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Abstract

Despite remarkable advancements in few-shot
generalization in natural language processing,
most models are developed and evaluated pri-
marily in English. To establish a rigorous
and equitable evaluation framework for few-
shot cross-lingual transfer, we introduce a new
benchmark, called BUFFET, which unifies 15
diverse tasks across 54 languages in a sequence-
to-sequence format and provides a fixed set
of few-shot examples and instructions. Using
BUFFET, we perform thorough evaluations of
ten state-of-the-art multilingual large language
models with different transfer methods, namely
in-context learning and fine-tuning. Our find-
ings reveal significant room for improvement
in few-shot in-context cross-lingual transfer.
Strong multilingual pre-trained or instruction-
tuned models such as BLOOM or ChatGPT
often lag behind much smaller mT5-base mod-
els given the same number of few-shot samples,
particularly in low-resource languages. Our
analysis suggests avenues for future research in
few-shot cross-lingual transfer.

1 Introduction

Recent advances in NLP primarily focus on En-
glish (Blasi et al., 2022). As there is a shortage of
adequate training data for most languages world-
wide (Yu et al., 2022), zero-shot cross-lingual trans-
fer (Hu et al., 2020b) is an active research area.
This involves training models on high-resource lan-
guages like English, and then directly applying
them to new languages without any training data
in the target language. This approach often results
in limited success when the target language is sig-
nificantly different from the source language, mo-
tivating recent efforts to adapt models to a task in
a new language using a limited number of training
data in the target language. Such few-shot transfer
often boosts performance, especially in languages
that are dissimilar to the source language (Lauscher
et al., 2020; Hedderich et al., 2020).
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Figure 1: BUFFET includes unified diverse tasks in
the same format, covering many typologically diverse
languages to enable a fair comparison across different
models, transfer methods, and learning setups.

Although there has been significant research on
few-shot learning in English, employing techniques
like in-context learning that do not necessitate pa-
rameter updates (Beltagy et al., 2022; Shin et al.,
2020), few-shot cross-lingual transfer is still under-
explored (Lin et al., 2021). While several recent
work demonstrates the effectiveness of in-context
learning in non-English languages on specific tar-
get tasks (Shi et al., 2023; Qin et al., 2023), it
remains uncertain how well in-context learning
performs in comparison to widely-employed fine-
tuning-based transfer, particularly in a comparable
setup involving diverse tasks and languages.

To comprehensively assess the capabilities of
language models (LMs) for few-shot cross-lingual
transfer, we introduce BUFFET: Benchmark of
Unified Format FEw-shot Transfer Evaluation
(Figure 1) to enable rigorous evaluations and ad-
vance research on few-shot cross-lingual transfer.
Similar to a rich buffet, BUFFET curates a diverse
mix of tasks: 15 different tasks—including classifi-
cation, structured prediction, and natural language
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generation—across 54 languages. Following prior
work (Lauscher et al., 2020), for each task, mod-
els can only use k few-shot demonstrations (e.g.,
k = 8) in a target language, while additional re-
sources such as English training data or task in-
structions (in English or the target language) are
also available.

BUFFET has several unique characteristics that
are not present in prior multi-task multilingual
benchmarks:

• providing a fixed set of few-shot demonstrations
for training and validation for fair comparisons.

• combining diverse tasks into a unified text-to-
text format with instructions.

• including datasets annotated on the target lan-
guage and covering under-represented languages
often missing in prior benchmarks.

On this new benchmark, we extensively evalu-
ate the current state-of-the-art multilingual large
language models (LLMs), including mT5 (Xue
et al., 2021), mT0 (Muennighoff et al., 2023),
BLOOM (Scao et al., 2022), BLOOMZ (Muen-
nighoff et al., 2023), and ChatGPT (Ouyang et al.,
2022), using both fine-tuning and in-context learn-
ing approaches. We also evaluate recent English-
centric powerful open LMs such as Llama-2 (Tou-
vron et al., 2023) and Mistral (Jiang et al., 2023).
In particular, BUFFET enables us to investigate
the following research questions:
(RQ1) Is in-context learning competitive with
fine-tuning in few-shot cross-lingual transfer?
Notably, given the same small numbers of exam-
ples in the target languages, in-context learning on
LLMs often under-performs much smaller special-
ized mT5-base models (Figure 1 bottom left).
(RQ2) How well do different transfer methods
perform across tasks and languages? The
performance gap between in-context learning and
fine-tuning baselines is more significant in under-
represented languages (Figure 1 bottom center).
However, these LLMs perform well on generative
tasks where a smaller task-specific LM struggles,
demonstrating their superiority in generating fluent
text for across languages. Meanwhile, although
recent strong open LMs such as LLama2 or Mistral
demonstrate strong performance in high-resource
languages, possibly benefiting from a small amount
of multilingual pre-training data (Touvron et al.,
2023), they often show significant drops in per-
formance on other languages less represented in
English-centric pre-training corpora.

(RQ3) How does the choice of transfer setup af-
fect different transfer strategies? BUFFET also
enables us to perform an in-depth analysis of the
effects of different demonstrations and instruc-
tions on the downstream transfer quality. We
find that the choice of few-shot training examples
has a substantial effect on model performance, es-
pecially for in-context learning, and often shows
more significant effects than varying instructions.
Optimal transfer settings may differ across mod-
els: instruction-tuned models often struggle to ef-
fectively utilize few-shot samples, possibly due
to overfitting on their instruction-tuned training
schemes. This highlights the need for a standard-
ized benchmark like BUFFET to facilitate fair
comparisons and further studies assessing these
transfer dynamics in non-English data to improve
few-shot cross-lingual transfer methodologies for
many world languages.

2 Background and Related Work

While few-shot cross-lingual transfer methods such
as fine-tuning and in-context learning have been
investigated (Section 2.1), limited research ex-
plores different methods under comparable con-
ditions. We introduce BUFFET as a benchmark
(Section 2.2) to facilitate fair comparisons between
models and learning methods.

2.1 Methods for Cross-lingual Transfer

Fine-tuning for cross-lingual transfer. Prior
work has shown that multilingual pre-trained mod-
els (Devlin et al., 2019; Xue et al., 2021; Conneau
et al., 2020a), once trained on task data in resource-
rich languages (e.g., English) have the ability to
adapt to new languages with no training instances
in a target language (Conneau et al., 2020b; Hu
et al., 2020b; Wu and Dredze, 2019). However,
such zero-shot transfer often struggles in languages
that are distant from the source languages (Hed-
derich et al., 2020). Lauscher et al. (2020) shows
that further fine-tuning models on few-shot sam-
ples in target languages give large performance
improvements from zero-shot transfer approaches.

Cross-lingual in-context learning. In-context
learning (Brown et al., 2020) aims to teach LMs
new tasks by conditioning on a task description
(instruction) and training examples (demonstra-
tions). Despite active research on in-context learn-
ing (Schick and Schütze, 2021; Min et al., 2022b),
most prior work focuses on English. Lin et al.
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(2021); Muennighoff et al. (2023) introduces pre-
trained LMs trained on more multilingual pre-
trained corpora or translated datasets and shows
improved results. More recently, some concur-
rent work evaluates the effectiveness of proprietary
LLMs e.g., ChatGPT on multilingual setup (Bang
et al., 2023; Ahuja et al., 2023). However, how
LLMs using in-context learning compete with the
aforementioned fine-tuning approaches in a compa-
rable setup and at scale has yet to be investigated.

2.2 Benchmarks for Cross-lingual Transfer

To enable a scalable and rigorous evaluation
across multiple tasks, prior work has proposed
multi-task benchmarks that unify existing datasets.
XTREME (Hu et al., 2020b), XTREME-R (Ruder
et al., 2021) and XGLUE (Liang et al., 2020)
focus on zero-shot transfer of models fine-tuned
on English datasets. Despite English-based few-
shot evaluation benchmarks, such as CrossFit (Ye
et al., 2021), in few-shot cross-lingual transfer,
we lack a standardized evaluation benchmark to
facilitate the comparison of models and learning
methods. BUFFET provides the first large-scale
few-shot cross-lingual transfer suits to address the
gap. Importantly, to mitigate the effects of the high-
performance variance in few-shot cross-lingual
transfer (Zhao et al., 2021), we curate and aggre-
gate results from multiple fixed k-shot training in-
stances for each task and language. Concurrent
with our work, MEGA (Ahuja et al., 2023) and
XTREME-UP (Ruder et al., 2023) accelerate evalu-
ations of cross-lingual transfer. BUFFET focuses
on benchmarking few-shot transfer capabilities un-
der comparable setup, with an emphasis on under-
standing the transfer dynamics. Moreover, many
multilingual benchmarks focus on high or medium-
resourced languages, or only include datasets auto-
matically aligned or translated, which often exhibit
biases or annotation issues (Yu et al., 2022). This
motivates two of BUFFET’s key design principles:
including low-resourced languages and focusing on
datasets that are annotated in the target languages,
discussed in details below.

3 Benchmark: BUFFET

We introduce a new standardized few-shot
cross-lingual evaluation benchmark: BUFFET
(Benchmark of Unified Format Few-shot Transfer
Evaluation). BUFFET unifies diverse NLP tasks
and provides fixed sets of few-shot samples per task

to facilitate fair comparisons (Table 1). BUFFET-
Full covers 15 different tasks across 54 languages,
while BUFFET-Light enables affordable and
quick evaluations on limited subsets while retain-
ing task and language diversities.

3.1 Design Principles

To establish a rigorous and equitable evaluation
framework for few-shot cross-lingual transfer, we
follow these design principles.

Standardized few-shot samples. BUFFET pro-
vides three different training and validation sets of
k-shots (e.g., k=32) per task for a non-classification
task, or per class for a classification task. This is
to prevent significant performance discrepancies
among various k-shot samples, which makes com-
parisons of different methods difficult.

Task diversity. BUFFET encompasses a broad
range of task types, such as classification, genera-
tion, extraction, and structured prediction tasks, un-
like existing cross-lingual benchmarks focusing on
classification or retrieval (Hu et al., 2020b; Ruder
et al., 2021; Liang et al., 2020). By converting all
tasks into the same text-to-text format, we elimi-
nate the need for task-specific model modifications.

Language diversity. BUFFET covers 54 ty-
pologically diverse languages, spanning 24 lan-
guage families, including under-represented lan-
guages (e.g., indigenous languages of the Americas,
African languages). The 36 out of 54 languages
are not Indo-European languages. A full list of
languages is available in Appendix Table 5.

Beyond evaluations on translated data. Prior
few- or zero-shot evaluations were often conducted
on datasets translated from English (e.g., XNLI;
Conneau et al. 2018, XCOPA; Ponti et al. 2020).
Those datasets might exhibit undesired biases, such
as translation artifacts or unnatural topic distribu-
tions (Clark et al., 2020; Artetxe et al., 2020; Asai
et al., 2021). BUFFET includes both translation-
based datasets and datasets that are annotated di-
rectly in each language (Table 1, Data curation).

3.2 BUFFET Construction Process

Following Ye et al. (2021), we unify all datasets
listed in Table 1 into the same text-to-text format,
where a model is expected to directly generate the
desired outputs given diverse inputs (Raffel et al.,
2020). A task has instructions, k-shot training and
validation examples, as well as test examples, each
of which consists of input and output.
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Tasks Dataset Output |L| k Metric Domain Data curation

Summarization XLSUM summary 12 1 ROUGE News aligned
Question Generation TYDI QA-QG question 8 8 BLEU Wikipedia in-language
NLI XNLI 3-way class 14 16 acc. misc. translation

AMERICAS NLI 3-way class 10 16 acc. misc. translation
PARSI NLU 3-way class 1 16 acc. misc. in-language
OCNLI 3-way class 1 16 acc. misc. in-language
KLUE-NLI 3-way class 1 16 acc. misc. in-language

Paraphrase Detection PAWS-X 2-way class 6 7 acc. Wikipedia aligned
Sentiment INDIC-NLU-SENT. 2-way class 14 16 acc. e-commerce translation
Analysis AMAZON REVIEW 2-way class 5 16 acc. e-commerce in-language
Commonsense XCOPA multi-choice 11 16 acc. misc. translation
Reasoning XWINOGRAD multi-choice 4 8 acc. misc. translation
QA TYDIQA span 8 8 F1 Wikipedia in-language
Named Entity WIKIANN names & tags 33 32 F1 Wikipedia aligned
Recognition MASAKHANER names & tags 9 32 F1 News in-language

Table 1: The eight target tasks built upon 15 existing datasets in BUFFET. |L| indicates the number of
languages, and k indicates the total number of training instances. We include datasets that are curated by translation,
in-language annotation (in-language) and automatically aligned (aligned) following Yu et al. (2022).

3.2.1 Unification Process

Instance selection. By default, we use all lan-
guages included in the original datasets.1 For each
language in each dataset, we use the original test or
validation datasets as test instances (if the test set
is not publicly available), and we randomly sample
three sets of k-shot examples (demonstrations) for
training and validation from the original training
dataset, using the same random seeds.2

Instruction selection. We use English instructions
from SuperNaturalInstructions (Wang et al., 2022b)
and PromptSource (Bach et al., 2022). Among mul-
tiple instructions, we sample the first instruction
for a similar task that suits our scheme. The full
list of the instructions is in Appendix Table 6.

