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Abstract

In task-oriented conversational AI evaluation,
unsupervised methods poorly correlate with
human judgments, and supervised approaches
lack generalization. Recent advances in large
language models (LLMs) show robust zero-
shot and few-shot capabilities across NLP tasks.
This paper explores using LLMs for auto-
mated dialogue quality evaluation, experiment-
ing with various configurations on public and
proprietary datasets. Manipulating factors such
as model size, in-context examples, and selec-
tion techniques, we examine “chain-of-thought”
(CoT) reasoning and label extraction proce-
dures. Our results show that (1) larger models
yield more accurate dialogue labels; (2) algo-
rithmic selection of in-context examples out-
performs random selection; (3) CoT reasoning
where an LLM is asked to provide justifications
before outputting final labels improves perfor-
mance; and (4) fine-tuned LLMs outperform
out-of-the-box ones. Our results indicate that
LLMs that are suitably fine–tuned and have suf-
ficient reasoning capabilities can be leveraged
for automated dialogue evaluation.

1 Introduction

Evaluating conversational system performance in
NLP is challenging. Automating effective eval-
uation is crucial for enhancing dialogue systems.
However, automatic metrics like BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) fall short
in accurately measuring perceived quality due to
complex mappings (Liu et al., 2016). Advanced
methods (USR (Mehri and Eskenazi, 2020b), FED
(Mehri and Eskenazi, 2020a), DialogRPT (Gao
et al., 2020)) address this but often require exten-
sive training data and human references, making
them costly and limited in generalization to new
datasets.

Recent advancements in Large Language Mod-
els (LLMs) (Bubeck et al., 2023) have demon-
strated robust zero- or few-shot capabilities and

reasoning skills across a range of tasks (Brown
et al., 2020). Consequently, researchers have be-
gun to explore the application of LLMs to classifi-
cation problems such as dialogue evaluation (Lin
and Chen, 2023; Huynh et al., 2023).

Recent studies (Lin and Chen, 2023; Huynh
et al., 2023) demonstrate that LLMs excel on di-
verse datasets. However, uncertainties persist re-
garding the impact of factors like model size and
in-context examples on open-sourced LLM perfor-
mance. This paper aims to clarify these influences.
Additionally, there is a lack of comprehensive liter-
ature on deploying LLMs for dialogue evaluation.
To fill this gap, we propose two common evaluation
strategies, providing a comparative analysis of their
pros and cons.

In this paper, we systematically study different
aspects of LLM-based dialogue evaluation by con-
ducting extensive experiments on two benchmark
datasets, one publicly available and the other pro-
prietary, Amazon-internal datasets. We initially
explore the connection between different attributes
such as model size and in-context examples, and
their impact on dialogue evaluation performance.
Additionally, we present a dialogue evaluation that
leverages “chain-of-thought” (CoT) reasoning abil-
ities of LLMs (Wei et al., 2022; Wang et al., 2023).

Our experiments demonstrate that larger model
sizes and instruction tuning generally helps with
zero shot dialogue evaluation. Furthermore, in few-
shot scenario, we find that algorithmic selection
of in-context examples yields better results than
random selection. Next, we demonstrate that su-
pervised fine-tuning can substantially improve the
performance of LLMs on dialogue evaluation task.
Finally, we explore and validate a CoT-based eval-
uation framework which is capable of returning
not only dialogue labels but comprehensive expla-
nations and justifications, thereby offering a more
coherent and holistic evaluation. Remarkably, our
results indicate that CoT-based evaluation is more
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accurate when the LLM is prompted to first analyze
the dialogue and then produce labels. Combined,
our findings confirm the applicability and effective-
ness of LLM-based automated dialogue evaluation.

