
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1914–1926

June 16-21, 2024 ©2024 Association for Computational Linguistics

Metacognitive Prompting Improves Understanding
in Large Language Models

Yuqing Wang
Stanford University

ywang216@stanford.edu

Yun Zhao
Meta Platforms, Inc.
yunzhao20@meta.com

Abstract

In Large Language Models (LLMs), there
have been consistent advancements in task-
specific performance, largely influenced by ef-
fective prompt design. Recent advancements
in prompting have enhanced reasoning in logic-
intensive tasks for LLMs, yet the nuanced
understanding abilities of these models, cru-
cial for processing and interpreting complex
information, remain underexplored. In this
study, we introduce Metacognitive Prompting
(MP), a strategy inspired by human introspec-
tive reasoning processes. Using MP, LLMs
undergo a systematic series of structured, self-
aware evaluations, drawing on both their vast
inherent knowledge and new insights. We
conduct extensive experiments on four preva-
lent LLMs: Llama2, PaLM2, GPT-3.5, and
GPT-4, across ten natural language understand-
ing (NLU) datasets from GLUE, SuperGLUE,
BLUE, and LexGLUE benchmarks. Addition-
ally, we compare our method with chain-of-
thought prompting and its advanced versions.
The results show that GPT-4 consistently excels
across all tasks, while other models have shown
significant progress in some tasks when used in
conjunction with MP. Furthermore, MP consis-
tently outperforms existing prompting methods
in both general and domain-specific NLU tasks.
This study underscores the potential to amplify
the understanding abilities of LLMs and high-
lights the benefits of mirroring human intro-
spective reasoning in NLU tasks. Our data and
code are available at https://github.com/
EternityYW/Metacognitive-Prompting.

1 Introduction

Large Language Models (LLMs) have made signif-
icant advancements in natural language processing
(NLP) in recent years (Min et al., 2021; Zhao et al.,
2023; Wang et al., 2023c). However, as these mod-
els progress, simply increasing their scale does not
necessarily enhance their understanding and rea-
soning capabilities (Rae et al., 2021). Delving into

the intricacies of prompt design has emerged as a
promising approach; it not only rivals the benefits
of extensive fine-tuning but also offers clear advan-
tages in sample efficiency (Liu et al., 2023; Kojima
et al., 2022).

Many research efforts have extensively explored
prompt design, particularly emphasizing the use
of Chain-of-Thought (CoT) (Wei et al., 2022) ap-
proaches to advance intermediate reasoning steps.
This led to variants such as Least-to-Most (Zhou
et al., 2022), Self-consistency (Wang et al., 2022a),
and Tree-of-Thoughts (ToT) (Yao et al., 2023) tech-
niques. These strategies are effective in designated
contexts where the main objective centers around
enhancing explicit reasoning capacities in areas like
arithmetic, commonsense, and symbolic reasoning,
guiding LLMs through a logical progression of
thought. However, their effectiveness in deepen-
ing understanding is limited, as reasoning involves
methodically connecting concepts, whereas under-
standing requires grasping underlying semantics
and broader contextual meanings.
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Figure 1: Alignment between human metacognitive
processes and the stages of MP in LLMs.

To bridge the gap in enhancing LLMs’ under-
standing abilities, crucial for solving complex tasks,
we propose Metacognitive Prompting (MP). This
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method is informed by the concept of metacogni-
tion, often defined as ‘thinking about thinking’.
Derived from cognitive psychology, metacogni-
tion relates to an individual’s awareness and self-
reflection on their cognitive processes. Our ap-
proach integrates key aspects of human metacogni-
tive processes into LLMs. Figure 1 shows the par-
allels between human metacognitive stages and the
operational steps of our method in LLMs. Rather
than concentrating solely on the mechanics of
“how” a response is produced, this method delves
deeper into the rationale or “why” behind it. The
method proceeds as follows: 1) the LLM interprets
the provided text, a phase reminiscent of human
comprehension; 2) the model then forms an initial
judgment, mirroring the stage in which humans
generate judgments based on information; 3) the
LLM subjects its preliminary inference to critical
evaluation, a step aligned with the self-reflection
that humans engage in during cognitive processes;
4) after this introspective assessment, the model
finalizes its decision and elucidates its reasoning,
similar to human decision-making and rationaliza-
tion; 5) finally, the LLM gauges its confidence
in the outcomes, reflecting how humans evaluate
the credibility of their judgments and explanations.
This paradigm elevates the model’s function be-
yond simple systematic reasoning, compelling it to
participate in introspective evaluations that deter-
mine the depth and relevance of its responses.

