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Abstract

Large Language models (LLMs) have shown
remarkable success in assisting robot learning
tasks, i.e., complex household planning. How-
ever, the performance of pretrained LLMs heav-
ily relies on domain-specific templated text
data, which may be infeasible in real-world
robot learning tasks with image-based obser-
vations. Moreover, existing LLMs with text
inputs lack the capability to evolve with non-
expert interactions with environments. In this
work, we introduce a novel learning paradigm
that generates robots’ executable actions in
the form of text, derived solely from visual
observations. Our proposed paradigm stands
apart from previous works, which utilized ei-
ther language instructions or a combination
of language and visual data as inputs. We
demonstrate that our proposed method can em-
ploy two fine-tuning strategies, including imi-
tation learning and reinforcement learning ap-
proaches, to adapt to the target test tasks ef-
fectively. We conduct extensive experiments
involving various model selections, environ-
ments, and tasks across 7 house layouts in the
VirtualHome environment. Our experimental
results demonstrate that our method surpasses
existing baselines, confirming the effectiveness
of this novel learning paradigm.

1 Introduction

There has been a surge of interest in building Large
Language Models (LLMs) pretrained on large-
scale datasets and exploring LLMs’ capability in
various downstream tasks. LLMs start from the
Transformer model (Vaswani et al., 2017b) and are
first developed to solve different natural language
processing (NLP) applications (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020). Recently,
LLMs have also shown great potential for acceler-
ating learning in many other domains by generating
learned embeddings as meaningful representations
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for downstream tasks and encoding transferable
knowledge in large pretraining datasets.

In this paper, we focus on the problem of fa-
cilitating robot learning by having a LLM in the
loop. The robot generates actions according to
its environment observations, which are, in gen-
eral, sensory information in the format of images,
point clouds, or kinematic states. We identify one
key challenge in massively deploying LLMs to
assist robots is that LLMs lack the capability to
understand such non-text-based environment ob-
servations. To solve this challenge, Liang et al.
(2022) utilize rule-based perception APIs to trans-
form image-based observations into text formats,
which then serve as inputs to the LLM. We in-
stead propose to integrate the multimodal learning
paradigm to transform images into texts, which al-
lows more principled and efficient transfer to novel
robot learning tasks than rule-based APIs. Another
key challenge is the widely-existing large distri-
bution shifts between the training tasks of large
pretrained models and testing tasks in the domain
of robot learning. To close the domain gap, Li et al.
(2022b) adapt the pretrained LLM to downstream
tasks via finetuning with observations converted
into text descriptions. In the presence of realis-
tic visual observations, an appropriate method to
co-adapt pretrained foundation models for testing
tasks in robot learning is still being determined.

To address the above challenges, we propose
a new visual-based robot learning paradigm that
takes advantage of embedded knowledge in both
multimodal models and LLMs. To align different
modalities in the visual observations and text-based
actions, we consider language as the bridge infor-
mation. We build a scene-understanding model
(SUM) with a pretrained image captioning model
to grant the robot the ability to describe the sur-
rounding environment with natural language. We
then build an action prediction model (APM) with
a LLM to generate execution actions according
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Figure 1: The overall architecture of our approach, which includes a scene understanding module (SUM) and an
action prediction module (APM). The agent takes pure visual observations and encodes the information as latent
language, then the language is transferred to APM for action generation. APM fine-tuned on VirtualHome can
generate executable action plans directly.

to the scene caption in the format of natural lan-
guage. To adapt pretrained models in SUM and
APM to downstream robot learning tasks, we pro-
pose to finetune the multimodal model in SUM
with pre-collected domain-specific image-caption
pairs and the language model in APM with corre-
sponding language-action pairs. Besides finetuning
with expert demonstrations, we further propose a
finetuning paradigm of APM based on the sparse
environment feedback to endow APM’s capability
to evolute with non-expert data. An illustration of
the proposed framework is Figure 1.

Our contributions are summarised as follows:
• We introduce a novel robot learning paradigm

with LLM in the loop that handles multiple
modalities of visual observations and text-
based actions in a principled manner. We
bridge both modalities with natural language
generated by a pretrained multimodal model.

• To adapt to target testing tasks, we propose
two fine-tuning strategies, including imita-
tion learning and reinforcement learning ap-
proaches. We collect a new expert dataset for
imitation learning-based finetuning.

• We test the adaptation performance of multi-
ple models of SUM and APM in seven house
layouts in the VirtualHome environment. Our
experiments demonstrate that our proposed
paradigm shows promising results.

2 Related Work

Language Models in Robot Learning Recently,
several works have successfully combined LLMs
with robot learning by taking advantage of the
knowledge learned by LLMs i.e., reasoning (Liang
et al., 2022; Zeng et al., 2022; Zellers et al., 2021),
planning (Shah et al., 2022; Huang et al., 2022b;

Kant et al., 2022; Li et al., 2022b; Huang et al.,
2022a), manipulation (Shafiullah et al., 2022; Jiang
et al., 2022; Shridhar et al., 2022; Bucker et al.,
2022; Ren et al., 2022; Tam et al., 2022; Khan-
delwal et al., 2022; Shridhar et al., 2021; Xu et al.,
2022, 2023), and navigation (Lin et al., 2022; Parisi
et al., 2022; Gadre et al., 2022; Hong et al., 2021;
Majumdar et al., 2020), which demonstrated the
feasibility of using LLM to assist robot learning.
Visual Feedback in Robot Learning Visual
feedback is commonly used in robot learning.
Gothoskar et al. (2020) learned a generative model
from actions to image observations of features to
control a robot from visual feedback. Ma et al.
(2022) proposed a self-supervised pretrained vi-
sual representation model which is capable of gen-
erating dense and smooth reward functions for
unseen robotic tasks. Strokina et al. (2022) re-
viewed the methods of reward estimation and visual
representations used in learning-based approaches
for robotics applications. Mohtasib et al. (2021)
studied the performance of dense, sparse, visually
dense, and visually sparse rewards in deep RL. Ku-
rita and Cho (2020) proposed the direct navigation
approach based on an image captioning model. Li
et al. (2019) combined image captioning models
and planning models, but Li et al. (2019) took pure
language instructions as input, while our approach
takes pure visual observations as input.
Pre-training and Fine-tuning of Language Mod-
els Over the past few years, fine-tuning (Howard
and Ruder, 2018) has superseded the use of fea-
ture extraction of pretrained embeddings (Peters
et al., 2018) while pretrained language models are
favored over models trained on many tasks due to
their increased sample efficiency and performance
(Ruder, 2021). The success of these methods has

1897



led to the development of even larger models (De-
vlin et al., 2019; Raffel et al., 2019). Fine-tuning
pretrained contextual word embedding models to
supervised downstream tasks has become common-
place (Hendrycks et al., 2020; Dodge et al., 2020).
Zeng et al. (2022) examined the sampling effects in
reinforcement learning with GPT and BERT. More
related works can be found in Appendix A.