2 Related work

Dialogue evaluation. Evaluating dialog systems
poses challenges like accounting for multiple in-
terlocutors, contextual dynamics, and the one-to-
many relationship, as highlighted by Zhang et al.
(2021) and Zhao et al. (2017). Metrics such as
USR and FED address these challenges, showing
strong correlation with human evaluation standards.
Utilizing models like RoBERTa and DialoGPT, no-
table for their smaller yet effective versions fine-
tuned for specific dialog tasks, these metrics excel
in capturing nuanced dialog attributes. Other eval-
uation metrics such as GRADE and DEB (Huang
et al., 2020; Mehri and Eskenazi, 2020a) attempt to
measure text coherence, response diversity, engage-
ment, and common sense. With the exponential
growth in parameter count of contemporary LLMs
and their promising generalization capabilities in
NLP tasks, it is anticipated that these model-centric
evaluative metrics will undergo further enhance-
ments.
Large language models for evaluations. Re-
cent studies explore LLMs in dialogue evaluation.
GPTScore (Fu et al., 2023) uses models such as
GPT-3 (Brown et al., 2020), assigning higher prob-
abilities to superior-quality content and employing
diverse prompts for holistic evaluation. Similarly,
Huynh et al. (2023) investigate using ChatGPT and
InstructGPT (Ouyang et al., 2022) for reference-
independent text quality assessment, contrasting
various LLM methodologies, including explicit
scoring, leveraging model confidence for implicit
score allocation, and direct pairwise text compari-
son.

The G-EVAL framework (Liu et al., 2023) is a
notable advancement, synergistically integrating
LLMs with the chain-of-thought (CoT) paradigm
and a form-filling strategy. Notably, using GPT-
4 (Bubeck et al., 2023) as its foundational model,
G-EVAL shows strong correlation with human eval-
uations in summarization tasks.
Parameter-efficient fine-tuning (PEFT). As base
language models grow in size (Touvron et al., 2023;
Zhang et al., 2022), researchers frequently turn to
parameter-efficient fine-tuning techniques to tailor
models for specific downstream tasks. These fine-

tuning approaches typically fall into three main
categories:

(1) Prefix-Tuning: This method inserts special
tokens among input tokens with trainable embed-
dings for the task at hand (Li and Liang, 2021).

(2) Adapter Tuning: This approach inserts
adapter layers between self-attention and MLP
modules, providing nuanced control over the
model’s behavior without altering the core archi-
tecture (Houlsby et al., 2019; Zhang et al., 2023).

(3) Low-Rank Adaptation: This technique uses
trainable low-rank decomposition matrices in each
network layer, simplifying the model for efficient
fine-tuning (Hu et al., 2021). It shows promise
in adapting large generative models for specific
applications (Cuenca and Paul, 2023; Zhang et al.,
2023).

These strategies reflect ongoing efforts to make
large-scale models more adaptable and efficient,
leveraging their vast capacities while mitigating
computational and practical challenges.
In-context learning. In-context learning is a
prompting technique for LLMs in which example
input-output pairs for some task are injected into
the prompt before the target input is presented. The
idea is that seeing correct examples of the task will
help the model to provide a correct target output.

Selecting in-context examples is crucial for ef-
fectively prompting LLMs, enabling them to pivot
to new tasks without extensive fine-tuning. Exam-
ples play a pivotal role in guiding LLMs’ predictive
capabilities, with research exploring methods such
as semantic proximity evaluation (Liu et al., 2021)
and retrieval mechanisms such as BM25 (Robert-
son et al., 2009), used independently or in an initial
training phase for a selector retriever.

These selection approaches excel in few-shot
NLP tasks. For instance, in Su et al. (2022), a
bifurcated framework effectively annotates and se-
lects in-context samples from unlabeled reposito-
ries, achieving impressive performance across var-
ious tasks. Similarly, Liu et al. (2021) suggested
that choosing examples with congruent sentence
embeddings optimizes GPT-3’s efficacy. Despite
positive outcomes, there is a need for deeper explo-
rations to discover more general in-context exam-
ple retrieval methodologies.

3 Methodology

Dialogue evaluation with logits. LLMs like GPT
(Radford et al., 2018) with a decoder-only architec-
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: Here is the viva la vida. 
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3: 0.002

Logits

Prob
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4.993

: Here is the viva la vida. 

