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Figure 1: GPT-4’s performance on the default version of various tasks (blue) and counterfactual counterparts
(orange). The shown results use 0-shot chain-of-thought prompting (§4; Kojima et al., 2023). GPT-4 consistently
and substantially underperforms on counterfactual variants compared to default task instantiations.

Abstract
The impressive performance of recent language
models across a wide range of tasks suggests
that they possess a degree of abstract reasoning
skills. Are these skills general and transfer-
able, or specialized to specific tasks seen dur-
ing pretraining? To disentangle these effects,
we propose an evaluation framework based on
“counterfactual” task variants that deviate from
the default assumptions underlying standard
tasks. Across a suite of 11 tasks, we observe
nontrivial performance on the counterfactual

variants, but nevertheless find that performance
substantially and consistently degrades com-
pared to the default conditions. This suggests
that while current LMs may possess abstract
task-solving skills to an extent, they often also
rely on narrow, non-transferable procedures for
task-solving. These results motivate a more
careful interpretation of language model perfor-
mance that teases apart these aspects.

We release our code, all synthetically generated data, and
LM interactions (prompts and responses) at https://github.
com/ZhaofengWu/counterfactual-evaluation.
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1 Introduction

The striking empirical successes of language mod-
els (LMs) suggest that next-word prediction at scale
may be a viable approach for distilling the knowl-
edge embedded in large-scale text corpora into
general-purpose interactive agents. LMs obtain im-
pressive results on various NLP benchmarks (Ope-
nAI, 2023; Anil et al., 2023; Anthropic, 2023; i.a.)
and display surprising abilities that suggest a non-
trivial understanding of the world (Bubeck et al.,
2023), even purportedly surpassing human per-
formance on tasks that require nontrivial reason-
ing (Chowdhery et al., 2022; Hoffmann et al., 2022;
Malinka et al., 2023; i.a.).

Ideally, we expect a general-purpose LM to be
able to generalize not only to unseen instances of
known tasks, but to new tasks. Humans, for exam-
ple, can transfer their knowledge to new instances
and also flexibly adapt to novel tasks (Singley and
Anderson, 1989). While much past work has fo-
cused on instance-level generalization, we ask: to
what extent does the performance of current LMs
derive from their ability to deploy task-general rea-
soning skills (Li et al., 2022; Mishra et al., 2022),
versus their ability to recognize and recall specific
tasks seen frequently in pre-training?

We propose to measure such task-level generaliz-
ability by taking tasks on which LMs perform well,
and altering the conditions under which these tasks
are performed. The general reasoning procedure
for these variants remains the same, but the input-
output mapping functions differ. We call the new
tasks counterfactual tasks, as they deviate from
the default, generally assumed conditions for these
tasks. For example, while arithmetic is by default
performed in base-10, we consider a counterfac-
tual task requiring additions in base-9. If models
implement a general and transferable task-solving
procedure, we expect comparable performance on
counterfactual and default tasks; if they employ
procedures tailored to default task conditions, we
expect a drop in the counterfactual performance.

We design a suite of 11 counterfactual evaluation
tasks, illustrated in Figure 1 (appendix), to measure
an LM’s flexibility to adapt to new task variants
across multiple categories and domains. In each,
the original task under the default conditions and
its counterfactual variants share the same reasoning
procedure. We consider traditional tasks such as
deductive reasoning, non-language tasks that are
nonetheless commonly evaluated such as code gen-

eration, as well as non-standard tasks such as draw-
ing and spatial reasoning. The latter extralinguistic
tasks test whether LMs learn conceptual structures
that mirror the structure of the non-linguistic world,
which has been suggested by recent work (Patel
and Pavlick, 2022; Bubeck et al., 2023; i.a.).

We evaluate GPT-4 (OpenAI, 2023), GPT-3.5,
Claude (Anthropic, 2023), and PaLM-2 (Anil et al.,
2023) on tasks under both the default and coun-
terfactual conditions. We observe above-random
counterfactual performance for most tasks, indi-
cating some degree of task generalizability. How-
ever, performance on counterfactual task variants
consistently and substantially degrades relative to
the performance on the default settings. A sys-
tematic study of model behavior on default and
counterfactual tasks (§5) reveals that while chain-
of-thought prompting and few-shot demonstrations
generally improve performance, they do not close
the default-counterfactual gap. We further find
that counterfactual performance is affected by the
commonness of the counterfactual conditions, but
correlates with the default task performance. These
results collectively suggest that LMs’ abilities on
these tasks are supported at least in part by non-
transferable, default-condition-specific behaviors
rather than generalizable reasoning skills.

2 Counterfactual Tasks

We informally conceptualize a task as a function
fw : X → Y that maps an input x ∈ X under a
world model w ∈ W to an output y ∈ Y . World
models encapsulate the conditions for the function
evaluation. For example, in arithmetic, w could
represent the set of conditions required for an arith-
metic operation, such as the number base. We refer
to the set of assumed default conditions, including
but not limited to the base’s being 10, as the de-
fault world, or wdefault. Intuitively, for any task,
wdefault corresponds to the set of conditions under-
lying most task instances in pretraining corpora.

Traditional machine learning evaluations assess
how closely a model’s learned hypothesis h esti-
mates fw by independently sampling training and
test sets from the population distribution and only
exposing the model to the former for learning h.
However, in datasets of web text, these evalua-
tions are subject to potential data contamination
issues (Brown et al., 2020; Magar and Schwartz,
2022; i.a.). These issues may be more severe in
recent LMs: the ever-growing pretraining datasets
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potentially expose the models to more evaluation
instances, and recent LMs with increasing sizes are
more capable of memorizing these instances.

We hence consider another dimension of gener-
alization: to new task variants in counterfactual
worlds wcf, instead of new inputs x. This allows
us to measure the extent to which a model’s fwdefault

performance is specific to wdefault or attributable
to a general implementation of the task f . For
arithmetic, wcf could be one that was the same as
wdefault but assumed a base other than base-10. We
expect a model with general arithmetic ability to
perform similarly in other bases. We stress that
our goal is not to find counterfactual world models
outside human experience. Base-9 addition, for ex-
ample, is not a novel concept. Nor do we aim that
the counterfactual world models are unobserved
in pretraining. Instead, counterfactuals are simply
variations on the default conditions for a task.

We assess an LM’s task performance with 0-shot
prompting. We specify the task f , the test instance
x, and the world model w in a prompt, and parse the
LM’s output. We denote the LM’s implementation
of fw for a given instance x to be,

h(f, w, x) = argmax
y′

PLM
(
y′ | promptf (f, x),

promptw(w)
)
,

where the argmax is computed with approximate
decoding and promptf and promptw describe
tasks and world models respectively. For each task,
we devise one or more wcf that deviate from the de-
fault world conditions and compare h(f, wdefault, x)
and h(f, wcf, x). If we control fw(x) to be simi-
larly hard between wdefault and wcf, we can attribute
the performance difference to an LM overfitting to
the default instantiation of the task.

Counterfactual Comprehension Check. One
potential confounder is that an LM may fail at
a particular counterfactual task by failing to un-
derstand the prompt component that specifies the
counterfactual conditions promptw(w

cf), and keep
reasoning in wdefault. This failure mode would not
reflect a lack of generalizable task abilities. We
control for this with task-specific counterfactual
comprehension checks (CCCs) that test an LM’s
surface understanding of the specified counterfac-
tual world. For each (wdefault, wcf) pair, we intro-
duce another control task gw with input x′ and
output y′ that is much simpler than fw but still al-
lows for the discrimination of wdefault from wcf (i.e.,
gwcf(x′) ̸= gwdefault(x′)). A high performance of

PLM(y′ | promptg(g, x
′),promptw(w

cf)) would
indicate that promptw is effective at making the
LM perform a task in wcf. In the arithmetic ex-
ample, for a base-9 counterfactual world, we use
the same promptw(base-9) to specify the coun-
terfactual world, and check that it facilitates an
understanding of w = base-9 by asking what the
next integer after x′ is. If, for example, it consis-
tently carries over digits greater than 8 and does not
carry over otherwise, this would show the effective-
ness of promptw(base-9). Our CCC designs are
heuristic: as with control tasks in the probing litera-
ture (Hewitt and Liang, 2019), we rely on intuition
to craft a gw that is “simpler” than fw.1

3 Tasks

In this section, we give a quick overview of the
tasks we consider. See §A for the full description
of each task and §C for all the prompts used.

Arithmetic. Modern LMs have been shown
to possess basic numerical reasoning abili-
ties (Lewkowycz et al., 2022), with Brown et al.
(2020) even reporting near-perfect GPT-3 accuracy
for two-digit additions. On the other hand, Razeghi
et al. (2022) find that LMs perform significantly
better with numbers that occur more frequently in
the pretraining data, and Li et al. (2023b) show
that symbol replacement affects LMs’ mathemat-
ical ability; both findings point to overfitting and
memorization effects. We consider the same two-
digit addition task, the simplest arithmetic task in
Brown et al. (2020), but inspect a model’s accuracy
in different bases. We use base-8, 9, 11, and 16
as the counterfactual setup, which were chosen to
control for task difficulty and also to test for how
relatively uncommon (9 & 11) and common (8 &
16) bases affect performance (see §5.1). The CCC
evaluates the successor relation under each base.

Programming. The inclusion of code corpora in
LM pretraining (Gao et al., 2021; Chowdhery et al.,
2022; Touvron et al., 2023; i.a.) allows LMs to pos-
sess coding capabilities, sometimes even at state-
of-the-art level (Sobania et al., 2023). Nevertheless,
Miceli-Barone et al. (2023) show that GPT-3 and
related models are fragile under identifier swaps in
programs, suggesting only a shallow understanding
of code. Here, we inspect an LM’s programming

1For some tasks, it is more natural to query about
the task and CCC jointly in the same prompt, i.e.,
PLM(y, y

′| promptf (f, x),promptg(g, x
′),promptw(w

cf)).
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ability through a deeper counterfactual perturba-
tion: contrary to the traditional 0-based indexing in
Python, we instruct the LM to evaluate or generate
Python programs under 1-based indexing using the
HumanEval dataset (Chen et al., 2021). 1-based
indexing is a common assumption for other pro-
gramming languages such as MATLAB and R and
hence provides a fair testbed. The CCC here in-
volves the same program execution task but on
much simpler inputs, such as simple list indexing.

Basic Syntactic Reasoning. Mahowald et al.
(2023) distinguish between two types of LM ca-
pabilities: formal competence that encompasses
the knowledge of language, and functional compe-
tence which involves using language, potentially
combined with extralinguistic capacities, to inter-
act with the world. While our other tasks assess
functional competence, we include an evaluation
on formal competence. We revisit the attested syn-
tactic knowledge of LMs (Yu et al., 2020; Linzen
and Baroni, 2021; Belinkov, 2022; i.a.) with a
meta-linguistic task (Beguš et al., 2023; Hu and
Levy, 2023; i.a.): evaluating LMs in synthetic ver-
sions of English with different word orders from
English’s subject-verb-object (SVO) ordering, ob-
tained from manipulating dependency trees (Rav-
fogel et al., 2019). We ask the LM to identify the
main subject and the main verb of a sentence under
both the original and counterfactual orders. The
CCC requires the model to revert simple reordered
sentences to the original SVO ordering, equivalent
to identifying these elements in a sentence.

Natural Language Reasoning with First-Order
Logic. We next consider a deductive reasoning
task, again based on natural language. Deductive
logical reasoning is a prerequisite ability for many
complex tasks (McCarthy, 1959) and has received
much recent focus (Clark et al., 2020; Tafjord et al.,
2021; Saparov and Mitchell, 2022; Saparov and
He, 2023; i.a.). Nevertheless, LMs struggle with
reasoning with premises that are inconsistent with
common sense (Dasgupta et al., 2022; Yu et al.,
2023; Tang et al., 2023). Here, we undertake a
similar study from the perspective of counterfac-
tual analysis to disentangle the effect of common
sense from a model’s actual logical reasoning ca-
pability. Following prior work, we ask LMs if a
series of premises entails a conclusion. We use the
FOLIO dataset (Han et al., 2022), whose premises
are mostly consistent with common sense. For
the counterfactual version we manually rewrite

them to violate common sense, and study if LM
performance is affected by the truthfulness of the
premises under which they operate. The CCC di-
rectly asks the model if the original or post-rewrite
premise is true, when presented both as options.