3 Method

In this section, we first introduce our focused prob-
lem in Section 3.1, which is generating a visual-
based policy by leveraging pretrained large models.
We then introduce SUM, which learns language
descriptions of the surrounding environment in Sec-
tion 3.1, and APM which predicts actions based on
SUM’s caption output in 3.2. To grant both SUM
and APM the capability of making the correct un-
derstanding and decision in the target domain, we
propose finetuning algorithms in Section 3.1 and
3.2. Our code and data are provided in the supple-
mentary materials.

3.1 Problem Formulation
We consider a general and realistic robot learning
task where a robot agent receives a sequential vi-
sual observation V = [v1, v2, ..., vt], where t is the
timestep, and aims to generate a sequence of ac-
tions A = [a1, a2, ..., at] based on the pure visual
observations V . Traditionally, the robot’s policy is
trained from scratch in the target tasks. Inspired
by the success of large pretrained models, we aim
to explore the benefit of utilizing pretrained LLMs
and multimodal models for general robot learning
tasks, where only visual observations are available
as inputs. Given the prevailing domain shift be-
tween the training domain of the pretrained models
and the robot learning tasks, we are motivated to
develop a principled finetuning method.

SUM: Learning Scene Descriptions from Visual
Observations into Language. The goal of the
SUM (scene understanding module) is to trans-
form visual observations into language descriptions
that contain an actionable trait to it. SUM shares
similar functionalities of visual captioning models,
which aim to automatically generate fluent and in-
formative language descriptions of an image (Ke
et al., 2019). For the SUM to be capable of provid-
ing scene descriptions from visual observations, it
needs to distill representative and meaningful vi-
sual representations from an image, then generate

coherent and intelligent language descriptions. In
our framework, we adopt models with image cap-
tioning ability as our SUM, such as OFA (Wang
et al., 2022), BLIP (Li et al., 2022a), and GRIT
(Nguyen et al., 2022). We will discuss the details
of possible image captioning models to use in Sec-
tion 4. Generally, image captioning models em-
ploy a visual understanding system and a language
model capable of generating meaningful and syn-
tactically correct captions (Stefanini et al., 2021).
In a standard configuration, the task can be defined
as an image-to-sequence problem, where the inputs
are pixels, which will be encoded as one or multiple
feature vectors in the visual encoding step. The lan-
guage model will take the information to produce a
sequence of words or subwords decoded according
to a given vocabulary in a generative way.

With the development of self-attention (Vaswani
et al., 2017a), the visual features achieved remark-
able performance due to multimodal pretraining
and early-fusion strategies (Tan and Bansal, 2019;
Lu et al., 2019; Li et al., 2020; Zhou et al., 2019).
As for language models, the goal is to predict the
probability of a given sequence of words occur-
ring in a sentence. As such, it is a crucial com-
ponent in image captioning, as it gives the abil-
ity to deal with natural language as a stochastic
process. Formally, given a sequence of n words
y1, . . . , yn, the language model component of an
image captioning algorithm assigns a probability
P (y1, y2, . . . , yn | X) to the sequence as:

P (y1, y2, . . . yn |X) =
n∏

i=1

P (yi | y1, y2, . . . , yi−1,X)

(1)

where X represents the visual encoding on which
the language model is specifically conditioned. No-
tably, when predicting the next word given the pre-
vious ones, the language model is autoregressive,
which means that each predicted word is condi-
tioned on the previous ones. Additionally, the lan-
guage model usually decides when to stop gen-
erating captions by outputting a special end-of-
sequence token.

3.2 APM: Decoding Language Information
into Executable Action Plans

The goal of APM (action prediction module) is
to transform latent language information from the
SUM output into executable action plans. Since
both latent language information and executable ac-
tion plans are sequential data, a LLM with encoder-
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decoder architecture is a good option for APM in
our framework. In addition, a LLM pretrained on a
vast corpus of text already has adequate knowledge,
which can be fine-tuned on other tasks to improve
learning efficiency.

A LLM with encoder-decoder architecture suits
well for our setting. The encoder is responsible for
reading and understanding the input language infor-
mation from SUM, which is usually based on trans-
former architecture, and creates a fixed-length vec-
tor representation, called the context vector. The
decoder then takes the context vector as input and
generates the output, in our case, the executable
action plans. The decoder uses the context vector
to guide its generation of the output and make sure
it is coherent and consistent with the input infor-
mation. However, due to the distribution change
between the data that LLM was pretrained on and
the new task, the LLM needs to be fine-tuned on
the task-specific data to transfer the knowledge.
The fine-tuning strategies will be introduced in the
following sections. For our LLMs, we use well-
adopted pretrained architectures, including BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and BART (Lewis et al., 2020), as both the encoder
and decoder. The goal of the LLM is to learn how
to generate programmable, executable actions from
the language descriptions outputted by SUM.

3.3 Training Pipeline
The training pipeline contains two steps. We first
fine-tune SUM with the curated VirtualHome ob-
servations (More details about data collection are
introduced in Section 4.2). This fine-tuning step is
to familiarize SUM with the types of scenes present
in the task-specific data. We present pseudocode to
fine-tune the SUM in Algorithm 1 in Appendix C.

In the second stage, we load the fine-tuned SUM
and encode the outputs as latent language embed-
dings. The embeddings are then fed into the APM,
which is then fine-tuned using different fine-tuning
loss objectives (supervised one or policy gradient,
more details are introduced in Section 4), to achieve
the optimal policy with maximum rewards. The
pseudocode for finetuning APM with IL and REIN-
FORCE are in Algorithms 2 and 3 in Appendix C,
respectively.

3.4 Fine-tuning APM with IL and RL
For LLM, the output word is sampled from a
learned distribution over the vocabulary words. In
the most simple scenario, i.e. the greedy decoding

mechanism, the word with the highest probabil-
ity is output. The main drawback of this setting
is that possible prediction errors quickly accumu-
late along the way. To alleviate this drawback,
one effective strategy is to use the beam search
algorithm (Cho et al., 2014; Koehn, 2007) that, in-
stead of outputting the word with maximum prob-
ability at each time step, maintaining k sequence
candidates and finally outputs the most probable
one. For the training or fine-tuning strategies, most
strategies are based on cross-entropy (CE) loss and
masked language model (MLM). But recently, RL-
based learning objective has also been explored,
which allows optimizing for captioning-specific
non-differentiable metrics directly.