We conducted experiments on ten NLU datasets
from GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), BLUE (Peng et al.,
2019), and LexGLUE (Chalkidis et al., 2022)
benchmarks using several leading LLMs, including
Llama2 (Touvron et al., 2023), PaLM2 (Anil et al.,
2023), GPT-3.5, and GPT-4 (OpenAI, 2023). Our
empirical evaluations underscore the superiority of
MP over existing prompting strategies, including
CoT and its variants. This work emphasizes the
importance of incorporating human-inspired intro-
spective reasoning into LLMs, shedding light on an
approach that deepens their understanding abilities.

In summary, our contributions are threefold:

(1) We introduce metacognitive prompting, a
novel prompting strategy for LLMs, inspired
by human introspective reasoning. This ap-
proach formalizes the self-aware evaluation
process within LLMs, highlighting the shift
from mere task execution to more profound
comprehension.

(2) Our comprehensive experiments on ten NLU
datasets reveal that MP outperforms CoT and
its variants in both zero-shot and few-shot
learning settings. This underscores MP’s ef-
fectiveness in enhancing the understanding
abilities of LLMs.

(3) Through manual error and confidence analy-
sis, we highlight specific understanding chal-
lenges in LLMs. We also illustrate future di-
rections for incorporating human-inspired in-
trospection into LLM comprehension, thereby
contributing to enhanced model reliability.

2 Related Work

Our proposal for metacognitive prompting is in-
formed by several foundational trajectories: the
evolving paradigms of prompting within LLMs, ad-
vancements in NLU in the broader NLP domain,
and the intricate interplay between cognitive pro-
cesses and NLU dynamics.

2.1 Prompting Techniques in LLMs
Prompts are crucial for harnessing the vast capa-
bilities of LLMs, guiding them to generate accu-
rate outputs or perform specific tasks. Current re-
search primarily focuses on enhancing the reason-
ing abilities of LLMs. Representative approaches
include CoT (Wei et al., 2022) and its variants
like self-consistency (Wang et al., 2022a), Least-
to-Most (Zhou et al., 2022), ToT (Yao et al., 2023),
and Plan-and-Solve prompting (Wang et al., 2023a).
Additional methods are detailed in (Qiao et al.,
2022). However, there still exists a significant
gap in developing effective prompts to enhance
NLU within LLMs. Inspired by human cognitive
processes, we introduce MP, an approach that not
only aims to bridge the understanding gap but also
enhances deeper comprehension and reliability in
model outputs.

2.2 Natural Language Understanding in NLP
NLU is a fundamental aspect of NLP, empha-
sizing a model’s capacity to grasp the semantics
and nuances of human language. Its applications
span diverse domains such as question answer-
ing (QA) (Namazifar et al., 2021), text classifi-
cation (Wang et al., 2022b, 2023b), and natural
language inference (NLI) (Nie et al., 2020), as well
as commercial tools like chatbots (Ait-Mlouk and
Jiang, 2020), voice assistants (Bellegarda, 2013),
and machine translation. While LLMs have gained
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Figure 2: Our proposed method, metacognitive prompting, emulates critical steps of human metacognition, consist-
ing of five stages: 1) understanding the input text, 2) making a preliminary judgment, 3) critically evaluating this
preliminary analysis, 4) reaching a final decision accompanied by an explanation of the reasoning, and 5) evaluating
the confidence level in the entire process. By reflecting on human self-assessment, these stages guide the LLM,
aiding in more accurate text interpretation and facilitating better judgment formation. The diagram features three
columns, from left to right, representing the high-level metacognitive stages, specific metacognitive prompts fed
into the LLM, and the LLM’s corresponding outputs. Prompts in the middle column are collectively fed into the
LLM as a single input during the experiments. The figure illustrates a sample question chosen from the Quora
Question Pair (QQP) dataset in the GLUE benchmark.

remarkable attention recently, with increased ef-
forts dedicated to expanding NLU boundaries, the
primary research emphasis has been on their rea-
soning abilities (Huang and Chang, 2022), ethical
use (Weidinger et al., 2021; Zhuo et al., 2023), and
broad applications (Zhao et al., 2021; Surameery
and Shakor, 2023; Wang et al., 2023d). However,
the inherent NLU competencies of LLMs have re-
mained relatively inadequately explored. To ad-
dress this gap, our study delves into the understand-
ing abilities of various LLMs, employing effective
prompting techniques.

2.3 Cognitive Processes in NLU

The interplay between cognitive processes and
NLU has always been a central consideration in
computational linguistics (Periñán Pascual and Ar-
cas Túnez, 2007; Hausser and Hausser, 2001). Cog-
nitive processes, which encompass areas like at-
tention, memory, reasoning, and problem-solving,
govern how humans understand, produce, and en-
gage with language in diverse scenarios. These

processes heavily influence our linguistic abili-
ties (Allen, 1995; Cambria and White, 2014). In the
domain of NLU, incorporating cognitive insights
may offer improvements in model comprehension.
Recognizing this intrinsic connection, our work is
inspired to employ a metacognition-based prompt-
ing technique, a method rooted in higher-order
cognition that reflects on thinking and decision-
making, to bolster the understanding capabilities of
LLMs, thereby harmonizing traditional modeling
techniques with cognitive nuances.