Instructions: 
 Dialogs: 

 : Play coldplay's song

Score: 
5.0

Reasons: 
xxx

Figure 1: Schematic overview of LLM dialogue evalu-
ation methods. Left: Pipeline using logits method for
generating scores from LLMs. Right: Pipeline employ-
ing generation method to produce ratings from LLMs.

ture are autoregressive. They generate sequences
one element at a time, each conditioned on the pre-
ceding ones. The probability of a token sequence
x = (x1, x2, ..., xT ) is modeled as the product of
conditional probabilities for each token given its
history.

p(x) =
T∏

t=1

p(xt|x<t) (1)

where x<t = (x1, ..., xt−1) is the history before xt,
and p(xt|x<t) is typically modeled by a softmax
over the vocabulary. LLMs can be prompted to
provide a score (example prompt in section A.1),
using the returned probabilities to generate ratings.

Building on methods from Huynh et al. (2023),
we use these properties to select the top-K rat-
ings r1, r2, ..., rK , based on their corresponding
log probabilities p1, ..., pK . We then perform a
weighted sum of these ratings, as illustrated in the
left panel of Figure 1. The weights can be calcu-
lated using Equation (2):

wi =
pi∑K
j=1 pj

(2)

The final rating can be represented by Equation (3):

r =
K∑

i=1

ri ∗ wi (3)

Dialogue evaluation with generation. In addition
to the mentioned method, Lin and Chen (2023)
proposed a novel framework where LLMs are
prompted to directly generate responses for dia-
logue evaluation. Ratings for the dialogue can then
be extracted from the produced LLM responses.
See prompts in section A.2.

4 Experiment setup

Model. In this study, we utilize models from the
Llama family (Touvron et al., 2023) and the Falcon
series (Almazrouei et al., 2023). We also incorpo-
rate the instruction-tuning variants of these models
as proposed in the Alpaca study (Taori et al., 2023).
Temperature is fixed at 0.7 during generation.
Dataset. We experiment on two datasets: the pub-
licly available USS (Sun et al., 2021) dataset in-
cludes SGD, MultiWOZ, ReDial, and CCPE sub-
sets, with a 1-5 quality score scale. We randomly
allocate 10% as test data, using the rest for training
(supervised fine-tuning or in-context learning). We
also evaluate our methods on two versions of an
Amazon-internal dialogue-quality dataset, which
has a human-annotated quality rating on a scale
of 1-5 (similar in format to the data described in
Komma et al. (2023)). The rating distribution is
shown in Figure 2, with the smaller training set’s
rating distribution resembling the test set more
closely than the larger one.

We binarize the datasets, considering scores of
three and below as “defect” (unsatisfactory) and
scores of four or five as “non-defect” (satisfactory).
This simplified scheme enables us to use standard
binary classification metrics to compare the
effectiveness of different methods.

(a) small train (b) large train (c) test

Figure 2: Score distribution in train and test splits from
the Amazon-internal dataset.

In-context example selection methods. Here we
use three methods to select in-context examples.
The first is to simply source examples randomly
from the training dataset. The second employs a
probabilistic algorithm for information retrieval
(IR) (Robertson et al., 2009), selecting similar
examples based on a defined similarity metric.
The third relies on BERT (Devlin et al., 2018),
extracting representations from the input dialogue
and identifying similar examples using cosine
similarity computations. Together, these three
methods offer diverse strategies for in-context
example selection. We conducted three runs for
the random selection method and report the mean
value.
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Table 1: Performance comparison across model with
different sizes on Amazon-internal datasets. Spearman
and Pearson correlation values presented, with the best
results highlighted in bold.

Models Alpaca-7b Alpaca-13b Llama-7b Llama-13b Llama-30b Falcon-7b-instruct Falcon-40b-instruct

Spearman correlation 0.47 0.48 0.00 0.01 0.01 -0.02 0.41
Pearson correlation 0.47 0.48 0.03 0.02 0.03 -0.02 0.35

Supervised fine-tuning method. In this study,
we also explore supervised fine-tuning to adapt
LLMs to the task of dialogue quality evaluation.
To manage cost, we adopt the LoRA setting (Hu
et al., 2021), fine-tuning a relatively small number
of parameters compared to full-rank fine tuning.
LoRA fine-tuning efficiently enhances the model’s
effectiveness at the target task while addressing
computational challenges.

