
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6:
Industry Track), pages 483–490

June 16-21, 2024 ©2024 Association for Computational Linguistics

Solving General Natural-Language-Description Optimization Problems
with Large Language Models

Jihai Zhang, Wei Wang, Siyan Guo, Li Wang, Fangquan Lin, Cheng Yang and Wotao Yin
Alibaba Group

{jihai.zjh, zhuazhua.ww, guosiyan.gsy, feiyu.wl,
fangquan.linfq, charis.yangc, wotao.yin}@alibaba-inc.com

Abstract

Optimization problems seek to find the best so-
lution to an objective under a set of constraints,
and have been widely investigated in real-world
applications. Modeling and solving optimiza-
tion problems in a specific domain typically
require a combination of domain knowledge,
mathematical skills, and programming ability,
making it difficult for general users and even
domain professionals. In this paper, we pro-
pose a novel framework called OptLLM that
augments LLMs with external solvers. Specif-
ically, OptLLM accepts user queries in nat-
ural language, convert them into mathemati-
cal formulations and programming codes, and
calls the solvers to calculate the results for
decision-making. In addition, OptLLM sup-
ports multi-round dialogues to gradually re-
fine the modeling and solving of optimization
problems. To illustrate the effectiveness of
OptLLM, we provide tutorials on three typical
optimization applications and conduct experi-
ments on both prompt-based GPT models and a
fine-tuned Qwen model using a large-scale self-
developed optimization dataset. Experimen-
tal results show that OptLLM works with vari-
ous LLMs, and the fine-tuned model achieves
an accuracy boost compared to the prompt-
based models. Some features of OptLLM
framework have been available for trial since
June 2023 (https://opt.alibabacloud.com/chat
or https://opt.aliyun.com/chat).

1 Introduction

Optimization problems have been widely investi-
gated in real-world domains including financial
investment (Ye et al., 2020), supply chain manage-
ment (Li et al., 2023), logistics transportation (Xie
et al., 2020) and competitive strategy (Silver et al.,
2017). Such ubiquitous optimization problems
raise critical demands for efficient modeling and
solving methods.

Currently, modeling and solving optimization
problems in a specific domain usually involves

three steps (Ramamonjison et al., 2022). First,
based on domain knowledge, experts summarize
the application scenarios into problem descriptions
using natural language or mathematical formulas,
with clear indication of variables, objectives, con-
straints, and parameters. Second, experts extract
and encode critical information from the prob-
lem descriptions with modeling languages such
as Python, R or AMPL. Finally, the optimization
process is carried out by experts or solvers to obtain
the final decision-making results. Meanwhile, the
entire process calls for a combination of domain
knowledge, mathematical skills, and programming
ability, which is unfriendly to beginners or even
professionals in that domain.

Recently, large language models (LLMs) have
demonstrated strong capabilities in natural lan-
guage understanding and generation (OpenAI,
2023). However, despite LLMs’ strong perfor-
mance across a range of NLP tasks (e.g., con-
tent generation and Q&A dialogue) (Brown et al.,
2020), their ability in arithmetic and logical rea-
soning may be insufficient and unfaithful (Imani
et al., 2023). On the other hand, data pri-
vacy remains one concern for online services
like GPT-4 (OpenAI, 2023). That is, inclusion
of domain-specific information in prompts may
cause data breach at the LLM service provider
side or during transmission in public networks,
even under the service level agreements for pri-
vacy (Li et al., 2023). Hence, deployment of open-
resourced LLMs (e.g., Llama (Touvron et al., 2023),
PaLM (Anil et al., 2023), and Qwen1) is preferred
for privacy-sensitive applications.

In light of these above, we propose OptLLM,
a framework unifying either open-sourced LLMs
or online LLM services, and external solvers for
automated modeling and solving of optimization
problems. Specifically, OptLLM consists of three

1https://modelscope.cn/models/qwen/Qwen-7B-Chat

483



modules. First, the interaction refinement module
interacts with users to complete problem descrip-
tions and ensures the input is a valid optimization
problem. Second, the converter module converts
problem descriptions to mathematical formulations
and programming codes, and ensures the codes
are correct. Last, the responser module sends the
code to an external optimization solver, receives
the results and interprets them. OptLLM allows
users to iteratively refine any stage outputs through
chatting or direct editing, until satisfactory results
are obtained. In this way, OptLLM aims to make
it significantly easier for users to model and solve
optimization problems.

