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Abstract

In-context learning enhances the reasoning ca-
pabilities of LLMs by providing several exam-
ples. A direct yet effective approach to ob-
tain in-context example is to select the top-
k examples based on their semantic similar-
ity to the test input. However, when applied
to event argument extraction (EAE), this ap-
proach exhibits two shortcomings: 1) It may
select almost identical examples, thus failing
to provide additional event information, and
2) It overlooks event attributes, leading to the
selected examples being unrelated to the test
event type. In this paper, we introduce three
necessary requirements when selecting an in-
context example for EAE task: semantic simi-
larity, example diversity and event correlation.
And we further propose TISE, which scores
examples from these three perspectives and in-
tegrates them using Determinantal Point Pro-
cesses to directly select a set of examples as
context. Experimental results on the ACE05
dataset demonstrate the effectiveness of TISE
and the necessity of three requirements. Fur-
thermore, we surprisingly observe that TISE
can achieve superior performance with fewer
examples and can even exceed some super-
vised methods.

1 Introduction

Event Argument Extraction (EAE) aims to iden-
tify and classify event arguments within textual
data based on the given event type. Label for
this task is a structured table in which each argu-
ment requires annotation. Resulting in a scarcity
of training data, which limits the generalizability
of traditional methods to unknown samples (Gao
et al., 2023a,b).

Recently, Large Language Models (LLMs) ex-
emplified by GPT-3 (Brown et al., 2020) have
shown remarkable capabilities in low-resource
scenarios. As shown in Figure 1, given the test
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Naotia was a practicing sorcerer and through his black magic he had cast evil 
spells on villagers, prompting a group within the village to eliminate them.

Die Event

Role Agent Instrument Place Victim

Arg Naotia magic villiage them

2.  ... Another half-brother [Person] of saddam hussein was picked up trying 
to cross into syria [Place] and that time...

Transpoart Event

3. ...The local Kurds [Person] who have been going across the lines [Place] 
for many years basically engaged in smuggling.

Transpoart Event

In-context Example

1. fighting broke out between club [Instrument] wielding members 
[Attacker] of the former ruler 's clan and a rival group [Attacker].

Attack Event

Test Input

Figure 1: An in-context learning example on EAE task,
where examples are obtained by the semantic selection.
The upper left of each sentence is its event type, argu-
ment [role] is colored red and trigger is bolded.

input and three labeled examples, LLM can fin-
ish inference, which is called in-context learning
(ICL; Brown et al., 2020). However, it has been
found that the performance of LLMs is highly de-
pendent on the selection of these examples (Ru-
bin et al., 2022), highlighting the importance of
choosing appropriate in-context example. To ad-
dress this issue, some researchers calculate the se-
mantic similarity between examples and test input,
and subsequently selecting the top-k examples as
context (Rubin et al., 2022; Liu et al., 2022), yield-
ing appreciable performances.

While this semantic selection method has
shown empirical success, it exhibits two short-
comings when applied to EAE. Firstly, it may
select examples with overlapping semantics, thus
failing to provide additional event information.
In Figure 1, the second and third examples con-
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tain the same event (“cross-border”) and identi-
cal roles (“Person” and “Place”). As a result, the
in-context example provides limited event infor-
mation and primarily contributes to predicting the
role “Place”. Secondly, it does not consider the
correlation of event attributes between the test in-
put and examples, which is also crucial for LLMs
to make reasonable predictions. As shown in Fig-
ure 1, there is no example related to the test event
type (“Die”), thus LLM is unable to comprehend
the test input and predict the relevant roles, e.g.,
“Victim” and “Agent”.

In this paper, we propose TISE (A Tripartite
In-context Selection method for Event argument
extraction) to select an optimal in-context exam-
ple for EAE task. TISE scores examples based
on three requirements, related to the different fac-
tors mentioned above. Firstly, it calculates the
textual similarity between examples and test input
as Semantic Similarity, which serves as a fun-
damental guarantee. Secondly, TISE calculates
the Example Diversity by evaluating the inter-
example similarity. This requirement avoids the
semantic overlap between examples, thus obtain-
ing the diverse examples with more event infor-
mation. Lastly, TISE designs natural language de-
scriptions for event types and event roles and cal-
culates the Event Correlation by measuring the
similarity between these descriptions. This re-
quirement ensures the selected examples can ef-
fectively convey event information to LLM. TISE
utilizes the kernel matrix of the Determinantal
Point Process (DPP) (Kulesza et al., 2012) to com-
bine these scores, and the example set with the
highest probability is selected as the in-context
example. Finally, we employ the code imitation
prompt (Wang et al., 2023) to conduct EAE task
on LLM and evaluate the proposed method on the
ACE05 dataset. The experimental results show the
effectiveness and robustness of our method. We
outline our contributions as follows:

• To the best of our knowledge, we are the first
work to explore an optimal in-context exam-
ple for EAE task and present three require-
ments for the example selection.

• We further propose an effective selection
method, which scores the examples from the
above perspectives to obtain the optimal set.

• The proposed model achieves better perfor-
mance with fewer examples and exceeds the
supervised method on the public datasets.

2 Related Work

2.1 Event Argument Extraction

EAE is a core subtask of Event Extraction (EE),
earlier works directly perform EE task, which in-
cludes the EAE task (Chen et al., 2015; Nguyen
et al., 2016; Yang and Mitchell, 2016; Lin et al.,
2020). Recently, EAE has been studied as a stand-
alone task and can be categorized into 3 main
paradigms: Span-based paradigm treats EAE as
a span classification problem, Ebner et al., 2020a;
Zhang et al., 2020; Xu et al., 2022 identify all
candidate spans and classify them into the corre-
sponding roles. Reading comprehension paradigm
designs questions for each event role and con-
verts EAE to question-answering problem to ex-
tract arguments (Du and Cardie, 2020; Liu et al.,
2021). Text generation paradigm sequentially
generates arguments using auto-regressive LMs
with the help of prompts (Li et al., 2021; Du et al.,
2021; Lu et al., 2021; Lin et al., 2022). With the
development of LLMs, the generation paradigm
has gained prominence. Researchers directly use
LLMs to extract arguments, leading to significant
breakthroughs (Wei et al., 2023; Wang et al., 2023;
Gao et al., 2023b).