5 Results

We now describe the results of our experiments
designed to analyze various aspects of LLM-based
dialogue evaluation.

5.1 Larger models help zero-shot dialogue
evaluation.

Table 1 shows the relationship between model size
and zero-shot ability in dialogue quality evalua-
tion, comparing Spearman and Pearson correlation
values with human annotation for different model
configurations across the Alpaca, Llama, and Fal-
con series.

Table 1 suggests a positive relationship between
model size and zero-shot ability in dialogue quality
evaluation. Notably, the Falcon series shows a
significant improvement (Spearman: -0.02 to 0.41
for Falcon-7b versus Falcon-40b). Alpaca 13b sees
marginal improvements compard to 7b, but the
Llama series exhibits no significant improvement
as size increases, with weak correlations across
sizes (possibly due to the original Llama’s poor
instruction understanding).

This conclusion underscores the potential bene-
fits of employing larger models in dialogue systems,
particularly for applications that require zero-shot
flexibility.

5.2 Instruction-tuning helps zero-shot
dialogue evaluation.

Table 1 also provides insight into the impact of in-
struction fine-tuning on models’ ability to do zero-
shot dialogue quality evaluation. The Alpaca se-
ries underwent instruction fine-tuning based on the

foundational Llama models, an important modifi-
cation to enhance task-specific performance. Our
empirical results illustrate the superiority of the
Alpaca models in the realm of zero-shot dialogue
quality evaluation, as evidenced by consistently
higher Spearman and Pearson correlation coeffi-
cients. This observation underscores the signifi-
cance of instruction tuning as a critical technologi-
cal approach for augmenting dialogue evaluation
performance. For example, the improvement from
Alpaca-13b compared to the Llama-13b models
is 0.47 on the Spearman correlation shown in Ta-
ble 1 1. We hypothesize that instruction tuning may
serve to refine LLMs comprehension of instruc-
tions or prompts, thereby optimizing their ability
to execute the specified tasks with greater accu-
racy. The results suggest that such tuning may be
instrumental in facilitating a more nuanced under-
standing of dialogues, opening avenues for further
research and development in this domain.

5.3 In-context examples enhance the
performance of dialogue evaluation.

In this section, we evaluate the influence of in-
context examples on the base model Falcon-7b-
instruct, utilizing three distinct in-context example
selection methods: Random, BM25, and BERT.
For the BM25 and BERT-based ICL approaches,
we selected either 1 or 4 of the most semantically
similar samples from the training set. The selection
was based on the semantic similarity between the
examples, as determined by the BM25 and BERT
models. In contrast, for the random-selection ICL
approach, we randomly picked either 1 or 4 exam-
ples from the training set to use as the in-context
examples. These experiments are conducted on the
open-sourced dataset USS shown in Table 2.

First, we observe that in general, the few-shot
performance is better than the zero-shot perfor-
mance. A closer examination reveals that the best
performance across various evaluation metrics is
primarily concentrated within the few-shot settings
in the first three datasets. If we take a closer look at
the MWOZ dataset, all highlighted numbers are in
the few-shots settings. This observation substanti-
ates the notion that providing in-context examples
can indeed enhance the performance in dialogue
evaluation. However, it is worth noting that an
excessive provision of examples does not necessar-

1Llama-7b having a Spearman correlation value of 0 is
actually rounded value of a tiny correlation of < 0.005.
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Table 2: Comparison of different in-context example selection methods and zero-shot ability for dialogue quality
evaluation across different datasets using Falcon-7b-instruct Model on open-source dataset.