Spatial Reasoning. A major debate around LMs
is whether grounded representations of meaning
can be learned from form alone (Bender and Koller,
2020; Piantadosi and Hill, 2022). Studies have
shown that LMs can learn meaningful representa-
tions of certain concepts through text-only training,
with Patel and Pavlick (2022) finding that LMs
learn representations of spatial relations and car-
dinal directions that can be aligned to grounded
conceptual spaces. We similarly investigate an un-
derstanding of cardinal directions, but instead of
evaluating whether a model can induce structured
conceptual spaces, we ask if it can apply concep-
tual spaces to reason about object locations. Specif-
ically, we ask an LM for the coordinates of objects
whose positions are described using cardinal direc-
tions, under a conventional 2D coordinate system
(e.g., where east corresponds to (1, 0)) versus co-
ordinate systems with swapped, rotated, and ran-
domly permuted axes. We expect a robust represen-
tation to not be sensitive to such transformations.
The CCC involves asking the model to directly
output the counterfactual cardinal directions.

Drawing. LMs have been shown to structure
their representations of perceptual concepts such
as size and color in a way that credibly mirrors
the physical world (Abdou et al., 2021; Patel and
Pavlick, 2022; Zhang et al., 2020; Ilharco et al.,
2021; i.a.). Recent LMs can even directly generate
plausible drawings of objects using code such as
TikZ and SVG (Bubeck et al., 2023; Zhang et al.,
2023b). We evaluate the visual understanding of
LMs by asking them to generate code for draw-
ing various objects programmatically. Inspired by
psychological studies that show humans’ ability to
rotate mental representations of objects (Shepard
and Metzler, 1971; Vandenberg and Kuse, 1978),
we ask the LM to generate code that draws the
same object, but rotated or vertically flipped as our
counterfactual settings. For the CCC, we ask the
model to draw a straight line at the top of the canvas
in addition to the object; a flipped/rotated line thus
signifies an understanding of the transformations.

Music. Recent work has shown the potential of
large-scale models for music infilling (Huang et al.,
2019a,b) and generation (Agostinelli et al., 2023;
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check (§2), but when applicable, we report it for the default setting too. Counterfactual performance is consistently
lower than the default task performance, while CCC is usually high. §D reports numeric results.

Copet et al., 2023; Ren et al., 2020). Bubeck et al.
(2023) show that even a text-only LM exhibits
some musical abilities. We investigate the extent
of LMs’ musical abilities through two tasks.

In the chord placement task, we evaluate whether
LMs can provide the correct chord fret placements
for string instruments with standard or altered
string tunings. The altered tunings, known as scor-
datura, are typical in music to evoke specific ef-
fects. In the counterfactual setting, we instruct
LMs to provide fret placements for a special gui-
tar/ukulele where one or two of the strings are al-
tered. To check whether the model has understood
the tunings, we ask for the first three notes on each
string (including open string) as the CCC.

In the note retreival task, we evaluate whether
LMs can retrieve notes from famous melodies. The
process of re-writing melodies in different keys,
referred to as “transposition,” is common in music.
We evaluate LMs’ musical abilities under transpo-
sitions by prompting them to retrieve the n-th note
in a melody in either its canonical key or a different
key. We ask the LMs to retrieve the n-th note of
the scale of the given key as the CCC.

Chess. Chess-playing has long been regarded as
a testbed for AI (Silver et al., 2017; Tomasev et al.,
2020), and modern LMs have exhibited abilities
that imply an understanding of chess rules (Srivas-
tava et al., 2023; Du et al., 2023). We test this un-
derstanding by asking for the legality of a 4-move

opening. In the counterfactual setting, we swap the
initial positions of knights and bishops—a setup
present in a real-world chess variant “Chess 960”—
and similarly ask LMs for opening legality under
this new starting configuration. The CCC asks for
the starting positions of the knights and bishops.

SET Game. SET is a popular card game where
each card has 4 attributes (color, shape, shading,
and number) with 3 different values for each at-
tribute. A player finds a SET of 3 cards on a
board whose values for each attribute are either all
the same or all unique. This game has been thor-
oughly studied in computer science, from the per-
spective of coding theory and combinatorics (Davis
and Maclagan, 2003), linear algebra (Coleman and
Hartshorn, 2012), and complexity theory (Chaud-
huri et al., 2003). We suspect this popularity makes
it susceptible to overfitting by LMs and investigate
this possibility. We ask the LM to identify the card
on a board that completes a 3-card SET with two
given cards. In the counterfactual setup, we invert
the rule for the number attribute, requiring its val-
ues to be neither all the same nor all unique. For
the CCC, we ask the model for the validity of a SET
under the original and the counterfactual rules.

4 Results

We evaluate GPT-4 (gpt-4-0314; OpenAI,
2023), GPT-3.5 (gpt-3.5-turbo-0301), Claude
(claude-v1.3; Anthropic, 2023), and PaLM-2
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(text-bison-001; Anil et al., 2023).2 We experi-
ment both with and without encouraging step-by-
step reasoning with the phrase “Let’s think step
by step.” (Kojima et al., 2023; Reynolds and Mc-
Donell, 2021). We refer to this step-by-step setup
as zero-shot chain-of-thought prompting (0-CoT;
Kojima et al., 2023). We include all prompts in §C.

Figures 2 and 3 show our results. The numeric
version are in §D. LMs consistently and substan-
tially perform worse on the counterfactual variants,
both with and without 0-shot CoT. For most cases,
LMs exhibit an above-random counterfactual per-
formance, suggesting some degree of the targeted
ability. However, when the CCC accuracy is high,
as is usually the case for GPT-4 and select settings
for other models too, the gaps in default vs. coun-
terfactual performance demonstrate limitations in
their abstract capacity for the target task. When
the CCC accuracy is lower, the failure of counter-
factual world comprehension confounds this con-
clusion, but often the gaps are so large (sometimes
between near-perfect and near-zero, e.g. for arith-
metic) that they are nonetheless strongly indicative
of non-transferable, default-condition-specific task
implementations. The fact that the LMs sometimes
do not evaluate the CCC well under counterfactual
conditions, but can do so under the default condi-
tions (for arithmetic, programming, drawing, etc.)
itself also points to overfitting to the latter.

5 Analysis
We investigate how a variety of factors affect the
performance trends in §4. Unless otherwise speci-
fied, we only consider GPT-4 with 0-shot CoT as
this is generally the best-performing setup. We
provide additional analyses in §B.

5.1 “Commonness” of Counterfactuals
Our counterfactual worlds are not designed to be
completely alien to the LMs but only less common
than the assumed default case. The counterfactual-
ness of task variants is hence only relative, and
here we take a more nuanced look at how the com-
monness of these counterfactual conditions affects
the default-counterfactual performance gap. For
arithmetic, all models perform better in bases 8
and 16, likely due to their relative abundance com-
pared to bases 9 and 11. In spatial reasoning, the
smallest counterfactual performance degradation is
usually from when the north and south directions

2The largest PaLM-2 model is not publicly accessible, and
we can only test the second-largest version.

are swapped, potentially because some program-
ming libraries use an inverted y-axis (matplotlib,
ggplot, D3, etc.; see §A.5). For chord fingering,
the common alternative drop-D tuning of guitars
(DADGBE) leads to the highest counterfactual per-
formance for GPT-4. These correlations between
the counterfactual performance and the common-
ness of these worlds paint a more fine-grained pic-
ture than a binary real vs. counterfactual distinction
and point to a memorization-like effect where LMs
perform better under more common conditions.

5.2 Proximity between Default and
Counterfactual Conditions

Another axis along which the counterfactual worlds
differ is in their proximity to the default condi-
tions. For example, for the different arithmetic
bases, bases 9 and 11 are closer to base 10, but less
common than bases 8 and 16. While the default-
counterfactual gap is most affected by commonness
for the arithmetic task, for the guitar and ukulele
tunings (other than the drop-D tuning), the LM per-
formance generally decreases monotonically with
increasing distance from the original tunings.

The FOLIO dataset (Han et al., 2022) enables
another analysis of how proximity to the default
conditions affects the model performance, with-
out counterfactual perturbations. This dataset was
constructed to mostly follow common sense, with
premises and conclusions that are deemed true in
the real world. However, this is not always the case,
with premises such as “John can make meals which
are popular at the party,” whose factuality cannot
be determined alone.

In §B.1, we use this feature to shows that a
LM’s reasoning ability is inversely related to the
distance between the (LM-believed) real world and
the world state described by the premises (occa-
sionally counterfactual to the LM), by training a
predictive model given features approximating this
distance. Overall, these results show that LMs tend
to perform better on task variants that are closer to
the default instantiation of a task.

5.3 Default vs. Counterfactual Performance

Recalling our formalization hLM(f, w, x) in §2,
§5.1 analyzed how the commonness of w affects
the observed patterns. Here, we explore how the
counterfactual performance correlates with the de-
fault task performance when the other three ele-
ments vary: the task f , the input x, and the LM.
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Figure 4: Investigating the relationship between the default task performance and counterfactual performance,
broken down by different factors. Only GPT-4 with 0-shot CoT results are shown. There is a consistent default-
counterfactual correlation across task variants when varying different factors.

We first consider different task variants with var-
ious difficulties. For arithmetic, beyond 2-digit ad-
dition, we also measure GPT-4’s 3- and 4-digit ad-
dition performance (Figure 4a). For note retrieval
from melodies, we use the index of the inquired
note as the proxy for difficulty (Figure 4b). For
SET, while our original task shows two cards and
asks a model to find the missing one from a 3-card
SET, we change the task to instead show one or
none of the cards in a SET, while still requiring the
model to identify the SET (Figure 4c). For all these
task variants, we see a strong correlation between
the original and counterfactual world performance.

We also see this effect when breaking down re-
sults by test instances x. In Figure 4d, we separate
the chord types, and observe that the default and
counterfactual task performance correlates. Simi-
larly, for most tasks, stronger models under default
conditions are also stronger under counterfactual
conditions, and vice versa. These correlations in-
dicate that the default task performance can be a
good indicator of its counterfactual performance,
and hence its utility should not be discounted.

Occasionally, this default-counterfactual corre-
lation is reversed. In the spatial reasoning task,
for example, GPT-4 has the best default-condition
accuracy with 0-shot CoT, but it also degrades the
most facing counterfactuals. PaLM-2 performs
worse under default conditions, but is the most
robust to counterfactual perturbations. McKenzie
et al. (2023), who found a similar trend with respect
to pretraining FLOPs and termed it “inverse scal-
ing,” provided a memorization-based explanation:
they observed that when a task contradicts with pre-
training texts, similar to how our counterfactuals
deviate from the default conditions in pretraining,
larger LMs tend to rely on the pretraining text and,
in turn, fail at the contradictory task.

5.4 The Effect of Prompts
0-shot CoT. Consistent with prior findings (Chen
et al., 2022; Dasgupta et al., 2022; i.a.), we gen-
erally observe 0-shot CoT to be helpful for most
cases. There are, however, exceptions, for example
on PaLM-2’s base-10 and 16 addition, and GPT-4’s
chord-playing performance. This may be due to a
model pragmatically inferring that a task is more
difficult than it actually is when explicitly asked
to “think step by step”, and this “overthinking”
on simple tasks could lead to mistakes (Kojima
et al., 2023). It is also possible that these are due
to memorization: the model could have memorized
the specific input-output mapping of a task without
understanding how to derive the output from the
input, and when explicitly asked to spell out that
process, it makes more errors (Zhang et al., 2023a).

Few-shot Demonstrations. We study if addi-
tional demonstration examples using in-context
learning (Brown et al., 2020) bridges the default-
counterfactual gap. For the arithmetic task, we
construct few-shot CoT prompts (Nye et al., 2021;
Wei et al., 2022) and prepend up to 16 samples. As
shown in Figure 5 (appendix), while the gap is re-
duced, it is still substantial for bases 9, 11, and 16,
and plateauing towards the 16-shot setting. There-
fore, the default-counterfactual gap is unlikely to
be eliminated simply with more demonstrations.