Instruction translation. The availability of cross-
lingual instruction is still largely limited, and prior
work often translates instructions for target tasks
(Lin et al., 2021; Shi et al., 2023). We provide
translated instructions in 54 target languages, trans-
lated by NLLB (Costa-jussà et al., 2022), and man-
ually translate the instructions into five languages.3

3.2.2 Tasks and Dataset Curation
Unlike in English, the availability of high-quality
labeled datasets is largely limited, especially in gen-
erations or reasoning tasks, and the few available
datasets are often translated from English. We
select eight popular NLP tasks and identify avail-
able datasets for each task following the survey of

1For XLSUM and WikiANN, we sample languages target
languages as discussed in Appendix Section A.

2We use 100, 13, and 21 as seed numbers.
3Manual translations are performed by volunteers.

multilingual datasets by Yu et al. (2022). Appendix
Table 6 shows examples, and Appendix Section A.1
discusses the dataset choices.

Summarization. The task is to generate a sum-
mary given an article. We use the XLSUM (Hasan
et al., 2021) dataset of news article summarization.

Question generation. The task is to generate a
question according to a given input passage and
a corresponding answer (Xiao et al., 2021). We
convert the TYDIQA (Clark et al., 2020) dataset
into a question generation task, which we refer to
TYDIQA-QG.

Natural language inference (NLI). NLI
involves determining the logical relationship
(entailment, contradiction, neutral)
between two text fragments, i.e., a premise and
a hypothesis. We include five datasets covering
typologically-diverse languages

Paraphrase detection. The task is to identify
whether two sentences have/do not have the same
meaning (duplicate or not duplicated).
We adopt PAWS-X (Yang et al., 2019).

Sentiment analysis. Binary sentiment anal-
ysis identifies whether a text (e.g., a product
review from Amazon) expresses positive or
negative sentiment towards a topic. We
use the MULTILINGUAL AMAZON REVIEW

DATASET (Keung et al., 2020) and INDICNLU-
SENTIMENT (Aggarwal et al., 2022), and convert
the former to a binary classification task (see Ap-
pendix Section A.1).

Commonsense reasoning. For a sentence and two
options, the task is to select one of the option la-
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bels, (A) or (B), based on which is better suited
to the given context. We use two commonsense
reasoning datasets, XCOPA (Ponti et al., 2020)
and XWINOGRAD (Muennighoff et al., 2023).

Question answering (QA). The task is to answer
a question given a paragraph, where the answer is
a sub-span of the paragraph. We use TYDIQA-
GOLDP (Clark et al., 2020), which we refer to as
TYDIQA for simplicity.

Named entity recognition. The task is rep-
resentative of sequence labeling to detect and
classify named entities in an input sentence.
We adopt WIKIANN (Pan et al., 2017) and
MASAKHANER (Adelani et al., 2021). We con-
vert the task into a text-to-text format, where
a model extracts all named entities with named
entity tags:4 <location>, <person>, and
<organization>.5

3.3 BUFFET Evaluation

Evaluation metrics. In Table 1, we list metrics
for each task. To mitigate the variance from differ-
ent few-shot samples, for each language included
in a given task, we average the model’s perfor-
mance over three different sets of k-shot instances.
Subsequently, each dataset score is calculated as
a macro-average of the per-language score (Clark
et al., 2020). Finally, following Liang et al. (2020),
we take two separate average scores: (a) Avg. class
score of all classification and QA tasks, and (b)
Avg. generation score of all generation tasks.

BUFFET-Light. Conducting a comprehensive
evaluation covering a wide range of languages and
tasks in BUFFET is valuable but computationally
expensive, especially when we use external APIs
or large model sizes (e.g., more than ten billion).
BUFFET-Light is a representative subset of lan-
guages and tasks for resource-limited scenarios.
We select languages and datasets to ensure that we
cover diverse languages and output formats, dis-
cussed in detail in Section A.3.

4This is more challenging than the standard sequence la-
beling setup since the model must reproduce the entity spans
and generate appropriate tags. For example, the output for
“Obama served as the 44th president of the United States.”
would be “Obama <person> United States <location>.”

5Although MASAKHANER supports other named entity
tags and distinguishes the beginning and middle/end of the
named entities, we discard named entity categories beyond
the three types and merge the beginning and middle/end entity
tags to make the task formulation consistent with WIKIANN.

Training Demos Instructions
Transfer EN Target EN Target

TARGET FT k
ENGLISH FT N
ENG.+TGT. FT N k

ENGLISH ICL k ✓
TARGET ICL k ✓
Z-EICL ✓

Transfer Pretraining LMs

FINE-TUNING Unlabeled mT5-base
ICL Unlabeled BLOOM, mT5-xxl
ICL + Instruction BLOOMZ-7B, mT0-xxl

Tuning ChatGPT

Table 2: Comparison of transfer methods, based on
the resources they use, and LMs. The top section
requires parameter updates via fine-tuning (FT), and the
bottom uses ICL with no updates. k = k-shot examples;
N = full training data; ✓= instruction language. The
bottom half lists the models evaluated in this work. The
blue-colored rows are instruction-tuned models.

4 Benchmarking LMs on BUFFET

4.1 Transfer Methods

We investigate various transfer methods with and
without parameter updates, summarized in Table 2.
To assess the benefit of k-shot training examples in
the target language, we also conduct experiments
on zero-shot transfer methods. We assume that the
model can optionally use instructions in the target
language or another language, or full training sets
in a high-resource language like English.

Fine-tuning (methods with parameter updates).
We explore several transfer approaches that require
parameter updates: Target fine-tuning (TARGET
FT) that trains models on few-shot samples for
each language, English fine-tuning (ENGLISH
FT) that trains models on a source language (i.e.,
English) only and uses no target language data, and
English+Target fine-tuning (ENG.+TGT. FT)
further fine-tunes the ENGLISH FT models on few-
shot samples of target languages.

In-context learning (methods without updates).
We explore several in-context learning methods.
English in-context learning (ENGLISH ICL)
uses English instructions and demonstrations in
the target languages, while Target In-context
learning (TARGET ICL) uses both instructions
and demonstrations in the target language. Fi-
nally, Zero-shot English In-context learning (Z-
EICL) uses only English instructions without
demonstrations (neither in English nor in the target
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language), as in zero-shot transfer. Unlike in En-
glish, where abundant instructions and instance an-
notations are available, for many languages we lack
annotated instructions (Wang et al., 2022b). We
use machine-translated instructions in BUFFET.

4.2 Language Models

We evaluate six diverse LM (Table 2 bottom),
including pretrained vanilla LMs as well as
instruction-tuned LMs, which have been trained
on a massive number of tasks with instructions.

Models for fine-tuning. Due to the high costs of
fine-tuning for every k-shot setting, we experiment
with an efficient yet competitive mT5-base with
580 million parameters (Xue et al., 2021).

Models for in-context learning. We exper-
iment with BLOOM-7B (7 billion parameters;
Scao et al., 2022) and mT5-xxl (13 billion pa-
rameters; Xue et al., 2021). We also experiment
with their instruction-tuned variants: BLOOMZ-
7B and mT0-xxl (Muennighoff et al., 2023),
as well as the current state-of-the-art ChatGPT
(gpt-3.5-turbo-0301; Ouyang et al. 2022).
Note that these models may be trained on some
datasets included in BUFFET. Due to the
high API costs, we conduct ChatGPT evaluations
on BUFFET-Light data only with the two few-
shot transfer methods. While our main experi-
ments focus on multilingual pre-trained models,
in Section 5.2 we further evaluate four English-
centric LMs on BUFFET-Light, namely LLama1,
Llama2 (Touvron et al., 2023), Llama2-Chat, and
Mistral (Jiang et al., 2023).

4.3 Experiment Details

Fine-tuning. For ENG.+TGT. FT and ENGLISH

FT, we train on representative English datasets fol-
lowing Hu et al. (2020b) for three epochs and five
for smaller COPA and Winograd datasets. The
source English datasets are listed in the appendix.
We fine-tune on k-shot samples for 300 epochs
(TARGET FT) and 200 epochs (ENG.+TGT. FT).
For ENG.+TGT. FT, we first train a base model
on English task data, and then train the fine-tuned
model on few-shot target language data. We evalu-
ate these final checkpoints after fine-tuning.
In-context learning. We prompt LLMs with in-
structions and k-shot demonstrations available in
BUFFET. Our preliminary experiments reveal
mT0 performs significantly better when zero or
very few few-shot samples are used, so we use 4-

shots for mT0 ENGLISH ICL and TARGET ICL by
default, while for other models we use all demon-
strations unless they exceed max context length.
We use greedy decoding for predictions. For tasks
with a fixed set of pre-specified answer candidates,
we compute the probability of option tokens by iter-
ating options except for ChatGPT without access to
token probabilities. Due to the high inference costs,
we evaluate ChatGPT only on BUFFET-Light.

5 Results and Analysis

5.1 Main Results
Table 3 shows aggregated results of fine-tuned
and in-context learning-based LMs on BUFFET-
Light for fair comparisons between ChatGPT and
other models. Full experiment results including
BUFFET-Full results on each task are in the Ap-
pendix. Below, we summarize the key findings.

LLMs with in-context learning often lag behind
much smaller fine-tuned models. Our com-
parison shows that few-shot cross-lingual transfer
via in-context learning remains challenging; EN-
GLISH ICL using BLOOM, BLOOMZ (7B) and
mT0 (13B) often under-performs mt5-base (580M)
fine-tuned on English datasets (ENGLISH FT or
ENG.+TGT. FT). Even the current state-of-the-
art ChatGPT underperforms mT5-base ENG.+TGT.
FT in simple discriminative tasks (e.g., PAWS-
X) or structured prediction tasks (NER). How-
ever, ICL baselines constantly outperform mT5
(TARGET FT) across tasks and ENG.+TGT. FT
on XCOPA and XWINOGRAD with limited scarce
English task data. This implies that when lacking
task-specific training data even in English, prompt-
ing LLMs can be more effective, while otherwise
training a specialized model on English data and
then fine-tuning few-shot instances is still effective
in discriminative tasks.

Zero- and few-shot transfer remains challenging
in under-represented languages. Figure 2 il-
lustrates model performance on NER (WIKIANN
and MASAKHANER) and NLI (XNLI, AMERI-
CASNLI) across different languages.6 The lan-
guages are sorted based on the token availability
in the mC4 corpus,7 with high-resource languages
positioned on the left side. In general, models

6Several languages in MASAKHANER or AMERICAS NLI
are not part of the pretraining process.

7We use token count statistics at https://github.
com/allenai/allennlp/discussions/5265.
Languages not seen in pretraining are sorted alphabetically.
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Output Classification Multi-choice Span Str. Generation Avg.
Tasks NLI Sent. PWX XCP XWG TyDi NER QG Summ. class gen

TGT. FT mT5 35.0 67.2 47.7 44.1 48.8 5.2 33.4 3.2 2.5 40.7 2.9
ENG. FT mT5 49.9 89.8 77.5 49.6 50.0 66.8 39.0 3.8 6.2 60.7 5.0
ENG.+TGT. mT5 51.8 91.0 77.8 49.5 48.5 69.5 47.8 12.5 11.8 61.2 12.2

ENG. ICL BLOOM 32.1 81.7 42.2 50.2 51.0 54.7 24.2 9.3 3.4 45.0 6.4
mT5 35.7 50.0 42.2 50.4 47.5 0.2 0.0 0.0 0.4 31.7 0.2

LLama1 12.9 48.1 27.4 48.1 52.0 24.4 20.2 6.4 2.1 28.2 4.2
LLama2 32.3 67.4 44.6 50.2 49.3 36.7 26.8 9.6 2.3 41.6 6.0
Mistral 33.3 77.4 46.0 53.7 53.0 51.8 24.0 12.5 2.4 45.2 7.4

BLOOMZ 31.5 86.3∗ 48.5∗ 50.4 54.2 65.8∗ 25.5 13.5 8.3∗ 47.5 10.9
mT0 32.6 80.4∗ 60.5∗ 52.9 57.8 74.5∗ 6.9 15.3 2.7∗ 52.2 9.7

LLama-Chat 35.0 70.8 45.9 52.1 47.7 43.1 28.0 11.3 1.5 44.1 6.4
ChatGPT 54.5 91.1 68.6 76.7 73.3 68.1 45.4 21.2 5.4 64.6 13.3

TGT. ICL BLOOM 27.9 80.5 46.5 49.9 51.8 11.8 23.4 11.2 3.6 40.4 7.4
mT5 35.7 50.0 42.2 49.8 45.2 0.2 0.0 0.0 0.4 31.5 0.2

BLOOMZ 32.0 61.7∗ 52.5∗ 49.7 55.5 63.1∗ 23.4 9.1 8.0∗ 43.4 8.5
mT0 36.2 72.1∗ 60.6∗ 50.5 60.3 73.6∗ 7.9 16.1 3.4∗ 46.3 9.7

ChatGPT 48.2 91.5 68.2 74.3 73.4 68.0 44.8 21.1 11.4 62.7 16.3
Z-EICL BLOOM 33.3 37.2 42.3 50.0 47.1 4.3 0.0 14.0 6.3 29.2 10.1

mT5 35.1 49.8 42.2 50.7 55.5 2.2 0.0 0.1 4.8 32.5 0.6
BLOOMZ 33.5 51.6∗ 57.8∗ 51.8 51.0 83.2∗ 11.2 9.5 4.3∗ 41.9 6.9

mT0 48.5 90.0∗ 90.6∗ 63.8 61.0 80.1∗ 0.0 10.2 12.0∗ 56.4 11.1

Table 3: Overall experiment results in BUFFET. Note that to enable comparison between ChatGPT (only tested
on BUFFET-Light) and other methods, we present BUFFET-Light results, and the overall results on BUFFET are
available in Table 10. The blue-colored rows are instruction-tuned models. We added ∗ symbols next to the scores
for the tasks on which the models have been trained. Bold fonts indicate the best results for each task, among the
models that are not directly trained on the task. When ChatGPT achieves the best results, we note the second-best
number from the models not trained on the task, as ChatGPT may have been trained on a similar task.
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Figure 2: Model performance on NLI and NER,
displayed for various languages. The languages are
sorted based on token availability in mC4, with the left
side representing high-resource ones. ChatGPT results
are not shown on the NER chart as some languages are
not included in BUFFET-Light.

such as mT5 ENGLISH FT or ChatGPT ENGLISH

ICL exhibit strong performance in high-resource
languages, but their effectiveness diminishes in
underrepresented languages (right side, Figure 2).
For instance, on NLI in Aymara (aym), ChatGPT
achieves slightly higher performance than a ran-
dom baseline. We also find that fine-tuning with
k in-language examples is very effective for less-
represented languages: mT5 ENG.+TGT. FT sig-
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Figure 3: Model performance across different num-
bers of k-shots. mT5 FT denotes mT5 ENG.+TGT. FT.
Refer to the Appendix for more detailed results.

nificantly outperforms mT5 ENGLISH FT in lower-
resource languages (e.g., 30% improvements in
Hausa on MasakhaNER).