Dataset Model Defect Rate Defect Class Non-Defect Class Weighted Average Macro Average Spearman Pearson
Precision Recall F1-Score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

CCPE

Zero-shot 62% 0.71 0.39 0.5 0.42 0.74 0.54 0.6 0.52 0.51 0.57 0.56 0.52 0.21 0.27
Random-1 62% 0.75 0.19 0.31 0.4 0.89 0.56 0.62 0.46 0.4 0.58 0.54 0.43 0.44 0.25
BM25-1 62% 0.79 0.35 0.49 0.44 0.84 0.58 0.66 0.54 0.52 0.62 0.6 0.54 0.4 0.31
BERT-1 62% 0.73 0.26 0.38 0.41 0.84 0.55 0.61 0.48 0.45 0.57 0.55 0.47 0.18 0.19

Random-4 62% 0.71 0.55 0.62 0.46 0.63 0.53 0.61 0.58 0.59 0.58 0.59 0.58 0.16 0.17
BM25-4 62% 0.73 0.77 0.75 0.59 0.53 0.56 0.67 0.68 0.68 0.66 0.65 0.65 0.23 0.2
BERT-4 62% 0.68 0.68 0.68 0.47 0.47 0.47 0.6 0.6 0.6 0.58 0.58 0.58 -0.07 -0.13

MWOZ

Zero-shot 55% 0.5 0.29 0.37 0.43 0.64 0.51 0.47 0.45 0.43 0.46 0.47 0.44 -0.05 0.0
Random-1 55% 0.55 0.11 0.18 0.45 0.89 0.6 0.5 0.46 0.37 0.5 0.5 0.39 0.09 0.1
BM25-1 55% 0.53 0.15 0.23 0.45 0.84 0.58 0.49 0.46 0.39 0.49 0.49 0.41 0.18 0.06
BERT-1 55% 0.63 0.18 0.28 0.46 0.87 0.6 0.55 0.49 0.43 0.54 0.52 0.44 0.13 0.0

Random-4 55% 0.53 0.35 0.42 0.44 0.62 0.51 0.49 0.47 0.46 0.48 0.48 0.47 0.09 0.08
BM25-4 55% 0.61 0.6 0.61 0.52 0.53 0.53 0.57 0.57 0.57 0.57 0.57 0.57 0.08 0.04
BERT-4 55% 0.56 0.58 0.57 0.47 0.44 0.45 0.52 0.52 0.52 0.51 0.51 0.51 0.06 0.05

Redial

Zero-shot 44% 0.49 0.55 0.52 0.61 0.55 0.58 0.56 0.55 0.55 0.55 0.55 0.55 0.09 0.11
Random-1 44% 0.5 0.2 0.29 0.57 0.84 0.68 0.54 0.56 0.51 0.54 0.52 0.49 0.18 0.24
BM25-1 44% 0.48 0.27 0.35 0.57 0.77 0.66 0.53 0.55 0.52 0.53 0.52 0.5 0.2 0.17
BERT-1 44% 0.58 0.32 0.41 0.61 0.82 0.7 0.6 0.6 0.57 0.59 0.57 0.55 0.24 0.29

Random-4 44% 0.5 0.41 0.45 0.59 0.68 0.63 0.55 0.56 0.55 0.55 0.54 0.54 0.12 0.11
BM25-4 44% 0.4 0.45 0.43 0.52 0.46 0.49 0.47 0.46 0.46 0.46 0.46 0.46 0.1 0.15
BERT-4 44% 0.44 0.55 0.49 0.57 0.46 0.51 0.51 0.5 0.5 0.5 0.5 0.5 0.05 0.05

SGD

Zero-shot 48% 0.64 0.63 0.63 0.66 0.67 0.67 0.65 0.65 0.65 0.65 0.65 0.65 0.34 0.32
Random-1 48% 0.40 0.08 0.14 0.51 0.88 0.65 0.46 0.50 0.40 0.46 0.48 0.39 0.20 0.09
BM25-1 48% 0.39 0.15 0.21 0.50 0.79 0.61 0.45 0.48 0.42 0.44 0.47 0.41 0.29 0.15
BERT-1 48% 0.50 0.15 0.23 0.52 0.87 0.65 0.51 0.52 0.45 0.51 0.51 0.44 0.33 0.26