Imitation Learning with Cross-Entropy Loss
CE loss aims to minimize negative log-likelihood
of the current word given the previous ground-truth
words at each timestep. Given a sequence of target
words y1:T , the loss is defined as:

LXE(θ) = −
n∑

i=1

log (P (yi | y1:i−1,X)) (2)

where P is the probability distribution induced by
LLM, yi the ground-truth word at time i, y1:i−1 in-
dicate the previous ground-truth words, and X the
visual encoding. The cross-entropy loss is designed
to operate at the word level and optimize the prob-
ability of each word in the ground-truth sequence
without considering longer-range dependencies be-
tween generated words. The traditional training
setting with cross-entropy also suffers from the ex-
posure bias problem (Ranzato et al., 2015) caused
by the discrepancy between the training data dis-
tribution as opposed to the distribution of its own
predicted words.

Reinforcement Learning with REINFORCE
Given the limitations of word-level training strate-
gies observed when using limited amounts of data,
a significant improvement was achieved by apply-
ing the RL approach. Under this setting, the LLM
is considered as an agent whose parameters deter-
mine a policy. At each time step, the agent executes
the policy to choose an action, i.e. the prediction of
the next word in the generated sentence. Once the
end-of-sequence is reached, the agent receives a re-
ward, and the aim of the training is to optimize the
agent parameters to maximize the expected reward
(Stefanini et al., 2021).

Similar to Ranzato et al. (2015), for our policy
gradient method, we use REINFORCE (Williams,
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1992; Sutton et al., 1999), which uses the full tra-
jectory, making it a Monte-Carlo method, to sam-
ple episodes to update the policy parameter. For
fine-tuning LLMs using RL, we need to frame the
problem into an Agent-Environment setting where
the agent (policy) can interact with the environ-
ment to get the reward for its actions. This reward
is then used as feedback to train the model. The
mapping of the entities is from the agent (policy),
which is an LLM, and the environment (the reward
function, also named the model), which generates
rewards. The reward function consumes the input
as well as the output of the LLM to generate the
reward. The reward is then used in a loss function,
and the policy is updated. Formally, to compute
the loss gradient, beam search and greedy decoding
are leveraged as follows:

∇θL(θ) = − 1

k

k∑

i=1

((
r
(
wi

)
− b

)
∇θ logP

(
wi

))
(3)

where wi is the i-th sentence in the beam or a
sampled collection, r(·) is the reward function, and
b is the baseline, computed as the reward of the
sentence obtained via greedy decoding (Rennie
et al., 2016), or as the average reward of the beam
candidates (Cornia et al., 2019). Note that, since it
would be difficult for a random policy to improve in
an acceptable amount of time, the usual procedure
entails pretraining with cross-entropy or masked
language model first, and then fine-tuning stage
with RL by employing a sequence level metric as
the reward. This ensures the initial RL policy is
more suitable than the random one.

4 Experiments

This section introduces the environment we used
in the experiments, the experimental settings, eval-
uations, and results. We would like to answer the
following questions with experiments: (1) Can the
proposed paradigm take pure visual observations to
generate executable robot actions; (2) What kinds
of SUM are able to provide better scene descrip-
tions for robot learning; (3) What kinds of APM
show better action decoding ability in generating
executable actions; (4) What kinds of fine-tuning
strategies show better performance under this set-
ting; (5) Can the model achieve consistent perfor-
mance across different environments?

4.1 Environments and Metrics
Environments We build the experiment environ-
ments based on VirtualHome (Puig et al., 2018a;

Liao et al., 2019), a multi-agent, virtual platform
for simulating daily household activities. (Puig
et al., 2018b). Puig et al. (2018a) provides a dataset
of possible tasks in their respective environments.
Each task includes a natural language description
of the task ("Put groceries in the fridge."), an
elongated and more detailed natural language de-
scription of the task ("I put my groceries into the
fridge."), and the executable actions to perform
the task in VirtualHome ([[Walk] < groceries > (1),

[Grab] < groceries > (1), ... [Close] < fridge > (1)]).
We define the training and testing tasks based on
the natural language descriptions of the task due to
their straightforwardness.

In VirtualHome, the agents are represented as
3D humanoid avatars that interact with given envi-
ronments through provided, high-level instructions.
Puig et al. (2018a) accumulated a knowledge base
of instructions by using human annotators from
AMT to first yield verbal descriptions of verbal
activities. These descriptions were further trans-
lated by AMT annotators into programs utilizing
a graphical programming language, thus amassing
around 3,000 household activities in 50 different
environments (Puig et al., 2018a). In this study,
we evaluate our model’s performance in 7 unique
environments, which are shown in Figure 4 in the
Appendix. Each environment has a distinctive set
of objects and actions that may be interacted with
by agents.

Metrics We used standard NLP evaluation met-
rics, i.e., BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016), for evaluating LLMs. In addition,
we introduced the execution rate following Li et al.
(2022b). The execution rate is defined as the prob-
ability of the agent’s success in performing the out-
putted action from APM over the whole trajectory.
More experimental setup details about SUM and
APM are listed in Appendix D. We run 10 seeds
for each environment.

4.2 Datasets

To fine-tune SUM and APM on task-specific robot
learning scenarios, we collect data via Virtual-
Home, including the agent’s observations, language
instructions, and action sequences. During data
collection, a household activity program can be
described as: [[actioni] < objecti > (idi), ...
[actionn] < objectn > (idn)], where i denotes
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each step of the program, actioni and objecti de-
notes the action performed on the object at step i,
and idi symbolizes the unique identifier of objecti
(Puig et al., 2018a). The original dataset was aug-
mented by ResActGraph (Liao et al., 2019). Af-
ter augmentation, the dataset contains over 30,000
executable programs, with each environment con-
taining over 300 objects and 4,000 spatial relations.
Additionally, we collect the image and text pairs
separated by the environments they were executed
in. This is important due to the different objects
and actions available in each environment. How-
ever, as noted in Puig et al. (2018a) and Liao et al.
(2019), not all programs were executable.