English-centric LMs perform well in high-
resource languages but significantly struggle in
low-resource languages. We also conduct evalu-
ations of four recently released LMs (7B) primar-
ily trained in English: LLama1 (Touvron et al.,
2023), Llama2, Llama2-chat (Touvron et al., 2023)
and Mistral (Jiang et al., 2023). As shown in Ta-
ble 3, among non-instruction-tuned LMs for EN-
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Figure 4: Model performance across different k-shot demonstrations for TYDIQA, WIKIANN, INDICSENTI-
MENT and AMAZONREVIEW. Each point represents the accuracy for a different set of k-shot demonstrations.

GLISH FT, Mistral performs best and even outper-
forms BLOOM both in generation and classifica-
tion average, despite that Mistral is not designed
to be multilingual and primarily trained on English
data. Except for LLama1 which explicitly filters
out text in non-alphabetic languages, other English-
centric LMs match or exceed multilingual BLOOM
and BLOOMZ. This result suggests even small
amounts of multilingual data in pre-training help
LLMs acquire multilingual abilities, corroborating
Blevins and Zettlemoyer (2022a). Yet, they often
struggle with many other languages (e.g., AMER-
ICASNLI or INDIC SENTIMENT), and it remains
unclear how much target language data is necessary
for this to occur.

Instruction-tuning helps zero-shot ICL but may
not generalize well to few-shot settings. The
zero-shot performance of instruction-tuned models
is significantly higher than the zero-shot perfor-
mance of non-instruction-tuned models (Table 3:
mT0-xxl and BLOOMZ-7B Z-EICL v.s. mT5-xxl
and BLOOM-7B Z-EICL). However, instruction-
tuned models show surprising performance dete-
rioration in few-shot settings: across tasks, mT0
performs worse in few-shot settings than in zero-
shot settings (ENGLISH ICL v.s. Z EICL). we
hypothesize that since these models are optimized
to execute a new task solely based on an instruc-
tion, with no prior demonstrations (Muennighoff
et al., 2023), they struggle to learn in context from
few-shot demonstrations. We conduct controlled
experiments in Section 5.2 for further analysis.

5.2 Analysis

Effect of varying number of k. Figure 3 demon-
strates the impact of increasing the number of
few-shot samples for in-context learning and fine-
tuning, on two tasks: TYDIQA, and WIKIANN.
We vary the number of few-shot demonstrations, in-
cluding 0, 1, 4, and 8 (for the tasks with more than
8 shots). Full results on more tasks and languages
are in Appendix D.3. Increasing the number of
few-shot examples has a notable positive impact on

fine-tuning (mT5 FT). Similarly, non-instruction-
tuned BLOOM benefits from the inclusion of few-
shot samples on most of the tasks. However, for
instruction-tuned models, namely BLOOMZ and
mT0, which were exclusively trained with instruc-
tions rather than demonstrations, we observe a sig-
nificant decline in performance when additional
demonstrations are added, possibly due to the over-
fit to the zero-shot ICL scenario, even on previously
unseen tasks such as WIKIANN. Prior work on En-
glish instruction-tuning has demonstrated that train-
ing an LM on diverse setups (few-shot, zero-shot,
using both demonstrations and instructions) is ef-
fective in alleviating such sensitivity of instruction-
tuned models to diverse evaluation setups (Longpre
et al., 2023). It is important to develop multilingual
instruction-following models capable of effectively
utilizing both instructions and demonstrations.

Effect of different k shots. Figure 4 shows model
performance across the three different sets of k
examples. We observe the significant variance in
fine-tuning-based transfer across different demon-
strations, confirming Zhao et al. (2021). Impor-
tantly, we show that in-context learning is even
more sensitive to demonstration choice than few-
shot fine-tuning, further emphasizing the impor-
tance of standardized k-shots for a fair transfer
evaluation. For instance, the standard deviation
on AMAZON REVIEW for BLOOM ENGLISH ICL
and mT5 ENG.+TGT. FT is 2.2 and 0.2, respec-
tively. We also found that in 49.7% of the cases,
the optimal k-shot demonstrations for BLOOM and
BLOOMZ ENGLISH ICL differ.

Effect of model scaling. Appendix Figure 12
shows the performance of BLOOM-560 million, 1
billion, and 7 billion with few-shot ENGLISH ICL
on a subset of the tasks. Overall performance sig-
nificantly improves across different model sizes,
indicating cross-lingual transfer performance via
ICL improves with scale; this is consistent with
findings in Lin et al. (2021) on classification tasks.

Effect of prompt templates. We investigate the
effectiveness of different English instructions on

1778



TYDIQA-QG in four-shot settings using mT0
and BLOOM as base models in Appendix Ta-
ble 24. We compare four relevant instructions
and one irrelevant instruction (an instruction for
AMAZON REVIEW) and find that the performance
sharply decreases with irrelevant instructions on the
instruction-tuned model (7.1 → 0.4 BLEU). How-
ever, among relevant instructions, the performance
gap on BLOOM is limited compared to the large
variance observed across different demonstration
sets. The larger performance gap for instruction-
tuned mT0 likely indicates that instruction-tuned
models are more sensitive to diverse prompts.

Manual evaluation of generations. We conduct
small manual evaluations on generation results. In
particular, on TYDIQA-QG, we manually eval-
uate grammatical correctness–if a model genera-
tion is grammatically correct and acceptable–and
quality–if a generated question or summarization
looks reasonable, as a binary classification for
two instruction-tuned models, Bloomz and llama2-
chat. We evaluated 47 English and 25 Telugu
generations, and annotations were conducted by
the authors with native or bilingual proficiency
in those languages. We found that while both
BLOOMZ and Llama2 Chat show high ratings in
English—95.7% and 77.0% grammatical correct-
ness and 89.4% and 84.7% quality for BLOOMZ
and Llama2, respectively—their Telugu results are
rated low. In particular, none of the LLama2 output
for Telugu matches our criterion for grammatical
correctness or quality, and even BLOOMZ only
achieves 56.0% grammatical correctness and 40%
quality. Our annotators also notice that Telugu
outputs often contain the same questions. These
results indicate that for generation tasks, still strong
LMs struggle in lower-resourced languages.

6 Conclusion and Discussion

We introduce BUFFET, a few-shot cross-lingual
transfer benchmark that encompasses a diverse
range of discriminative and generative tasks across
many typologically diverse languages. While
LLMs utilizing in-context learning excel in genera-
tion tasks, they are often surpassed by smaller fine-
tuned models specifically trained for target tasks.
Our analysis sheds light on several important open
questions for better multilingual instruction-tuning,
and more balanced multilingual pre-training, and
suggests the necessity of evaluating across lan-

guages and tasks under comparable settings.8

Limitations

Selection of tasks. As the first step toward
standardized evaluation for few-shot cross-lingual
transfer, BUFFET focuses on popular discrimina-
tive tasks and some generative tasks, with well-
studied evaluation protocols and rich annotated
resources. Due to the lack of high-quality non-
English annotated data, BUFFET does not include
many datasets that require complex reasoning tasks.
Further exploration can expand these evaluations
to more diverse and complex tasks, such as MTOP
(Li et al., 2021) or MGMS8K (Shi et al., 2023),
or knowledge-intensive tasks (Asai et al., 2021;
Ogundepo et al., 2023). Yet, it should be noted
that high-quality generation or reasoning task data
are often only available handful of resource-rich
languages, which makes BUFFET-style compre-
hensive comparisons across languages difficult. We
encourage the community to work towards diverse
high-quality evaluation datasets in more world lan-
guages.

Hyper-parameter search or prompting. Since
our main focus is to benchmark different LMs
and learning methods in a comparable format,
we do not explore sophisticated prompting meth-
ods or conduct task- or language-dependent hyper-
parameter searches. We anticipate that BUFFET
will encourage the LLM community to explore new
methods to further improve in-context learning be-
yond English.

Translated instructions. We use instructions
translated by the NLLB (Costa-jussà et al., 2022)
for TARGET ICL; such machine-translated in-
structions are prone to errors, especially in less-
represented languages, that can affect the final per-
formance.

Lack of underrepresented variants, dialects
Typologically distinct and low-resource languages
are often excluded from the cross-lingual bench-
marks used to assess cross-lingual transfer capa-
bilities in LLMs. Our evaluation with BUFFET
demonstrates that even the most powerful LLMs
still perform poorly on less-represented languages,
by evaluating them on more than 50 languages.
However, we do not specifically focus on finer-
grained language varieties and dialects that are

8We provide detailed discussions in Appendix Section E.
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commonly spoken by underrepresented popula-
tions. We advocate for conducting more studies
that include under-represented languages and their
dialects, as emphasized in previous works (Aji
et al., 2022; Kakwani et al., 2020), particularly
when evaluating massively multilingual models.

Ethics Statement

While there has been significant research on in-
context learning with LLMs, most of the focus has
been on the English language. This raises questions
about the applicability of findings from English
few-shot NLP to few-shot cross-lingual transfer
scenarios. To address this gap, BUFFET aims to
provide a comprehensive and less biased evaluation
framework. However, it is important to note that
our benchmark dataset currently covers only 54 out
of the approximately 6,000 world languages. In
light of these limitations, we encourage future re-
search to explore the effectiveness and limitations
of widely used transfer methods in a more diverse
range of languages. This will help us gain a deeper
understanding of the generalizability of transfer
learning techniques across different linguistic con-
texts. We curate existing open-licensed datasets
as source datasets of BUFFET, and manually as-
sessed sampled questions to see the quality of data
as well as potential privacy risks.
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Appendix

A Benchmark Details

BUFFET unifies diverse tasks and languages to
enable a comparable and equitable evaluation for
few-shot cross-lingual transfer. We provide a com-
parison with other multi-task benchmarks in Ta-
ble 4. In this section, we present technical dataset
details.

A.1 Task-specific Details

Natural language inference. In addition to the
widely used XNLI (Conneau et al., 2018), we
gather NLI datasets that are annotated in each lan-
guage or designed to cover under-represented lan-
guages: AMERICASNLI (Ebrahimi et al., 2022),
PARSINLU-ENTAILMENT (Khashabi et al., 2021),
KLUE-NLI (Park et al., 2021), and OCNLI (Hu
et al., 2020a). We use the same target labels,
entailment, contradiction, neutral
across different datasets. We use 16 examples for
each class.

Paraphrase detection. We adopt PAWS-X (Yang
et al., 2019) and include 16 shots for each class as
few-shot training and validation data.

Sentiment analysis. We use the MULTILINGUAL

AMAZON REVIEW DATASET (Keung et al., 2020)
and INDICNLU-SENTIMENT (Aggarwal et al.,
2022). INDICNLU-SENTIMENT is created by
translating English sentiment analysis data into di-
verse Indic languages. For the former, we discard
the neutral class (the reviews with a score of 3)
and assign reviews with scores of 4 and 5 to the
positive class and reviews with scores of 1 and 2 to
the negative class. For both datasets, we sample 16
demonstrations per class.

Commonsense reasoning. We use two common-
sense reasoning datasets, XCOPA (Ponti et al.,
2020) and XWINOGRAD (Muennighoff et al.,
2023). Due to the smaller scale of the datasets,
we sample 16 and 8 training instances in total for
XCOPA and XWINOGRAD, respectively.