This paper also employs LLMs for EAE, but
TISE is orthogonal to these works. We focus on
how to select the optimal in-context example and
our method is adaptable to various prompts.

2.2 In-context Example Selection

Constrained by the difficulties of fine-tuning
LLMs, in-context learning (ICL) is proposed to
emulate few-shot learning by providing several la-
beled examples in the prompt (Brown et al., 2020).
However, LLMs are sensitive to the quality of
in-context example (Liu et al., 2022). To obtain
a high-quality demonstration, selecting the top-k
similar examples becomes the most intuitive, sim-
ple, yet effective method (Rubin et al., 2022; Liu
et al., 2022). More thoughtfully, researchers have
found considering entropy (Lu et al., 2022; Wu
et al., 2022) and diversity (Ye et al., 2022; Su et al.,
2022; Levy et al., 2022; Ye et al., 2023) among ex-
amples is also useful. We conduct the first study
to explore this problem in EAE and propose three
requirements.

1802



Event Scorer
Test 
Input  
x

SCORERTSCORERE

Example  t1

Example  t2

Example  t3

t1

t2

t3

Kernel 
Matrix

t1       t2        t3    

Step 1 :
DPP Selection

LLM

sE(x,ti) sT(ti ,tj) sT(x,ti)

Step 2 :

x

Natural Language Description 

ti

Type Type R1 R2 R1 R2

Encoder

sE(x,ti)

> sE(x,ti)
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ti tj

sT(ti ,tj)sT(x,ti)

Event Argument Table

Entity Type Definition
PER: Person entities are limited to humans...

Event Definition
Role definition of event type Die (Parent type: Life):
1. agent (need to be one of GPE or ORG or PER) ...
In this event: [agent] killed [victim] with ...

In-context Examples
Translate the following sentence into an instance of Die...
"Now , Iraq 's minister of information today said that ..."
1. agent: () ""
2. place: (FAC) "airport"...

Event Instantiation
Translate the following sentence into an instance of Die ...

Fast Greedy Algorithm

Text Scorer

Code Imitation Prompt

Figure 2: The overall structure of TISE when |T | = 3 and k=2. The center is the main process, surrounded by
the sub-module processes. The main process uses an event scorer and a test scorer to calculate the score for each
requirement. These scores are then combined into a kernel matrix. The fast greedy algorithm is employed to obtain
the in-context example subset. Finally, the code imitation prompt is referenced to conduct LLM-based EAE.

3 Preliminary

3.1 Problem Definition

The target of in-context example selection is to se-
lect a few examples from the training dataset to
form a context for ICL. Formally, given the test
input x and the training dataset T =

{
t1, ..., t|T |

}
,

we need to choose k examples from T to form a
subset A ⊆ T as in-context example and |A| = k.

3.2 Determinantal Point Process

Unlike individually selecting the top-k similar ex-
amples, DPP considers the co-occurrence of ex-
amples and directly obtains a subset with k exam-
ples. Specifically, given the condition x, DPP is
defined as a distribution P to measure the selected
probability of each subset, we use a kernel ma-
trix K ∈ R|T |×|T | to represent the co-occurrence
between examples, where item Kij = k(ti, tj |x)
evaluates the possibility that ti and tj appear in the
same subset. Thus the selected probability of A is:

P (A|x) = det(KA)

det(K + I)
(1)

where KA ≡ [Kij ]i,j∈A is a sub-matrix obtained
by indexing, det(·) is the determinant and I is the
identity matrix. During the inference, we select

the subset with the highest probability to form in-
context example A∗ = argmaxA⊆T P (A|x).

Obviously, this is an NP-hard submodular maxi-
mization problem (Ko et al., 1995), we employ the
fast greedy algorithm (Chen et al., 2018) for opti-
mization. As shown in the lower left of Figure 2,
we perform a k-step search. At each step, the se-
lected example is chosen to maximize the increase
in the determinants of the old and new matrices:

t∗ = arg max
ti∈T\A∗

det(KA∗∪{ti})−det(KA∗) (2)

and we update the subset using A∗ = A∗ ∪ {t∗}.

4 Method

The overall structure of TISE is shown in Fig-
ure 2, it measures Semantic Similarity and Exam-
ple Diversity using the text scorer (SCORERT),
and assesses Event Correlation using the event
scorer (SCORERE). Three scores are integrated
into the kernel matrix K, and DPP is used to se-
lect an in-context example based on this. Lastly, it
employs code imitation prompt to conduct LLM-
based EAE.

4.1 Scorer and Kernel Matrix
We present sub-module corresponding to each
requirement separately, including the scoring
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Event Type Description

Justice:Convict
Involves a justice trial,

recording a person has been convicted.

Justice:Sentence
Involves a justice trial,

recording a person has been sentenced.
Event Role

Life:Injure.Instrument What device was used to inflict the harm?
Life:Die.Instrument What device was used to kill?

Table 1: Examples of natural language descriptions of
Event Types and Event Roles.

methodology and its subsequent fusion into the
kernel function. Moreover, we introduce hyper-
parameters to balance each requirement and prove
the impact of the kernel function.

4.1.1 Semantic Similarity
Ensure the semantic similarity between x and ti
is fundamental yet effective. As shown in the up-
per right of Figure 2, we design a text scorer for
measurement, it employs a Pretrained Language
Model as encoder and calculates the embedding
similarity as text score sT:

sT(x, t) = sim(E(x),E(t)) (3)

where E(·) denotes the encoder1 and sim (u, v) =
uT v/ ∥u∥ · ∥v∥ is the cosine similarity. For Kij ,
we simultaneously consider the semantic score of
ti and ti: k1(ti, tj |x) = sT(x, ti) · sT(x, tj).