2 Related Work

LLMs, or large language models, are predomi-
nantly Transformers (Vaswani et al., 2017) trained
on extensive text corpus from various sources (e.g.,
webs and books (Brown et al., 2020)). They are
trained to predict the next token in a given context,
and could generate coherent responses after fine-
tuning and alignment (OpenAI, 2023). Below we
briefly cover applications and techniques related
to automated optimization problem modeling and
solving using LLMs.

2.1 Applications of LLMs

With the widespread attention on LLMs, their ap-
plications are popping up in varied domains, such
as open-domain Q&A (Liu et al., 2023), database
management (Zhou et al., 2023), and strategizing
agents (Yao et al., 2022). Studies on arithmetic
reasoning, or mathematical reasoning (Qiao et al.,
2022), investigate the ability of LLMs to solve math
word problems (MWP) (Patel et al., 2021). Exist-
ing work mainly focus on general math problems
including function evaluation, numerical calcula-
tion and theorem proving (Imani et al., 2023; Yang
et al., 2023). Unfortunately, the reasoning abil-
ity of LLMs is still far from being usable (Wang
et al., 2022) and even competent models like GPT-
4 are inconsistently bad at numeric calculations. In
contrast, our work relies on LLMs to model opti-
mization problems, and external solvers for solving
them.

2.2 Techniques of LLMs

To adapt LLMs to downstream tasks, two strategies
are commonly used: prompting and supervised
fine-tuning (SFT) (Liu et al., 2023). Prompting,

also known as in-context learning, leverages ad-
ditional task information, zero to a few domain-
specific examples, and expected answer format to
guide LLMs without additional training. Recent
works show that specially-designed prompts, such
as those via chain-of-thoughts (Wei et al., 2022), it-
erative refinement (Madaan et al., 2023) and black-
box prompt tuning (Sun et al., 2022), can signifi-
cantly improve the performance of LLMs on down-
stream tasks. On the other hand, SFT leverages
task-specific data and objective functions to train
LLMs, which demonstrates a significant enhance-
ment in downstream applications (Baldazzi et al.,
2023). SFT is more effective than prompting when
such task-specific data are available.

3 Proposed Framework: OptLLM

We propose OptLLM that unifies LLMs and exter-
nal solvers for automated modeling and solving of
optimization problems. By designing OptLLM to
interact with domain users via natural language, we
hope to reduce the need for specialized knowledge
on optimization or coding, and improve the expe-
rience for end-users. OptLLM primarily consists
of three modules: interaction refinement module,
converter module, and responser module.

3.1 Interaction Refinement Module

As shown in Figure 1, the interaction refinement
module consists of Step 1 to 4 (marked in orange).
Step 1, the user queries OptLLM in natural lan-
guage. Step 2, the queries are pre-processed, in-
cluding inserting instructions and prompt engineer-
ing. The pre-processing is used to clarify the task
and output formats for LLMs. For online LLM ser-
vice like GPT, a typical instruction could be “You
are an operation research expert and your task is
to model the optimization problem given its de-
scription in natural language.” The queries are then
checked in the ‘Complete’ part. Complete queries
should have clear indication of variables, objec-
tives, constraints, and parameters for optimization.
If the user’s queries are complete, the queries are
sent to the next module for modeling. Otherwise,
OptLLM detects some information is missing and
request user to provide more details. We will pro-
vide an example application in Application 2 below.
In practice, OptLLM responds to user inputs in var-
ious scenarios. If a user’s queries are unrelated
to optimization problems, OptLLM would prompt
and guide the user towards asking optimization

484



Figure 1: OptLLM framework consists of three main modules: (1) Interaction Refinement Module, Step 1 to 4
(marked in orange), interact with the user to get a complete problem description in natural language; (2) Converter
Module, Step 5 to 9 (marked in blue), converts problem description to math formulas and codes; and (3) Responser
Module, Step 10 to 15 (marked in green), calls the solver, checks and interprets its results, and responses to the user.

related questions.