Random-4 48% 0.44 0.33 0.38 0.50 0.62 0.55 0.47 0.48 0.47 0.47 0.47 0.47 -0.01 -0.02
BM25-4 48% 0.52 0.58 0.55 0.57 0.50 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.06 0.08
BERT-4 48% 0.37 0.40 0.38 0.41 0.38 0.40 0.39 0.39 0.39 0.39 0.39 0.39 -0.12 -0.12

ily lead to further improvement. We hypothesize
that this limitation may stem from the capacity
constraints of LLMs, which can struggle to pro-
cess overly lengthy inputs, occasionally resulting
in performance degradation. This pattern is partic-
ularly evident in the Redial dataset, where the per-
formance of the 4-shot approach does not surpass
the results obtained from the 1-shot experiment. In
addition to these findings, Table 2 reveals that zero-
shot outperforms the few-shot settings in the SGD
dataset. This is likely attributable to the capacity
constraints of LLMs; the dialogue lengths should
not be excessively long. Notably, the dialogues in
the SGD dataset have more turns (26.7 turns per
dialogue) compared to the other three datasets from
Sun et al. (2021). Such findings further emphasize
the nuanced relationship between the number of
in-context examples and the resulting performance,
highlighting the importance of careful selection in
few-shot learning.

Second, when comparing the performance across
different in-context selection methods, we find that
algorithmic selection methods result in notable per-
formance improvements over random selection for
in-context examples. For instance, the BM25 and
BERT methods consistently perform best across all
datasets. Upon closer examination of the CCPE
dataset in Table 2, we observe that 85% of the high-
est values across all metrics are derived from the
algorithm’s selected method. What is more, the
optimal choice for selecting different in-context ex-
ample methods varies based on the dataset. In the

first two datasets, the BM25 method excels, while
in the third, the BERT method stands out.

In conclusion, our results suggest that in-context
examples can significantly enhance the quality of
dialogue evaluation. Our findings also underscore
the importance of employing algorithmic methods
for selecting these examples, as the right selection
strategy can lead to meaningful performance gains.
By revealing these patterns, our study contributes
to a deeper understanding of how few-shot learning
can be best utilized in dialogue systems.

Table 3: Summary of performance metrics for super-
vised finetuning models on Amazon-internal datasets
across different training datasets and various model ar-
chitectures.

Models Spearman Pearson Precision Recall F1 F1-micro
Alpaca-7b 0.47 0.47 0.52 0.72 0.60 0.69
Alpaca-7b-sft-small 0.61 0.61 0.96 0.59 0.73 0.65
Alpaca-7b-sft-large 0.64 0.66 0.93 0.58 0.72 0.33

Llama-7b 0.00 0.03 0.67 1.00 0.80 0.33
Llama-7b-sft-small 0.58 0.60 0.92 0.62 0.74 0.58
Llama-7b-sft-large 0.64 0.66 0.93 0.58 0.72 0.33

Llama-13b 0.01 0.02 0.67 1.00 0.80 0.36
Llama-13b-sft-small 0.64 0.65 0.94 0.61 0.74 0.46
Llama-13b-sft-large 0.64 0.65 0.97 0.54 0.69 0.40

Falcon-40b-instruct 0.41 0.36 1.00 0.01 0.02 0.67
Falcon-40b-instruct-sft-small 0.60 0.61 0.96 0.52 0.67 0.65
Falcon-40b-instruct-sft-large 0.61 0.63 0.93 0.53 0.68 0.69

5.4 Supervised fine-tuning improves dialogue
evaluation quality

Here we examine the influence of supervised fine-
tuning (SFT) on the performance of LLMs for the
dialogue evaluation task. Specifically, we fine-
tuned the models using both Likert-scale and bi-
nary label data. We leverage two internal datasets
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Table 4: Comparison of CoT methods on the internal dataset over Falcon-7b-instruct. “Rating-first” refers to generating the
score first, followed by the reasons, while “Analysis-first” involves generating an analysis first, then determining the scores.

Model Defect Rate Defect Class Non-Defect Class Weighted Average Macro Average Spearman Pearson
Precision Recall F1-Score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Rating-first 59% 0.59 1.00 0.74 0.67 0.01 0.02 0.62 0.59 0.45 0.63 0.50 0.38 0.10 0.07
Analysis-first 59% 0.67 0.86 0.75 0.66 0.39 0.49 0.67 0.67 0.65 0.67 0.63 0.62 0.23 0.28

used for training dialogue quality estimation mod-
els. The first is a small version of the dataset, re-
sulting in models denoted as “xxx-small,” while
the second is a larger version, leading to models
labeled as “xxx-large.”