4.1.2 Example Diversity
To guarantee the selected subset contains diverse
examples, TISE assigns lower scores to similar
examples. It still uses text scorer to measure the
similarity between examples. For training exam-
ple ti and tj , we calculate the score sT(ti, tj),
and modify Kij as k2(ti, tj |x) = sT(x, ti) ·
sT(ti, tj) · sT(x, tj). The reason why this product
form kernel function can simultaneously decrease
sT(ti, tj) yet increase sT(x, ti) will be explained
in 4.1.4.

4.1.3 Event Correlation
We propose an event scorer to measure the event
correlation. As shown in the upper left of Figure
2, we partition event attributes into event type and
event role. Subsequently, we design natural lan-
guage descriptions for each of them and calculate
event scores based on these descriptions.

Event Type The event type description com-
prises two sentences that are related to its parent

1We use the embedding of [CLS] token as result.

event type and itself. See Table 1 as an exam-
ple2, this form of description has two advantages:
1.Event types belonging to the same parent will be
closer. and 2.Event types with related meanings
will feature similar descriptions.

After obtaining the descriptions, we calculate
description similarity to score event type. Suppose
x and ti has event type description d̂(x) and d̂(ti),
we can obtain the event type score ŝE(x, ti) as:

ŝE(x, ti) = sim(E(d̂(x)),E(d̂(ti)) (4)

Event Role For each event role, the description
is used to introduce its meaning within the event.
Referring to Lu et al., 2023, we design the descrip-
tion as a single sentence. See Table 1 2, it also of-
fers two advantages: 1.Roles under the same event
type exhibit closer relationships. and 2.The same
roles in different event type are similar but not
identical.

Let Rti denote the set of not-none roles for ti,
and Rx denote the set of roles to be predicted. For
each rtii ∈ Rti , we obtain its description ď(rtii ),
and sequentially compare it to rxi ∈ Rx with de-
scription ď(rxi ), the role score is calculated as:

šE(r
x
i , r

ti
i ) = sim(E(ď(rxi )),E(ď(r

ti
i )) (5)

We pick the most relevant rxi using max-pool:
šE(x, r

ti
i ) = max šE(r

x
i , r

ti
i ), and the final event

role score for ti is:

šE(x, ti) =

∑
r
ti
i ∈Rti

šE(x, r
ti
i )

|Rti | + α
∣∣Rti

∣∣ (6)

where α = 0.1 is a hyperparameter to reward
those examples containing more useful roles. We
combine event type score and event role score so
that the final event score can reflect the event cor-
relation from two perspectives:

sE(x, ti) =
1

2
(ŝE(x, ti) + šE(x, ti)) (7)

and the final kernel function is k(ti, tj |x) =
sE(x, ti) · k2(ti, tj |x) · sE(x, tj).
4.1.4 Balance and Proof
To balance each requirement, we introduce the
hyperparameter λ into each score: sE

′(x, ti) =

exp( sE(x,ti)2λ1
) and sT

′(x, ti) = exp( sT(x,ti)2λ2
), thus

the kernel matrix K can be represented as:

K = Diag(S′
E) ·Diag(S′

T ) · K̄ ·Diag(S′
T ) ·Diag(S′

E)

(8)
2The complete descriptions of event type and event role

can be found in Appendix A.1 and A.2, respectively.
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Methods REQ
k=3 k=5 k=10 k=15

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

RANDOM ✗ 53.86 41.74 54.20 42.94 55.41 44.92 58.00 47.34

Semantic Retriever
BM25 R.1 55.48 44.09 56.81 46.01 57.27 47.14 57.94 47.88
BERT-TOPK R.1 56.20 45.38 56.67 46.14 56.93 46.98 58.34 48.16
DPR-TOPK R.1 56.05 45.10 57.03 46.88 57.69 47.62 58.40 47.97

DPP-based Method
DPP-DIVERSITY R.1,2 56.22 45.53 58.19 47.73 58.47 47.91 59.46 49.38
TISE R.1,2,3 56.66 46.25 58.95 48.72 60.57 50.78 60.99 51.43
∆ SEMANTIC – +0.46 +0.87 +1.92 +1.84 +2.88 +3.16 +2.59 +3.27
∆ DIVERSITY – +0.44 +0.72 +0.76 +0.99 +2.10 +2.87 +1.53 +2.05

Table 2: Results on ACE05. REQ indicates which requirements are satisfied by this method. The gap between
TISE and Semantic Retriever is ∆ SEMANTIC, and the gap between TISE and DPP-DIVERSITY is ∆ DIVERSITY.

where K̄ is a symmetric matrix. K̄ij = sT(ti, tj),
S′
Ei

= sE
′(x, ti) and S′

Ti
= sT

′(x, ti). Note the
det(K + I) in Eq.(1) is a normalization term, we
only consider the effect of det(KA):

logdet(KA) =
∑

ti∈A
(
SEi

λ1
+

STi

λ2
) + logdet(K̄A)

(9)
So far, P (A|x) has been associated with two

parts via the kernel matrix. The first part requires
the selected examples exhibit high event score and
semantic score, while the second part necessitates
low inter-example similarity due to the determi-
nant’s characteristics3.

4.2 Code Imitation Prompt

TISE employs code imitation prompt (Wang et al.,
2023) as template to instruct LLM to extract argu-
ments based on the test input and in-context ex-
ample. As shown in the lower right of Figure
2, it consists of 4 components4. 1) Entity Type
Definition categorizes all argument entities into
seven types and begins with a description of all
entity types involved in test input. 2) Event Def-
inition includes the hierarchy of event types, the
role definition of current type and how these roles
are presented in this event. 3) In-context Exam-
ples demonstrates selected examples individually.
Each example contains extraction instruction, an
input sentence and a label. 4) Event Instantiation
directly feeds the extracted instruction and test in-
put to LLM.