Question answering. We use TYDIQA-
GOLDP (Clark et al., 2020) for QA, as the data
is annotated in each language, better reflecting na-
tive speakers’ interests and linguistic phenomenon.
Due to the longer average input length, we limit
the number of exemplars to 8.

Named entity recognition. We adopt
WIKIANN (Pan et al., 2017) and

Multi-ling. Few-S Gen. Low-R

XTREME ✓
XTREME-R ✓
XGLUE ✓ ✓
CrossFit ✓ ✓
MEGA* ✓ ✓
XTREME-UP* ✓ ✓
BUFFET ✓ ✓ ✓ ✓

Table 4: Comparison of the existing benchmarks based
on their multilinguality (Multi-ling.), few-shot task for-
mulation (Few-S), availability of generative tasks (Gen.),
and coverage of low-resource languages (Low-R). ∗ in-
dicates concurrent work.

Instruction

Input 

Instances

English Instruction 

Arabic Instruction 

Swahili Instruction 

Japanese Instruction 

Telugu Instruction 

Translate

BUFFET
Instruction

Training Instances (e.g., k=32)

Test Instances

Select

Output 

Figure 5: BUFFET includes 15 datasets, which are
unified into the same single text-to-text format.

MASAKHANER (Adelani et al., 2021). WIKIANN
is automatically curated and exhibit alignment
errors (Yu et al., 2022). We sample languages on
WIKIANN as discussed in Section A.2. We use 32
instances overall for few-shot transfer.

Summarization. We use the XLSUM (Hasan et al.,
2021) dataset to benchmark models’ ability to gen-
erate a summary given a news article. Due to the
context window limit, we use only 1 shot for train-
ing in this task.

Question generation. We convert the TYDIQA-
GOLDP dataset into a question generation task,
which we refer to TYDIQA-QG. Given the gold
paragraph and an answer, the system generates the
original question. We use 8 examples for few-shot
training.

A.2 More Details of BUFFET
This section will provide further details of the
BUFFET benchmark. Figure 5 summarizes the
construction process of BUFFET.

Instance and language sampling for XLSUM,
WIKIANN and AMAZON REVIEW. For au-
tomatically aligned datasets with many test lan-
guages, such as XLSUM or WIKIANN, we fil-
ter out languages that are not included in any
other BUFFET datasets following suggestions by
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Yu et al. (2022).9 With large-scale automatically
aligned datasets, we randomly sample 1,000 test in-
stances in XLSUM and WIKIANN and 2,000 test
instances for Amazon Review, to reduce inference
time costs across many languages and multiple sets
of demonstrations.

Instructions. The full list of the instructions
written in English is available in Table 7. For
some tasks, we modify the original instruction
to make labels consistent with the names used in
BUFFET or to remove task-specific dependencies
in the input data field. For example, an instruc-
tion for PAWS-X says the class names are “re-
peated/not repeated” while in BUFFET we use
“duplicated/not_duplicated” as labels, so we change
the labels in the original instruction.

List of the languages. We show the list of the
54 languages included in BUFFET in Table 5.
BUFFET covers 25 different language families,
and also exhibits geographical diversities. Table 8
shows the full list of the datasets with language
names included in BUFFET.

Examples. Table 6 shows the input and output
examples in BUFFET. We reformulate all o the
tasks with diverse formats into the same text-to-text
format.

A.3 BUFFET-Light

Task and language decisions. The goal of build-
ing the BUFFET-Light subset is to enable quick
multilingual evaluation without losing the language
and task diversity in the original BUFFET. To
this end, we filter BUFFET so that we evaluate
between 3 and 7 languages per task, and each lan-
guage is included in at most three tasks.10 This
design choice allows us to consider 31 diverse lan-
guages across all tasks in BUFFET while reducing
the number of evaluation settings by 66%.

Final list of BUFFET-light. The full list of
tasks and languages in BUFFET are in Table 9.

B More Experimental Details

Fine-tuning. We use the following En-
glish datasets for ENGLISH FT and ENG.+TGT.

9On XLSUM, we further reduce the number of languages
to reduce the inference costs while maintaining language di-
versities.

10In addition to the high-resource languages per task, we
also include low-resource languages when available (i.e., for
NLI) to not unfairly inflate BUFFET-Light scores.

Language name Language family code

Amharic Afro-Asiatic amh
Arabic Afro-Asiatic ar
Assamese Indo-European as
Aymara aymaran languages aym
Belarusian Indo-European be
Bengali Indo-European bn
Boro Sino-Tibetan brx
Bulgarian Indo-European bg
Bribri Chibchan bzd
Chinese Sino-Tibetan zh
Asháninka Arawakan cni
Estonian Uralic et
Finnish Uralic fi
French Indo-European fr
German Indo-European de
Guarani Tupian gn
Gujarati Indo-European gu
Haitian French Creole ht
Hausa Niger–Congo hau
Wixarika Uto-Aztecan hch
Hindi Indo-European hi
Igbo Niger–Congo ibo
Indonesian Austronesian id
Italian Indo-European it
Japanese Japonic ja
Kannada Dravidian kn
Kinyarwanda Niger–Congo kin
Korean Koreanic ko
Luo Nilo Saharan luo
Maithili Indo-European mai
Malayalam Dravidian ml
Marathi Indo-European mr
Modern Greek Indo-European el
Nahuatl Uto-Aztecan nah
Oriya (macrolanguage) Indo-European or
Otomí Oto-Manguean oto
Panjabi Indo-European pa
NigerianPidgin English Creole pcm
Persian Indo-European fa
Portuguese Indo-European pt
Quechua others qu
Russian Indo-European ru
Shipibo-Konibo Panoan shp
Spanish Indo-European es
Swahil Niger–Congo sw
Tamil Dravidian ta
Rarámuri Uto-Aztecan tar
Telugu Dravidian te
Thai Kra–Dai th
Turkish Turkic tr
Urdu Indo-European ur
Vietnamese Austroasiatic vi
Wolof Niger–Congo" wol
Yorùbá Niger–Congo yor

Table 5: List of all languages in BUFFET.

FT: SQUAD (Rajpurkar et al., 2016) for
QA, MNLI (Williams et al., 2017) for NLI,
PAWS (Zhang et al., 2019) for paraphrase detec-
tion, XLSUM (Hasan et al., 2021) for summa-
rization, COPA (Arun and Balakrishnan, 2018)
for XCOPA, WINOGRAD for XWINOGRAD, the
AMAZON MULTILINGUAL REVIEW English set
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Task Dataset Input Output

NLI AMERICAS
NLI

premise: Ramonar mayamp jawsañaxanawakunalaykutix mä
jiskt’aw utjitana . . . walikiwa. . . tukt’ayayita.. mä jisk’t’aw utji-
tana kuntix lurkan ukata. [SEP] hypothesis: Janiw jayraskayat
Ramonar jawsañxa. (aym)

contradiction

PARAPHRASE PAWS-X sentence 1: Ses parents sont Angelina Miers, une artiste de pre-
mier plan, et Don Luis Toranzos, d’Argentine. [SEP] sentence
2: Ses parents sont Angelina Miers, elle-même un artiste de
premier plan, et Don Luis Toranzos d’Argentine. (fr)

duplicate

SENTIMENT AMAZON review title: 质量很好，空间容量大，可以装很多东西
review body: 箱子很轻盈，柔韧性不错，不易变形。外观
优雅美观，出行很有范，呵呵。好评！

positive

COMMONSENSE XCOPA Õpetaja andis õpilastele kodutöö. (A) Õpilased saatsid kirju.
(B) Õpilased ägisesid. (et)

(B)

COMMONSENSE XWINOGRAD フリースは綿より感触がよい。_のほうがずっと柔らか
いからいだ。 (A)フリース (B)綿

(A)

QA TYDIQA question: Mikä oli Stanley Kubrickin ensimmäinen elokuva?
context: Lyhytelokuvien jälkeen Kubrick teki ensimmäisen
pitkän elokuvansa Fear and Desire vuonna 1953 rahoittaen
sen kokonaan itse ja sukulaistensa avustuksella, mikä oli tuol-
loin hyvin epätavallista. Kubrickin esikoiselokuva oli kuitenkin
floppi, ja ohjaaja osti kaikki esityskopiot itselleen, jotta elokuvaa
ei näytettäisi. Elokuva merkitsi myös hänen ensimmäisen avio-
liittonsa loppua, koska Kubrick tapasi kuvauksien aikana Ruth
Sabotkan, jonka kanssa hän muutti yhteen avioeronsa jälkeen.
Kubrick ja Sabotka menivät naimisiin vuonna 1955, ja he saivat
yhdessä yhden lapsen, Katharinan (syntynyt 1953). (fi)

Fear and Desire

NER MASAKHANER Issachar alikuwa ametokea India akielekea Israel ambapo ali-
wekwa chini ya ulinzi na hakutakiwa kutoka nje ya uwanja wa
ndege wa Russia .

India
<organization>
Israel
<organization>
Russia
<organization>

QG TYDIQA-QG premise: 롯데는이번상반기채용과관련해구직자들에게
실질적인도움이될수있도록다양한방법으로정보제공
활동을강화할계획이다. [SEP] hypothesis: 롯데는어떠한
정보도제공하지않을계획이다.

contradiction

Table 6: The input and output examples in BUFFET. We show one example from one dataset per task. Due to the
long input length, we do not include a summarization example in this table.

for sentiment analysis, and the TYDIQA-QG En-
glish set for question generation.

For ENGLISH FT, we limit the number of En-
glish training samples to 100,000 and fine-tune
mT5-base (Xue et al., 2021) for 3 epochs. For
the ENGLISH FT baseline, we transfer this model
directly to new languages, while for ENG.+TGT.
FT, we initialize the model checkpoint with the
trained model weight and further fine-tune a model
on few-shot samples for 300 epochs.

In-context learning. Different models have dif-
ferent maximum context window sizes: mT0 only
accepts up to 1024 tokens, while BLOOMZ and
ChatGPT accept up to 2048 and 4096, respectively.
We use training instances up to the maximum con-
text window. We set the maximum token length

to 15 except for XLSUM and TYDIQA-QG. For
XLSUM, we set the maximum token length to 100,
and for TYDIQA-QG, we set the maximum token
length to 50. We use greedy decoding throughout
the experiments. For BLOOM-based model evalu-
ations, we use a single RTX-100 GPU with 24 GB
GPU memory. We use int8bit quantization to avoid
GPU out-of-memory errors. To evaluate mT5 and
mT0, we use TPU v3-8.

We found English-centric LMs (Llama1,
Llama2, Llama2-chat, and Mistral) show strong
abilities of in-context learning and often can gen-
erate output in expected formats (e.g., selecting a
class label). To accelerate evaluations, we make
those models directly predict outputs, rather than
computing prompt token probabilities of input se-
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Dataset Instructions

NLI Take the premise sentence as truth. Then the hypothesis is true (entailment), false (contradiction) or
inconclusive (neutral)?

PAWS-X In this task you are given a sentence pair that has high lexical overlap. If the sentences have the same
meaning and are just paraphrases of each other label them as duplicate, if not label them as not_duplicate

SENTIMENT In this task, you’re given a review from Amazon. Your task is to generate a rating for the product. The
rating is extremely negative, negative, neutral, positive, and really positive.

XCOPA In this task you are given a premise and two alternatives (A) and (B). You must choose the alternative
that is more plausibly the cause or effect of the situation described by the premise.

XWINOGRAD Replace the _ in the above sentence with the correct option

QA Read the given passage and answer a question about the information present in the passage.

NER Given the following sentence, indicate the name entities (i.e., the real-world objects such as a person,
location, organization, etc. that can be denoted with a proper name) such as “New York Times”. For
each word of a named-entity, indicate their type “location” or “organization” or “person”.

SUMMARIZATION In this task, you are given an article. Your task is to summarize the article in a sentence.

QG This task is about reading the given passage and constructing a question about the information present in
the passage.

Table 7: The list of English instructions for each task in BUFFET.

Task Dataset Languages

NLI AMERICAS NLI aym, bzd, cni, gn, hch, nah, too, quy, shp, tar
KLUE NLI ko
OCNLI zh
PARSI NLU ENTAILMENT fa
XNLI ar, bg, de, el, en, es, fr, hi, ru, sw, th, tr, ur, vi, zh

PARAPHRASE DETECTION PAWS (en,) de, es, fr, ja, ko, zh
SENTIMENT AMAZON REVIEW (en), de, es, fr, ja, zh
ANALYSIS INDIC SENTIMENT as, bn, brx, gu, hi, kn, mai, ml, mr, or, pa, ta, te, ur
COMMONSENSE XCOPA et, ht, it, id, qu, sw, zh, ta, th, tr, vi
COMMONSENSE XWINOGRAD (en,) ja, pt, ru, zh
QA TYDIQA (en,) ar, be, fi, id, sw, ko, ru, te
NER WIKIANN ( en,) ta, fr, it, ja, vi, qu, be, gu, et, th, or, kn, fi, gn, ru, el, ur, es,

hi, te, as, sw, pa, bg, ml, tr, fa, id, ko, mr, de, ar, bn, zh
MASAKHANER amh, hau, ibo, kin, luo, pcm, swa, wol, yor

SUMMARIZATION XLSUM (english, ) ta, vi, id, tr, ja, th, bn, ar, en, es, fa, zh, sw
QG TYDIQA-QG (en,) ar, be, fi, id, sw, ko, ru, te

Table 8: The list of datasets with language lists in BUFFET.