We report on several classification metrics, in-
cluding precision, recall, F1-score, and F1-micro.
Our findings from Table 3 reveal a consistent im-
provement in the original model’s performance af-
ter SFT, especially in the Spearman and Pearson
correlations with human annotation. For instance,
the model “Falcon-40b-instruct-sft-large” exhibits
a 48% relative improvement compared to the origi-
nal “Falcon-40b-instruct.” This indicates that SFT
enhances the alignment of the model’s scoring with
human evaluation.

Analysis of F1-micro shows that SFT generally
improves performance in comparison to the orig-
inal model. When comparing the Llama-7b-sft-
small to the original Llama-7b, there is a 75% rela-
tive improvement. A closer examination also sug-
gests that utilizing a larger dataset can boost overall
performance. For example, the highest correlations
in the first two columns are consistently associated
with models trained on the larger dataset. Interest-
ingly, models trained on smaller datasets occasion-
ally exhibit superior F1-micro scores, as observed
for the Llama series. For example, when comparing
the Llama-13b-sft-small to the original Llama-13b-
sft-large, there is a 15% relative improvement. We
hypothesize that this may occur when the score
distribution between the small dataset and the test
dataset aligns more closely shown in Figure 2.

It is important to note that Llama-7b and Llama-
13b predict defects for all test samples, which re-
sults in a recall of 1.0 and a precision of 0.67—
this obviously does not indicate optimal perfor-
mance. To better understand the relationship be-
tween model predictions and the ground truth, we
should consider the Spearman and Pearson correla-
tions over likert scores, which provide more insight
into the linear relationship between the predictions
and the human labels.

In conclusion, our findings show that SFT can
substantially enhance the performance of LLMS
on dialogue evaluation. This study underscores the

value of fine-tuning and dataset selection in achiev-
ing more accurate and human-aligned evaluations
in the context of dialogue systems.

5.5 Chain-of-thought for generation of scores
and reasons

In this section, we shift our focus to the “generation
and chain-of-thoughts” approach (Wei et al., 2022),
which not only generates scores but also provides
natural language reasons for selecting those scores.
We explore two distinct paradigms to accomplish
this task. The first paradigm, Analysis-first, in-
volves prompting the model to generate an analysis
first and then derive ratings based on that analysis.
The second paradigm, Rating-first, prompts the
model to generate a rating first and then elucidate
the reasons for choosing that particular score (see
Section A.2 for respective prompts).

Interestingly, our findings suggest that the first
paradigm—Analysis-first—provides more aligned
scores and reasons, as shown in Table 4. We
observe consistent improvement compared to the
Rating-first approach. For example, Analysis-first
methods outperform Rating-first in 85% of all eval-
uation metrics. Upon conducting a failure analy-
sis, we discovered that for Rating-first, the scores
do not always align with the subsequent reasons.
However, in the Analysis-first paradigm, there is
consistent alignment between ratings and scores.
We attribute the observed metric improvement to
this consistency.

The implications of these findings may extend to
various applications where the alignment between
scores and reasoning is essential. Further explo-
ration of these paradigms and their potential advan-
tages and limitations may provide valuable insights
into the optimal utilization of LLMs for complex
tasks such as rating and explanation generation.

6 Conclusion

This paper explores the application of LLMs to
evaluation of task-oriented dialogue systems. Key
findings include: the impact of pretrained model
size; the importance of instruction fine-tuning; the
effectiveness of in-context examples; consistent
performance improvement through supervised fine-
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tuning; and that the chain-of-though paradigm is
most effective with the Analysis-first approach.

7 Limitations

Our experiments provide valuable insights, but
there are limitations. We focus on open-sourced
models, excluding closed ones like ChatGPT and
Claude. Evaluation primarily centers on user sat-
isfaction, lacking metrics for interestingness and
coherence. Performance is influenced by prompt
designs, and suboptimal prompts may lead to de-
cline.