During data collection, we observed that the
text was comprised of two words (e.g., walk-
ing bathroom, sitting chair, etc). To have a ro-
bust text description, we prompt engineered the
texts with a fill-mask pipeline using BERT (De-
vlin et al., 2019; Song et al., 2019). For this
study, we collect programs executed in three dif-
ferent views: ‘AUTO’, ‘FIRST_PERSON’, and
‘FRONT_PERSON’ as shown in Figure 3 in Ap-
pendix B. In the ‘AUTO’ view, there are locked
cameras in every scene through which the program
randomly iterates through. The ‘FIRST_PERSON’
view observes the agent’s actions through the first-
person point of view. The ‘FRONT_PERSON’
view monitors the agent’s actions through the front
in a locked third-person point of view. There-
fore, the final count of image-text pairs for our
dataset in the ‘AUTO’, ‘FIRST_PERSON’, and
‘FRONT_PERSON’ views are 26,600, 26,607, and
26,608, respectively. More details can be found in
Appendix B.

4.3 Experimental Setup

SUM Setting For SUM, we use the following
image captioning models to serve as SUM: OFA
(Wang et al., 2022), BLIP (Li et al., 2022a), and
GRIT (Nguyen et al., 2022). Both OFA and BLIP
are pretrained on the same five datasets, while the
GRIT model (Nguyen et al., 2022) is pretrained on
a different combination of datasets. For OFA, we
adopted OFALarge due to its superior performance
in five variations. OFALarge wields ResNet152 (He
et al., 2015) modules with 472M parameters and
12 encoders and decoder layers. For BLIP, we used
ViT-L/16 as the image encoder due to its better
performance. For GRIP, we follow Nguyen et al.
(2022) which utilizes the Deformable DETR (Zhu

et al., 2020) framework. Note that in our study we
want SUM to generate captions that not only de-
scribe the scene but also try to derive action from it.
We observe that adding the prompt "a picture of "
following Wang et al. (2021) causes the model to be
biased in solely describing the scene, which would
in turn not be helpful for generating actionable cap-
tions. Therefore, we remove prompts in the SUM
setting. We load pretrained models and fine-tune
them for 7 epochs on our collected VirtualHome
dataset. We keep the hyper-parameters consistent
with the original implementations (Li et al., 2022a;
Wang et al., 2022; Nguyen et al., 2022).
APM Setting We take LLM to act as our APM.
The goal of APM is to generate executable pro-
grams for the VirtualHome simulator. We deem
the program outputted by the APM executable if
the agent in the VirtualHome simulator is able to
understand and perform the action. When the ac-
tion is executed by the agent, the simulator is then
directed to output images and captions that are syn-
onymous with the input of SUM. The output hidden
layers of SUM acts as the input embeddings to the
APM, while the tokenized executable actions act
as labels. The last hidden layer of APM acts as
input embeddings for the tokenizer and generates
token identifiers. The token identifiers are finally
decoded into programmable actions.

5 Results and Discussions

5.1 Model Performance with IL Fine-tuning
We first want to show the benefit of the proposed
framework compared with other model architec-
tures. Concretely, in the IL setting with expert data,
we compare the execution rate of our model with
the MLP, MLP-1 and LSTM baselines in Li et al.
(2022b). Our model has OFA in SUM and BART
as APM. Note that all the baselines are not trained
by datasets in other domains and have structured
text input instead of realistic visual inputs as our
proposed model. In the LSTM baseline, the hid-
den representation from the last timestep, together
with the goal and current observation, are used to
predict the next action. MLP and MLP-1 both take
the goal, histories, and the current observation as
input and send them to MLPs to predict actions.
MLP-1 has three more average-pooling layers than
MLP that average the features of tokens in the goal,
history actions, and the current observation, re-
spectively, before sending them to the MLP layer.
More details about the baselines can be found in
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Table 1: Results by different SUM fine-tuned by imitation learning (IL) objective, where BERT serves as APM.
The results are shown on 7 different environments in VirtualHome and also the average performance. The best
result in each environment and each SUM model is marked in black and bold. The best SUM result with the highest
average performance across 7 environments is marked in orange and bold.

SUM/Results(%) Environment Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

OFA (Wang et al., 2022)

1 55.1±0.05 45.4±0.10 36.5±0.20 23.0±0.00 60.0±0.16 33.4±0.00 30.2±0.44 49.9±0.43 78.0±2.39
2 58.0±0.20 41.7±0.19 35.1±1.01 22.1±0.73 60.1±0.50 34.1±0.52 30.3±0.71 48.1±0.41 79.9±2.37
3 55.3±0.30 42.3±0.62 34.9±0.15 23.0±0.00 60.5±0.01 34.8±0.64 31.2±0.55 48.4±0.17 80.0±3.29
4 57.8±0.73 42.2±0.31 35.3±0.38 24.5±0.67 59.9±0.45 34.6±0.54 33.1±0.63 49.0±0.66 79.9±4.14
5 59.4±0.44 40.3±0.03 34.8±0.02 24.2±0.37 59.7±0.25 35.1±0.62 32.7±0.24 38.0±0.13 77.4±1.12
6 60.5±0.01 48.1±0.53 36.6±0.07 25.1±0.15 61.9±0.13 36.2±0.60 34.6±1.07 49.9±0.77 80.5±1.13

. 7 58.2±0.30 46.5±0.58 34.6±0.04 22.3±0.08 58.3±0.92 35.6±0.62 30.8±0.37 44.2±0.33 69.2±2.31
Average 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26

BLIP (Li et al., 2022a)

1 51.1±0.50 42.6±0.41 33.2±0.34 21.1±0.63 60.8±0.73 34.7±0.63 35.5±00.09 42.7±0.91 72.6±1.99
2 50.5±0.87 41.8±0.72 30.5±28 22.3±0.34 60.3±0.64 33.6±0.87 30.0±0.72 42.8±0.99 66.1±4.21
3 52.4±0.54 43.2±0.65 33.6±0.13 21.1±0.52 61.4±0.29 34.5±0.12 31.1±0.00 48.9±0.80 85.0±3.32
4 51.0±1.19 42.1±0.87 33.8±0.54 22.8±0.65 60.6±0.76 34.4±0.98 35.1±0.85 46.0±0.74 73.0±3.65
5 49.0±0.53 38.8±0.43 30.4±0.72 20.0±0.47 58.6±0.65 34.1±0.75 21.0±0.66 30.8±0.69 67.2±0.93
6 52.6±0.79 44.5±0.00 31.0±0.63 24.8±0.62 62.0±0.73 35.3±1.02 31.0±0.02 42.4±0.87 84.1±3.54
7 52.7±0.50 44.0±0.21 33.6±0.18 24.0±0.52 61.7±0.08 34.5±0.60 34.5±0.81 48.8±0.28 86.0±4.92

Average 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22

GRIT (Nguyen et al., 2022)