3.2 Converter Module

The Converter module contains Step 5 to 9 in Fig-
ure 1 (marked in blue). The module is used to
convert problem descriptions in natural language
to codes and check their grammar. Step 5 receives
the output of the interaction refinement module
and passes it to the ‘Formulator’ of OptLLM. The
Formulator translates natural language descriptions
into the corresponding formulas for objective and
constraints. Then in Step 6, the formulas are fed
into ‘Coder’ to generate corresponding code in a
preset programming language. In ‘Grammatical’,
the code will be checked for grammar mistakes. If
the syntax test fails, it enters the diagnostic mod-
ule and OptLLM reformulates it based on its own
feedback. Otherwise, the code will be sent to an
external solver.

We use MindOpt Algebraic Programming Lan-
guage, or MAPL2 as the default programming lan-
guage. Designed by Alibaba, MAPL is an effi-
cient and versatile modeling language that sup-
ports many mainstream solvers, including Min-
dOpt, Gurobi, CPLEX, Ipopt, Cbc. We use Min-
dOpt3 by default.

3.3 Responser Module

The Responser Module consists of Step 10 to 15
in Figure 1 (marked in green). In Step 10, the pro-
gramming code is sent to the solver. In Step 11,
the ‘Interpreter’ block collects the solver’s solution

2https://www.yuque.com/mindopt/apl_en/tuhebr
3https://opt.aliyun.com/

and interprets it in natural language. The solution
and interpretation are then subjected to ‘Senseful’,
which checks semantic validity. A solution fails
if it does not meet a user-defined requirement (e.g.
the user requires an integer solution but the solver
returns a real value). If a solution fails, the is-
sue is resolved through interaction with the user.
Otherwise, the solution and interpretation will be
formatted by the ‘Answer’ block and presented to
the user.

4 Applications

Our framework can solve generic optimization
problems based on their natural language descrip-
tion. In this part, we introduce three basic applica-
tions, including single-round QA with complete de-
scription, multi-round conversations with missing
information detection, and optimization problem
solving with external data.

4.1 Application 1: Single-round QA

In the single-round QA application, we assume
the user has provided a complete natural language
description of the optimization problem such that
the variables, objective and constraints can be de-
duced. This application is often used in the ed-
ucation, e.g., when a student enters a complete
optimization problem into the system, or when a
teacher lectures a student with a complete prob-
lem. As show in Figure 2, the ‘Formulator’ block
generates the corresponding formulas, with the abil-
ity to automatically detect variable names which
are not explicitly specified in the problem descrip-
tion; the ‘Coder’ then generates the corresponding

485



Figure 2: Overview of Application 1. The user provides a complete description for an optimization problem. The
‘Formulator’ translates it into formulas, then ‘Coder’ generates the corresponding MAPL code. At last, ‘Interpreter’
receives the solver output and interprets it with natural language. The user input, formulas and code can be directly
edited and the rest parts will be re-generated.

MAPL codes based on the contextual formulas and
calls the ‘Solver’ for solving. Finally, the ‘Inter-
preter’ translates the solver’s solution into natural
language, making it easy for the user to understand.
Each module mentioned above can be optionally
displayed or manually edited by the user. For ex-
ample, if the user wants to make a numerical sub-
stitution or change one constraint, it can be quickly
achieved through the editing function. Once mod-
ified, OptLLM would re-generate the rest parts
accordingly.

4.2 Application 2: Multi-round Conversations

The Application 1 assumes user has provided a
complete problem description. In many scenarios,
users may not provide such a description at once,
especially if they would like to gradually build up
a complex problem. In light of this, it is necessary
to guide them step by step through interactions to
provide the necessary information for modelling
optimization problems. We hope to start with the
simplest chat, detect the missing information, and
gradually guide users through interaction to pro-
vide necessary information indicating the variables,

objective and constraints.

Figure 3: Overview of Application 2. OptLLM attempts
to guide user to provide the necessary information for
an optimization problem and then provide the answer
directly to the user. The math formulas and codes are
hidden.

Figure 3 shows an example where a coffee shop
owner uses the system without any knowledge of
optimization. The model guides the user to provide
the objective and necessary constraints, and finally
provides the answer. For people without a math or
coding background, we provide options to hide the
formulas, codes and intermediate processes. The
system enables the users to enjoy the benefits of
programming language and solvers within natural

486



language dialogues.