Task Dataset Languages

NLI AMERICAS NLI aym, cni, hch
KLUE NLI ko
PARSI NLU ENTAILMENT fa
XNLI bg, el, hi, sw, ur

Paraphrase Detection PAWS-X de, es, ja, ko, zh
Sentiment AMAZON REVIEW de, fr, ja, zh
Analysis INDIC SENTIMENT bn, ta, ur
Commonsense XCOPA et, it, ta, th, tr

XWINOGRAD pt, ru
QA TYDIQA be, id, sw
NER WIKIANN be, bg, el, et, fi, it

MASAKHANER yor
Summarization XLSUM bn, fa, es, id, tr, vi
QG TYDIQA-QG ar, fi, ko, ru, te

Table 9: The subset of datasets and languages included in BUFFET-Light.
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quence followed by each class token.

C Detailed BUFFET Results

This section includes the full list of the experimen-
tal results. Overall results on the full BUFFET
are available in Table 10, and Figure 6 summarizes
overall performance across the eight tasks, on the
BUFFET-Light subset.

The overall trends on BUFFET-Light remain
the same as the original BUFFET. This indicates
BUFFET-Light is a reliable and more efficient al-
ternative for holistic evaluations for few-shot cross-
lingual transfer. Note that ChatGPT is only eval-
uated on the BUFFET-Light subsets due to the
expensive API costs of experiments.

ChatGPT has strong generation capabilities
but requires careful instruction design. As dis-
cussed, although ChatGPT significantly outper-
forms other LLMs with in-context learning, its
performance often lags behind fine-tuning-based
methods in some discriminative tasks, particularly
in less-represented languages. ChatGPT, however,
significantly outperforms fine-tuned models on
tasks that require target language generations (e.g.,
question generation, QA) except summarization
(XLSUM). On XLSUM, we found that ChatGPT
often generates semantically correct summariza-
tions in English rather than in the input article lan-
guage, resulting in low ROUGE-2 scores. We do
not observe that phenomenon in other LLMs (e.g.,
BLOOMZ); we show some ChatGPT output ex-
amples in the Appendix Table 25. Though more
prompt engineering can boost ChatGPT’s perfor-
mance in summarization (Huang et al., 2023), we
use the same prompts throughout the evaluations
for a fair comparison. We also observe that when
instructions are given in the target language, Chat-
GPT often outputs a summary in the language, as
shown in improved XLSUM performance in Chat-
GPT TARGET ICL.

Below, we present the performance breakdown
for each dataset. “–” indicates that ChatGPT is not
evaluated on the subset as it is not included in the
BUFFET-Light subset.

C.1 NLI

Table 11 shows the full results on AMERICASNLI.
Table 12 shows the full results on XNLI. Table 13
presents the full results on the other three entail-
ment datasets annotated in each language, KLU-
ENLI, OCNLI, and PARSINLUENTAILMENT.

NLI (LR)

NLI (HR)

Para.

QA

QG

NER (HR)

NER (LR)

1020304050607080

mt5 Target FT
mt5 English FT
mt5 Eng.+Tgt. FT

BLOOM Eng. ICL
BLOOMZ Eng ICL

mT0 Eng ICL
ChatGPT ICL

Figure 6: Overall results on BUFFET-Light.

On XNLI, ENGLISH FT (zero-shot transfer)
shows strong performance and often outperforms
ENG.+TGT. FT (few-shot transfer). Among ICL
baselines, mT0 ZICL shows the best macro per-
formance on XNLI. However, on AMERICASNLI,
all methods struggle, while ENG.+TGT. FT shows
the best macro performance on AMERICAS NLI.
The performance gap between ENGLISH FT and
ENG.+TGT. FT get significantly larger, with the
largest gap in Aymara (5.5%). Despite its strong
performance on XNLI, mT0 ZICL struggles in
AMERICAS NLI (33.7% on average).

While mT0 ZICL shows robust performance
across XNLI languages, ChatGPT shows a large
performance gap between higher-resource lan-
guages and low-resource languages (57% in Greek
v.s. 33% Urdu).

C.2 Paraphrase Detection

The results on PAWS-X results are available in Ta-
ble 14. ENGLISH FT shows the best performance
on this task among non-instruction-tuned models.
We hypothesize that as the languages included in
PAWS-X are all relatively well-represented lan-
guages and the task is relatively simple, ENGLISH

FT, which is not trained in the target languages,
can achieve high performance. mT0 ZICL shows
quite high performance, likely because the model
is trained on PAWS-X (Muennighoff et al., 2023).

C.3 Sentiment Analysis

The experimental results on AMAZON REVIEW

MULTI and INDIC SENTIMENT are available in
Tables 15 and 16. On both datasets, all models
yield high accuracy across languages, except for
mT5 ZEICL.
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Output Classification Multiple Choice Span Str. Generation Avg.
Tasks NLI Sent. Para. XCPA XWGD QA NER QG Summ. class gen

Random 33.3 50.0 50.0 50.0 50.0 – – – – –
TGT. FT mT5 34.6 67.2 47.2 46.7 50.0 8.3 30.8 3.4 2.8 40.2 3.1
ENG. FT mT5 46.0 89.7 78.6 49.5 48.4 62.9 30.8 4.2 4.0 57.9 4.1
ENG.+TGT. mT5 48.8 90.4 77.9 49.9 49.0 66.7 43.5 12.2 8.4 58.8 10.0

ENG. ICL BLOOM 33.6 85.3 42.4 50.0 50.8 39.2 25.0 11.6 2.4 44.0 7.0
mT5 34.5 50.0 43.2 50.0 49.2 0.3 1.6 0.0 0.3 32.1 0.1

BLOOMZ 33.0 87.2* 49.5* 50.5 52.1 44.5* 20.0 13.9 9.0* 44.3 11.4
mT0 33.6 79.9* 61.1* 57.1 59.6 69.0* 7.9 15.3 1.5* 45.6 8.4

ChatGPT† 54.5 91.1 68.6 76.7 73.3 68.1 45.4 21.2 5.4 64.6 13.3
TGT. ICL BLOOM 31.7 85.3 45.9 50.1 51.7 7.0 25.2 12.8 4.7 41.2 8.7

mT5 34.4 50.0 43.1 50.0 47.3 0.2 0.2 0.0 0.3 31.7 0.1
BLOOMZ 32.1 64.7* 51.7* 50.5 53.1 43.7* 19.1 12.0 10.9* 40.6 11.4

mT0 38.1 70.6* 60.9* 52.8 57.9 70.8* 8.5 14.6 1.8* 45.7 8.2
ChatGPT† 48.2 91.5 68.2 74.3 73.4 68.0 44.8 21.1 11.4 62.7 16.3

Z-EICL BLOOM 32.3 35.8 42.3 50.1 46.4 3.1 0.0 16.4 4.1 28.8 10.0
mT5 34.2 50.0 42.4 50.1 46.4 2.0 0.0 0.1 1.3 32.5 0.7

BLOOMZ 34.0 51.6* 58.0* 50.1 50.9 65.2* 7.6 10.2 2.9* 39.3 6.6
mT0 49.1 90.2* 91.2* 64.1 64.5 75.2* 0.0 10.3 8.5* 56.0 9.4

Table 10: Overall experiment results on BUFFET. The blue-colored rows are instruction-tuned models, and we
added ∗ symbols next to the scores for the tasks on which the models have been trained. “Random” shows random
baseline performance. Bold fonts indicate the best results for each task, among the models that are not directly
trained on the task. When ChatGPT achieves the best results, we also note the second-best number from the models
that are not trained on the task, acknowledging the possibility that ChatGPT may have encountered a similar task
during training.

Transfer + Model Macro aym bzd cni gn hch nah oto quy shp tar

Target FT 35.9 36.0 35.5 35.5 35.7 32.7 37.5 35.2 35.4 37.6 37.8
English FT 42.6 40.7 44.9 43.3 46.8 38.0 42.5 41.6 46.1 43.2 39.2
English Target FT 45.1 46.2 48.6 45.0 49.7 38.8 46.8 44.2 46.4 42.5 43.0
EICL BLOOM 33.7 33.4 34.6 33.2 34.1 33.3 33.5 33.4 34.3 34.0 33.6
EICL mT5 33.3 33.3 32.8 33.3 33.3 33.2 33.2 33.2 33.3 33.3 33.3
EICL BLOOMZ 33.3 33.1 33.5 33.7 33.3 33.3 33.8 32.0 33.3 33.3 33.3
EICL mT0 33.3 33.3 33.2 33.3 33.3 33.4 33.3 33.3 33.4 33.3 32.9
EICL ChatGPT 36.3 33.6 – 40.9 – 34.3 – – – – –
TICL BLOOM 33.7 33.5 34.6 33.2 33.6 33.3 33.5 33.3 34.3 34.0 33.6
TICL mT5 33.3 33.3 32.8 33.3 33.6 33.2 33.2 33.3 33.3 33.3 33.3
TICL BLOOMZ 33.4 33.3 33.5 33.7 33.3 33.3 33.8 33.4 33.3 33.3 33.3
TICL mT0 33.4 33.6 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
TICL ChatGPT 34.7 33.6 – 36.7 – 33.9 – – – – –
ZICL BLOOM 33.5 33.7 32.0 33.7 32.5 34.7 31.6 33.8 34.7 34.7 33.9
ZICL mT5 34.0 36.3 34.4 32.9 32.8 36.4 33.6 33.7 32.9 33.3 34.1
ZICL BLOOMZ 34.3 36.3 33.5 33.7 33.3 36.4 33.6 33.7 32.9 33.3 34.1
ZICL mT0 33.7 33.5 33.5 33.3 33.7 33.3 34.1 33.2 35.3 33.1 33.5

Table 11: Model performance on AMERICASNLI. We report the average of the three few-shot samples.

C.4 Commonsense

XCOPA. The experimental results on XCOPA
are available in Table 17. On XCOPA, ChatGPT
and mT0 (Z EICL) yield high performance across
languages. ChatGPT achieves particularly notable
performance in Italian (91.2%). On the other hand,

all of the fine-tuning-based methods struggle, as
the small size of the source datasets in English.
This result indicates that for a task that lacks a
large-scale training dataset even in high-resource
languages, LLMs using in-context learning may of-
ten result in higher performance. We observed that
mT0 ENGLISH FT faces difficulties when applied
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Transfer + Model Macro ar bg de el es

Target FT 36.4 35.8 37.8 37.3 37.4 37.0
English FT 59.4 59.2 62.9 61.5 61.4 63.7
English Target FT 57.3 57.7 59.5 59.0 59.4 62.7
EICL BLOOM 33.7 34.0 33.9 33.4 33.3 34.2
EICL mT5 33.3 33.3 33.3 33.3 33.3 33.3
EICL BLOOMZ 33.1 34.1 33.6 33.7 27.9 34.2
EICL mT0 36.3 37.8 36.3 35.3 33.4 33.7
EICL ChatGPT 50.3 – 60.7 – 54.0 –
TICL BLOOM 33.4 33.6 32.7 33.2 33.7 32.9
TICL mT5 33.3 33.3 33.3 33.3 33.2 33.3
TICL BLOOMZ 33.4 33.3 33.7 33.3 34.4 33.3
TICL mT0 40.4 38.8 51.2 41.8 47.8 43.1
TICL ChatGPT 50.5 – 52.4 – 56.9 –
ZICL BLOOM 33.6 33.7 34.1 34.3 33.7 33.7
ZICL mT5 32.3 32.8 32.1 32.5 32.3 30.6
ZICL BLOOMZ 32.1 – – – – –
ZICL mT0 56.2 56.1 58.4 58.7 57.5 58.0

Transfer + Model fr hi ru sw th tr ur vi zh

Target FT 37.4 35.7 36.0 35.1 36.7 36.8 34.2 36.3 35.5
English FT 62.1 58.0 59.8 55.5 57.4 58.4 54.0 57.1 60.4
English Target FT 59.0 55.1 60.1 52.3 56.4 56.1 51.6 55.8 58.3
EICL BLOOM 36.2 33.4 33.6 33.4 33.3 33.3 33.3 33.3 33.4
EICL mT5 33.4 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3
EICL BLOOMZ 35.1 33.4 32.1 33.9 33.0 32.1 33.1 33.2 33.8
EICL mT0 47.3 36.3 34.9 35.8 33.4 38.1 34.9 37.9 33.7
EICL ChatGPT – 48.0 – 55.9 – – 33.1 – –
TICL BLOOM 33.3 33.3 33.2 34.3 34.8 33.8 33.6 32.5 33.0
TICL mT5 33.3 33.2 33.3 33.3 33.5 33.3 33.3 33.3 33.3
TICL BLOOMZ 32.9 33.2 34.0 33.6 33.7 32.9 33.1 32.8 33.3
TICL mT0 39.7 39.9 47.7 37.3 37.4 33.5 35.7 35.3 36.8
TICL ChatGPT – 51.8 – 47.3 – – 44.2 – –
ZICL BLOOM 34.0 33.4 33.5 33.9 33.3 33.1 34.7 33.3 32.3
ZICL mT5 29.6 33.3 32.3 32.7 33.1 34.7 32.8 32.4 31.1
ZICL BLOOMZ – – – – – – 32.8 32.4 31.1
ZICL mT0 58.7 55.3 57.0 53.7 51.6 56.1 54.5 57.3 54.5

Table 12: Model performance on XNLI. We report the average of the three few-shot samples.