1 50.5±0.99 40.5±0.86 31.8±1.82 20.7±1.02 60.0±1.44 33.1±0.97 30.4±1.42 41.7±0.85 69.2±5.57
2 52.1±0.66 41.8±1.77 31.7±1.92 20.1±0.97 59.9±0.65 32.1±0.76 29.4±0.87 42.0±0.88 71.4±5.52
3 52.3±0.88 40.3±0.82 32.1±0.77 19.9±1.53 60.4±0.68 31.7±0.66 30.1±2.52 43.5±1.64 71.3±5.98
4 51.9±0.93 39.8±0.92 31.8±0.97 21.3±1.72 59.7±1.22 32.0±0.76 30.0±0.79 42.8±0.84 72.8±4.65
5 54.7±0.93 42.3±1.02 33.2±1.25 24.5±0.93 62.3±1.42 33.8±1.77 30.7±1.32 44.6±1.23 78.5±5.07
6 54.6±1.42 44.7±1.64 34.1±1.32 25.8±1.22 65.8±1.25 30.1±2.31 34.5±0.72 44.0±0.96 78.4±3.66
7 53.9±0.88 42.0±1.79 32.6±2.00 22.5±0.90 63.4±1.00 31.8±1.23 32.3±1.31 43.1±1.41 70.0±3.99

Average 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

Table 2: Results by different APM fine-tuned by imitation learning (IL) loss objective. The results are shown by the
average of 7 different environments in VirtualHome. The best results are marked in bold.

APM SUM Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

BERT
OFA 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26
BLIP 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22
GRIT 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

RoBERTa
OFA 57.7±0.01 43.2±0.00 35.6±0.48 24.1±0.36 59.9±0.26 34.7±0.51 31.4±0.47 47.3±0.38 75.4±3.86
BLIP 50.5±0.71 41.1±0.29 32.0±0.11 23.5±0.64 61.1±0.88 33.0±0.70 31.8±0.81 42.9±0.94 77.7±0.71
GRIT 53.1±1.02 42.0±0.90 34.1±1.01 23.1±1.22 60.4±1.92 31.5±0.59 31.5±1.42 42.8±1.77 75.4±4.39

BART
OFA 59.5±0.09 45.9±0.31 39.8±0.37 28.1±0.72 61.3±0.65 37.2±0.69 34.4±0.78 47.0±0.88 79.0±1.91
BLIP 52.9±0.80 44.3±0.52 35.5±0.49 25.3±0.62 62.2±1.12 35.3±1.62 32.0±0.97 44.5±0.88 76.0±1.98
GRIT 54.2±1.68 43.2±1.85 33.6±1.60 25.3±0.93 62.7±1.85 33.8±0.62 33.7±0.74 44.7±1.12 77.9±1.77

Figure 2: Comparison with baselines in the imitation
learning setting evaluated by the execution rate.

Li et al. (2022b). As shown in Figure 2, our ap-
proach outperforms baselines in Li et al. (2022b)
in terms of a higher average execution rate and a
smaller standard deviation, though all the methods
are trained on expert data with imitation learning
objectives. The results show that the pretrained em-
beddings and large model architecture benefit the
performance in downstream robot learning tasks.

5.2 Model Performance with RL Fine-tuning
We provide the model performance after fine-
tuning SUM with a frozen BERT in Table 1 for the
IL setting with expert data and in Table 3 for the RL
setting. The results after fine-tuning APM with the
fine-tuned SUM are shown in Table 2 and Table 4.
We found that fine-tuning with expert data in IL
results in higher average and per-environment per-

formance than fine-tuning with RL, which shows
the benefit of having access to the expert datasets.
However, fine-tuning with RL still brings perfor-
mance improvement to 57.2% as in Table 4. Note
that without finetuning, the outputs of the LLMs
in APM are generally not executable as shown in
Figure 1. Moreover, we consistently observe that
the combination of having OFA in SUM and BART
as APM achieves the best performance after both
IL (Table 2) and RL (Table 4) fine-tuning.
5.3 Ablation Study

To deeply understand the importance of different
components in our paradigm that affect the over-
all performance, we conduct ablation studies on
different factors including different components in
SUM, different components in APM, and different
environment variations.

Different Components in SUM The perfor-
mances of using different components in SUM for
IL and RL fine-tuning are in Table 1 and Table 3,
respectively. From Table 1, we see that with expert
data, OFA achieves better results than BLIP and
GRIT on the average performance over 7 environ-
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Table 3: Execution Rates by different SUM fine-tuned by REINFORCE, where BERT serves as APM. The results
are shown on 7 different environments and also the average performance. The best results are marked in bold.

SUM Env-1 Env-2 Env-3 Env-4 Env-5 Env-6 Env-7 Average

OFA (Wang et al., 2022) 50.1±0.65 50.3±0.52 51.5±0.48 57.8±0.88 55.2±0.00 56.6±0.37 59.3±0.48 54.4±0.55
BLIP (Li et al., 2022a) 52.7±0.78 53.4±1.00 53.5±0.92 55.6±0.68 60.1±0.49 59.3±0.91 49.9±0.90 54.9±1.99
GRIT (Nguyen et al., 2022) 38.7±1.02 40.0±1.11 51.3±0.99 48.2±0.90 46.5±0.85 55.8±0.70 45.3±1.08 46.5±2.01

Table 4: Results by different APM fine-tuned by
REINFORCE loss objective, averaging on 7 different
environments. The best results are marked in bold.

APM SUM Execution Rate (%)

BERT
OFA 54.7±1.15
BLIP 54.1±1.37
GRIT 53.9±3.00

RoBERTa
OFA 55.6±4.31
BLIP 55.2±1.16
GRIT 54.8±2.54

BART
OFA 57.2±2.43
BLIP 57.0±3.12
GRIT 55.8±0.99

ments. We conjecture that this may be due to OFA
being pretrained on 20M image-text pairs, which
is larger than the size of other models’ pretrain-
ing data. While under REINFORCE fine-tuning
loss, as in Table 3, BLIP slightly outperforms OFA
in terms of average performance but has around 4
times larger standard deviation than OFA.

How Visual Observations Affect SUM Vi-
sual observation quality is vital for SUM. In
FIRST_PERSON view, which lacks explicit ac-
tion portrayal, SUM faces challenges in generating
high-quality textual descriptions. Complex visual
scenarios, like blank walls or cluttered scenes with
numerous objects, also impede SUM’s ability to
provide informative descriptions matching the ac-
tion or task at hand.

Different Components in APM The results of
using different components in APM for IL and RL
fine-tuning are presented in Table 2 and Table 4,
respectively. We found that BART consistently out-
performs other LLMs in both settings. We hypoth-
esize that due to BART’s architectural nature as a
denoising autoencoder, it is more suitable for trans-
lating natural language descriptions into executable
action programs for the VirtualHome simulator.