3See Appendix A.3 for detailed proof.
4A specific prompt example is shown in Appendix A.4.

5 Experiments

5.1 Dataset and Evaluation Metrics

We evaluate TISE on the Automatic Content Ex-
traction 2005 (ACE05; Doddington et al., 2004)
dataset, which is a sentence-level corpus. For fair
comparison, we preprocess the dataset into 8 par-
ent event types and 33 child types following Wad-
den et al., 2019.

We measure the performance with two metrics
following previous work (Li et al., 2021; Ma et al.,
2022): Argument Identified (Arg-I) denotes the
head word of an argument matches the human an-
notation, and Argument Classified (Arg-C) means
an argument is correctly classified into its anno-
tated role as well. We report them using F1 score.

5.2 Implementation Details

For scorers and the kernel matrix, we em-
ploy bert-base-uncased (Devlin et al., 2018)
as encoder and set λ1 = 0.5, λ2 = 0.055.
For LLM, due to the Codex models have
been deprecated since March 20236, we mainly
use text-davinci-002 (Ouyang et al., 2022)
as LLM. This model is instruction-tuned from
code-davinci-002 (Chen et al., 2021) and sup-
ports 4k input tokens. We access LLMs through
OpenAI API7. For prompt, because the code
prompt (Wang et al., 2023) easily exceeds the
length limitation, we leverage the code imitation
prompt as prompt template.

5The impact of λ is shown in Appendix A.5.
6https://platform.openai.com/docs/guides/code
7https://openai.com/product
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Figure 3: Relationship between EAE performance and
the overlap rate on k=10 and k=15.

5.3 Baselines

We compare TISE with several baselines: RAN-
DOM randomly selects examples from the train-
ing set without repetition. BM25 (Robertson
et al., 2009) is an effective sparse retriever relies
on TF-IDF. BERT-TOPK and DPR-TOPK employ
BERT and the twin-tower dense retriever DPR
(Karpukhin et al., 2020) as encoders, respectively,
and select the top-k examples. DPP-DIVERSITY

satisfies Example Diversity with the help of DPP.

5.4 Main Results

We show the experimental results with differ-
ent numbers of examples (k) in Table 2. As
we expect, TISE achieves the state-of-the-art per-
formance across all values of k, which ver-
ifies the effectiveness and robustness of our
method. Furthermore, TISE achieves superior
performance with fewer examples. For instance,
TISE achieves 58.95%/48.72% on k=5, while
BERT-TOPK achieves 58.34%/48.16% on k=15.
This indicates that in scenarios with low resources
or constrained input length, TISE is more power-
ful. For each requirement, we find that both the
sparse (BM25) and dense (BERT-TOPK/DPR-
TOPK) retrievers outperform RANDOM, which
proves that semantic-based selection is useful for
EAE. But it is uncertain which retriever is bet-
ter, indicating that greater similarity does not nec-
essarily equate to better performance. In addi-
tion, TISE outperforms DPP-DIVERSITY, which
in turn outperforms semantic retrievers, confirm-
ing the effectiveness of Example Diversity and
Event Correlation.

5.5 Principle Exploration

We further explore how the examples selected by
these requirements can help LLM extract argu-
ments. The supervised signals provided by the
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Figure 4: Performance of TISE and DPR-TOPK on dif-
ferent k. When k=20, the semantic retriever may ex-
ceed the input length limitation of LLM, resulting in a
performance decline.

example are actually the meaning of each role in
the current event type. Based on this, we hypoth-
esize that an in-context example with a larger role
overlap with the test input will yield better per-
formance. To verify this hypothesis, we define a
metric called “role overlap rate” for in-context ex-
ample and conduct an experiment. Denotes each
selected example is t∗ ∈ A∗, the set of not-none
roles of t∗ is Rt∗ and the role set of x is Rx, we
define the role overlap rate of A∗ as:

sA∗ =

∑
t∗∈A∗

∑
rt∗∈Rt∗ ,rx∈Rx I(rt

∗
= rx)

∑
t∗∈A∗ |Rt∗ |

(10)
where I(·) is the indicator function. Notice that
we only consider not-none roles and we count
the same role of different event types because it
can convey useful information (e.g., “Place” in
“Life.Marry” and “Life.Be-Born” ).

The results in Figure 3 demonstrate an ob-
vious positive correlation between EAE perfor-
mance and role overlap rate, which proves that
more overlapped roles can indeed help LLM ex-
tract arguments. Besides, we also find that each
requirement has a distinct impact: 1) Event Cor-
relation notably elevates the overlap of roles as
it tends to select examples within the same event
types. 2) Semantic Similarity also proves bene-
ficial, as similar sentences tend to describe related
events with overlapping roles. 3) Example Diver-
sity contributes minimally to the overlap rate, it
primarily ensures the entire subset covers differ-
ent roles.

6 Discussion

6.1 Ablation Study
Effect of Different k Many works have pointed
that the performance of LLM is sensitive to the
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Methods Arg-I F1 Arg-C F1

TISE 60.6 50.8

w/o Event Correlation 58.5 (2.1↓) 47.9 (2.9↓)

w/o Event Role 60.0 (0.6↓) 50.3 (0.5↓)

w/o Event Type 58.8 (1.8↓) 49.1 (1.7↓)

w/o Example Diversity 59.1 (1.5↓) 48.7 (2.1↓)

w/o Correlation & Diversity 57.3 (3.3↓) 46.9 (3.9↓)

Table 3: Ablation results for requirements on k=10.

number of examples (Ye et al., 2023; Wang et al.,
2023). Here, we evaluate the proposed model and
baselines on different k and report the results in
Table 2. We have two conclusions: 1) As k in-
creases, the gap between the different methods
also widens. The reason is that the in-context
example with a small k can not provide suffi-
cient event information. However, as quantitative
changes lead to qualitative changes, the quality
of the examples becomes crucial and significantly
impacts the performance of LLM. 2) Increasing
the value of k can enhance the extracted perfor-
mance, but this benefit is diminishing. We provide
the performance of TISE and DPR-TOPK on dif-
ferent k in Figure 4. Both methods exhibit a mono-
tonic increase, but eventually reach a plateau. This
phenomenon is consistent with Wang et al., 2023,
and we verify it is unrelated to the selection of in-
context example. We speculate this phenomenon
may be attributed to an upper bound on the effec-
tiveness of ICL or a limitations imposed by the
prompt template.