6 Discussion
Do humans also perform worse with unfamil-
iar counterfactual conditions? It is possible that
humans may have lower performance under the
counterfactual conditions with a fixed time bud-
get, but not necessarily when given ample time to
reason and revise. Analogous to the classic compe-
tence/performance distinction in linguistics (Chom-
sky, 1965, §1.1), we hypothesize that humans have
the competence to generalize to new task condi-
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tions, even though it may sometimes require suffi-
cient execution budget to realize it as robust perfor-
mance.3 In fact, there is increasing evidence from
cognitive science that human reasoning is scaf-
folded by rich causal models of the world (Pearl,
1988; Lake et al., 2017), and that humans can inter-
vene on these models to perform rapid and flexible
counterfactual simulations (Lagnado et al., 2013;
Gerstenberg et al., 2017, 2021). However, stepping
back, replicating or modeling human intelligence
need not be a main goal of LMs in the first place,
and human behavior is largely orthogonal to the
desiderata we set for these models.

Is task-specific reasoning bad? It is not nec-
essarily bad when solving familiar tasks, but an
ideal system should also possess general reason-
ing abilities that, when prompted, can be used to
generalize to novel situations. Our point is that
memorization is an often-overlooked confounding
factor in interpreting LMs’ reasoning abilities.

Why do we care about counterfactual worlds?
Isn’t the default-task model still useful? It is cer-
tainly useful. However, many of the counterfactual
worlds that we investigate are not very distant so
that model performance under them still bears util-
ity. Moreover, we are mostly only interested in
the counterfactual tasks insofar as performance on
these tasks can serve as a measurable proxy for the
generalizability of these models and their underly-
ing reasoning capabilities.

Aren’t these trends trivial? The default task
variant is likely the most frequent in pretraining,
so of course an LM performs better under it. In-
deed, our results parallel the classic train-test gap in
machine learning. However, an ideal learner with
the right inductive biases should be able to struc-
ture their internal parameters and representations to
implement general-purpose abstractions (e.g., the
concept of addition), and use these abstractions to
generalize to counterfactual conditions, analogous
to physicists using mathematics to make predic-
tions about universes that are substantially different
from our own, or more generally to humans who
can generalize to new stimuli (Lagnado et al., 2013;
Gerstenberg et al., 2017, 2021).

Can some more carefully designed prompts
eliminate the default-counterfactual gap? We
can never tractably rule out this possibility. Never-

3It is arguable if our evaluation setting provides sufficient
execution budget (Lampinen, 2023). Our in-context learning
experiment (§5.4) may be thought of as increasing this budget,
and yet the default-counterfactual gap is still sizeable there.

theless, given the consistency of the gap across the
different tasks (which use different prompts) and
the setting of 0-shot CoT, we believe that a prompt
that completely bridges the default-counterfactual
gap is unlikely. Our in-context learning experiment
(§5.4) further shows that while this gap could be
reduced by more informative prompts, it cannot be
not fully removed.

7 Related Work
Causal Analysis. Our counterfactual perturba-
tions can be informally viewed as interventions in
causal inference (Pearl, 2009). This relationship
has been explored in machine learning and NLP
for commonsense reasoning (Kıcıman et al., 2023),
interpretability (Elazar et al., 2021; Geiger et al.,
2021, 2022), spurious correlation detection (Veitch
et al., 2021; Eisenstein, 2022), and fairness (Kus-
ner et al., 2017; Nabi and Shpitser, 2018). Under
this perspective, the degradation from counterfactu-
als can be viewed as a failure to robustly learn the
causal effects of world states.

Counterfactual Evaluation. “Counterfactuals”
is an informally-used term in NLP and has been
used to refer to different types of perturbations.
One line of work concerns counterfactuals to a
certain event or situation that is still licensed in a
default world model (Qin et al., 2019, 2020; Yang
et al., 2020; Frohberg and Binder, 2022; i.a.), in
contrast to our counterfactual world states that de-
viate from the default. Another body of work ex-
amines the robustness of model predictions using
counterfactual data (Kaushik et al., 2020, 2021;
Gardner et al., 2020). Closer to us, Li et al. (2023a)
showed that while LMs seem to be able to perform
some reasoning in counterfactual worlds, this is
largely affected by superficial lexical cues.

8 Conclusion
Through our counterfactual evaluation on 11 tasks,
we identified consistent and substantial degrada-
tion of LM performance under counterfactual con-
ditions. We attribute this gap to overfitting to the
default task variants, and thus encourage future LM
analyses to explicitly consider abstract task ability
as detached from observed task performance. Fur-
thermore, insofar as this degradation is a result of
the LMs’ being trained only on surface form text,
it would also be interesting future work to see if
more grounded LMs (grounded in the “real” world,
or some semantic representation, etc.) are more
robust to task variations.
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Limitations

Despite our attempt to devise novel counterfactual
conditions to gauge an LM’s “true” reasoning abil-
ity, it may not be precisely reflected by the counter-
factual performance due to several factors.

Underestimation

For our main evaluations, we aim to construct coun-
terfactual tasks that have the same difficulty as
the default variants so that task difficulty does not
confound our comparisons. This is not always
possible—in fact, an objective difficulty measure
may not even exist. One could, for example, ar-
gue that base-11 addition is harder than base-10
because it requires reasoning with one additional
digit, or base-9 is harder than base-10 because on
average the sums would consist of more digits.

Retrieving notes in melodies in different keys
faces a similar issue. We expect similar retrieval
difficulty under different keys if the model recalls
a melody as a series of abstract relations in a scale
and directly maps them onto notes in a target key.
However, an alternative strategy would be to first
retrieve the note in a canonical key and then trans-
pose it to the desired uncommon key. This 2-step
process is a natural one that is often employed by
musicians. And with this strategy, the counter-
factual task consists of 2 steps and is harder than
(and requires first) completing the 1-step original
task. The counterfactual setup thus introduces a
confounder: low performance may be driven by
the increased difficulty of the counterfactual task,
rather than overfitting to melodies in their canoni-
cal keys, if models are employing two-step strategy.
However, since both strategies are available to mod-
els and we do not prompt them to use a particular
one, reliance on this two-step strategy may itself
be indicative of overfitting to the original canonical
keys.

Overestimation

We can never be certain of how rarely particular
counterfactual conditions are encountered during
pretraining. It is quite likely that there is text online
that, for example, draws rotated versions of various
objects used in our study. Consequently, the effect
of overfitting could also manifest in our counterfac-
tual conditions, and the default-counterfactual gap
could actually be larger for some genuinely unseen
conditions.

We also distinguish between two types of coun-
terfactual perturbations. One type fundamentally
affects the operation of the world model and ne-
cessitates an understanding of the counterfactual
world to perform the task in it (e.g., arithmetic base
or 1-based indexing4). On the other hand, some
perturbations are more superficial and may admit a
shortcut where the model first figures out a simple
mapping of the input back to the default condi-
tions and performs the task (potentially leveraging
instance-level memorization) under those. In some
of our tasks, this mapping may be simple, such
as the word replacements in the natural language
logical reasoning task5 and the transformation func-
tions for the drawing task (see §A.6), which could
potentially be exploited by the models. We explic-
itly disallow this in our prompt for the drawing task
(Table 7) but did not identify a good way to forbid
this for logical reasoning, potentially accounting
for its generally high counterfactual performance.

Finally, we reiterate from §4 that a non-perfect
CCC accuracy does not allow us to perfectly tease
apart counterfactual performance and a failure of
counterfactual condition comprehension. But often
the default-counterfactual gap is so prominent that
it is still strongly suggestive of overfitting to the de-
fault conditions. Also, recall from §2 that the CCC
itself is also a nontrivial task. For ThonPy, for ex-
ample, the CCC also involves program evaluation,
albeit with simpler statements that involve less rea-
soning, such as print("qrstu"[4]). We do not
see an easy way to introduce ThonPy CCC that
is entirely disentangled from program evaluation.
This conflation would result in the CCC accuracy’s
being lower than what would reflect the model’s
understanding of the counterfactual conditions.
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Figure 5: Two-digit addition accuracy when given dif-
ferent numbers of demonstration examples. The default-
counterfactual gap reduces, but is not eliminated.

A Full Setups
Unless otherwise specified, we use temperature=0
when sampling from the LMs.

A.1 Arithmetic

We randomly sample 1,000 two-digit addition ex-
pressions and evaluate them in bases 8, 9, 10, 11,
and 16. Each base is sampled separately—for bases
other than base-10, we make sure all expressions
evaluate to a different result in that base compared
to base-10 so that these expressions discriminate
between the bases. To ensure the LMs understand
these bases, we design the CCC to ask the model
what the number following a given number is. We
want the model to know when to carry over and
when not to, so we take the 100 smallest numbers
in the given basis that ends with the maximum digit
in that base, and 100 that end with 0.

A.2 Programming

We use the HumanEval dataset (Chen et al., 2021)
which has short Python programs and is commonly
used to assess the coding ability of LMs (Bai et al.,
2022; Xu et al., 2022; Wang et al., 2023; i.a.). It
was designed as a code-generation dataset, where a
model writes a function from a specification and is
evaluated against test cases with input-output pairs.
Different from our other tasks, we follow prior
work (Touvron et al., 2023; Wang et al., 2023) and
(1) use temperature 0.1 when evaluating pass@1
and 0.8 for pass@10, (2) sample 50 responses, and
(3) only evaluate without 0-shot CoT. While the
original work (Chen et al., 2021) recommended
sampling 200 responses, this is very expensive, and
we follow Wang et al. (2023) and only sample 50.
In Figure 2, we only show the performance on the
subset of HumanEval where a 1-based execution of
the ground-truth program fails the unit tests. These

are the instances that distinguish between 0- and
1-based indexing. We also report results on the full
HumanEval dataset in Table 21.

We also consider another setup—code execution,
where we give the LM the ground-truth program
and ask the LM for the output of the test cases given
the input. We remove four programs in HumanEval
that are not compatible with this format (ID: 32, 38,
50, and 53), only for this execution task. Because
the program would have a different functionality
under 1-based indexing, we remove the docstring
that is the function description, and also rename the
function to the uninformative function, to avoid
confusing the LM. Some programs also become
invalid under 1-based indexing, specifically, those
that perform any indexing using 0. We remove
all test cases that involve indexing with 0 and pro-
grams that do not have test cases left after this
removal. 150 programs and 969 test cases remain.
Some of these test cases may not distinguish be-
tween 0- and 1-based indexing. So for our main
task (i.e., not CCC), we only consider test cases
whose outputs are different under 0- vs. 1-based
indexing, and there are 113 of them.

Because we use the same prompt to indicate
the counterfactual conditions for both code gen-
eration and execution, and because we want to
maintain comparability with prior work for the
former, we only include CCC in the execution
setup. We believe they reflect the LMs’ understand-
ing of 1-based indexing in the generation setup
too. We ask the LM for the output of simple tests
about 1-based indexing such as "qrstu"[4] and
"qrs"[:2]. They do not require sophisticated rea-
soning under the counterfactual conditions and yet
are sufficient to discriminate between the default
and the counterfactual conditions. We append 5
such checks after each of the 150 programs, total-
ing 750 CCC.

For the execution task, we do not consider PaLM-
2, because it only has a maximum of 1,024 output
context length and leads to truncated, unparseable
results for most test instances, especially under 0-
shot CoT.

A.3 Basic Syntactic Reasoning

We follow Ravfogel et al. (2019) and create syn-
thetic variants of English with all six orderings of
the subject, verb, and object. Given a dependency
tree of a regular English sentence, we alter the or-
der of subject and object nodes with respect to the
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corresponding verb. The subtrees rooted at sub-
ject or object nodes are moved as a whole, whereas
other non-core dependent nodes (e.g., prepositional
phrases) are kept in the original positions. We use
100 sentences from English Penn Treebank (Mar-
cus et al., 1993), and convert the original phrase-
structure trees into Universal Dependencies (Nivre
et al., 2016) using the Stanford converter (Schuster
and Manning, 2016).