Different Environments To test the performance
variations under different environments, we con-
ducted the experiments separately for each unique
environment. The results are shown in Table 1 and
Table 3, for fine-tuning SUM under IL and RL set-
tings, respectively. Due to image observation vari-
ations having the most impact on SUM instead of
APM, so we only test the performance of SUM un-
der different environment settings. Through Table 1
and Table 3, we could find that the variations exist

among different environments. Generally, environ-
ment 6 seems to have the easiest environmental
settings for the model to learn.

Stability To evaluate the stability of different
models under different environments, we also cal-
culated the standard deviation (stds) of the results
across different trials. The results are shown in
Tables 1,2,3,4, which shows that BART as APM
and OFA seems to be more stable than the rest of
the combinations.

Analysis on the differences by different mod-
els and reasons We found that the APM con-
sistently generated high-quality executable actions
and tasks based on metric scores. The primary
reason for the substantial performance variations
among models was the constraints within the envi-
ronments. Each environment had predefined sets
of actions, objects, and tasks. If the model gener-
ated items outside of these predefined distributions,
the simulator couldn’t execute them. For example,
the model might generate a valid action like [grab]
< bottle > (1), but if the “bottle" object wasn’t pre-
defined in that environment, the simulator couldn’t
execute the action. This environmental constraint
led to the observed performance variations.

6 Conclusion
In this work, we introduce a novel robot learning
paradigm with LLM in the loop that handles mul-
tiple modalities of visual observations and text-
based actions in a principled manner. We bridge
both modalities with natural language generated
by a pretrained multimodal model. Our model
contains SUM and APM, where SUM uses image
observations as inputs taken by the robot to gen-
erate language descriptions of the current scene,
and APM predicts the corresponding actions for
the next step. We tested our method in the Virtual-
Home under 7 unique environments, and the results
demonstrated that our proposed paradigm outper-
forms baselines in terms of execution rates and
shows strong stability across environments. One in-
teresting future direction is extending our proposed
framework to solve generalization tasks in a more
data and parameter-efficient manner.
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7 Limitations.

• In our current study, we primarily focused on
abstract high-level actions represented by lan-
guage commands, without taking into account
low-level controls such as joint motor control.
This omission of the low-level control mod-
ule may limit the overall effectiveness of the
learned policies and their ability to function
in complex and dynamic environments. An in-
teresting future direction would be to consider
the physical capabilities of embodied agents
by learning universal low-level controllers for
various morphologies.

• Our study might encounter challenges related
to long-tailed actions. In our collected dataset,
there are actions that occur infrequently, and
the current method may not have effectively
learned policies for scenarios involving such
actions that rarely appear in the collected
dataset. This limitation could constrain the
overall effectiveness of the learned policies in
real-world situations.

• Given that we fine-tuned the model using a
dataset collected in the VirtualHome environ-
ment, the generalizability of the learned poli-
cies to other platforms might be insufficient
due to significant differences between various
simulated platforms.
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A More Related Work

Multimodal Learning Formalized multimodal learning research dates back to 1989 when (Yuhas et al.,
1989) conducted an experiment that built off the McGurk Effect for audio-visual speech recognition
using neural networks (Tiippana, 2014; McGurk and MacDonald, 1976). Researchers in NLP and CV
collaborated to make large and multimodal datasets available, catering to specific downstream tasks, such
as classification, translation, and detection. In correlation, improvements in LLMs opened the gates to
include other modalities of data, most frequently visual data (Wang et al., 2022; Qiu et al., 2023b; Nguyen
et al., 2022; Li et al., 2022a; Wang et al., 2021; Qiu et al., 2023a; Shah et al., 2022; Zhang et al., 2021;
Wang et al., 2020; Qiu et al., 2024). By utilizing the learned embeddings that have been pretrained on both
language and image datasets, vision-language models are able to perform very well. Within the above
success, image captioning has been an important task in multimodal learning, which aims at generating
textual descriptions for the given images.

Visual Feedback in Robot Learning Visual feedback is commonly used in robot learning. Gothoskar
et al. (2020) learned a generative model from actions to image observations of features to control a robot
from visual feedback. Ma et al. (2022) proposed a self-supervised pretrained visual representation model
which is capable of generating dense and smooth reward functions for unseen robotic tasks. Strokina
et al. (2022) reviewed the methods of reward estimation and visual representations used in learning-based
approaches for robotics applications. Mohtasib et al. (2021) studied the performance of dense, sparse,
visually dense, and visually sparse rewards in deep RL. Kurita and Cho (2020) proposed the direct
navigation approach based on an image captioning model. Li et al. (2019) combined image captioning
models and planning models, but Li et al. (2019) took pure language instructions as input, while our
approach takes pure visual observations as input.

Pre-training and Fine-tuning of Language Models Over the past few years, fine-tuning (Howard
and Ruder, 2018) has superseded the use of feature extraction of pretrained embeddings (Peters et al.,
2018) while pretrained language models are favored over models trained on many tasks due to their
increased sample efficiency and performance (Ruder, 2021). The success of these methods has led to
the development of even larger models (Devlin et al., 2019; Raffel et al., 2019). But those large models
may not perform well on data that is different from what they were pretrained on. Under this case,
fine-tuning pretrained contextual word embedding models to supervised downstream tasks has become
commonplace (Hendrycks et al., 2020; Dodge et al., 2020). Zeng et al. (2022) examined the sampling
effects in reinforcement learning with GPT and BERT.

Vision and Language Navigation Anderson et al. (2017) proposed Vision-and-Language Navigation
(VLN) as the problem of interpreting visually grounded navigation instructions. In Huang et al. (2022b),
language instructions are utilized to interpret the scene, whereas we rely on raw image observations.
In Singh et al. (2022), a predefined executable plan prompt is provided without learning from visual
observations, simplifying the generation of executable plans. In Xiao et al. (2022), both language
instructions and visual images are employed to fine-tune the VLM, which is subsequently used for
behavior cloning. However, the generated robot plan consists of high-level natural language instructions
rather than executable robot policies, as in our work. In Fan et al. (2022), the proposed MINECLIP
primarily calculates the correlation between an open-vocabulary language goal string and a 16-frame video
snippet. The correlation score serves as a learned dense reward function for training a robust multi-task
RL agent, which is distinct from our approach.

