.
The additional storage space provided by an S3
“bucket” alleviates the need to store large authorship
vectors on an EBS volume, where reaching the
storage limit would prevent the creation of future
embeddings and place a limit on the development
environment.
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Figure 2: TA1 Author Embedding Architecture

The default runtime efficiency of the semantic
parser in our environment is only five sentences per
second. To increase computational efficiency and
thus scalability, we implemented multiprocessing
support, enabling the parser to run in a distributed
fashion across all available GPUs while still en-
suring successful inter-process communication and
synchronization among processes. As part of the
infrastructure development, multiple implementa-
tions were tested to support the distributed process-
ing capability as the evaluation system came with
its own unique set of issues (see section 3.5).

4.3 Author Embedding Architecture

Our authorship encoder focuses on synergizing neu-
ral and theory-driven features to learn a common
representations of authorship that can be used for
authorship attribution and explainability. Learn-
ing authorship representation consists of encoding
only the distinct features of an author’s style. Tradi-
tionally, hand-crafted, theory-driven features were
used. While these approaches are data efficient,
they can be limited in definition. Neural models,
on the other hand, do not require explicit defini-
tion but rely on the training data to learn relevant
features.

Training consists of a multi-task learning (Caru-
ana, 1997) architecture in which we train a trans-
former encoder for authorship attribution and in-
clude several auxiliary tasks (e.g., frame seman-
tic features (Hedegaard and Simonsen, 2011b)),
selected based on their theoretical importance to
authorship attribution (see Figure 2). During infer-
ence only the encoder’s output is used. This setup
enables the authorship attribution embeddings to
learn more nuanced, higher linguistic information
about the author from the auxiliary tasks through

information sharing, yielding more distinguishable
embeddings.

To facilitate rapid experimentation, we have cre-
ated a feature extractor module that takes in corpora
and extracts features that are used as labels for the
auxiliary tasks. New auxiliary tasks can be added
and experimented with easily if features are ex-
tracted in real-time during training, as opposed to
having to prepare training data beforehand. In prac-
tice, frame semantic feature extraction (and other
feature extractors) reside inside of this module.

Furthermore, auxiliary tasks provide trans-
parency during training and explainability during
inference. During training, the loss the auxiliary
tasks can be monitored to see which theory-backed
features are being learned over time as the author-
ship encoder learns. For inference, the human-
understandable auxiliary features can be predicted
to associate them to neural features that are used
for attribution. These features can then be used
to highlight tokens with a framework like SHAP
(Lundberg and Lee, 2017) so that forensic ana-
lysts can quickly verify the attribution. Our system
therefore leverages black box attributions and pro-
vides human-understandable explanations that can
be used for verification via highlighting various
aspects of authorship within text.

4.4 Parallelizing Frame Semantic Features

Given that the solution must fit within the speci-
fied time constraints (otherwise no results will be
recorded), initial time estimates using the default
parser suggested that including it in the pipeline
would result in the entire system taking 8x longer
than the maximal time-frame, making it impracti-
cal to include in the feature generation. We chose
to thus implement a multiprocessing variation and
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Runtime (secs) Rate (sent/sec) Trigger ID Frame ID Argument ID

No MP, Beam=5 459.7 5.26 0.7127 0.8643 0.7324
MP, Beam=5 184.7 13.10 0.7127 0.8643 0.7324
MP, Beam=3 153.6 15.76 0.7143 0.8631 0.7194
MP, Beam=1 72.3 33.47 0.4983 0.9036 0.7414

Table 1: Section: Evaluation results on FrameNet parsing task.

gained additional speed by reducing its beam size.
The specific architecture that we employed to

achieve parallelization uses a controller–worker
pattern. Invoking our application creates the con-
troller process, which in turn creates a separate
worker process for each available GPU. We tested
two versions of this architecture.

Sentence groups subbatches read in batches by
the controller process, and all of the sentences in a
batch of documents are divided into equally sized
groups, with the number of groups equal to the
number of worker processes. The controller pro-
cess uses inter-process communication to submit a
subbatch to each worker process, and then the con-
troller waits to receive the results from each worker.
Each worker process runs its own instance of the
parser, and each worker has exclusive use of one of
the GPUs in our AWS compute environment. Once
the controller process receives the subbatch results
from each worker process, the parsed sentences in
each subbatch are collated back into their original
documents in the higher-level batch, and then each
processed document in the batch is written as out-
put by the controller in the same order that it was
read as input. This process of batchwise processing
is repeated continuously until all documents in the
input file have been parsed.