Our task is to identify the main verb and the
main subject of a sentence. We only choose sen-
tences where the main subject contains a single
word. Ravfogel et al. (2019)’s data generation
procedure sometimes results in sentences in the
SVO order to be unnatural English sentences. To
eliminate this complexity, we retain only sentences
whose SVO variant according to Ravfogel et al.
(2019)’s data generation procedure is identical to
the original English sentence.

We designed the CCC to assess how well LMs
understand the instruction that explains the differ-
ence of word orders in the counterfactual settings.
We synthetically generate 100 simple three-word
sentences (e.g., “anna saw john”) in five coun-
terfactual word orders (e.g., “anna john saw” in
SOV), and ask LMs to reconstruct the original En-
glish sentences in SVO order. Conceptually, this
is equivalent to asking the model to identify the
subject, verb, and object in the perturbed order, but
using a format that is more familiar to the LM.

To generate the simple sentences for the CCC,
we designed a simple context-free grammar where
the subject and the object are sampled from the
vocabulary of person names, and the verb is sam-
pled from the set {saw, loves, calls, knows,
sees}. A key feature of the sentences generated
from this approach is their retained plausibility
when the subject and object are interchanged. This
means that given a counterfactual sentence (e.g.,
“anna john saw”), there are two natural English
sentences as candidates for reconstruction (i.e.,
“anna saw john” and “john saw anna”). Due to
this inherent ambiguity, LMs cannot default to the
heuristic of treating the synthetic sentence as bag-
of-words and then reconstructing the most natural
ordering of those words in real English. The ran-
dom baseline chooses a random noun as the main
subject and a random verb as the main verb.

A note on CCC results. The results for this task
are shown in Table 22. Generally, the models
pass our crafted CCC challenge with decent ac-

curacy, but we observed that, in a few cases, the
LMs are confused by the reconstruction ambiguity
explained above. GPT-3.5 and Claude fail in the
OVS settings where they often directly copy the
original sentence—e.g., instead of reconstructing
“anna saw john” to “john saw anna”, they sim-
ply copy the original sentence “anna saw john” as
the output. Similarly, PaLM-2 often incorrectly re-
verses the subject and object in the SOV and VSO
settings—e.g., instead of reconstructing “calls
tom lucas” to “tom calls lucas”, it outputs
“lucas calls tom”.

A.4 Natural Language Reasoning with
First-Order Logic

We use the FOLIO dataset (Han et al., 2022) that
contains premises most of which are consistent
with common sense and are hence amenable to
our counterfactual study. We use the full dataset,
combining the training and development sets for a
total of 1,204 instances, for the logistic regression
analysis in §5.1. But for our counterfactual study,
automatically altering the premises to violate com-
mon sense is not trivial, so one author manually
rewrote the premises of a subset of 81 instances
to be counterfactual, and another author verified
the rewrite. Considering the analysis in §5.1, we
chose this subset by including every instance with
premises all of which GPT-4 believes to be true
and whose conclusion whose GPT-4-believed truth
value matches the entailment label.

We explicitly instruct the model to use no com-
mon sense or world knowledge (§C), thereby re-
quiring symbolic reasoning. For the CCC, we ask
the model if the unaltered or the altered premise
is true, when both are presented as options, and
expect the latter.

While the FOLIO dataset has a public release,
the authors have made subsequent updates which,
at the time of this paper, have not been made public.
We hence do not release the LM interaction data for
this task, and use a fictional example in Table 5.

A.5 Spatial Reasoning
We ask the LM for the coordinates of objects in
a room. We randomly sample 100 rooms, each
with 3 different objects placed in 3 different car-
dinal directions specified using unit vectors (out
of north (0,−1), south (0, 1), east (1, 0), and west
(−1, 0) as the default conditions). Though using
a downward-facing y-axis as the default condition
may be counter-intuitive, it is natural when draw-
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ing top-to-bottom and is the convention in most im-
age processing libraries such as OpenCV (Python),
Pillow (Python), and Processing (Java, JavaScript,
Python), as well as graphic design applications
such as Adobe Illustrator. We believe this system is
the most often encountered during LM pretraining.
However, other libraries with an upward-facing y-
axis also exist, such as matplotlib (Python), ggplot
(R), and D3 (JavaScript).

For the counterfactual setting, we alter the
direction–unit vector mapping, and ask for the
object coordinates in the new system. We con-
sider two direction-swapped worlds (north-south
and east-west), three rotated worlds (by 90°, 180°,
and 270°), and a randomly permuted world. We
evaluate the relative positions of objects and report
the instance-level accuracy that requires all 3 ob-
jects in a room to be located correctly as the main
metric. The random accuracy is around 16.7%.6

We also report the object-level accuracy in Table 24.
As the CCC, we make sure that the LM understands
the permuted world by asking it to also specify the
coordinates of the unit vectors representing the 4
cardinal directions in the output.

A.6 Drawing

We choose 100 objects from five Emoji7 categories:
activity, travel & places, animals & nature, food
& drink, and objects. Since LMs cannot generate
images at the pixel level, we use code as an in-
termediate abstraction for sketch generation. We
do our best to select objects that are easy to draw
using code, verified by multiple authors. We con-
sider the Processing language for our experiment
which supports a variety of shapes and colors and
is widely used in visualization and which Sharma
et al. (2024) found the LMs to be more adept
in. Our initial experiments found this language to
achieve the best drawing performance compared to
other graphics and image processing frameworks,
including TikZ, SVG, and matplotlib.

For the counterfactual settings, we ask the LMs
to draw the same object, but vertically flipped (i.e.,
upside-down), or rotated by 90°or 180°. We also
ask the LMs to avoid using any transformation func-
tions such as rotate and scale to avoid shortcuts.
Before our quantitative evaluation, we flip/rotate
back the generated drawing.

6When not considering cases where objects are placed in
the same line, there are 24 permutations for placing 3 objects
in 4 different directions, of which 4 can be considered correct.

7https://getemoji.com

We use human evaluation by asking human an-
notators to determine whether the drawing matches
the object (detailed in §E). We instruct the annota-
tors to consider orientation as part of correctness
and for objects that have a canonical orientation,
they must be drawn in that orientation. We aver-
age the results over 4 annotators. We also show a
breakdown of accuracy depending on whether an
object has a canonical orientation or not, as judged
by the annotators, in Table 26. In addition, we
consider multi-class classification accuracy using
CLIP (Radford et al., 2021) as an automatic met-
ric, where we ask CLIP to classify the drawing
into our 100 categories in a 0-shot fashion. We
include the CLIP multi-class classification accu-
racy in Table 25. We note that the accuracy of
the CLIP model for our setup is not guaranteed:
first, our generated sketches may be distribution-
ally different from the predominantly photorealistic
images in CLIP’s training data; also, CLIP might
be insensitive to the object’s orientation, but that
distinguishes between our default and counterfac-
tual settings. Therefore, to verify the reliability of
this automatic evaluation, we randomly sample 10
objects for each model and for each default/coun-
terfactual setting, and perform human evaluation
on the 240 generated images. We find that CLIP’s
judgment aligns with human annotators’ 84% of
the time, suggesting the reliability of this evalua-
tion.

For this task, we do not consider PaLM-2 due to
its limited context length. Our preliminary experi-
ments also found PaLM-2 to struggle in generating
parseable Processing code, even in the default set-
ting.

We construct the CCC baseline by requiring the
LMs to additionally draw a line at the top of the
figure and flip/rotate it as well. A successful flip-
ping/rotation of the line, as judged by the annota-
tors and verified in the generated code if necessary,
demonstrates an understanding of the counterfac-
tual world.

A.7 Music
A.7.1 Playing Chords on Instruments
We measure LMs’ abilities to give correct fret
placements for ukulele and guitar chords in an exist-
ing database.8,9 We include the following kinds of

8https://github.com/tombatossals/chords-db
9We heuristically filter out incorrect datapoints by filtering

out chords that either have the wrong number of notes or lack
the root note.
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chords from the database: sus2 (suspended second
chord), sus4 (suspended fourth chord), min triad
(minor triad), maj triad (major triad), dim7 (dimin-
ished seventh chord), aug7 (augmented seventh
chord), maj7 (major seventh chord), min7 (minor
seventh chord), dom7 (dominant seventh chord), 5
(fifth interval), and 6 (sixth chord).

In the counterfactual setting, we instruct LMs
to provide fret placements for a “special” ukulele
or guitar where one of the strings is altered. We
experiment with perturbations of different sizes:
For guitar, we experiment with one-string changes
by one note (EADGBE → EBDGBE; EADGBE →
FADGBE), one-string changes by two notes (→
ECDGBE), and two string changes (→ ECFGBE).
We also experiment with a one-string change that
corresponds to a common alternate tuning of a
guitar called drop-D tuning (→ DADGBE). For
ukulele, we experiment with one-string changes by
one note (GCEA → FCEA; → ACEA), one-string
change by two notes (→ BCEA), and two-string
changes by two notes (→ BEEA). The generated
fret placements for a chord are considered correct
if all and only the notes in the corresponding chord
(e.g., C, E, G for a C major triad) are produced,
irrespective of order.

As the CCC, we assess LMs’ understanding of
the given instrument’s strings by asking them to
identify what notes a given sequence of frets corre-
sponds to; for the CCC, the sequences are either all
fret 0, all fret 1, or all fret 2. We compute CCC ac-
curacy at the fret level (as opposed to the sequence
level).

A.7.2 Retrieving Notes of Famous Melodies
For 8 famous melodies, we prompt LMs to retrieve
the n-th note in the melody, where n is between 1
and 7 (inclusive). In the counterfactual setting, we
prompt the LM to do the same but in a different
key. The list of melodies and keys we experiment
with is below.

We use C Major as the key for songs as the
default condition given its popularity for famous
melodies like children’s songs. We use other keys
as the counterfactual keys.10

10We note that some songs may have multiple canonical
keys (e.g., “Twinkle Twinkle Little Star” is also frequently
performed in keys like G major or D Major.) In some initial
exploration, we validated that C Major was at least one of
the canonical keys for the melodies chosen, both by verifying
that popular sheet music for these songs was written in C
Major, and by asking GPT-3.5 to generate the melodies in an
unspecified key and verifying that the generated key was C

As the CCC, we assess LMs’ understanding of
the given keys by asking them to retrieve the n-th
note of the scale of the given key.

Melodies: Twinkle Twinkle Little Star, Mary
Had a Little Lamb, Happy Birthday to You, Some-
where Over the Rainbow, Row Row Row Your
Boat, Old Macdonald Had a Farm, Itsy Bitsy Spi-
der, London Bridge is Falling Down.

Counterfactual Keys: B# major, C# major, Db
major, D major, D# major, Eb major, Fb major, E
major, E# major, F major, F# major, Gb major, G
major, G# major, Ab major, A major, A# major, Bb
major, Cb major, B major.

A.8 Chess

We evaluate an LM’s ability to understand chess
rules by checking if it can determine whether a
4-move opening follows the rules of chess or not.
In the counterfactual setting, we swap the position
of bishops and knights on the board and evaluate
the same task. For each setting, we randomly sam-
ple 400 unique chess openings via a procedural
generation algorithm: 200 are legal for the default
setting but not for the counterfactual setting, and
vice versa for the other 200, ensuring a more bal-
anced and fair classification problem. We represent
the moves as the LM input using the PGN format,
the standard for chess moves description.

For the CCC, we ask an LM for the starting po-
sitions of the four knights and four bishops on the
board to make sure it understands the new initial
board. For both the default and counterfactual set-
tings, we ask for the positions of white knights,
white bishops, black knights, and black bishops, to-
taling 8 pieces, and evaluate using accuracy. Since
concluding the effectiveness of our counterfactual
prompt using merely 8 CCC may not be statistically
significant, we sample 15 LM responses using tem-
perature=0.1 for asking about each piece.