LLM Applications in Other Domains Recently, LLMs have also shown great potential for accelerating
learning in many other domains by generating learned embeddings as meaningful representations for
downstream tasks and encoding transferable knowledge in large pretraining datasets. Examples include
transferring the knowledge of LLM to, i.e., robotics control (Liang et al., 2022; Ahn et al., 2022),
multimodal learning (Zeng et al., 2022; Zellers et al., 2021), decision-making (Li et al., 2022b; Huang
et al., 2022a), code generation (Fried et al., 2022), laws (Kaplan et al., 2020), computer vision (Radford
et al., 2021), and so on.
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Figure 3: ‘AUTO’, ‘FIRST PERSON’, ‘FRONT PERSON’ views.

B More Details of the Collected Dataset

More details for data collection During data collection, we utilized the VirtualHome simulator to
collect visual and textual information about each action and overall task. For each task, it comprises of
a series of actions and there corresponding objects like so: [[actioni] < objecti > (idi), ... [actionn]
< objectn > (idn)], where i denotes each step of the task, actioni and objecti denotes the action
performed on the object at step i, and idi symbolizes the unique identifier of objecti. For each task,
we would simulate it in VirtualHome and output each frame of the task as our visual observations. To
conjure up the textual descriptions, we labeled each frame of the task with its corresponding [actioni]
< objecti > (idi) (e.g., walk <bathroom> (1)). We then parsed this into a natural language format (e.g.,
walk <bathroom> (1) -> walk bathroom).

We noticed that the text descriptions were extremely short (e.g., walk bathroom, sitting chair, run
treadmill). To create more informative and sensical textual descriptions, we applied prompt engineering
by masking in between the action and object (i.e., walking [MASK] bathroom, sitting [MASK] chair,
running [MASK] treadmill). This would then give us outputs such as walking to bathroom, sitting on
chair, and running on treadmill.

For the finetuning of SUM, we input the visual observation (i.e., the frames gathered during data
collection) and output an image caption that serves to describe the scene. We calculate the loss by utilizing
the textual description we collected since these textual descriptions are supposed to represent the "action"
being partaken during the frame.

Divergence of text-image pairs and the number of the possible agent actions The divergence of
text-image pairs is in the different combinations of action and object pairs for each text-image pair. For
example, let us say we have a task of “Turn on the Light", and for this task, there are some actions, such
as [[WALK] < bedroom > (1), [WALK] < lamp > (1), [SWITCHON] < lamp > (1)]. For each
action, there are N images (or frames) and text descriptions. For a given action, each image (frame) is
different. However, for the text description, we simply use the same description as the ground truth for
describing each image. Nevertheless, there is a diverse corpus of action-object combinations (we have 18
different actions and 308 different objects). In our study, there are 18 different actions, including [FIND],
[TOUCH], [WALK], [SWITCHON], [GRAB], [READ], [STANDUP], [TURNTO], [LOOKAT], [SIT],
[POINTAT], [OPEN], [WATCH], [RUN], [DRINK], [SWITCHOFF], [PUTOBJBACK], and [CLOSE].

C Algorithms of Fine-tuning SUM and APM with Imitation Learning or REINFORCE

We provide the pseudo code for training SUM and APM in this section.
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Algorithm 1 Fine-tuning SUM
Initialize pretrained SUM model
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget and Captiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. LossXEt(θt) = LXE(Captiont,

ˆCaptiont)

3. θt ← θt − α∇θtL(Captiont,
ˆCaptiont)

end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

Algorithm 2 Fine-tuning APM with Imitation Learning
Initialize fine-tuned SUM and pretrained APM
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

for Imaget, Captiont Actiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. ˆActiont+1 = APM( ˆCaptiont,Actiont)

3. LossXEt(θt) = LXE(Actiont, ˆActiont+1)

4. θt ← θt − α∇θtLXE(Actiont, ˆActiont+1)
end for
repeat

Steps 1 through 3
until max(num_epochs) or convergence

end for

Algorithm 3 Fine-tuning APM with REINFORCE
Initialize fine-tuned SUM, pretrained APM, and VirtualHome environment (env)
Load VirtualHome dataset for fine-tuning
for n in num_epochs do

Trajectoriest = [ ]
state = env.reset()
for Imaget, Captiont Actiont in batchn do

1. ˆCaptiont = SUM(Imaget)
2. ˆActiont = APM( ˆCaptiont,Actiont)

3. Trajectoriest.append( ˆActiont)
end for
sort(Trajectoriest) by Task ID
for i in range(len(Trajectoriest)) do

4. ˆActiont = sample_action(Trajectoriest[i])
5. Rewardt = env.step(Actiont, ˆActiont)

6. Compute∇θt logP ( ˆActiont|Actiont)

7. θt ← θt + αr∇θt logP ( ˆActiont|Actiont)
end for
repeat

Steps 1 through 7
until max(num_epochs) or convergence

end for

D Experimental Setup

SUM Setting For SUM, we use the following image captioning models to serve as SUM: OFA (Wang
et al., 2022), BLIP (Li et al., 2022a), and GRIT (Nguyen et al., 2022). Both OFA and BLIP are pretrained
on the same five datasets, while the GRIT model (Nguyen et al., 2022) is pretrained on a different
combination of datasets. For OFA, we adopted OFALarge due to its superior performance in five variations.
OFALarge wields ResNet152 (He et al., 2015) modules with 472M parameters and 12 encoders and
decoder layers. For BLIP, we used ViT-L/16 as the image encoder due to its better performance. For GRIP,
we follow Nguyen et al. (2022) which utilizes the Deformable DETR (Zhu et al., 2020) framework. Note
that in our study we want SUM to generate captions that not only describe the scene but also try to derive
action from it. We observe that adding the prompt "a picture of " following Wang et al. (2021) causes
the model to be biased in solely describing the scene, which would in turn not be helpful for generating
actionable captions. Therefore, we remove prompts in the SUM setting. We load pretrained models
and fine-tune them for 7 epochs on our collected VirtualHome dataset. We keep the hyper-parameters
consistent with the original implementations (Li et al., 2022a; Wang et al., 2022; Nguyen et al., 2022).

APM Setting We take LLM to act as the sole component in our APM. The goal of APM is to generate
executable programs for the VirtualHome simulator. We deem the program outputted by the APM
executable if the agent in the VirtualHome simulator is able to understand and perform the action. When
the action is executed by the agent, the simulator is then directed to output images and captions that are
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Figure 4: Top-down views of 7 different environments from VirtualHome.

synonymous with the input of SUM. The output hidden layers of SUM acts as the input embeddings to
the APM, while the tokenized executable actions act as labels. The last hidden layer of APM acts as input
embeddings for the tokenizer and generates token identifiers. The token identifiers are finally decoded
into programmable actions that are fed into the VirtualHome simulator.