Effect of Different Requirements To verify the
effectiveness of different requirements, we con-
duct experiments by removing Event Correlation,
Example Diversity, and both of them simultane-
ously. Our results, detailed in Table 3, reveal that
Event Correlation holds greater significance than
Example Diversity, which is consistent with the
conclusion drawn in principle exploration (5.5).
Moreover, the joint removal of both requirements
leads to a smaller decline (3.3% < 2.1% + 1.5%
/ 3.9% < 2.9% + 2.1%), indicating mutual rein-
forcement between these two requirements. For
Semantic Similarity, its effectiveness and robust-
ness have been verified in Table 2. Moreover, we
also verify the event attributes. Experimental re-
sults show that the impact of Event Role (-0.6%/-
0.5%) is less than Event Type (-1.8%/-1.7%), be-
cause Event Type directly filters the examples with
similar event types, whereas Event Role is more

Figure 5: Performance on RAMS. Examples in
document-level dataset are long, and k=9 will risk ex-
ceeding the input length limitation of LLM.

likely to select irrelevant examples.

6.2 Analysis

Document Level Extraction TISE is a gener-
alized method that can be also applied to the
document-level event argument extraction. We
conduct experiments on the RAMS (Ebner et al.,
2020b) to verify its generality and robustness. We
use F1 score as evaluation metrics based on the
Exact Match (EM) criterion (Gusfield, 1997), and
use a plain extraction instruction as prompt, such
as “Given a document that describes an event, you
need to identify all event arguments from this doc-
ument, and classify role of each argument.” Re-
sults are shown in Figure 5, TISE filters a better
example set than baslines on different k, which
in turn helps LLM to extract arguments. In ad-
dition to this, we have two other observations:
1. LLM is not sensitive to the number of dis-
played examples (k) when conducting document-
level extraction, and 2. different selection meth-
ods do not improve the extraction results signif-
icantly, despite they can select examples that are
more relevant to the test input. We speculate that
this may be because the understanding of docu-
ments is much harder than sentences, and a better
prompt is needed to help LLM understand how to
extract arguments within examples.

Adaptability TISE can be adapted to various
LLMs and prompts. To verify its adaptability,
we choose code prompt and code imitation
prompt8 as prompt and text-davinci-002 and
text-davinci-003 as LLMs. The experimen-
tal results on different k are shown in Figure 6,
TISE surpasses BERT-TOPK across all combi-
nations, demonstrating the robustness of TISE in
different LLMs and prompt templates. Further-

8Specific examples can be found in Appendix A.4.
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Figure 6: Performance on different LLMs and prompts.
The darker part indicates the performance of BERT-
TOPK, and the ligter part is the performance of TISE.

Methods
k=10 k=15

Arg-I Arg-C Arg-I Arg-C

RANDOM 55.71 45.27 57.64 46.44
BERT-TOPK 57.09 47.47 59.08 48.09
TISE 59.69 50.54 60.05 50.93

Table 4: Performance on the same event type scenario,
note that some test inputs can not find k training exam-
ples with the same event type.

more, we observe that text-davinci-003 con-
sistently outperforms text-davinci-002, and the
code prompt yields superior results compared
to the code imitation prompt. When the
length limitation is not exceeded, the optimal
combination should be TISE + code prompt +
text-davinci-003 on higher k.

Same Event Type Scenario If we have enough
labeled data for each event type, selecting ex-
amples with the same event type would be more
efficient. To verify the stability of TISE in
this scenario, we conduct an experiment by re-
stricting the selected examples to those with the
same event type as the test input. The results
are shown in Table 4, we find that examples
with high semantic similarity remain effective
even when all of them have the same event type
(+1.38%/+2.20% on k=10 and +1.44%/+1.65% on
k=15). Furthermore, TISE still outperforms base-
lines on different k(+2.60%/+3.07% on k=10 and
+0.97%/+2.84% on k=15), we attribute this im-
provement to the Example Diversity and Event
Role modules, which ensure TISE can select the
optimal subset across different data distributions.

Comparison with Supervised Methods Super-
vised methods have achieved respectable results
using limited training data through specialized ar-

%Training Data Arg-C
few shot - aspect 1
DEGREE 5% 35.5
TISEk=5 5% 38.8
DEGREE 10% 41.6
TISEk=15 10% 42.0
few shot - aspect 2
DEGREE 20% 46.2
DEGREE 30% 48.7
TISEk=5 19% 48.7
TISEk=10 28% 50.8
full shot
DyGIE++ - 60.7
TISE†

k=15 - 60.9
DEGREE - 73.5

Table 5: Comparison between TISE and supervised
methods, the results are derived from Hsu et al., 2021.
% Training data means the proportion of traning data.
TISE† uses text-davinci-003 as LLM and code
prompt as prompt template.

chitectural designs. We first compare TISE with
the competitive method (DEGREE; Hsu et al.,
2021) in the few shot scenario. We conduct exper-
iment from two aspects: 1. Scaling down the train-
ing data, and TISE can only select examples from
a limited amount of data. 2. TISE can select from
the whole dataset and we calculate how many dif-
ferent training data are actually used. Results are
reported in Table 5, TISE exceeds DEGREE when
the total amount of available data is limited, and,
despite the training data is adequate, TISE can
still select a fraction of those that are truly useful
to help LLM reasoning. These demonstrate that
TISE can filter efficient examples based on test
input so that shows capabilities in low resource
scenarios. In the full shot scenario, we compare
TISE with two baselines: DEGREE and DyGIE++
(Wadden et al., 2019). We are surprised to observe
that TISEk=15, coupled with text-davinci-003
and code prompt, can outperform the supervised
method (DyGIE++). However, there is still ex-
ists a performance gap between TISE and the DE-
GREE (12.6%). Hence, designing a better exam-
ple selection method remains a promising direc-
tion for future research.