A.9 SET Game

We synthetically generate SET boards, consisting
of 12 cards, each with exactly one 3-card SET
that satisfies the game rules in §3. We repre-
sent each card with a string representation, e.g.,
(3|open|red|diamond). In preliminary experi-
ments, we tried to ask the LMs to find the SET
directly, but found that they cannot perform this
task well (see Figure 4c, “Number of Cards to

Major.
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Figure 6: Logistic regression coefficients of features
that predict whether an LM correctly predicts the label
of an instance. “Concl. Truth. Match” is a binary feature
that is 1 iff the instance label matches the (LM-believed)
truthfulness of the conclusion. The 95% confidence
intervals are also shown. LMs tend to predict more
correctly when there are more true premises, when the
instance label matches the conclusion truthfulness, but
less correctly with more false and unknown premises.

Find”= 3). Therefore, in our main evaluation, we
expose 2 cards in the SET and ask the LM to iden-
tify the missing one that completes the SET.

In the counterfactual setting, we invert the rule
for the number attribute to require that two cards in
the SET should have the same number but the other
card should be different. For the CCC, we ask the
model to verify the validity of a given SET instead
of finding it. In each CCC instance, we either give
a valid SET from the board, or 3 randomly sampled
cards that do not constitute a valid SET. We ask the
model to classify whether the given combination
is valid or invalid. We note that our counterfac-
tual perturbation ensures that the each SET cannot
be simultaneously valid in the default setting and
the counterfactual setting, and hence this CCC is
discriminative between the two settings.

B Additional Analysis

In this section, we provided additional analysis to
§5.

B.1 LMs’ Logical Ability Correlates With the
Proximity between Default and
Counterfactual Conditions

In §5.2, we mentioned that the commonsense-
abiding tendency of most statements in the FOLIO
dataset (Han et al., 2022) enables us to quantify
how the a LM performs when the premises and
the conclusion increasingly deviate from the real

world (as believed by the LM), without artificial
counterfactual perturbations.

Concretely, for each test instance in FOLIO, we
ask the LMs whether the premises and conclusion
are true, false, or uncertain. We train a logistic
regression model to predict LM correctness on each
test instance, using as features the total number of
premises in an input, the proportion of the premises
that are true/false/uncertain, as encoded by the LM,
as well as whether the LM-predicted truthfulness
of the conclusion matches the label of the instance.

Figure 6 shows the learned coefficients of these
features, as well as their 95% confidence interval
bootstrapping with 1,000 iterations (Efron and Tib-
shirani, 1993). Ideally, a robust model should pre-
dict solely based on symbolic deduction and ex-
tralinguistic truthfulness information should not
affect its accuracy. In other words, these features
should all have coefficients 0 and have no predic-
tive power with respect to the model’s correctness.
However, all LMs predict more correctly with more
realistic (true) premises, and when the conclusion’s
LM-predicted truthfulness matches the label (indi-
cating a tendency to predict the label solely based
on the conclusion, ignore premises). On the other
hand, they tend to perform worse when there are
more false or uncertain premises. Most of these
trends are statistically significant. This means that
the reasoning ability of LMs is affected by the dis-
tance between the (LM-believed) real world and
the world state under which the LMs are expected
to reason.

B.2 Qualitative Analysis of Drawing Results

We conduct a qualitative error analysis on the draw-
ing task and show some examples in Figure 7. We
first note that GPT-4 successfully passes the CCC
for these cases (see §3; but not displayed here),
indicating that it understands the flip/rotation in-
structions. However, the objects in the counterfac-
tual worlds are often not flipped or rotated. Even
when they are transformed appropriately, the result-
ing drawing is often simplified or of worse quality
(e.g., Unicorn, Cake). We also observed much
more syntactically invalid programs in the counter-
factual cases for GPT-3.5.11 These results indicate
that even when a model can perform a task in the
counterfactual setup, its capabilities are reduced.

11On average, the number of parseable programs generated
by GPT-3.5 drops from 99% in the default condition to 62%,
71%, and 75% for the vertically flipped, 90° rotated, and 180°
rotated settings, respectively.
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Figure 7: Visualizations of objects drawn by GPT-4
under the default (upright) and counterfactual condi-
tions: vertical flip (Vflip, i.e. upside-down), rotates 90
degrees (R90), and 180 degrees (R180). In all cases, the
CCC (not shown) passes. We show the original output,
without flipping/rotating back as in our quantitative eval-
uation (§A.6). For the counterfactual settings, GPT-4
either does not transform the objects as instructed (e.g.,
house and penguin) or struggles to draw meaningful
objects (e.g., cake and unicorn).

C Prompts

We provide the exact prompts that we used to query
the LMs in Tables 1 to 17. For clarity, we give a
concrete prompt that embeds a test instance, rather
than a template. We explain minor design decisions
in the respective captions. We do not use the system
message field for any model.

D Raw Results

We show the numeric results in Tables 18 to 34.

E Human Annotation Details

Our human annotators are all current students from
American, Asian, and European institutions, to
whom we explained the purpose of the annotation.
We show the exact instruction of our drawing eval-
uation in Figure 8.
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Mode Prompt

Test
You are a mathematician. Assuming that all numbers are in base-11 where the
digits are "0123456789A", what is 59+37? {Let’s think step by step, and }end
the response with the result in "\boxed{result}".

CCC
You are a mathematician. Assuming that all numbers are in base-11 where the
digits are "0123456789A", what is the next number after 11A? Do this by
counting the few preceding numbers and completing the sequence. End
the response with the result.

Few-Shot CoT

You are a mathematician. Assuming that all numbers are in base-11 where the
digits are "0123456789A", what is 25+68? Let’s think step by step, and end
the response with the result in "\boxed{result}". We add the ones digits first.
In base-11, 5+8=12. So the ones digit of the final sum is 2. We need to carry
over the 1 to the tens place. Then we add the tens digits. In base-11, 2+6=8.
Since we carried over the 1, 8+1=9. So the tens digit of the final sum is 9.
Putting the digits of the final sum together, we get \boxed{92}.
...[optionally more demonstrations in the same format]...
You are a mathematician. Assuming that all numbers are in base-11 where the
digits are "0123456789A", what is 59+37? Let’s think step by step, and end
the response with the result in "\boxed{result}".

Table 1: Prompts for the arithmetic task. {Let’s think step by step, and } is added only if 0-shot CoT is
used (and the following e is capitalized without 0-shot CoT). We use the \boxed{result} syntax to wrap results
because we found in preliminary experiments that the models tend to use this format even without this specification.
The Few-Shot CoT prompt is used for the analysis in §5.4.
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Mode Prompt

Default

You are an expert programmer. What does the following code snippet in
Python 3.7 print?
```python
def function(lst):

return sum([lst[i] for i in range(1, len(lst), 2) if lst[i] % 2 == 0])

print([function([4, 88])])
print([function([4, 5, 6, 7, 2, 122])])
print([function([4, 0, 6, 7])])
print([function([4, 4, 6, 8])])
print([list(range(3))])
print([[4, 5, 6].pop(2)])
print(["qrs"[:2]])
print(["qrstu"[4]])
print([list(enumerate("qrstuv"))])
```
{Let’s think step by step. Write out intermediate results and reasoning
processes as needed. }End the response by saying "The final output is:"
and a unified summary ```python``` code block with *ALL* the output, in
which each line represents the output of each print statement.

CF

You are an expert programmer who can readily adapt to new programming
languages. There is a new programming language, ThonPy, which is identical to
Python 3.7 except all variables of the `list`, `tuple`, and `str` types use
1-based indexing, like in the MATLAB and R languages, where sequence indices
start from 1. That is, index `n` represents the `n`-th element in a sequence,
NOT the `n+1`-th as in 0-based indexing. This change only affects when the
index is non-negative. When the index is negative, the behavior is the same
as Python 3.7. This also affects methods of these classes such as `index` and
`pop`. The built-in functions `enumerate` and `range` also use 1-based
indexing: by default, the index of `enumerate` starts from 1, and so does the
lower bound of `range` when not supplied (the higher bound is unchanged).

For example,
```thonpy
assert (7, 8, 9)[1] == 7
assert ["abc", "def", "ghi"][3] == "ghi"
assert "abcde"[4] == "d"
assert "abc"[:2] == "a"
assert [7, 8, 9][1:] == [7, 8, 9][1:5] == [7, 8, 9][1::1] == [7, 8, 9][:4]
== [9, 8, 7][::-1] == [9, 8, 7, 6][3::-1] == [7, 8, 9]
assert list(enumerate([7, 8, 9])) == [(1, 7), (2, 8), (3, 9)]
assert list(range(2)) == [1]
assert list(range(2, 4)) == [2, 3]
assert {0: 7, 1: 8, 2: 9}[1] == 8
assert [7, 8, 9].index(8) == 2
```

What does the following code snippet in ThonPy print?
```thonpy
def function(lst):

return sum([lst[i] for i in range(1, len(lst), 2) if lst[i] % 2 == 0])

print([function([4, 88])])
print([function([4, 5, 6, 7, 2, 122])])
print([function([4, 0, 6, 7])])
print([function([4, 4, 6, 8])])
print([list(range(3))])
print([[4, 5, 6].pop(2)])
print(["qrs"[:2]])
print(["qrstu"[4]])
print([list(enumerate("qrstuv"))])
```
{Let’s think step by step. Write out intermediate results and reasoning
processes as needed. }End the response by saying "The final output is:"
and a unified summary ```thonpy``` code block with *ALL* the output, in
which each line represents the output of each print statement.

Table 2: Prompts for the program execution task. {Let’s think step by step. Write out intermediate
results and reasoning processes as needed. } is added only if 0-shot CoT is used. All the print statements
wrap the expression in a singleton list for the ease of parsing, so that (a) each output always takes a single line even
with line breaks in the middle, and (b) we can distinguish between a string representation of e.g. an integer and the
integer type.
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Mode Prompt

Default

You are an expert programmer. Complete the following function in Python 3.7. Please
only output the code for the completed function.

def add(lst):
"""Given a non-empty list of integers lst. add the even elements that are at odd

indices..

Examples:
add([4, 2, 6, 7]) ==> 2

"""

CF

You are an expert programmer who can readily adapt to new programming
languages. There is a new programming language, ThonPy, which is identical to
Python 3.7 except all variables of the `list`, `tuple`, and `str` types use
1-based indexing, like in the MATLAB and R languages, where sequence indices
start from 1. That is, index `n` represents the `n`-th element in a sequence,
NOT the `n+1`-th as in 0-based indexing. This change only affects when the
index is non-negative. When the index is negative, the behavior is the same
as Python 3.7. This also affects methods of these classes such as `index` and
`pop`. The built-in functions `enumerate` and `range` also use 1-based
indexing: by default, the index of `enumerate` starts from 1, and so does the
lower bound of `range` when not supplied (the higher bound is unchanged).

For example,
```thonpy
assert (7, 8, 9)[1] == 7
assert ["abc", "def", "ghi"][3] == "ghi"
assert "abcde"[4] == "d"
assert "abc"[:2] == "a"
assert [7, 8, 9][1:] == [7, 8, 9][1:5] == [7, 8, 9][1::1] == [7, 8, 9][:4]
== [9, 8, 7][::-1] == [9, 8, 7, 6][3::-1] == [7, 8, 9]
assert list(enumerate([7, 8, 9])) == [(1, 7), (2, 8), (3, 9)]
assert list(range(2)) == [1]
assert list(range(2, 4)) == [2, 3]
assert {0: 7, 1: 8, 2: 9}[1] == 8
assert [7, 8, 9].index(8) == 2
```

Complete the following function in ThonPy. Please only output the code for the
completed function.

def add(lst):
"""Given a non-empty list of integers lst. add the even elements that are at odd

indices..