Transfer + Model KLUENLI PARSINLUENTAILMENT OCNLI

Target FT 34.0 34.6 34.0
English FT 57.9 51.1 32.5
English Target FT 61.1 50.5 38.6
EICL BLOOM 33.8 28.9 38.9
EICL mT5 33.3 40.4 31.0
EICL BLOOMZ 31.9 28.8 38.2
EICL mT0 34.3 30.0 36.7
EICL ChatGPT 64.8 62.3 –
TICL BLOOM 33.4 28.8 38.2
TICL mT5 33.3 40.4 30.5
TICL BLOOMZ 33.8 29.0 32.1
TICL mT0 43.1 37.4 38.6
TICL ChatGPT 56.5 50.2 –
ZICL BLOOM 33.8 37.4 32.0
ZICL mT5 32.4 31.9 37.6
ZICL BLOOMZ 32.4 31.9 37.6
ZICL mT0 56.9 55.2 50.6

Table 13: Model performance on KLUENLI, OCNLI and PARSINLUENTAILMENT. We report the average of the
three few-shot samples.

to XCOPA. This could be attributed to the limited
size of the XCOPA English set, which might not

provide enough data for a smaller mT5-base model
to acquire comprehensive task knowledge.
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Transfer + Model Macro de es fr ja ko zh

Target FT 47.2 47.5 48.8 47.1 48.1 44.2 47.3
English FT 78.6 79.9 83.5 84.0 74.5 74.3 75.5
English Target FT 77.9 79.9 82.6 81.0 73.1 73.9 77.0
EICL BLOOM 42.4 41.5 42.3 43.0 42.7 42.0 42.8
EICL mT5 43.2 41.5 42.4 47.7 42.7 42.0 42.6
EICL BLOOMZ 49.5 58.9 58.9 57.7 34.5 29.5 57.8
EICL mT0 61.1 78.7 57.6 57.8 57.3 58.0 57.4
EICL ChatGPT 68.6 73.5 72.0 – 67.4 60.1 69.8
TICL BLOOM 45.9 49.3 42.3 42.4 42.9 54.9 43.0
TICL mT5 43.1 41.5 46.4 43.0 42.7 42.0 42.6
TICL BLOOMZ 51.7 47.4 56.4 51.3 48.8 55.6 50.4
TICL mT0 60.9 67.9 68.1 57.0 57.3 58.0 57.4
TICL ChatGPT 68.5 71.9 71.5 – 67.0 62.8 69.1
ZICL BLOOM 42.4 41.6 42.4 42.9 43.0 42.0 42.7
ZICL mT5 58.0 58.0 57.8 58.6 57.7 58.1 57.5
ZICL BLOOMZ 58.0 58.0 57.8 58.6 57.7 58.1 57.5
ZICL mT0 91.2 91.5 95.5 94.3 87.5 87.9 90.8

Table 14: Model performance on PAWSX. We report the average of the three few-shot samples.

Transfer + Model Macro de zh es fr ja

Target FT 76.3 72.9 77.1 76.1 82.3 73.1
English FT 91.9 94.2 84.5 93.8 95.1 91.8
English Target FT 92.4 93.6 87.6 93.4 94.9 92.3
EICL BLOOM 83.4 82.0 84.9 92.8 88.0 69.2
EICL mT5 50.2 49.4 50.6 50.9 50.6 49.8
EICL BLOOMZ 81.5 75.7 80.2 93.8 93.5 64.3
EICL mT0 79.8 88.7 70.6 81.8 89.6 68.5
EICL ChatGPT 85.8 94.3 87.5 – 96.1 65.0
TICL BLOOM 84.2 87.3 85.7 92.8 84.2 70.9
TICL mT5 50.2 49.4 50.6 50.9 50.6 49.8
TICL BLOOMZ 64.9 57.1 71.2 79.2 61.5 55.5
TICL mT0 72.2 88.9 51.3 58.9 85.1 76.8
TICL ChatGPT 89.7 94.4 85.5 – 95.6 83.2
ZICL BLOOM 50.3 49.4 50.6 50.9 50.7 49.8
ZICL mT5 45.1 48.5 49.6 39.9 37.0 50.4
ZICL BLOOMZ 15.6 23.9 18.4 6.0 9.6 19.8
ZICL mT0 87.3 90.5 72.7 90.8 93.0 89.5

Table 15: Model performance on AMAZON REVIEWS MULTI. We report the average of the three few-shot samples.

XWINOGRAD. The experimental results on
XWINOGRAD are available in Table 18. Similar
to XCOPA, on XWINOGRAD, fine-tuning-based
methods often struggle, while in-context learning
with competitive LLMs yields strong performance.

C.5 Question Answering

TYDIQA experimental results are available in Ta-
ble 19. Both the fine-tuning and ICL methods ex-
hibit commendable performance on this particular
task. It is intriguing to note that both mT0 and
BLOOMZ demonstrate relatively lower efficacy
in Korean, Finnish, and Russian. This can be at-
tributed to the fact that these languages were not
included during the pretraining phase.

C.6 Named Entity Recognition

WIKIANN. Table 20 contains the results for
WIKIANN. We specifically present the few-shot
results since we discovered that zero-shot baselines
consistently exhibit extremely poor performance,
often close to zero, primarily because generating
the answer in the precise output format proves to
be challenging.

It’s important to acknowledge that the BUFFET-
Light WIKIANN subset comprises languages that
are relatively high-resource, which could poten-
tially lead to an overestimation of ChatGPT’s per-
formance. When comparing the best fine-tuning
method with ChatGPT in the BUFFET-light lan-
guages, they generally perform competitively, with
the exception of Finnish.
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Transfer + Model Macro as bn brx gu hi

Target FT 58.2 61.4 55.8 62.6 56.7 64.1
English FT 87.4 85.0 87.4 89.4 88.4 91.6
English Target FT 88.4 84.6 90.2 90.6 89.7 93.0
EICL BLOOM 87.2 83.7 87.6 91.2 86.1 92.0
EICL mT5 49.8 49.8 49.8 49.8 49.8 49.8
EICL BLOOMZ 93.0 89.6 94.2 94.9 93.1 95.6
EICL mT0 79.9 73.6 88.4 81.3 80.2 81.1
EICL ChatGPT 89.3 – 91.8 – – –
TICL BLOOM 86.5 83.1 86.7 91.2 84.1 92.6
TICL mT5 49.8 49.8 49.8 49.8 49.8 49.8
TICL BLOOMZ 64.5 67.0 61.2 94.9 52.8 56.5
TICL mT0 69.0 87.4 82.9 50.1 78.2 68.3
TICL ChatGPT 89.7 – 92.6 – – –
ZICL BLOOM 49.7 49.8 49.8 49.8 49.8 49.8
ZICL mT5 26.5 24.4 24.4 24.8 26.0 26.1
ZICL BLOOMZ 64.5 67.0 61.2 94.9 52.8 56.5
ZICL mT0 93.2 90.5 93.7 94.3 92.2 95.3

Transfer + Model kn mai ml mr or pa ta te ur

Target FT 59.5 62.6 45.8 60.4 62.7 48.9 57.8 55.0 60.8
English FT 88.4 89.4 86.9 86.1 77.2 90.4 87.0 86.7 90.3
English Target FT 89.6 90.6 86.4 86.2 77.9 91.6 87.4 88.5 91.1
EICL BLOOM 83.0 91.2 85.8 88.9 85.8 89.0 85.0 86.0 85.1
EICL mT5 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8
EICL BLOOMZ 92.7 94.9 91.8 92.4 93.8 94.2 90.6 90.5 93.5
EICL mT0 74.8 71.6 83.2 81.6 78.3 88.1 86.7 78.0 71.7
EICL ChatGPT – – – – – – 82.3 – 93.9
TICL BLOOM 81.8 91.2 84.0 88.2 85.0 88.2 85.3 85.1 84.1
TICL mT5 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8 49.8
TICL BLOOMZ 49.7 94.9 66.3 58.3 59.2 57.3 68.2 50.3 66.9
TICL mT0 72.1 49.7 84.4 79.7 66.1 68.8 55.3 58.7 64.9
TICL ChatGPT – – – – – – 83.9 – 92.4
ZICL BLOOM 49.8 49.8 49.3 49.8 49.8 49.8 49.6 49.8 48.7
ZICL mT5 26.8 24.8 29.0 20.7 22.4 32.4 25.4 28.9 34.5
ZICL BLOOMZ 26.8 24.8 29.0 20.7 22.4 32.4 25.4 28.9 34.5
ZICL mT0 93.5 94.3 92.0 92.8 91.2 95.2 92.3 92.9 94.6

Table 16: Model performance on INDIC SENTIMENT. We report the average of the three few-shot samples.

Transfer + Model Macro et ht it id qu sw zh ta th tr vi

Target FT 46.7 50.0 50.1 48.3 50.5 50.4 32.5 49.8 49.3 49.4 33.9 50.0
English FT 48.4 49.8 50.2 49.6 51.0 48.6 48.8 49.0 50.8 48.0 49.6 49.2
English Target FT 49.9 50.3 49.9 49.6 49.2 50.5 50.4 50.4 49.2 50.7 49.5 49.4
EICL BLOOM 50.0 51.5 49.0 49.9 50.0 50.6 50.0 50.1 49.5 50.0 49.9 50.0
EICL mT5 50.0 50.0 49.9 50.7 50.0 49.5 49.8 49.9 50.7 50.0 50.0 50.0
EICL BLOOMZ 50.5 50.7 51.2 50.9 50.0 52.7 49.9 50.0 50.1 49.8 49.8 50.0
EICL mT0 57.1 60.7 60.6 53.4 59.8 50.0 61.6 64.1 51.9 54.1 54.1 58.1
EICL ChatGPT 76.7 87.6 – 91.2 – – – – 54.6 62.6 87.4 –
TICL BLOOM 50.1 49.8 50.4 50.4 49.0 48.8 52.2 50.6 49.6 50.0 49.8 50.2
TICL mT5 50.0 49.9 50.0 49.9 50.0 50.0 49.9 50.0 50.0 50.0 49.5 50.9
TICL BLOOMZ 50.5 45.6 50.8 50.4 53.4 47.4 49.8 51.8 53.2 50.0 49.4 53.4
TICL mT0 52.8 50.4 51.9 51.0 51.9 50.6 53.7 50.5 50.1 50.6 54.3 65.5
TICL ChatGPT 74.4 89.2 – 91.6 – – – – 49.5 55.7 86.2 –
ZICL BLOOM 50.9 51.8 48.8 51.2 51.4 50.6 51.2 53.6 52.4 48.2 49.8 50.6
ZICL mT5 50.1 49.8 50.4 50.4 49.0 48.8 52.2 50.6 49.6 50.0 49.8 50.2
ZICL BLOOMZ 50.1 48.6 50.2 52.4 47.4 50.8 45.2 46.8 54.8 50.6 52.8 51.0
ZICL mT0 64.1 64.0 62.2 66.2 70.0 48.8 66.2 71.8 61.0 63.0 65.0 67.2

Table 17: Model performance on XCOPA. We report the average of the three few-shot samples.

MASAKHANER. Results on MASAKHANER
are available at Table 21. In this benchmark, all ICL
methods, including ChatGPT, encounter difficul-

ties, whereas TARGET FT and ENG.+TGT. FT con-
sistently demonstrates strong performance across
various languages. Notably, by incorporating an

1793



Transfer + Model Macro jp pt ru zh

Target FT 50.0 48.4 50.3 49.9 51.4
English FT 48.4 52.2 52.2 45.4 51.2
English Target FT 49.0 48.4 48.4 48.8 50.6
EICL BLOOM 50.8 49.6 48.0 54.0 51.5
EICL mT5 49.2 48.4 49.5 47.4 51.3
EICL BLOOMZ 52.1 52.6 50.3 55.3 50.1
EICL mT0 59.6 62.2 57.7 53.2 65.2
EICL ChatGPT 73.3 – 74.1 72.5 –
TICL BLOOM 51.7 52.2 50.2 54.3 50.1
TICL mT5 47.3 48.4 46.2 44.4 50.3
TICL BLOOMZ 53.1 52.7 54.5 55.3 50.0
TICL mT0 57.9 54.9 57.2 62.9 56.5
TICL ChatGPT 71.6 – 70.4 72.8 –
ZICL BLOOM 53.7 51.9 54.4 56.7 51.9
ZICL mT5 46.4 47.4 48.5 45.7 44.2
ZICL BLOOMZ 50.9 51.9 51.9 50.2 49.6
ZICL mT0 64.5 68.7 59.8 62.2 67.3

Table 18: Model performance on XWINOGRAD We report the average of the three few-shot samples.