Case Study We present a case study in Figure
7 to directly visualize the advantages of each re-
quirement. For Example Diversity, both exam-
ples 1 and 2 in BERT-TOPK describe a clash/war
with event role “Place”. As a result, LLM cor-
rectly extracts the argument for “Place”, while the
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Test Input In-context Examples EAE Result Golden Label

BERT-TOPK

(Die) Australian commandos, 
who have been operating deep 
in Iraq, destroyed a command 
and control post and killed a 
number of soldiers , according 
to the country 's defense chief , 
Gen. Peter Cosgrove .

(Attack) ... Marines had broken up violent clashes on 
Wednesday in Tikrit [Place], Saddam 's hometown
(Die) ... minimize civilian [Victim] casualties in the 
current Iraq [Place] war ...
(Transport) ... refused to say whether the paratroopers 
deployed directly from Italy into Iraq ...

Agent:None
Instrumen:None

Place:Iraq
Victim:soldiers

Agent:commandos
Instrument:None

Place:Iraq
Victim:number

TISE

(Die) ... at dusk they [Agent] fired what observers 
say were seven artillery rounds [Instrument] back 
at their former stronghold ...
(Die) ... of coalition soldiers [Victim] had been 
killed, their graves were now at the airport [Place].
(Die) ... iraqi missile [Instrument] hit operation 
center [Place] for 2nd brigade 3rd infantry zrigs 
south baghdad , at least four [Victim] dead , two 
soldiers [Victim] and two journalists [Victim].

Agent:commandos
Instrument:None

Place:Iraq

Figure 7: A case study with BERT-TOPK and TISE. The event type of each sentence is marked at the beginning
using (bracket), the event information is bolded as Argument [Role], red text indicates incorrect extraction and
green ones indicates correct extraction. “Victim” of TISE is considered correct because the head token is matched.

other roles perform incorrect results (notice that
example 2 mentions a “Victim”, so the argument
of “Victim” is not “None”, although it is not en-
tirely accurate). On the other hand, the examples
of TISE encompass all event roles involved in the
label, enabling LLM to extract arguments compre-
hensively, verifying Example Diversity can ensure
the selected examples contain different role infor-
mation. For event correlation, BERT-TOPK se-
lects a “Transport” example that does not contain
any useful event roles. In contrast, all the exam-
ples of TISE have the event type “Die”, ensuring
that each of them can convey useful information.
Overall, both Example Diversity and Event Corre-
lation can help LLM extract arguments better.

7 Conclusion

In this paper, we present three necessary require-
ments for the in-context example selection when
using LLM to conduct EAE task. We propose
TISE, which scores the examples from three per-
spectives and leverages DPP to fuse these scores
so that the optimal in-context example is directly
selected. Experiments on ACE05 show TISE can
select a more efficient in-context example than
baselines, is robust to the number of examples, and
even can achieve better performance with fewer
examples. TISE can also be adapted to different
prompts and LLMs, and outperforms some fully
fine-tuned supervised methods. Moreover, we ex-
plore the principle of the effectiveness of three re-
quirements.
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Limitations

1) The encoder of TISE is a vanilla BERT model.
Except for replacing it with a dense retriever, some
methods use ranking labels obtained by the lan-
guage model to supervisedly learn a retriever as an
encoder that is adapted to the current dataset (Ru-
bin et al., 2022; Ye et al., 2023). However, there is
a gap between the retrieval task and the EAE task,
so it is not reasonable to directly use the ranking
label as a supervised signal. Intuitively, it makes
more sense to use reinforcement learning to opti-
mize a retriever using the performance of the EAE
as a reward. 2) The time consumption of TISE is
high, although we store the descriptions in a dic-
tionary, which reduces the time complexity of the
event scorer to O(1). However, each role in the
example requires a separate query of the test roles,
which increases the overhead.

Ethics Statement
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sues. We focus on selecting the optimal in-context
example for LLMs to conduct EAE task. All ex-
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A Appendix

A.1 Event Type Description

The complete event type description is shown in
Table 7, we display the event types belonging to
the same parent together to highlight the advan-
tages.

A.2 Event Role Description

The complete event role description is shown in
Table 8. Similarly, we display roles of the same
event type together.

A.3 Theoretical Proof

Since Kij = k(ti, tj |x) = sE
′(x, ti) · sT′(x, ti) ·

sT(ti, tj) · sT′(x, tj) · sE′(x, tj) , the kernel matrix
K can be represented as:

K = Diag(S′
E) ·Diag(S′

T ) · K̄ ·Diag(S′
T ) ·Diag(S′

E)

We only consider the effect of det(KA):

det(KA) =
∏

ti∈A
S′
Ei

2 ∗
∏

ti∈A
STi

′2 ∗ det(K̄A)

After logarization:

logdet(KA) =
∑

ti∈A
log(S′

Ei

2 ∗ S′
Ti

2
) + logdet(K̄A)

=
∑

ti∈A
(
SEi

λ1
+

STi

λ2
) + logdet(K̄A)

Simplifying, we assume that A = {ti, tj}, thus the
second part can be decomposed into:

det(K̄A) =

∣∣∣∣
K̄ii K̄ij

K̄ji K̄jj

∣∣∣∣ = −K̄2
ij + K̄iiK̄jj (11)

It can be found that det(K̄A) and K̄ij =
sT(ti, tj) are negatively correlated, meaning a
higher P (A|x) requires lower K̄ij , in other words,
ti and tj have low similarity.

A.4 Prompt Examples

We display examples of code imitation prompt and
code prompt in Figures 8 and 9, respectively. TISE
only needs to fuse the selected examples into the
In-context Examples according to the prompt for-
mat, so that can be adapted to any prompt tem-
plate.