Examples:
add([4, 2, 6, 7]) ==> 2

"""

Table 3: Prompts for the program generation task.
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Mode Prompt

Default

You are an expert in linguistics. Your task is to identify the main verb and the main subject
of a sentence in English. Show the main verb (a single word) and its subject (also a single word) after
the prefix ‘Main verb and subject: ’.
Sentence: japan had just opened its doors to the world after about 250 years of isolation .
{Let’s think step by step. }

CF

You are an expert in linguistics. Imagine a language that is the same as English with the only
exception being that it uses the verb-object-subject order instead of the subject-verb-object order.
Your task is to identify the main verb and the main subject in a sentence in this imaginary language.
Show the main verb (a single word) and its subject (also a single word) after the prefix
‘Main verb and subject: ’.
Sentence: had just opened its doors japan to the world after about 250 years of isolation .
{Let’s think step by step. }

CCC

You are an expert in linguistics. Imagine a language that is the same as English with the only
exception being that it uses the verb-subject-object order instead of the subject-verb-object order.
Your task is to reconstruct the original sentence in English. You should only use the words in the same
form as they appear in the given sentence.
Sentence: saw anna john
Show the original sentence at the end after the prefix ‘Original sentence: ’.
{Let’s think step by step. }

Table 4: Prompts for the basic syntactic reasoning task. {Let’s think step by step. } is added only if 0-shot
CoT is used.

Mode Prompt

Test
Consider the following premises: "All corgis are reptiles. All reptiles are plants."
Assuming no other commonsense or world knowledge, is the sentence "All corgis are
plants." necessarily true, necessarily false, or neither? {Let’s think step by step,
and }end the response with either "necessarily true", "necessarily false", or "neither".

CCC

Consider the following premises: "All corgis are reptiles. All reptiles are plants."
Assuming no other commonsense or world knowledge, which sentence between (a) "All
corgis are reptiles." and (b) "All corgis are mammals." is definitely true? Answer just
"(a)" or "(b)" and nothing else. You MUST choose one and only one, so DO NOT say neither
or both.

Table 5: Prompts for the natural language reasoning task. {Let’s think step by step, and } is added only if
0-shot CoT is used (and the following e is capitalized without 0-shot CoT). We only use a made-up example here
rather than one in the dataset due to the non-publicness of the dataset (§A.4). Default and counterfactual tasks share
the same test template, but the instances themselves are changed to be counterfactual. For the CCC, we separate
each changed premise in an instance into a separate prompt. The default statement and the counterfactual statement
are matched to (a) and (b) randomly. We do not distinguish between CCC with or without 0-shot CoT.
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Mode Prompt

Default

You are in the middle of a kitchen. There is a microwave on the south side. There is a
fridge on the west side. There is a coffee machine on the north side. We define the
following directions. The north direction is (0, -1). The south direction is (0, 1).
The east direction is (1, 0). The west direction is (-1, 0). What’s the layout of the
room in the following format? You can estimate the size of the objects.

```json
{"name": "??", "width": 500, "height": 500, "directions": {"north": "??", "south": "??",
"east": "??", "west": "??"}, "objects": [{"name": "??", "x": "??", "y": "??"}]}
```

{Let’s think step by step.}

CF

You are in the middle of a kitchen. There is a microwave on the south side. There is a
fridge on the west side. There is a coffee machine on the north side. We define the
following directions. The north direction is (-1, 0). The south direction is (1, 0).
The east direction is (0, -1). The west direction is (0, 1). What’s the layout of the
room in the following format? You can estimate the size of the objects.

```json
{"name": "??", "width": 500, "height": 500, "directions": {"north": "??", "south": "??",
"east": "??", "west": "??"}, "objects": [{"name": "??", "x": "??", "y": "??"}]}
```

{Let’s think step by step.}

Table 6: Prompts for the spatial reasoning task. {Let’s think step by step.} is added only if 0-shot CoT is
used.
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Mode Prompt

Default 1

You are an expert programmer and drawer. Imagine an image: there is a line at the top
and a house in the middle. Can you try your best to draw this image using the
`processing` language? Please do not use any built-in transformation functions, such as
`rotate`and `scale`. Also, avoid defining any custom transformation functions yourself.
Do not load any existing images. Please include as many details of the house as
possible and put everything together in the end.

{Let’s think step by step.}

Default 2

You are an expert programmer and drawer. Imagine an image: there is a line at the top
and a house in the middle. Can you try your best to draw the line and the house
using the `processing` language? Please do not use any built-in transformation
functions, such as `rotate`, `scale`, and `translate`. Also, avoid defining any
custom transformation functions yourself. Do not load any existing images. Please
include as many details of the house as possible and put everything together in the
end.

{Let’s think step by step.}

CF 1

You are an expert programmer and drawer. Imagine an image: there is a line at the top
and a house in the middle. Can you rotate this image 180 degrees and try your best to
draw it using the `processing` language? Please do not use any built-in transformation
functions, such as `rotate`and `scale`. Also, avoid defining any custom transformation
functions yourself. Do not load any existing images. Do not draw the original objects.
Please include as many details of the house as possible and put everything together
in the end.

{Let’s think step by step.}

CF 2

You are an expert programmer and drawer. Imagine an image: there is a line at the top
and a house in the middle. Can you rotate this image 180 degrees and try your best to
draw the 180-degree rotated line and the 180-degree rotated house using the `processing`
language? Please do not use any built-in transformation functions, such as `rotate`,
`scale`, and `translate`. Also, avoid defining any custom transformation functions
yourself. Do not load any existing images. Do not draw the original objects. Please
include as many details of the house as possible and put everything together in the
end.

{Let’s think step by step.}

Table 7: Prompts for the drawing task. {Let’s think step by step.} is added only if 0-shot CoT is used.
We use prompt 1 for GPT-4 and prompt 2 for GPT-3.5 and Claude. We chose the prompt based on the best CCC
accuracy for each respective model. In our preliminary experiments, we found that switching the prompt hurts CCC
accuracy by more than 20% for both GPT-4 and GPT-3.5. Claude does not follow our instructions when using
prompt 1, leading to almost 0% CCC’s accuracy.
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Mode Prompt

Default

You are an expert guitar player. I have a guitar with standard strings E-A-D-G-B-E.

I want you to tell me how I could play the E minor triad on this guitar.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and specify in
the following format:

ANSWER:
E string: fret FRET
A string: fret FRET
D string: fret FRET
G string: fret FRET
B string: fret FRET
E string: fret FRET

Use fret 0 to indicate an open string and fret X to indicate not playing a string. Each
increase in fret corresponds to an increase in half a note.

{Let’s think step by step.}

CF

You are an expert guitar player. I have a special guitar with strings tuned to
E-C-F-G-B-E instead of the standard E-A-D-G-B-E. Note that what is the standard A string
is instead tuned to C, and the standard D string is instead tuned to F. All other strings
are the same.

I want you to tell me how I could play the E minor triad on this guitar.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and specify in
the following format:

ANSWER:
E string: fret FRET
C string: fret FRET
F string: fret FRET
G string: fret FRET
B string: fret FRET
E string: fret FRET

Use fret 0 to indicate an open string and fret X to indicate not playing a string. Each
increase in fret corresponds to an increase in half a note.

{Let’s think step by step.}

Table 8: Prompts for chord fingering: guitar. {Let’s think step by step.} is added only if 0-shot CoT is used.
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Mode Prompt

Default

You are an expert guitar player. I have a guitar with standard strings E-A-D-G-B-E.

I want you to tell me what notes the following sequences of finger positions corresponds to:

E string: fret 0
A string: fret 0
D string: fret 0
G string: fret 0
B string: fret 0
E string: fret 0

Note that fret 0 indicates an open string, and each increase in fret corresponds to an
increase in half a note.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and format
with dash-separated notes in the order of strings E-A-D-G-B-E.

{Let’s think step by step.}

CF

You are an expert guitar player. I have a special guitar with strings tuned to
E-C-F-G-B-E instead of the standard E-A-D-G-B-E. Note that what is the standard A string
is instead tuned to C, and the standard D string is instead tuned to F. All other strings
are the same.

I want you to tell me what notes the following sequences of finger positions corresponds to:

E string: fret 0
C string: fret 0
F string: fret 0
G string: fret 0
B string: fret 0
E string: fret 0

Note that fret 0 indicates an open string, and each increase in fret corresponds to an
increase in half a note.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and format
with dash-separated notes in the order of strings E-C-F-G-B-E.

{Let’s think step by step.}

Table 9: CCC prompts for chord fingering: guitar. {Let’s think step by step.} is added only if 0-shot CoT is
used.
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Mode Prompt

Default

You are an expert ukulele player. I have a ukulele with standard strings G-C-E-A.

I want you to tell me how I could play the E minor triad on this ukulele.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and specify in
the following format:

ANSWER:
G string: fret FRET
C string: fret FRET
E string: fret FRET
A string: fret FRET

Use fret 0 to indicate an open string and fret X to indicate not playing a string. Each
increase in fret corresponds to an increase in half a note.

{Let’s think step by step.}

CF

You are an expert ukulele player. I have a special ukulele with strings tuned to F-C-E-A
instead of the standard G-C-E-A. Note that what is the standard G string is instead tuned to F.
All other strings are the same.

I want you to tell me how I could play the E minor triad on this ukulele.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and specify in
the following format:

ANSWER:
F string: fret FRET
C string: fret FRET
E string: fret FRET
A string: fret FRET

Use fret 0 to indicate an open string and fret X to indicate not playing a string. Each
increase in fret corresponds to an increase in half a note.

{Let’s think step by step.}

Table 10: Prompts for chord fingering: ukulele. {Let’s think step by step.} is added only if 0-shot CoT is
used.
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Mode Prompt

Default

You are an expert ukulele player. I have a ukulele with standard strings G-C-E-A.

I want you to tell me what notes the following sequences of finger positions corresponds to:

G string: fret 0
C string: fret 0
E string: fret 0
A string: fret 0

Note that fret 0 indicates an open string, and each increase in fret corresponds to an
increase in half a note.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and format
with dash-separated notes in the order of strings G-C-E-A.

{Let’s think step by step.}

CF

You are an expert ukulele player. I have a special ukulele with strings tuned to F-C-E-A
instead of the standard G-C-E-A. Note that what is the standard G string is instead tuned to F.
All other strings are the same.

I want you to tell me what notes the following sequences of finger positions corresponds to:

F string: fret 0
C string: fret 0
E string: fret 0
A string: fret 0

Note that fret 0 indicates an open string, and each increase in fret corresponds to an
increase in half a note.

Make sure to choose one final answer, which you should start with ’ANSWER:’ and format
with dash-separated notes in the order of strings F-C-E-A.

{Let’s think step by step.}

Table 11: CCC prompts for chord fingering: ukulele. {Let’s think step by step.} is added only if 0-shot
CoT is used.

Mode Prompt

Default

You are an expert musician. What is the second note of the melody of the song ’Twinkle Twinkle
Little Star’ in C major? Make sure to choose one final answer, which you should start with
’ANSWER:’ and specify in the following format: NOTE={note}.

{Let’s think step by step.}

CF

You are an expert musician. What is the second note of the melody of the song ’Twinkle Twinkle
Little Star’ in Db major? Make sure to choose one final answer, which you should start with
’ANSWER:’ and specify in the following format: NOTE={note}.

{Let’s think step by step.}

Table 12: Prompts for melody retrieval. {Let’s think step by step.} is added only if 0-shot CoT is used.
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Mode Prompt

Default

You are an expert musician. What is the second note of the C major scale? Make sure to
choose one final answer, which you should start with ’ANSWER:’ and specify in the
following format: NOTE={note}.

{Let’s think step by step.}

CF

You are an expert musician. What is the second note of the Db major scale? Make sure to
choose one final answer, which you should start with ’ANSWER:’ and specify in the
following format: NOTE={note}.

{Let’s think step by step.}

Table 13: CCC prompts for melody retrieval. {Let’s think step by step.} is added only if 0-shot CoT is
used.

Mode Prompt

Default
You are a chess player. Given an opening, determine whether the opening is legal. The
opening doesn’t need to be a good opening. Answer "yes" if all moves are legal. Answer "no"
if the opening violates any rules of chess. Is the new opening "1. e4 e6 2. Be2 Bc5" legal?
{Let’s think step by step}

CF

You are a chess player. You are playing a chess variant where the starting positions for
knights and bishops are swapped. For each color, the knights are at placed that where
bishops used to be and the bishops are now placed at where knights used to be. Given an
opening, determine whether the opening is legal. The opening doesn’t need to be a good
opening. Answer "yes" if all moves are legal. Answer "no" if the opening violates any
rules of chess. Under the custom variant, is the new opening "1. e4 e6 2. Nfe2 Nc5" legal?
{Let’s think step by step}

Table 14: Prompts for the chess task. {Let’s think step by step} is added only if 0-shot CoT is used.