4.3 Application 3: External Data Files

There are scenarios where the data for an opti-
mization problem cannot be concisely tabulated
or embedded in the problem description. In addi-
tion, LLMs typically have a token limit of a few
thousands, which could be easily exceeded by the
lengthy descriptions or multiple rounds of interac-
tions, if lots of data are embedded. To address this,
we design OptLLM to accept external data files
with a predetermined format. Users may query
the system with instructions on from which files
each part of the data can be acquired. Inspired
by LangChain4, the data will not be passed to the
model to save tokens and further preserve data pri-
vacy. Instead, only the external solver will access
the data files in order to calculate the final solutions.

5 Fine-tuning Large Language Model

OptLLM permits both online LLM service or open-
sourced LLMs as the base model. In this section,
we introduce the fine-tuning process on Alibaba’s
self-developed Qwen model. Considering the large
size of the Qwen model we use (50B parameter
version) and a limited budget (eight NVIDIA V100
GPUs), the data scale and existing hardware do
not support continuous pre-training or full param-
eter fine-tuning. Thus, we adopt LoRA (low-rank
adaption) (Hu et al., 2021), a parameter-efficient
fine-tuning scheme (PEFT) (Houlsby et al., 2019).

Figure 4: Overview of LoRA (low-rank adaption).

As shown in Figure 4, at each linear layer of
the Qwen model, LoRA inserts two trainable low-
rank matrices A ∈ Rd×r and B ∈ Rr×d to
approximately optimize the original parameters:
Wnew = W + A · B, where x is our fine-tuning
data, and h is the output of the linear layer, W is
the fixed original parameter matrix. Overall, the

4https://github.com/langchain-ai/langchain

amount of parameters introduced by LoRA is be-
low 1% of the original model.

6 Experiments

6.1 Datasets
We focus primarily on linear programming (LP)
and mixed integer linear programming (MILP)
problems, which may be of strong interests in in-
dustrial applications. To the best of our knowledge,
there is currently no publicly available datasets
on general optimization problems except the data
from NL4OPT competition5 (Ramamonjison et al.,
2023). Few additional problems can be crawled
from websites, but they may still not be sufficient
for fine-tuning the LLMs. Thus, we constructed our
own fine-tuning and test datasets. We ensure that
Qwen model has not seen the test datasets during
the pre-training phase.

Fine-tuning Dataset. Figure 5 shows the data
collection process. To build a large-scale dataset,
we start with seed optimization problems manu-
ally designed by experts, followed by designing
prompts and calling LLMs to generate more prob-
lems. We then manually label the data and select
prompts that perform well. The resultant prompts
are used to generate more data, which are again
manually labelled. The labeled data can be used as
seeds for the next round of data generation. This
process is repeated several times. Finally, we col-
lected a high-quality optimization training dataset
with total 15k instances in English and Chinese.

Figure 5: Flowchart for data collection.

Test Dataset. We select 100 optimization prob-
lems with natural language description in English,
called En100, part of which are from the dev
dataset of NL4OPT competition. Besides, we also
prepare another 100 Chinese optimization prob-
lems, called CN100. All test data are manually
checked to ensure correctness.

6.2 Metrics
In this study, we focus on evaluating the model
performance on single-round QA as in Application

5https://nl4opt.github.io/

487



1. The multi-round conversations could be signif-
icantly more diverse than single-round QA, and
may have multiple acceptable answers. We wish to
evaluate it fairly and faithfully in the future when
our OptLLM is fully deployed. As for single-round
QA, it should be noted that different formulas can
lead to the same solution, e.g., adding a redundant
constraint x ≥ 10 to an existing one x ≥ 20 will
not affect the solution but x ≥ 10 may have not
been mentioned by the problem description. Thus,
evaluating the model by the solver results may over-
look the mistakes in formulas, and we propose to
evaluate the model by accuracy in formula gen-
eration. The model is considered correct on one
sample only when all the variables, objective and
constraints it generates matches exactly with the
ground truth on that sample. It should be noted that
our metric is more strict than the declaration-level
mapping accuracy used in NL4OPT study (Rama-
monjison et al., 2023).