Training and Testing Tasks . We train and test on seven environments considering that in VirtualHome,
there are seven environments in total. We use VirtualHome v0.1.0 due to its stability and to be consistent
with previous works. We split the training and testing sets in terms of actions and tasks instead of
environments (e.g., 20,000 actions in training and 3,000 in testing; 500 tasks in training, 200 in testing).
We do this because each environment has different tasks and actions only executable in the given
environment. The boundary between training and testing was chosen randomly based on the distribution
of actions and tasks. As mentioned before, if there are a total of 10,000 different tasks or actions, we
would randomly split the training and testing set to a proportion of 70:30, respectively. Unseen tasks are
defined as tasks that are not included in the training set. For example, if we have the following example
task of "Walk to the groceries" (e.g. [WALK] ⟨groceries⟩ (1)) in the training set, we would not have this
task in the test set and vice versa.

Executable Actions: Here is the list of all actions executable in VirtualHome: [FIND, TOUCH, WALK,
SWITCH ON, GRAB, READ, TURN TO, LOOK AT, SIT, POINT AT, OPEN, WATCH, RUN, DRINK,
SWITCH OFF, PUT OBJECT BACK, CLOSE, STAND UP].

E More Experimental Results

Fine-tuning performance on in-distribution tasks and unseen tasks To further support our findings,
we conducted additional experiments that tested the fine-tuning performance on in-distribution tasks
and unseen tasks in the VirtualHome environment following the setting in Li et al. (2022b). Li et al.
(2022b) used reinforcement learning to adapt to downstream tasks. It’s important to note that Li et al.
(2022b) used oracle text-based inputs that summarize the current observation, whereas we use raw image
inputs and understand the scene with our fine-tuned SUM module. We measure the performance with the
episode success rate and summarize the main comparison results with Li et al. (2022b)) in Table 5. Our
results show that when fine-tuning with REINFORCE, our method outperforms Li et al. (2022b) in both
in-distribution tasks and novel tasks. Additionally, when expert data is available in the downstream tasks,
fine-tuning with imitation learning outperforms the REINFORCE approach.
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Table 5: Comparison of episode success rate.

Method In-Distribution Tasks Novel Tasks

Li et al. (2022b) 53.7 27.8
Ours (REINFORCE) 58.4 33.7
Ours (Imitation Learning) 68.4 44.8

Table 6: Our fine-tuning results for different SUM/APM configurations in in-distribution and novel tasks, as well as
using REINFORCE and imitation learning strategies. We measure the performance based on the episode success
rate.

SUM APM In-Distribution REINFORCE Novel Tasks REINFORCE In-Distribution Imitation Novel Tasks Imitation

OFA
BERT 56.1 31.4 65.2 40.7
BART 58.4 33.7 68.4 44.8

RoBERTa 51.7 32.3 66.0 42.8

BLIP
BERT 53.7 28.5 61.1 39.5
BART 55.2 31.2 64.3 40.3

RoBERTa 50.6 29.3 62.8 39.8

GRIT
BERT 50.5 28.8 61.3 40.4
BART 51.2 30.0 63.7 39.6

RoBERTa 49.0 27.1 59.2 38.7

Importance and necessity of fine-tuning To underscore the importance and necessity of fine-tuning, we
present additional zero-shot testing performances without fine-tuning in Table 7 and Table 8. Our findings
reveal that the episode success rate and action execution rates are significantly lower without fine-tuning
in both methods, which highlights the crucial role that fine-tuning plays in improving performance.

How Visual Observations Affect SUM The quality of visual observations has an important effect on
SUM. For a view like FIRST_PERSON, where the camera’s perspective is in first person, we noticed
that since this view does not explicitly show the agent performing some actions, it was harder for our
SUM model to generate high-quality textual descriptions. Another example is the complexity of the
visual observation. For example, we found some images of a blank wall or, on the contrary, a very
dense observation with many different objects. For such cases, we found that SUM could not generate
informative descriptions that fit the action or task being performed.

Analysis on the differences by different models and reasons During evaluation, we tested our models
with 10 different seeds to ensure robustness and reported the mean and standard deviations for all models
and environments. As per Table 1, it is important to note that the standard deviations for execution
rate across all three models are generally pretty high (i.e., ± 0.93 - ± 5.98). We observed that the
executable actions and overall tasks generated by the APM were of high quality (as per the BLEU,
ROUGE, METEOR, CIDEr, and SPICE scores). We found that the most significant attribute to the high
variations in performances was the environment’s constraints. Each environment has a predefined, finite
number of actions, objects, and tasks. Therefore, if our model generated some actions, objects, or tasks
that are not within the distribution, the simulator would not be able to execute them. For example, our
model would generate a sensical action such as [grab] < bottle > (1) in environment 1. However, in this
environment, the bottle object was not predefined, thus preventing the simulator from executing the action.
This characteristic led to the high variations of the performance across models. We acknowledge that this
bottleneck is important and hope to consider it in future works.

F Experiment Parameters

In this section, we listed the experimental parameters in Tables 9, 10, and 11.

G Markov Decision Processes

Markov decision process. A Markov decision process (MDP) is defined as a 5-tuple (S,A, T,R, γ),
where S and A are the state and action space, respectively. In our situation, the states are the visual
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Table 7: Comparison action execution rates in zero-shot and fine-tuned settings using both REINFORCE and
Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.1 0.1
2 Zero-shot Fine-tuned 14.5 21.4
3 Fine-tuned Zero-shot 5.8 6.9
4 Fine-tuned Fine-tuned 57.2 77.8

Table 8: Comparison episode success rate in zero-shot and fine-tuned settings using both REINFORCE and Imitation
Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.7 0.7
2 Zero-shot Fine-tuned 16.7 19.5
3 Fine-tuned Zero-shot 7.7 8.7
4 Fine-tuned Fine-tuned 58.4 76.8

Table 9: Experiment parameters used in SUMs, where the best ones are marked in bold.

SUM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

OFA [4, 8, 16, 32] [24] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BLIP [8, 16, 32, 64] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
GRIT [4, 8, 16, 32] [6] [8] [1e-4, 1e-5, 1e-6] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

Table 10: Experiment parameters used in Supervised APMs, where the best ones are marked in bold

APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

Table 11: Experiment parameters used in REINFORCE APMs, where the best ones are marked in bold

APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

observations V . T : S × A → ∆(S) is the transition function, R : S × A → R is the reward function,
and γ is the discount factor. We consider a sparse reward setting and assume the γ = 1. We aim to find
an optimal policy π =: S → A that maximizes the expected return Eτ∼π

[∑H−1
t=0 γtr (st, at)

]
. H is the

episode length.
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