Mode Prompt

Default You are a chess player. Question: The two bishops on the board should be initially at
which squares? Answer: {Let’s think step by step}

CF

You are a chess player. You are playing a chess variant where the starting positions for
knights and bishops are swapped. For each color, the knights are at placed that where
bishops used to be and the bishops are now placed at where knights used to be. Question:
In this chess variant, the two bishops on the board should be initially at which squares?
Answer: {Let’s think step by step}

Table 15: CCC prompts for the chess task. {Let’s think step by step} is added only if 0-shot CoT is used.
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Mode Prompt

Default

You will be shown 12 cards. Each card has a figure and a number.
A figure is a combination of a color, a shape, and a fill.
Set of colors are: red , green , blue .
Set of shapes are: squiggle , diamond , oval .

Set of fills are: solid , striped , open .

–THE RULE OF THE GAME–
A GAME-SET is set of three cards: For each attribute, (color, shape, fill, number),
the three cards should either be ALL the SAME or NONE the SAME (=ALL DIFFERENT,
e.g. if 2 of the cards have
the same value, and 1 of them has a different value, the set is NOT valid; for example,
(blue, green, blue) is MIXED and does not satisfy any of the rule,
whereas (oval, diamond, squiggle) is all different.

Here is the board:
(2 | green | oval | open) ... [truncated]

You can pick a set by typing the cards in the below format:
First card: CARD1
Second card: CARD2
Third card: CARD3
Now remember the rule and tell me which three cards here constitutes a GAME-SET
in the same format.
I will give you 2 cards as a hint, and you tell me the third one.
First card: (2 | green | oval | open)
Second card: (1 | green | diamond | solid)
{Let’s think step by step.}

CF

You will be shown 12 cards. Each card has a figure and a number.
A figure is a combination of a color, a shape, and a fill.
Set of colors are: red , green , blue .
Set of shapes are: squiggle , diamond , oval .

Set of fills are: solid , striped , open .

–THE RULE OF THE GAME–
(This is not the original SET game. It has a tweaked rule.)
In this version, a GAME-SET is a set of three cards:
- For each figure attribute except the number (color, shape, fill), the three cards
should either be ALL the SAME or NONE the SAME (=ALL DIFFERENT, e.g. if 2 of the cards
have the same value, and 1 of them has a different value, the set is NOT valid;
for example, (blue, green, blue) is MIXED and does not satisfy any of the rule, whereas
(oval, diamond, squiggle) is all different.
- But only for the number attribute, 2 of the cards should have the same number,
and 1 of them should have a different number in order for the set to be valid.

Here is the board:
(2 | green | oval | open) ... [truncated]

You can pick a set by typing the cards in the below format:
First card: CARD1
Second card: CARD2
Third card: CARD3
Now remember the rule and tell me which three cards here constitutes a GAME-SET
in the same format.
I will give you 2 cards as a hint, and you tell me the third one.
First card: (2 | green | oval | open)
Second card: (1 | green | diamond | solid)
{Let’s think step by step.}

Table 16: Prompts for the SET task. {Let’s think step by step} is added only if 0-shot CoT is used.
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Mode Prompt

Default

Each card has a figure and a number.
A figure is a combination of a color, a shape, and a fill.
Set of colors are: red , green , blue .
Set of shapes are: squiggle , diamond , oval .

Set of fills are: solid , striped , open .

–THE RULE OF THE GAME–
A GAME-SET is set of three cards: For each attribute, (color, shape, fill, number),
the three cards should either be ALL the SAME or NONE the SAME (=ALL DIFFERENT,
e.g. if 2 of the cards have
the same value, and 1 of them has a different value, the set is NOT valid; for example,
(blue, green, blue) is MIXED and does not satisfy any of the rule,
whereas (oval, diamond, squiggle) is all different.

I will give you three cards from the board, and you will tell me whether this
constitutes a GAME-SET.

First card: (1 | blue | oval | striped)
Second card: (2 | red | squiggle | striped)
Third card: (3 | green | diamond | striped)

Is this a GAME-SET? {Answer with yes or no in the last line.
Let’s verify rules for each attribute step-by-step:}

CF

Each card has a figure and a number.
A figure is a combination of a color, a shape, and a fill.
Set of colors are: red , green , blue .
Set of shapes are: squiggle , diamond , oval .

Set of fills are: solid , striped , open .

–THE RULE OF THE GAME–
(This is not the original SET game. It has a tweaked rule.)
In this version, a GAME-SET is a set of three cards:
- For each figure attribute except the number (color, shape, fill), the three cards
should either be ALL the SAME or NONE the SAME (=ALL DIFFERENT, e.g. if 2 of the cards
have the same value, and 1 of them has a different value, the set is NOT valid;
for example, (blue, green, blue) is MIXED and does not satisfy any of the rule, whereas
(oval, diamond, squiggle) is all different.
- But only for the number attribute, 2 of the cards should have the same number,
and 1 of them should have a different number in order for the set to be valid.

I will give you three cards from the board, and you will tell me whether this
constitutes a GAME-SET.

First card: (1 | blue | oval | striped)
Second card: (2 | red | squiggle | striped)
Third card: (3 | green | diamond | striped)

Is this a GAME-SET? {Answer with yes or no in the last line.
Let’s verify rules for each attribute step-by-step:}

Table 17: CCC prompts for the SET experiments. {bold text} is added only if 0-shot CoT is used. Note that we
removed the board information for simplicity as it is not required for this CCC test.
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Tests
CCC

w/o 0-CoT w/ 0-CoT

Base 8 9 10 11 16 8 9 10 11 16 8 9 10 11 16

# instances 1,000 200

GPT-4 82.3 23.4 100.0 38.4 63.0 60.2 38.6 98.2 56.5 74.0 98.0 90.0 100.0 91.0 100.0
GPT-3.5 8.3 6.6 100.0 3.8 17.7 12.6 9.8 99.0 2.7 17.7 96.5 77.0 100.0 56.0 95.5
Claude 22.3 0.2 99.8 6.6 32.4 1.4 0.9 98.7 4.0 6.6 64.5 47.5 100.0 41.0 77.5
PaLM-2 6.4 2.2 98.7 3.4 23.4 1.1 0.6 82.2 0.5 1.2 51.5 53.5 100.0 72.0 93.5

Table 18: Results for the arithmetic task (in accuracy; %).

# digits # shots 8 9 10 11 16

2 0 60.2 38.6 98.2 56.5 74.0
3 0 56.8 32.2 87.1 24.2 33.2
4 0 24.0 14.6 83.4 8.9 9.1
2 1 97.3 48.1 99.7 25.7 49.1
2 2 99.1 67.0 99.9 44.0 57.8
2 4 99.4 79.7 99.9 68.4 70.6
2 8 99.7 85.8 100.0 79.6 83.5
2 16 99.9 88.4 99.9 86.9 88.7

Table 19: Results for the arithmetic task for various analyses in §5 (in accuracy; %). Only for GPT-4 with 0-shot
CoT.

Tests CCC

w/o 0-CoT w/ 0-CoT w/o 0-CoT w/ 0-CoT

Default CF Default CF Default CF Default CF

# instances 113 750

GPT-4 58.4 18.6 73.5 24.8 95.3 78.1 99.7 90.9
GPT-3.5 39.8 9.7 54.0 10.6 97.1 21.3 94.1 25.9
Claude 35.4 13.3 36.3 6.2 96.5 31.1 85.1 37.3

Table 20: Results for the programming execution task (in accuracy; %).

HumanEval (All) HumanEval (Subset)

pass@1 pass@10 pass@1 pass@10

Default CF Default CF Default CF Default CF

# instances 164 53

GPT-4 87.4 68.2 95.3 83.4 82.5 40.5 93.3 64.9
GPT-3.5 73.8 41.8 88.4 67.6 68.9 25.1 81.0 45.8
Claude 53.7 39.6 78.1 64.2 47.6 15.7 74.0 41.9
PaLM-2 27.3 20.8 55.8 42.6 29.2 7.4 55.3 21.0

Table 21: Results for the programming generation task (in pass@1 and pass@10; %). We report both the results
on the entire HumanEval dataset for comparability with other work, as well as the subset on which evaluating the
original program under 1-based indexing would not pass the test cases. Figure 2 only showed the results on this
subset.
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Test Accuracy

w/o 0-CoT w/ 0-CoT

SVO SOV VSO VOS OVS OSV SVO SOV VSO VOS OVS OSV

# instances 100

GPT-4 88.0 63.0 66.0 63.0 68.0 68.0 76.0 66.0 69.0 70.0 70.0 68.0
GPT-3.5 72.0 51.0 60.0 39.0 41.0 64.0 50.0 51.0 63.0 44.0 27.0 51.0
Claude 55.0 58.0 65.0 62.0 59.0 56.0 51.0 57.0 62.0 62.0 62.0 59.0
PaLM-2 40.0 22.0 48.0 28.0 37.0 23.0 35.0 29.0 56.0 29.0 22.0 19.0

CCC

w/o 0-CoT w/ 0-CoT

SVO SOV VSO VOS OVS OSV SVO SOV VSO VOS OVS OSV

# instances 100

GPT-4 – 100.0 92.0 98.0 100.0 94.0 – 95.0 95.0 99.0 96.0 100.0
GPT-3.5 – 88.0 72.0 25.0 61.0 64.0 – 68.0 40.0 37.0 5.0 31.0
Claude – 89.0 60.0 97.0 99.0 98.0 – 79.0 91.0 80.0 8.0 87.0
PaLM-2 – 7.0 8.0 96.0 100.0 62.0 – 28.0 29.0 91.0 94.0 70.0

Table 22: Results for the basic syntactic reasoning task (in accuracy; %).

Tests
CCCw/o 0-CoT w/ 0-CoT

Default CF Default CF

# instances 81 310

GPT-4 93.8 74.1 98.8 82.7 97.4
GPT-3.5 79.0 43.2 65.4 42.0 90.3
Claude 27.2 16.0 40.7 17.3 55.2
PaLM-2 84.0 66.7 88.9 74.1 70.6

Table 23: Results for the logical reasoning task (in accuracy; %).
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Tests Accuracy

w/o 0-CoT w/ 0-CoT

Default S-NS S-WE R90 R180 R270 Rand. Default S-NS S-WE R90 R180 R270 Rand.

# instances 100 100

GPT-4 79.0 57.0 29.0 34.0 6.0 22.0 34.0 98.0 71.0 23.0 24.0 9.0 13.0 13.0
GPT-3.5 87.0 56.0 32.0 27.0 12.0 17.0 15.0 82.0 66.0 36.0 27.0 29.0 22.0 22.0
Claude 86.0 51.0 72.0 35.0 45.0 15.0 51.0 85.0 50.0 71.0 30.0 49.0 11.0 39.0
PaLM-2 90.0 88.0 86.0 50.0 93.0 39.0 64.0 84.0 95.0 80.0 38.0 91.0 38.0 54.0

Tests Object-level Accuracy

w/o 0-CoT w/ 0-CoT

Default S-NS S-WE R90 R180 R270 Rand. Default S-NS S-WE R90 R180 R270 Rand.

# instances 100 100

GPT-4 86.0 74.3 55.7 56.0 34.0 53.0 61.7 99.0 85.3 57.0 49.7 36.0 46.3 46.0
GPT-3.5 92.3 77.7 62.3 54.7 41.3 42.3 47.0 92.7 82.7 64.0 53.0 50.7 54.7 53.3
Claude 93.7 75.3 87.7 65.7 70.3 46.7 76.0 91.7 74.7 86.3 63.0 73.0 44.0 69.3
PaLM-2 96.3 95.7 94.3 71.3 97.7 64.7 79.7 94.0 98.3 91.0 63.7 96.0 64.0 75.0

CCC

w/o 0-CoT w/ 0-CoT

Default S-NS S-WE R90 R180 R270 Rand. Default S-NS S-WE R90 R180 R270 Rand.