Transfer + Model Macro ar be fi id sw ko ru te

Target FT 8.3 8.1 6.1 9.1 6.4 5.5 7.5 9.2 14.7
English FT 62.9 61.0 63.2 65.3 69.2 67.9 57.1 56.3 63.5
English Target FT 66.7 65.9 68.0 63.6 70.0 69.3 60.6 65.1 70.7
EICL BLOOM 39.2 43.8 58.2 20.6 47.0 57.5 23.2 32.7 30.4
EICL mT5 0.3 0.7 0.1 0.4 0.2 0.3 0.0 0.3 0.0
EICL BLOOMZ 44.5 45.3 67.7 18.9 61.0 73.7 12.4 19.6 57.6
EICL mT0 69.0 54.0 75.8 68.9 68.8 75.5 68.1 53.7 86.7
EICL ChatGPT 70.8 – 58.9 – 76.5 77.0 – – –
TICL BLOOM 7.0 13.2 11.9 1.7 19.1 4.5 0.7 1.3 3.7
TICL mT5 0.2 0.4 0.1 0.2 0.6 0.2 – 0.3 –
TICL BLOOMZ 43.7 44.7 63.7 17.5 60.3 71.5 12.1 20.3 59.3
TICL mT0 70.8 58.7 75.8 66.9 72.1 78.3 72.1 65.9 76.6
TICL ChatGPT 66.7 – 46.0 – 76.7 77.4 – – –
ZICL BLOOM 2.0 2.2 1.1 3.1 3.2 2.3 1.0 1.5 1.7
ZICL mT5 65.2 80.0 86.3 7.3 81.3 82.0 44.7 55.0 85.1
ZICL BLOOMZ 65.2 80.0 86.3 7.3 81.3 82.0 44.7 55.0 85.1
ZICL mT0 75.2 71.8 84.4 67.3 77.3 78.6 68.3 65.0 88.9

Table 19: Model performance on TYDIQA. We report the average of the three few-shot samples.

additional 32 training examples, ENG.+TGT. FT
achieves a significant 34% improvement in perfor-
mance for Hausa. These remarkable enhancements
underscore the effectiveness of fine-tuning a spe-
cialized model on a limited set of training samples
in target languages.

C.7 Generation

TYDIQA-QG. The experimental results for
TYDIQA-QG are available in Table 22. On this
task, ChatGPT and mT0 ENGLISH ICL show su-
perior performance than smaller fine-tuned models,
demonstrating their competitiveness in generating
fluent text in target languages.

XLSUM. XLSUM results are available in Ta-
ble 23. Despite strong generation capability, Chat-
GPT ENGLISH ICL performance remains low. We

found that when instructed in English, ChatGPT
often generates summaries in English, not in the
article language. We haven’t observed such be-
haviors on other tasks or other LLMs. ChatGPT
TARGET ICL shows large improvements from EN-
GLISH ICL, which has not been observed in other
tasks. When instructions in the target language are
given, ChatGPT almost always generates a sum-
mary in the target language.

Among non-instruction-tuned models,
ENG.+TGT. FT yields the highest average
performance. It should be noted that mT0 and
BLOOMZ are trained on XLSUM. Nevertheless,
their performance in some languages remains low.
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Transfer + Model Macro ta fr it ja vi be gu et th

Target FT 43.7 0.2 59.0 55.5 43.9 58.3 63.5 26.0 54.4 23.7
English FT 52.2 0.8 78.2 79.4 56.1 80.5 73.9 24.0 60.5 10.7
English Target FT 56.6 0.8 78.1 76.8 55.7 75.9 76.8 37.0 76.0 25.6
EICL BLOOM 32.8 0.6 51.6 51.0 22.1 53.8 25.6 22.3 37.0 1.7
EICL mT5 1.6 0.0 0.0 0.0 0.0 0.0 3.3 0.3 0.0 0.0
EICL BLOOMZ 22.4 0.5 37.1 43.4 15.6 36.8 15.4 13.0 29.6 0.3
EICL mT0 15.8 0.1 13.8 13.0 9.1 22.9 11.0 6.0 24.1 1.4
EICL ChatGPT 77.6 – – 81.8 – – 78.2 – 78.2 –
TICL BLOOM 32.8 0.7 52.5 50.2 20.8 53.5 24.4 24.0 34.0 1.0
TICL mT5 0.3 0.0 0.0 0.1 0.0 0.1 0.2 1.3 0.0 1.7
TICL BLOOMZ 20.7 0.6 37.3 39.8 15.0 32.1 13.5 8.7 25.1 0.2
TICL mT0 15.8 0.1 13.8 13.0 9.1 22.9 11.0 6.0 24.1 1.4
TICL ChatGPT 76.8 – – 82.3 – – 78.4 – 76.9 –

Transfer + Model or kn fi gn ru el ur es hi te as

Target FT 36.5 12.5 55.5 60.3 50.1 59.0 68.4 54.9 42.4 7.0 25.3
English FT 35.5 11.0 64.2 71.0 60.4 73.4 79.6 75.7 47.9 6.6 26.0
English Target FT 40.0 22.5 74.8 68.0 67.8 74.4 79.1 78.3 53.7 9.5 28.3
EICL BLOOM 22.0 6.0 39.5 47.3 26.1 20.4 70.7 55.2 40.2 5.6 22.7
EICL mT5 0.0 1.3 0.0 0.0 0.0 0.0 10.1 0.0 10.0 0.0 0.7
EICL BLOOMZ 10.0 5.7 31.8 28.0 19.7 15.8 41.7 37.5 30.9 4.2 16.0
EICL mT0 16.3 3.3 15.2 24.3 15.1 12.8 47.1 20.3 18.7 3.3 10.0
EICL ChatGPT – – 81.5 – – 72.4 – – – – –
TICL BLOOM 25.3 6.7 37.6 49.0 26.2 19.7 71.7 55.6 39.9 5.3 24.0
TICL mT5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 1.0
TICL BLOOMZ 6.5 4.0 26.5 24.7 17.4 13.0 47.3 41.1 26.5 3.8 13.0
TICL mT0 16.3 3.3 15.2 24.3 15.1 12.8 47.1 20.3 18.7 3.3 10.0
TICL ChatGPT – – 81.9 – – 69.3 – – – – –

Transfer + Model sw pa bg ml tr fa id ko mr de ar bn zh

Target FT 57.5 29.7 54.2 19.7 55.4 48.0 64.2 36.1 34.8 51.2 40.6 43.0 49.9
English FT 61.0 35.5 67.0 21.4 64.5 60.5 81.6 36.2 36.6 75.1 52.9 48.7 66.6
English Target FT 75.3 42.3 67.1 24.5 79.5 57.6 80.7 57.7 44.7 73.2 52.9 47.7 65.2
EICL BLOOM 60.3 26.3 30.9 14.0 39.4 28.6 61.2 12.0 28.4 41.7 43.9 34.9 38.7
EICL mT5 0.0 0.7 0.0 0.0 0.0 0.0 0.3 0.0 0.4 6.7 16.7 3.7 0.0
EICL BLOOMZ 34.9 15.0 22.7 5.0 34.6 14.7 31.7 9.8 22.6 26.4 21.0 36.0 31.3
EICL mT0 24.3 10.0 14.7 5.0 20.2 21.4 23.4 11.2 12.3 15.7 23.0 23.9 27.7
EICL ChatGPT – – 73.3 – – – – – – – – – –
TICL BLOOM 58.8 26.7 29.6 14.4 39.6 27.8 61.4 10.6 27.9 43.3 44.6 36.8 38.3
TICL mT5 0.4 0.5 0.1 0.4 0.3
TICL BLOOMZ 26.8 14.0 19.7 4.2 31.3 14.7 35.2 8.1 20.4 22.4 23.6 36.2 31.0
TICL mT0 24.3 10.0 14.7 5.0 20.2 21.4 23.4 11.2 12.3 15.7 23.0 23.9 27.7
TICL ChatGPT – – 72.0 – – – – – – – – – –

Table 20: Model performance on WIKIANN. We report the average of the three few-shot samples.

Transfer + Model Macro amh hau ibo kin luo pcm swa wol yor

Target FT 17.4 13.6 31.5 28.6 12.8 14.2 11.1 26.4 8.7 9.9
English FT 9.4 6.2 11.0 14.8 10.5 10.5 8.7 10.4 3.8 8.3
English Target FT 30.5 27.0 44.7 44.3 26.8 26.0 23.7 40.6 18.8 22.4
EICL BLOOM 17.2 3.4 23.8 27.4 18.5 11.6 15.2 24.9 16.3 13.9
EICL mT5 1.5 0.0 13.3 0.0 0.0 0.4 0.0 0.0 0.0 0.0
EICL BLOOMZ 14.9 0.2 11.3 28.4 14.3 4.6 12.4 24.4 17.7 21.0
EICL mT0 1.3 0.0 1.7 0.8 4.9 1.2 0.0 2.2 0.0 0.8
EICL ChatGPT 13.2 – – – – – – – – 13.2
TICL BLOOM 17.2 3.4 23.8 27.4 18.5 11.6 15.2 24.9 16.3 13.9
TICL mT5 0.2 0.0 1.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0
TICL BLOOMZ 14.9 0.2 11.3 28.4 14.3 4.6 12.4 24.4 17.7 21.0
TICL mT0 1.3 0.0 1.7 0.8 4.9 1.2 0.0 2.2 0.0 0.8
TICL ChatGPT 12.8 – – – – – – – – 12.8

Table 21: Model performance on MASAKHANER. We report the average of the three few-shot samples.
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Transfer + Model Macro ar be fi id sw ko ru te

Target FT 3.4 2.7 4.1 2.5 4.4 3.2 2.8 2.1 5.8
English FT 4.2 2.1 3.5 5.1 6.2 5.1 3.0 4.7 4.2
English Target FT 12.2 11.5 7.3 15.8 14.1 13.1 7.9 8.9 18.8
EICL BLOOM 11.6 18.3 10.4 10.8 16.1 15.2 1.3 3.7 17.4
EICL mT5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
EICL BLOOMZ 13.9 19.5 14.2 7.8 23.6 23.1 0.7 2.1 20.3
EICL mT0 15.3 25.8 10.3 3.7 19.6 12.3 4.1 6.2 40.1
EICL ChatGPT 17.8 30.6 – 28.2 – – 0.7 2.6 26.9
TICL BLOOM 12.8 18.1 9.6 10.0 15.7 14.9 7.7 9.2 16.8
TICL mT5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TICL BLOOMZ 12.0 16.0 10.7 5.0 20.0 21.1 1.9 5.2 15.9
TICL mT0 14.6 17.7 9.1 6.6 18.3 12.0 5.1 8.5 39.3
TICL ChatGPT 19.2 24.0 – 27.5 – – 14.8 17.6 12.2
ZICL BLOOM 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0
ZICL mT5 16.5 30.6 15.5 5.2 24.5 21.8 3.0 4.6 26.8
ZICL BLOOMZ 1.7 2.4 2.1 1.7 2.5 2.2 1.0 0.9 1.2
ZICL mT0 10.3 4.9 13.7 3.5 12.3 5.4 1.9 2.0 39.1

Table 22: Model performance on TYDIQA-QG. We report the average of the three few-shot samples.

Transfer + Model Macro Tamil Vietnamese Swahili Indonesian

Target FT 2.8 0.8 11.0 2.0 1.7
English FT 4.0 0.1 18.4 7.8 4.9
English Target FT 8.4 10.9 24.7 8.8 7.8
EICL BLOOM 2.4 0.1 9.0 4.6 3.8
EICL mT5 0.3 0.0 1.7 0.4 0.2
EICL BLOOMZ 9.0 18.6 12.3 1.6 3.3
EICL mT0 1.8 0.0 10.4 5.3 1.0
EICL ChatGPT 5.4 – 19.5 – 4.9
TICL BLOOM 4.7 13.9 10.3 4.6 3.1
TICL mT5 0.3 0.0 1.7 0.3 0.3
TICL BLOOMZ 10.9 4.6 12.9 1.2 15.7
TICL mT0 1.8 0.0 10.4 5.3 1.0
TICL ChatGPT 11.4 – 19.5 – 7.2
ZICL BLOOM 4.1 0.1 10.7 9.0 9.5
ZICL mT5 1.3 0.5 4.8 1.1 0.7
ZICL BLOOMZ 4.3 0.0 0.0 0.0 9.5
ZICL mT0 8.5 1.1 26.9 18.3 16.8

Transfer + Model Turkish Japanese Thai Bengali Arabic Spanish Persian Chinese

Target FT 1.1 6.5 6.5 0.0 0.0 1.5 0.0 2.2
English FT 8.0 0.7 0.9 0.0 0.0 5.7 0.0 1.2
English Target FT 12.1 2.8 8.5 0.0 3.3 10.7 10.0 1.5
EICL BLOOM 5.2 0.3 0.2 0.0 0.1 3.7 0.0 1.1
EICL mT5 0.4 0.0 0.0 0.0 0.0 0.4 0.0 0.0
EICL BLOOMZ 7.0 0.9 48.6 0.0 0.0 5.0 10.0 0.4
EICL mT0 1.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0
EICL ChatGPT 2.4 – – – – – – –
TICL BLOOM 5.2 14.1 0.5 0.0 0.0 3.6 0.0 1.2
TICL mT5 0.5 0.0 0.0 0.0 0.0 0.4 0.0 0.0
TICL BLOOMZ 3.2 37.4 48.6 0.0 0.0 5.8 0.0 1.5
TICL mT0 1.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0
TICL ChatGPT 10.0 – – – – – 20.1 –
ZICL BLOOM 4.3 0.8 0.2 0.0 0.0 3.3 10.0 1.6
ZICL mT5 1.1 2.4 1.9 0.0 0.1 0.7 0.0 1.9
ZICL BLOOMZ 0.0 0.0 0.0 0.0 0.0 7.6 0.1 0.0
ZICL mT0 15.7 3.1 2.4 0.0 0.1 12.4 0.2 4.4

Table 23: Model performance on XLSUM

D More Analysis

D.1 Performance across Languages
Figure 7 shows performance across languages on
the three tasks, NLI, NER, and QA, adding two1796



more LLMs: BLOOMZ and mT0. We observe per-
formance drops in Finnish, Korean, and Russian for
BLOOM and BLOOMZ in TYDIQA. Finnish, Ko-
rean, and Russian are excluded from BLOOM pre-
training,11 which we attribute to these performance
drops. Conversely, mT5 fine-tuning-based meth-
ods consistently display strong performance across
languages. Interestingly, in Bengali, which is of-
ten considered less represented, BLOOM achieves
performance comparable to mT5 fine-tuned mod-
els. These results suggest pretraining setup may
strongly affect downstream task performance even
after instruction tuning.