Equal group subbatches reads all documents
at once by the controller and then splits them into
equally sized groups, with the number of groups
equal to the number of GPUs. The controller then
starts worker processes for each segment of the
dataset to extract frame semantic features. After
the worker processes finish running, the controller
concatenates the outputs to return the final output.
This method circumvents the need for inter-process
communication to process subbatches.

While initial experiments showed both ap-
proaches yielded similar results, we ultimately
chose the equal group subbatches implementation
for our system as given that the entire datasets fits

Runtime (sec.) P@8 MRR

No MP, Beam=5 1456.9 0.231 0.117
MP, Beam=5 462.4 0.231 0.112
MP, Beam=3 368.4 0.255 0.128
MP, Beam=1 174.6 0.240 0.121

Table 2: Results of the authorship attribution system.
P@8 vs Beamsize (or MP)

in memory, it provides a simpler, working alterna-
tive.

5 Results

5.1 Performance of the Frame Semantic
Parser

The evaluation of the frame semantic parser focuses
on two points, speed and and beam size decoding.
The results on the test partition across several con-
figurations are presented in Table 1. Enabling mul-
tiprocessing using four GPUs, as opposed to the
baseline approach using a single GPU, produced
an increase in parsing rate from 5.26 sentences per
second to 13.10, a 2.5x increase in speed. While
keeping multiprocessing enabled and decreasing
the decoding beam size from five to three, the pars-
ing rate further improves from 13.10 sentences per
second to 15.76. Decreasing the beam size from
five to three produced negligible reduction in pars-
ing accuracy. Further decreasing the beam size
from three to one led to a further increase in pars-
ing rate from 15.76 sentences per second to 33.47.
However, this final decrease in beam size led to
a substantial degradation in trigger identification.
Therefore the best performing setup is to enable
multiprocessing with the decoding beam size set to
three, which is still almost a 3x speed increase of
the base parser.

5.2 Performance on Authorship Attribution

Authorship attribution results are presented in Ta-
ble 2. We report Precision@8 (P@8) and mean
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reciprocal rank (MRR) on the subset of the Reddit
dataset (see section 3.2). While there are only min-
imal differences in performance across the various
configurations, multiprocessing and beam search
reduction yields a system that only takes 12% of
runtime of the original implementation. Interest-
ingly, while a beamsize of three still yields the best
results, the performance degradation when using
only a beamsize of one is not nearly as substantial
on the authorship attribution performance when
compared to the trigger identification results in Ta-
ble 1, while being almost 50% faster. This suggests
this feature is either not highly relevant or its perfor-
mance loss is mitigated by the other incorporated
frame features.

6 Conclusion and Future Work

We detailed our system for authorship attribution
within the HIATUS environment, which has an in-
frastructure that poses overhead limits to the com-
pute and memory configurations of the specific task
of creating authorship embeddings. Given these
constraints, we highlighted our computational effi-
ciency modifications to the frame semantic parser
in order to be able to integrate frame semantic
linguistic features into our authorship attribution
model. Our architecture generates authorship em-
beddings that are successfully evaluated on the Test
& Evaluation Harness, while resulting in negligible
performance reduction. The integrated modifica-
tions are directly applicable to any other resource
constrained production system focused on author-
ship attribution or using similar features. Future
modifications will include more robust paralleliza-
tion of the feature generation ability in addition to
an optimization step that includes automating the
Docker image creation for the task and submission
to the HIATUS evaluation infrastructure.

Ethical statement

While the goal of our authorship attribution system
is to identify malicious actors to aid the Intelli-
gence Community, we recognize that we cannot
guarantee that such a system will never produce
false positives. Thus we strongly encourage author-
ship attribution be used as merely a point of support
in combination with additional data sources, tools,
and metrics; and no single strategy be relied upon
as a sole source of intelligence for any subsequent
decision or action taken.
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