6.3 Implementation Details

We compare the finetuned Qwen model against
two prompt-based models: GPT-3.5 (gpt-3.5-
turbo) (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023) under our OptLLM framework. For GPT-3.5
and 4, we use the standard one-shot prompt: “You
are an expert in mathematical programming. Please
refer to Case 1 and provide a JSON expression
for Problem 1 with explanations. Case1: {Ques-
tion_and_Answer_of_Case1}, Problem1: {Ques-
tion}." We have also tried prompts with more shots
but the performance does not improve significantly,
so we stick to one shot. For Qwen model, we fine-
tune it using LoRA as describe in previous section.
LoRA is inserted at every linear layer of the model.
The dimension r of all LoRA layers is set to 32.
The AdamW optimizer is used with an initial learn-
ing rate of 0.0002, β = [0.9, 0.999], and a linear
decay schedule. The number of training epochs is
set to 20 with a mini-batch size of 32 due to limited
GPU memory. The model is implemented under
HuggingFace’s Transformers library (Shen et al.,
2023) and trained on eight NVIDIA V100 GPUs
using DeepSpeed Zero stage 3 (Yao et al., 2023).

6.4 Results

Overall performance. As shown in Table 1, the
supervised fine-tuning Qwen, or Qwen-SFT, sur-
passed GPT-3.5 on both datasets. It also achieved
comparable performance to GPT-4 on CN100 and
exceeded GPT-4 on EN100. We manually identi-

Table 1: The accuracy of LLMs on test datasets.

Datasets GPT-3.5 GPT-4 Qwen-SFT

EN100 71% 82% 87%
CN100 71% 80% 80%

fied the specific error causes - GPT-3.5 and GPT-4
made mistakes in identifying strict constraints, e.g.,
the problem description states “A is more than B",
that is, “A > B", but both GPTs inferred “A ≥ B".
In contrast, Qwen-SFT had more successes in iden-
tifying such constraints, owing to the fine-tuning
process enabling it to learn sophisticated patterns.

0 4 8 12 16 20
50

60

70

80

90

100

Fine-tuning Epochs

Te
st

A
cc

ur
ac

y
(%

)

EN100
CN100

Figure 6: Test Accuracy at different finetuning epochs.

Impact of fine-tuning epochs. Figure 6 shows
that, the model’s performance on the test datasets
improves with more fine-tuning epochs, and start
to plateaus after 10 epochs. Given the prolonged
training time, we set the fine-tuning epochs to be
20 by default.

Table 2: The impact of finetuning data size.

#Samples 500 1000 2000 4000
#Epoch 40 20 10 5

Accuracy 28% 42% 50% 57%

Impact of data diversity. To investigate the
influence of fine-tuning data size on model perfor-
mance, we vary the number of samples and epochs
so that, in each setting, the model is trained on
roughly the same number of tokens. We fine-tune
and evaluate the model on Chinese data only. As
shown in Table 2, the model performance increases
along with the data size. This indicates that we
should collect as many diverse data as possible to
achieve better results.

488



Figure 7: Overview of the deployment framework.

7 Path to Deployment

The proposed OptLLM framework can be deployed
on the cloud. We take Alibaba Cloud6 as an ex-
ample to illustrate the deployment of OptLLM. As
shown in Figure 7, the infrastructure includes: i)
the OSS provides data storage for user data that
may be used in Application 3; ii) Redis is used for
recording online conversation context; iii) ODPS
is used for logging historical logs.

DashScope7 is an inference platform that sup-
ports both existing LLM APIs (e.g., GPT-3.5 and
GPT-4) or self-built LLMs (e.g., Qwn-SFT and
Llama2-SFT). External tools include Solver, such
as MindOpt, and Chimp, a testing platform for the
entire framework. Once deployed on the cloud,
the proposed OptLLM framework has the potential
to support applications in various domains, such
as educational services, financial investment and
supply chain management. In June 2023, we have
deployed the first version on Alibaba Cloud, which
includes some of the features introduced in this
paper, with more features currently under develop-
ment.

8 Limitation

Although our system is capable of handling single-
round optimization problems, as well as multi-
round addition, deletion, and modification opera-
tions for some optimization problems, our model’s
effectiveness will be somewhat affected when deal-
ing with incomplete issues that require additional
knowledge for certain parts. This is because this
extra knowledge may not be possessed by our large
model due to certain reasons, such as our model’s
knowledge base being up-to-date only until 2023,
meaning it wouldn’t be aware of knowledge from
2024. There are two ways to address this issue: one

6https://www.aliyun.com/
7https://dashscope.aliyun.com/

is to update the underlying large model in real-time,
but this would entail significant financial and mate-
rial costs. The other option involves using methods
related to Retriever-Augmented Generation (RAG).
These are aspects we plan to explore in our future
work.