Arg-Ck=10 Arg-Ck=15

λ1 = 0.5
λ2 = 0.05 50.78 51.43
λ2 = 0.1 50.01 51.01
λ2 = 0.5 48.49 49.23

λ2 = 0.05
λ1 = 0.05 50.13 50.87
λ1 = 0.1 50.54 50.99
λ1 = 0.5 50.78 51.43

Table 6: Comparison with different λ1 and λ2 on k=10
and k=15.

A.5 Impact of λ
To obtain the optimal hyperparameters, we con-
duct experiments with various combinations of λ1

and λ2 on different k. The experimental results
are shown in Table 6, we find that λ1 = 0.5 and
λ2 = 0.05 archives the best performance across
different values of k. In addition, TISE is smooth
on λ1, while sensitive to λ2. We guess this is
because Semantic Similarity has a greater impact
than Event Correlation.
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Entity Type Definition
Description of base entity types:
FAC: A functional, primarily man-made structure. Facilities are artifacts falling under the domains 
of architecture and civil engineering, including more temporary human constructs, such as police 
lines and checkpoints.
… (other entity types)

Event Definition
Role definition of event type Attack (Parent type: Conflict):
1. attacker (need to be one of GPE or ORG or PER)
2. instrument (need to be one of VEH or WEA)
3. place (need to be one of FAC or GPE or LOC)
4. target (need to be one of FAC or LOC or ORG or PER or VEH or WEA)
5. victim (need to be one of PER)
Multiple entities can be extracted for the same role, each entity is a double-quote enclosed string.
Each extracted entity should look like: (Base Entity Type) "content of extracted string"
If entity is not present in the text, write: () ""
Different entities are delimited by a comma.
In this event: [attacker] attacked [target] hurting [victim] victims using [instrument] instrument at 
[place] place.

In-context Examples
Translate the following sentence into an instance of Attack event. The trigger word(s) of the event 
is marked with **trigger word**.
"reporter : experts say saddam hussein 's forces will likely try to hold out in baghdad for as long 
as possible without **using** the weapons his government insists it does not have , hoping to 
build international pressure on the u.s. and britain to back down."
1. attacker: (PER) "forces"
2. instrument: (WEA) "weapons"
3. place: (GPE) "baghdad"
4. target: () ""
5. victim: () ""
… (other examples)

Event Instantiation
Translate the following sentence into an instance of Attack event. The trigger word(s) of the event 
is marked with **trigger word**.
"Most analysts linked Russia 's opposition to a **war** in Iraq to fears that it will lose oil 
contracts that were sealed with the now - toppled regime of Saddam Hussein ."
1. attacker: (

Figure 8: An example of code imitation prompt.To save space, we only show one part of the Entity Type Definition
and In-context Examples, the other items have the same formats. In-context example and its label are colored blue,
and the test input is colored orange.
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Entity Type Definition
class Entity:
    def __init__(self, name: str):

self.name = name
class Event:

def __init__(self, name: str):
self.name = name

class FAC(Entity):
"""A functional, primarily man-made structure. Facilities are artifacts falling under the domains of architecture 

and civil engineering, including more temporary human constructs, such as police lines and checkpoints."""
def __init__(self, name: str):

super().__init__(name=name)

Event Definition
class Conflict(Event):

def __init__(
        self,

attacker: List[GPE | ORG | PER] = [],
instrument: List[VEH | WEA] = [],
place: List[FAC | GPE | LOC] = [],
target: List[FAC | LOC | ORG | PER | VEH | WEA] = [],
victim: List[PER] = []):
self.attacker = attacker
self.instrument = instrument
self.place = place
self.target = target
self.victim = victim

class Attack(Conflict):
"""self.attacker attacked self.target hurting self.victim victims using self.instrument instrument at self.place

place."""
def __init__(

self,
attacker: List[GPE | ORG | PER] = [],
instrument: List[VEH | WEA] = [],
place: List[FAC | GPE | LOC] = [],
target: List[FAC | LOC | ORG | PER | VEH | WEA] = [],
victim: List[PER] = []):
super().__init__(

attacker=attacker,
instrument=instrument,
place=place,
target=target,
victim=victim)

In-context Examples
"""Translate the following sentence into an instance of Attack. The trigger word(s) of the event is marked with 
**trigger word**.
"reporter : experts say saddam hussein ‘s forces will likely try to hold out in baghdad for as long as possible 
without **using** the weapons his government insists it does not have , hoping to build international pressure on 
the u.s. and britain to back down . " """
attack_event = Attack(attacker=[PER(“forces”)], place=[GPE(“baghdad”)], instrument=[WEA("weapons")])

Event Instantiation
"""Translate the following sentence into an instance of Attack. The trigger word(s) of the event is marked with 
**trigger word**.
"Most analysts linked Russia 's opposition to a **war** in Iraq to fears that it will lose oil contracts that were 
sealed with the now - toppled regime of Saddam Hussein ." """
attack_event = Attack(

Figure 9: An example of code prompt.To save space, we only show one part of the Entity Type Definition and
In-context Examples, the other items have the same formats. In-context example and its label are colored blue, and
the test input is colored orange.
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Parent Event Type Event Type Description

Movement Transport
Involves an object movement,

recording that an object has been transport to somewhere.

Personnel

Elect
Involves a personnel change,

recording that an individual was elected to a position.

Nominate
Involves a personnel change,

recording that a person has been nominated for a position.

Start-Position
Involves a change in personnel,

recording someone starting work at a certain company.

End-Position
Involves a change in personnel,

recording someone stopping work at a certain company.

Conflict
Attack

Involves a conflict event,
recording an attack or aggression.

Demonstrate
Involves a conflict event,

recording a military demonstration.

Contact
Meet

Involves a connection,
recording a meeting between two people.

Phone-Write
Involves a connection,

recording a phone call between two people.