D.2 Variances of Different k-shots

In Section 3, we show that different sets of demon-
strations can cause significant performance differ-
ences. We provide the full visualization results
across different tasks.

D.3 Variances of the Varying Number of k

We provide the full experimental results with a
different number of k. We evaluate BLOOM EN-
GLISH ICL, BLOOMZ ENGLISH ICL and mT5-
ENG.+TGT. FINE-TUNING and mT0 ENGLISH

ICL experimental results on AMAZON REVIEW,
TYDIQA, TYDIQA-AG, WIKIANN, and in Fig-
ures 8, 9, 10 and 11, respectively.

AMAZON REVIEW. On AMAZON REVIEW,
All models except for BLOOM (pretraining only)
show competitive zero-shot performance. BLOOM
ENGLISH ICL benefits from few-shot demonstra-
tions while mT0 ENGLISH ICL exhibit perfor-
mance deterioration as adding more demonstrations
across languages.

TYDIQA. Among ENGLISH ICL baselines,
mT0 shows strong performance up to four demon-
strations, although their performance gets really
low once more demonstrations are added. Sim-
ilar deterioration happens in BLOOMZ. On the
contrary, BLOOM performance improves as more
shots are added.

TYDIQA-QG. Unlike in AMAZON REVIEW or
TYDIQA, BLOOMZ ENGLISH ICL shows perfor-
mance improvements with more demonstrations in
Arabic and Bengali, reaching the highest QG per-
formance in Bengali with four demonstrations. On
the contrary, both BLOOM and BLOOMZ show

11https://huggingface.co/bigscience/
bloom

poor QG performance in Korean and Russian, pos-
sibly due to the lack of those languages during
pretraining.

WIKIANN. On WikiANN, all of the models
gain performance improvements by adding at least
one demonstration, possibly due to the difficulty of
learning the exact output format expected given the
instruction only. As in other datasets, mT0 reaches
its highest performance with four demonstrations.
mT5 ENG.+TGT. FT exhibits performance drops
with one shot, possibly due to their overfit to the
single example.

D.4 Variances of Different Instructions

We investigate the effectiveness of different En-
glish instructions on question generation tasks for
TYDIQA in the four-shot setting using mT0 and
BLOOM as base models in Table 24. We com-
pare four relevant instructions and one irrelevant
instruction (an instruction for AMAZON REVIEW).

In the four-shot setting, whether the instruction
is relevant does not make a huge difference for
BLOOM, and we observed that selections of dif-
ferent demonstrations often largely impact the per-
formance. Yet the performances do suffer a sharp
loss if we are using irrelevant instruction in the
instruction-tuned model. We also discovered that
different models might favor different instructions
for different languages, for example, in Swahili,
four-shot BLOOM favors the first instruction, while
mT0 favors the fourth instruction.

D.5 Qualitative Results for Generation Tasks

Table 25 shows some qualitative results of Chat-
GPT ENGLISH ICL and TARGET TCL on XLSUM

and TYDIQA. Given English instruction, ChatGPT
often generates summaries in English, rather than
in the article language. On the other hand, such
cross-lingual generation behaviors don’t occur in
QA tasks, and the model’s predictions with TAR-
GET ICL and ENGLISH ICL exhibit high overlap
with each other. We hypothesize that ChatGPT’s
cross-lingual summarization behavior can be re-
lated to their private training corpus, and future
work can further investigate this issue.

D.6 Results of English-centric LMs

Table 26 shows BUFFET-Light performance on
four more recent and English-centric LMs whose
checkpoints are publicly available: Llama1-7B,
Llama2-7B, Llama2-7B-Chat and Mistral 7B.
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Figure 7: Model performance across three tasks, NLI, NER, and QA, displayed for various languages. The
languages are sorted based on token availability in mC4, with the left side representing high-resource languages. All
methods show performance deterioration in lower-resource languages (right side), with larger drops in ENGLISH-
ICL methods. Additional fine-tuning in target languages is more effective in less-represented languages.

0 10 20 30
German

60

80

A
cc

ur
ac

y

0 10 20 30
Japanese

60

80

0 10 20 30
Chinese

60

80

BLOOM EICL BLOOMZ EICL mT0 EICL mT5 FT

Figure 8: Effects of demonstrations on Amazon Review. The x-axis indicates the number of training instances
used during the transfer.
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Figure 9: Effects of demonstrations on TYDIQA. The x-axis indicates the number of training instances used
during the transfer.
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Figure 10: Effects of demonstrations on TYDIQA-QG. The x-axis indicates the number of training instances
used during the transfer.

Despite large-scale multilingual pre-training or
instruction-tuning as in prior work (Muennighoff
et al., 2023), Mistral, Llama2 (pre-trained and chat)
demonstrate strong performance while Llama1
performance is largely limited. Prior work has

shown that a small amount of pre-training data of-
ten results in strong multilingual capabilities of
LLMs that are primarily trained in English pre-
training (Blevins and Zettlemoyer, 2022b; Briakou
et al., 2023). On the other hand, we found that
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Figure 11: Effects of demonstrations on WIKIANN. The x-axis indicates the number of training instances used
during the transfer.

Instruction
BLOOM mT0

fi ru sw fi ru sw

This task is about reading the given passage and constructing a question about
the information present in the passage. Construct a question in such a way that (i)
it is unambiguous, (ii) it is answered from the passage, (iii) its answer is unique
(iv) its answer is a continuous text span from the paragraph. Avoid creating
questions that (i) can be answered correctly without actually understanding the
paragraph and (ii) uses the same words or phrases given in the passage.

8.7 4.3 10.8 5.0 5.3 3.1

Could you generate a question in lang whose answer is as provided based on
the following context?

9.1 4.3 9.5 6.5 7.5 8.7

Could you generate a lang question whose answer is as provided based on the
following context?

9.2 4.3 9.3 6.6 7.4 8.4

Generate a lang question whose answer is as provided based on the following
context. 9.3

4.4 9.1 7.1 7.7 9.0

In this task, you are given a review from Amazon. Your task is to generate a
rating for the product on a scale of 1-5 based on the review. The rating means
-2: extremely poor, 1: poor, 0: neutral, 1: good, 2: extremely good, 3: mixed
and -3: no sentiment expressed

9.2 4.4 10.4 0.4 0.1 0.4

Table 24: The performance (in BLEU score) for different instructions for TYDIQA-QG. lang stands for the full
language name, e.g., Arabic. We modify the instructions from BUFFET, PromptSource (Bach et al., 2022), and
SuperNaturalInstructions (Wang et al., 2022b).

Target Gold. Pred.

XLSUM-
Indonesian

Manajer Chelsea Jose Mourinho memberi waktu 48
jam untuk Wayne Rooney memutuskan apakah dia
ingin meninggalkan Manchester United dan pindah
ke Stamford Bridge. (Google Translate: Chelsea
manager Jose Mourinho has given Wayne Rooney
48 hours to decide whether he wants to leave
Manchester United and move to Stamford Bridge.)

ENGLISH ICL: Manchester United striker Wayne Rooney
has been given 48 hours to resolve speculation over his
future, with Chelsea expressing interest in the player. [en]

TARGET ICL:Mourinho memberi ultimatum kepada
Wayne Rooney untuk mengakhiri spekulasi
kepindahannya dalam waktu 48 jam, sementara MU
dikabarkan sedang mengincar Gareth Bale. [id]

XLSUM-
Turkish

Suriye’nin Rakka vilayetine bağlı Tel Abyad kent
merkezinde IŞİD ile YPG güçleri arasında şiddetli
çatışmalar sürerken, Akçakale sınırı sığınmacılara
yeniden açıldı. IŞİD’e karşı savaşan YPG güçleri
de Tal Abyad’a girdi.

ENGLISH ICL: YPG forces have cut off a vital ISIS
supply route from Tel Abyad to Raqqa, and have taken
control of two neighborhoods in Tel Abyad. [en]

TARGET ICL: YPGńin ele geçirdiği, çatışmaların devam
ettiği ve sivillerin tehlikede olduğu" bilgisini verdi. [tr]

TYDIQA-
Swahili

’Sehemu ya chakula pamoja na wanga, protini na
vitamin

ENGLISH ICL: sehemu za chakula pamoja na wanga,
protini na vitamini.[sw]

TARGET ICL: Sehemu za chakula pamoja na wanga,
protini na vitamini. [sw]

Table 25: ChatGPT outputs for XLSUM and TYDIQA Output. [lang] indicate the language codes of the output text
languages.
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model avg. class avg. gen NLI SA PAWS QA QG SUM NER

Llama 1B (7B) 28.1 4.2 12.9 48.1 27.4 24.4 6.4 2.1 20.2
Llama 2B (7B) 41.6 6.4 32.3 67.4 44.6 36.7 9.6 3.2 26.8
Llama2 Chat (7B) 44.1 6.4 35.0 70.8 45.9 43.1 11.3 1.4 28.0
Mistral (7B) 45.2 7.4 33.3 77.4 46.0 51.8 12.4 2.4 24.0

Table 26: Results of Llama1, Llama2, Llama2-chat and Mistral on BUFFET-light. All models are 7 billion
parameters.
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Figure 12: Model scaling experimental results. We
conduct experiments on four sub-tasks and use three
BLOOM models, BLOOM-560M, 1B, and 7B.

those models often show limited performance in
languages that are less represented in such pre-
training corpora (e.g., AMERICASNLI, INDIC SEN-
TIMENT). This result suggests the importance of
understanding how much multilingual training data
needs to be included during pre-training to make
an LM learn the target languages, which remains
unclear.

D.7 Effect of Model scaling

Figure 12 shows the effects of model scaling on
BLOOM.

E Discussions for Future Directions

Built upon findings from our extensive BUFFET
experiments, we suggest the following opportuni-
ties for future research on few-shot cross-lingual
transfer learning:

Improve multilingual instruction tuning. Instruc-
tion tuning causes certain models, such as mT0,
to become overly specialized to specific ICL for-
mats. Although these models demonstrate impres-
sive zero-shot performance, they struggle in unfa-
miliar settings such as few-shot ICL or tasks in
less common formats (e.g., NER). It is important to
develop multilingual instruction-following models
capable of effectively utilizing both instructions
and demonstrations, potentially by drawing inspira-
tion from recent work on better instruction-tuning
in English (Chung et al., 2022; Min et al., 2022a).

Overcome data scarcity using LLMs. Our evalua-
tion reveals that smaller task-specific models (with
intermediate training in English) outperform Chat-
GPT on discriminative tasks with strict output for-
mats. In contrast, ChatGPT outperforms fine-tuned
models on generation, consistent with recent work
(Goyal et al., 2022). This impressive generation ca-
pacity has prompted investigations into generating
training instances from LLMs; these predominantly
focus on English (Wang et al., 2022a; Honovich
et al., 2022) with some preliminary work on gener-
ating multilingual task data (Agrawal et al., 2022).
Further work in this direction offers a promising
solution to obtaining more annotated data for under-
represented languages.
Understand transfer dynamics in cross-lingual
in-context learning. The impact of various in-
structions and demonstrations has been extensively
examined in the context of English in-context learn-
ing, highlighting critical concerns (Lu et al., 2022;
Min et al., 2022b) and motivating methods (Su
et al., 2022). BUFFET will inspire and assist
in further research into the relationship between
language and instruction/demonstration for cross-
lingual in-context learning.
Fairness beyond languages: underrepresented
variants, dialects, and cross-cultural NLP. Ty-
pologically distinct and low-resource languages
are often excluded from the cross-lingual bench-
marks used to assess cross-lingual transfer capa-
bilities in LLMs. Our evaluation with BUFFET
demonstrates that even the most powerful LLMs
still perform poorly on less-represented languages.
The most competitive instruction-tuned models,
ChatGPT or mT0, show significant performance
declines when it comes to indigenous languages,
reaching a level akin to a random baseline. We
advocate for conducting more studies that include
under-represented languages and their dialects, as
emphasized in previous works (Aji et al., 2022;
Kakwani et al., 2020), particularly when evaluating
massively multilingual models.
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