9 Conclusion

In this paper, we propose OptLLM, an effective
framework that augments LLMs (such as Qwen
model and GPT-4) with external solvers for auto-
mated modeling and solving of optimization prob-
lems. Specifically, OptLLM comprises three mod-
ules: the interaction module for completing the
problem description, the converter for translating
the description into code, and the responser for call-
ing solvers and interpreting the results, respectively.
By iterating the above steps through chatting with
users, OptLLM has the potential to assist both be-
ginners and domain professionals to achieve faith-
ful decision-making for optimization problems. We
illustrate the effectiveness of OptLLM with three
proof-of-concept applications and experiments. In
the future, we will focus on promoting the diver-
sity of optimization problems by including more
real-world cases from various domains and sce-
narios. We will also explore methods to enhance
arithmetic and logical reasoning, as well as more
open-sourced LLMs and evaluation methods.

10 Acknowledgments

We would like to express our sincerest gratitude to
the anonymous reviewers for their insightful feed-
back on our work. We are also immensely thank-
ful to our colleagues: Hu Jiang, You Wu, Churan
Liu, Binyang Shen, Junqiu Pan, Mou Sun, Jiwei
Li, Ao Zhang, Yuhua Song, Liang Zhao, Wei Jiang,
Zhongkai Yi and Hanwei Zhang for their invaluable
support throughout the research process. We would
also like to extend our heartfelt thanks to Professor
Zaiwen Wen’s team and Professor Zhifang Yang’s
team for their assistance in data collection. Their
expertise and suggestions have played a crucial role
in the success of this project.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Teodoro Baldazzi, Luigi Bellomarini, Stefano Ceri,
Andrea Colombo, Andrea Gentili, and Emanuel

489



Sallinger. 2023. Fine-tuning large enterprise lan-
guage models via ontological reasoning. arXiv
preprint arXiv:2306.10723.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, et al. 2019. Parameter-efficient trans-
fer learning for nlp. In International Conference on
Machine Learning, pages 2790–2799.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, et al. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan
Pathuri, and Ishai Menache. 2023. Large language
models for supply chain optimization. arXiv preprint
arXiv:2307.03875.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
et al. 2023. Pre-train, prompt, and predict: A system-
atic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, et al. 2023. Self-refine: Iterative
refinement with self-feedback. arXiv preprint
arXiv:2303.17651.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
et al. 2022. Training language models to follow in-
structions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
et al. 2022. Reasoning with language model prompt-
ing: A survey. arXiv preprint arXiv:2212.09597.

Rindranirina Ramamonjison, Haley Li, Timothy T
Yu, Shiqi He, et al. 2022. Augmenting opera-
tions research with auto-formulation of optimization
models from problem descriptions. arXiv preprint
arXiv:2209.15565.

Rindranirina Ramamonjison, Timothy T Yu, Ray-
mond Li, Haley Li, et al. 2023. Nl4opt competi-
tion: Formulating optimization problems based on
their natural language descriptions. arXiv preprint
arXiv:2303.08233.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
et al. 2023. Hugginggpt: Solving ai tasks with chat-
gpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, et al. 2017. Mastering the
game of go without human knowledge. nature,
550(7676):354–359.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022. Black-box tuning for
language-model-as-a-service. In International Con-
ference on Machine Learning, pages 20841–20855.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, et al. 2017. Attention is all you need.
Advances in neural information processing systems,
30.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, et al. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, et al. 2022. Chain-of-thought prompting
elicits reasoning in large language models. Advances
in Neural Information Processing Systems, 35:24824–
24837.

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, et al.
2020. Differentiable top-k with optimal transport.
Advances in Neural Information Processing Systems,
33:20520–20531.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chala-
mala, et al. 2023. Leandojo: Theorem proving with
retrieval-augmented language models. arXiv preprint
arXiv:2306.15626.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, et al. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji
Ruwase, Samyam Rajbhandari, et al. 2023.
Deepspeed-chat: Easy, fast and affordable rlhf train-
ing of chatgpt-like models at all scales. arXiv
preprint arXiv:2308.01320.

Yunan Ye, Hengzhi Pei, Boxin Wang, Pin-Yu Chen, et al.
2020. Reinforcement-learning based portfolio man-
agement with augmented asset movement prediction
states. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1112–1119.

Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. 2023.
Llm as dba. arXiv preprint arXiv:2308.05481.

490