Life

Marry
Involves an event related to life,

recording a marriage of two people.

Injure
Involves an event related to life,

recording that a person injuring another.

Die
Involves an event related to life,
recording the death of a person.

Be-Born
Involves an event related to life,

recording the birth of a newborn baby.

Divorce
Involves an event related to life,

recording a divorce of two people.

Transaction
Transfer-Money

Involves a transaction,
recording a monetary transfer.

Transfer-Ownership
Involves a transaction,

recording a transfer of ownership of an item.

Business

End-Org
Involves an organizational business,
recording an organization shut down.

Start-Org
Involves an organizational business,

recording the formation of an organization.

Declare-Bankruptcy
Involves an organizational business,

recording an organization declaring itself bankrupt.

Merge-Org
Involves an organizational business,

recording the merger of two organizations.

Justice

Sue
Involves a justice trial,

recording a person has been sued before a court of law.

Arrest-Jail
Involves a justice trial,

recording a person has being arrested and jailed.

Execute
Involves a justice trial,

recording a person has been executed.

Trial-Hearing
Involves a justice trial,

recording a trial hearing.

Charge-Indict
Involves a justice trial,

recording a person has been charged or indicted.
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Convict
Involves a justice trial,

recording a person has been convicted.

Sentence
Involves a justice trial,

recording a person has been sentenced.

Release-Parole
Involves a justice trial,

recording a person has been released or paroled.

Fine
Involves a justice trial,

recording a person has been fined.

Pardon
Involves a justice trial,

recording a person has been pardoned.

Appeal
Involves a justice trial,

recording a person has been acquitted.

Extradite
Involves a justice trial,

recording a person has been extradited.

Acquit
Involves a justice trial,

recording a person has been acquitted.

Table 7: The complete description of event type.

Event Type Role Description

Life:Be-Born
Person Who was born?
Place Where did the birth take place?

Life:Marry
Person Who was married?
Place Where did the marriage take place?

Life:Divorce
Person Who was divorced?
Place Where did the divorce take place?

Life:Injure

Agent Who enacted the harm?
Victim Who was harmed?

Instrument What device was used to inflict the harm?
Place Where did the injuring take place?

Life:Die

Agent Who was the killer?
Victim Who was killed?

Instrument What device was used to kill?
Place Where did the death take place?

Movement:Transport

Agent Who is responsible for the transport event?
Artifact Who was transported?
Vehicle What vehicle was used for transporting?
Origin Where did the transporting originate?

Destination Where was the transporting directed?

Transaction:Transfer-Ownership

Buyer Who is the buying agent?
Seller Who is the selling agent?

Beneficiary Who benefits from the transaction?
Artifact What was bought?
Place Where did the sale take place?

Transaction:Transfer-Money

Giver Who gave money to others?
Recipient Who was given money?

Beneficiary Who benefited from the transfer?
Place Where was the amount transferred?

Business:Start-Org
Agent Who started the organization?
Org What organization was started
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Place Where was the organization started?
Business:Merge-Org Org What organization was merged?

Business:Declare-Bankruptcy
Org What organization declared bankruptcy?

Place Where was the bankruptcy declared?

Business:End-Org
Org What organization was ended?

Place Where was the organization ended?

Conflict:Attack

Attacker Who was the attacking agent?
Target Who was the target of the attack?
Victim Who was the victim of the attack?

Instrument What instrument was used in the attack?
Place Where did the attack take place?

Conflict:Demonstrate
Entity Who demonstrated?
Place Where did the demonstration take place?

Contact:Meet
Entity Who met with others?
Place Where did the meeting takes place?

Contact:Phone-Write
Entity Who communicated with others?
Place Where did the communication take place?

Personnel:Start-Position
Person Who is the employee?
Entity Who is the the employer?
Place Where did the employment relationship begin?

Personnel:End-Position
Person Who ended the position?
Entity Who fired employee?
Place Where did the employment relationship end?

Personnel:Nominate
Person Who was nominated?
Agent Who is the nominating agent?

Personnel:Elect
Person Who was elected?
Agent Who was the voting agent?
Place Where did the election takes place?

Justice:Arrest-Jail
Person Who was arrested?
Agent Who made the arrest?
Place Where did the arrest take place?

Justice:Release-Parole
Person Who was released?
Entity Who released the person?
Place Where did the release take place?

Justice:Trial-Hearing

Defendant Who was on trial?
Prosecutor Who tried defendant?

Adjudicator Who adjudicated the trial?
Place Where did the trial take place?

Justice:Charge-Indict

Defendant Who was indicated for crime?
Prosecutor Who executed the indictment?

Adjudicator Who adjudicated the indictment?
Place Where did the indictment take place?

Justice:Sue

Plaintiff Who sued defendant?
Defendant Who was sued?

Adjudicator Who adjudicated the suing?
Place Where did the suit take place?

Justice:Convict
Defendant Who was convicted for crime?

Adjudicator Who convicted defendant for crime?
Place Where did the conviction take place?

Justice:Sentence
Defendant Who was sentenced for crime?
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Adjudicator Who sentenced the defendant for crime?
Place Where did the sentencing take place?

Justice:Fine
Entity Who was fined for crime?

Adjudicator Who fined the entity for crime?
Place Where did the fining take place?

Justice:Execute
Person Who was executed for crime?
Agent Who executed person for crime?
Place Where did the execution take place?

Justice:Extradite

Agent Who extradited person?
Person Who was extradited for crime?

Destination Where was the person extradited to?
Origin Where was the person extradited from

Justice:Acquit
Defendant Who was acquited of crime?

Adjudicator Who acquited the defendant of crime?

Justice:Pardon
Defendant Who was pardoned for crime?

Adjudicator Who pardoned defendant for crime?
Place Where did the pardon take place?

Justice:Appeal
Plaintiff Who made the appeal?

Adjudicator Who adjudicated the appeal?
Place Where did the appeal take place?

Table 8: The complete description of event role.
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