8 Ethics Statement

We acknowledge ethical concerns in using LLMs
in our evaluation. Firstly, LLMs may carry biases
that could impact dialogue evaluation negatively.
Secondly, our focus on user satisfaction might over-
look issues like toxic responses, leading to inad-
equate evaluations. Lastly, concerns arise about
unintentional release of private information during
reason and rating generation. To address these con-
cerns, researchers should exercise caution in using
LLMs for reasons and ratings, ensuring accuracy
and fairness in interpretation.
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A Prompts

In this section, we elaborate on the prompts
and instructions we used in the logits-based and
generation-based evaluation methods.

A.1 Prompts for logits method
The prompts we used in the logits method are for-
mulated in the following manner:

Instruction: Could you please evaluate the subse-
quent dialogue by assigning a score from the given
set [1,2,3,4,5]? A score of 1 implies dissatisfaction,
while a 5 signifies high satisfaction.

A.2 Prompts for generation method
Rating-first In this section, we outline the prompts
utilized in the Rating-First generation method. This
process begins with an instruction that directs the
Large Language Models (LLMs) to provide both
reasons and ratings for a given dialogue. To en-
hance the LLMs’ comprehension, we also supply
evaluation criteria standards. Finally, we detail the
evaluation steps necessary to complete the entire
procedure for dialogue evaluation. The prompt is
shown as follows:

Instruction: Could you please evaluate the
subsequent dialogue, providing a score from the set
[1,2,3,4,5], and give an explanation for choosing that
score?
To help you better evaluate, here is the evaluation
Criteria:
A score of 1 means very dissatisfied, where the user
repeatedly has to stop or cancel bad responses and
repeat their request again;
A score of 2 means dissatisfied, where None of the
user goals are achieved,the user expresses negative
feedback,steps towards a user goal succeeds but the
goal fails;
A score of 3 means normal, where At least one of a
user goals succeed, and no negative feedback
A score of 4 means satisfied, where the majority of
turns succeeded or moved the user closer to their
goal
A score of 5 means very satisfied, all turns either
succeeded or moved the user closer to their goal(s),
and the user
expressed no dissatisfaction, and goal was achieved
without unnecessary steps
Steps to conduct the evaluation are:
1.Read the dialog, and the response carefully
2.Rate the response on a scale of 1-5 for satisfaction
level from user, according to the criteria above
3.Provide a brief explanation for your rating, refer-
ring to specific aspects of the response and the dialog.

Analysis-first In this section, we describe the
prompts used in the Analysis-First generation
method. Similar to the Rating-First approach, we

begin by providing instructions for the LLMs to
carry out dialogue evaluation. We then present spe-
cific aspects for the LLMs to analyze. To facilitate
better understanding, we also supply the evaluation
criteria. Finally, we detail the specific steps for the
LLMs to follow.

Instruction: Could you please evaluate the subse-
quent dialogue overall quality, first analysis the dia-
logue from the following aspects:
1.User goal.
2.User feedback.
3.System response.
4.System feedback.
Based the above analysis provide a user satisfactory
score from the set [1,2,3,4,5]
To help you better evaluate, here is the evaluation
Criteria:
A score of 1 means very dissatisfied, where the user
repeatedly has to stop or cancel bad responses and
repeat their request again;
A score of 2 means dissatisfied, where None of the
user goals are achieved,the user expresses negative
feedback,steps towards a user goal succeeds but the
goal fails;
A score of 3 means normal, where At least one of a
user goals succeed, and no negative feedback
A score of 4 means satisfied, where the majority of
turns succeeded or moved the user closer to their goal
A score of 5 means very satisfied, all turns either suc-
ceeded or moved the user closer to their goal(s), and
the user expressed no dissatisfaction, and goal was
achieved without unnecessary steps
Steps to conduct the evaluation are:
1.Read the dialog, and the response carefully
2.Give some brief analysis from the aspects men-
tioned before
3.Rate the response on a scale of 1-5 for satisfaction
level from user, according to the criteria above and
the analysis.
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