# instances 100 100

GPT-4 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GPT-3.5 100.0 100.0 92.0 83.0 90.0 100.0 99.0 98.0 89.0 88.0 83.0 78.0 94.0 92.0
Claude 100.0 100.0 100.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 91.0
PaLM-2 100.0 100.0 100.0 100.0 100.0 39.0 100.0 100.0 100.0 100.0 100.0 100.0 59.0 100.0

Table 24: Results for the spatial reasoning task (in accuracy; %). The first section (Tests Accuracy) requires all 3
objects to be correctly placed. The second section (Test Object-Level Accuracy) refers to accuracy averaged over
objects. ‘S’ denotes to swapping, ‘R’ denotes to rotation, ‘Rand.’ denotes to random permutation.
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Human Evaluation Binary Classification Test Accuracy

w/o 0-CoT w/ 0-CoT

Default VFlip R90 R180 Default Flip R90 R180

# instances 100

GPT-4 82.0 57.0 59.0 53.0 86.0 51.0 47.0 52.0
GPT-3.5 31.0 19.0 9.0 8.0 46.0 7.0 5.0 8.0
Claude 42.0 13.0 15.0 13.0 34.0 15.0 30.0 12.0

CLIP Evaluation Multi-class Classification Tests Accuracy

w/o 0-CoT w/ 0-CoT

Default VFlip R90 R180 Default Flip R90 R180

# instances 100

GPT-4 58.0 30.0 23.0 31.0 53.0 26.0 33.0 28.0
GPT-3.5 20.0 9.0 7.0 8.0 32.0 4.0 6.0 6.0
Claude 19.0 11.0 9.0 8.0 18.0 9.0 13.0 8.0

CCC Accuracy

w/o 0-CoT w/ 0-CoT

Default VFlip R90 R180 Default Flip R90 R180

# instances 100

GPT-4 100.0 99.0 55.0 89.0 100.0 99.0 87.0 87.0
GPT-3.5 78.0 56.0 53.0 44.0 99.0 62.0 43.0 46.0
Claude 100.0 84.0 86.0 57.0 99.0 90.0 99.0 54.0

Table 25: Results for the drawing task (in accuracy; %). VFlip corresponds to vertical flipping, R90 and R180
correspond to rotation by 90 degrees and 180 degrees, respectively.

Accuracy for Objects w/o Canonical Orientation

w/o 0-CoT w/ 0-CoT

Default VFlip R90 R180 Default Flip R90 R180

GPT-4 72.1 68.6 67.3 57.4 76.2 58.0 69.8 63.3
GPT-3.5 31.8 22.0 14.3 13.0 39.0 4.8 7.1 7.0
Claude 51.1 22.9 20.9 23.3 39.5 27.9 34.8 19.1

Accuracy for Objects w/ Canonical Orientation

w/o 0-CoT w/ 0-CoT

Default VFlip R90 R180 Default Flip R90 R180

GPT-4 89.5 44.9 50.0 49.1 93.1 44.0 21.3 41.2
GPT-3.5 30.4 16.0 5.2 3.7 50.8 8.6 3.4 8.8
Claude 34.5 3.8 10.5 5.3 29.8 5.3 25.9 5.7

Table 26: Results for the drawing task, as measured by human evaluation accuracy (%), broken down by objects
with or without a canonical orientation as judged by human annotators. If an object has a canonical orientation,
such as the house in Figure 7, it is only considered correct if the orientation is correct.
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Test Accuracy

w/o 0-CoT w/ 0-CoT

Default DAD- FAD- EBD- ECD- ECF- Default DAD- FAD- EBD- ECD- ECF-

# instances 120

GPT-4 47.5 22.5 11.7 18.3 7.5 1.7 42.5 25.8 12.5 24.2 14.2 10.0
GPT-3.5 30.8 4.2 5.0 5.8 3.3 1.7 30.8 5.0 5.0 0.8 1.7 1.7
Claude 5.0 0.8 0.8 0.8 0.8 1.7 10.0 5.8 4.2 5.8 5.0 0.8
PaLM-2 0.8 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8 0.8

CCC

w/o 0-CoT w/ 0-CoT

Default DAD- FAD- EBD- ECD- ECF- Default DAD- FAD- EBD- ECD- ECF-

# instances 18

GPT-4 100.0 100.0 94.4 94.4 100.0 83.3 100.0 100.0 100.0 100.0 100.0 100.0
GPT-3.5 50.0 27.8 11.1 44.4 50.0 61.1 94.4 66.7 88.9 88.9 94.4 77.8
Claude 77.8 38.9 55.6 55.6 50.0 50.0 100.0 38.9 55.6 55.6 50.0 50.0
PaLM-2 33.3 33.3 33.3 38.9 50.0 38.9 33.3 33.3 50.0 38.9 38.9 38.9

Table 27: Results for the chord fingering task (in accuracy; %): guitar. Default corresponds to EADGBE.
Counterfactuals show the first three strings (the remaining three strings, GBE, are the same).

Test Accuracy

w/o 0-CoT w/ 0-CoT

Default DAD- FAD- EBD- ECD- ECF- Default DAD- FAD- EBD- ECD- ECF-

# instances 12

maj triad 66.7 50.0 33.3 41.7 8.3 0.0 58.3 41.7 8.3 41.7 8.3 0.0
min triad 58.3 33.3 25.0 41.7 25.0 0.0 58.3 25.0 16.7 25.0 16.7 8.3
5 83.3 41.7 33.3 16.7 0.0 0.0 75.0 50.0 25.0 33.3 33.3 50.0
dom7 25.0 25.0 16.7 8.3 25.0 0.0 33.3 16.7 8.3 25.0 16.7 0.0
6 25.0 16.7 0.0 16.7 0.0 0.0 33.3 25.0 8.3 16.7 8.3 8.3
sus4 50.0 33.3 0.0 33.3 0.0 0.0 58.3 33.3 16.7 33.3 25.0 25.0
dim7 25.0 0.0 0.0 0.0 8.3 16.7 0.0 0.0 8.3 16.7 0.0 0.0
aug7 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 16.7 16.7 0.0
sus2 58.3 0.0 8.3 16.7 0.0 0.0 58.3 50.0 16.7 25.0 16.7 8.3
min7 83.3 25.0 0.0 8.3 8.3 0.0 41.7 16.7 16.7 8.3 0.0 0.0

Table 28: Results broken down by chords for the chord fingering task as analyzed in §5 (in accuracy; %): guitar,
GPT-4. Default corresponds to EADGBE. Counterfactuals show the first three strings (the remaining three strings,
GBE, are the same).
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Test Accuracy

w/o 0-CoT w/ 0-CoT

Default FC- AC- BC- BE- Default FC- AC- BC- BE-

# instances 108

GPT-4 39.8 1.9 1.9 2.8 0.9 20.4 2.8 16.7 11.1 10.2
GPT-3.5 14.8 0.0 2.8 3.7 0.0 6.5 1.9 2.8 1.9 0.0
Claude 0.0 1.9 0.0 0.0 0.9 6.5 0.0 2.8 1.9 2.8
PaLM-2 0.0 0.0 0.0 0.0 0.0 0.9 0.0 1.9 0.9 0.0

CCC

w/o 0-CoT w/ 0-CoT

Default FC- AC- BC- BE- Default FC- AC- BC- BE-

# instances 12

GPT-4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GPT-3.5 33.3 41.7 91.7 41.7 100.0 91.7 83.3 100.0 75.0 75.0
Claude 58.3 50.0 50.0 41.7 33.3 100.0 100.0 75.0 66.7 50.0
PaLM-2 41.7 41.7 41.7 50.0 33.3 41.7 50.0 41.7 58.3 33.3

Table 29: Results for the chord fingering task (in accuracy; %): ukulele. Default corresponds to GCEA. Counterfac-
tuals show the first two strings (the remaining two strings, EA, are the same).

Tests CCC

w/o 0-CoT w/ 0-CoT w/o 0-CoT w/ 0-CoT

Default CF Default CF Default CF Default CF

# instances 56 1120 56 1120 7 140 7 140

GPT-4 48.2 20.4 64.3 44.9 100.0 87.1 100.0 94.3
GPT-3.5 17.9 17.4 44.6 21.8 100.0 70.0 100.0 95.7
Claude 17.9 17.2 16.1 20.1 100.0 74.3 100.0 80.7
PaLM-2 28.6 19.5 19.6 19.3 100.0 48.6 100.0 47.1

Table 30: Results for the melody retrieval task (in accuracy; %). Default corresponds to C major, and CF corresponds
to other keys.

Tests CCC

w/o 0-CoT w/ 0-CoT w/o 0-CoT w/ 0-CoT

Default CF Default CF Default CF Default CF

# instances 8 160 8 160 1 20 1 20

1 87.5 63.1 87.5 70.0 100.0 95.0 100.0 95.0
2 87.5 10.6 62.5 46.9 100.0 95.0 100.0 100.0
3 12.5 11.9 62.5 51.2 100.0 80.0 100.0 90.0
4 25.0 21.2 62.5 42.5 100.0 100.0 100.0 85.0
5 50.0 3.1 37.5 35.0 100.0 95.0 100.0 100.0
6 37.5 5.0 75.0 38.8 100.0 75.0 100.0 95.0
7 37.5 27.5 62.5 30.0 100.0 70.0 100.0 95.0

Table 31: Results broken down by n for the melody retrieval task as analyzed in §5 (in accuracy; %): GPT-4.
Default corresponds to C major, and CF corresponds to other keys.
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Tests CCC

w/o 0-CoT w/ 0-CoT w/o 0-CoT w/ 0-CoT

Default CF Default CF Default CF Default CF

# instances 400 120

GPT-4 73.8 50.0 87.8 53.6 100.0 100.0 100.0 100.0
GPT-3.5 60.1 54.4 60.2 48.9 85.8 90.0 91.7 93.3
Claude 59.2 50.0 60.2 50.4 100.0 50.0 76.7 100.0
PaLM-2 48.0 51.5 48.5 51.2 61.7 23.3 50.0 23.3

Table 32: Results for the chess task with 4 moves (in accuracy; %). CF refers to the setting where the initial
positions of knights and bishops are swapped. We generate a balanced classification problem with 400 openings via
procedure generation.

Tests CCC

w/o 0-CoT w/ 0-CoT w/o 0-CoT w/ 0-CoT

Default CF Default CF Default CF Default CF

# instances 100 100

GPT-4 100.0 21.0 100.0 61.0 89.0 74.0 100.0 96.0
GPT-3.5 73.0 4.0 37.0 7.0 68.0 55.0 77.0 78.0
Claude 55.0 21.0 64.0 35.0 92.0 62.0 59.0 65.0
PaLM-2 55.0 17.0 62.0 13.0 67.0 68.0 47.0 46.0

Table 33: Results for the SET game (in accuracy; %).

Tests

Default (c=1) CF (c=1) Default (c=2) CF (c=2) Default (c=3) CF (c=3)

# instances 100

GPT-4 100.0 61.0 24.0 6.0 15.0 3.0
GPT-3.5 37.0 7.0 7.0 0.0 1.0 0.0
Claude 64.0 35.0 10.0 4.0 5.0 1.0
PaLM-2 62.0 13.0 10.0 1.0 3.0 1.0

Table 34: Breakdown for the SET game test results (with 0-CoT) when the model needs to find different number of
cards (c) in a SET as analyzed in §5 (in accuracy; %).
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In the beginning, you need to specify:
• Canonical Orientation? Use 1 if you believe the object has one or more canonical orientation, such

as a “house”. Use 0 if it doesn’t, such as a “pen”.
If an object is considered to have a canonical orientation, it is ONLY CORRECT if it’s displayed in the
right orientation.
For each image, you need to specify the following:

• Correct? (Input: 0 or 1) Determine if the object is correct. Use 0 for False and 1 for True.
• Control? (Input: 0 or 1 or 2) Determine if the control has been passed. Use 1 if there is an almost

horizontal line at the TOP. Use 0 if there is a standalone line but is either not horizontal or is at the
center or bottom (even if the object appears beneath it). Use 2 if there is no such line.

Examples: [some examples, omitted here for brevity]

Figure 8: The drawing evaluation instruction given to our human annotators. “Control” was a prior name for our
CCC in this project.

1862