3 Metacognitive Prompting

In the complex terrain of human cognition, our abil-
ity to introspect and regulate our thinking processes
stands as a keystone for intricate problem-solving
and decision-making. This high-level cognition un-
derlies our proficiency in breaking down abstract
concepts, critically evaluating scenarios, and fine-
tuning our reasoning. The primary aim of this work
is to equip LLMs with a process that simulates the
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self-reflective cognitive process. In doing so, we
aim to improve LLMs’ capabilities in interpreting
and responding to NLU tasks.

We propose MP, which instills critical elements
of human metacognition into LLMs. This approach
involves five distinct stages: 1) the LLM begins
by deciphering the input text to comprehend its
context and meaning, mirroring the initial compre-
hension stage in human thought; 2) it then forms
a preliminary interpretation of the text, a step that
reflects judgment formation in humans; 3) subse-
quently, the LLM critically evaluates this initial
judgment for accuracy, akin to the self-scrutiny hu-
mans apply during problem-solving; 4) after this
evaluation, the LLM finalizes its decision and of-
fers an explanation for its reasoning, aligning with
the decision-making and rationalization phase in
human cognition; 5) ultimately, the LLM assesses
its confidence in the outcome of the entire process,
similar to how humans gauge the certainty of their
decisions and explanations. Figure 2 provides a
schematic representation of our MP. It outlines the
five sequential metacognitive stages, the specific
prompts directed at the LLM, and corresponding
model outputs.

In essence, MP introduces a structured approach
that enables LLMs to process tasks, enhancing
their contextual awareness and introspection in re-
sponses. By systematically guiding models through
stages that emulate human cognitive processes, this
method offers a fresh perspective on addressing
complex natural language tasks. It reshapes our per-
ception and utilization of LLMs’ capabilities, usher-
ing in a paradigm where models not only grasp the
intricacies of given tasks but also critically evaluate
and adjust their responses. This approach estab-
lishes a foundation for more effective and reliable
interactions between users and LLMs, particularly
benefiting those with limited LLM expertise, as
it simplifies complex linguistic and cognitive pro-
cesses into more manageable forms. Sample MP
templates and exemplars are shown in Appendix A.

4 Experiments

We conduct experiments on ten diverse NLU
datasets selected from GLUE (Wang et al., 2019b),
SuperGLUE (Wang et al., 2019a), BLUE (Peng
et al., 2019), and LexGLUE (Chalkidis et al., 2022)
benchmarks. We evaluate the impact of MP in
comparison with CoT and its variants, across four
leading LLMs. We report the best result after mul-

tiple experimental iterations.

4.1 Datasets

For our experiments, we use a broad set
of datasets from the GLUE, SuperGLUE,
BLUE, and LexGLUE benchmarks, encompass-
ing both general NLU and domain-specific
datasets in biomedicine and law. In general
NLU, our selections include question paraphrase
(QQP (Shankar et al., 2017)), question-answer
entailment (QNLI (Rajpurkar et al., 2016)), QA
(BoolQ (Clark et al., 2019)), and word sense disam-
biguation (WiC (Pilehvar and Camacho-Collados,
2019)). For biomedical NLU, we select named en-
tity recognition (BC5CDR-chem (Li et al., 2016)),
relation extraction (DDI (Segura-Bedmar et al.,
2013)), and NLI (MedNLI (Romanov and Shiv-
ade, 2018)). For legal NLU, we opt for multi-
label text classification (EUR-LEX (Chalkidis et al.,
2021), UNFAIR-ToS (Lippi et al., 2019)) and multi-
class text classification (LEDGAR (Tuggener et al.,
2020)). These datasets pose diverse challenges to
the understanding abilities of LLMs. Given the con-
straints of API costs, we randomly select 600 exam-
ples from the validation set of each dataset. Table 1
provides an overview of the tasks and datasets.

4.2 Prompts

Our proposed MP is adaptable to both zero-shot
and 5-shot settings. For each setting, we consider
the following prompting baselines: (1) Zero-shot
CoT (Kojima et al., 2022), which adds “Let’s think
step by step” to a basic query, and Plan-and-Solve
(PS) prompting (Wang et al., 2023a), which ap-
pends “Let’s first understand the problem and de-
vise a plan to solve the problem. Then, let’s carry
out the plan and solve the problem step by step”
to the end of a question, are included as zero-shot
baselines. (2) Manual-CoT (Wei et al., 2022) and
self-consistency with CoT (CoT-SC) (Wang et al.,
2022a), the latter of which takes majority vote from
10 CoT samples, are considered as few-shot base-
lines. Exemplars for each dataset are hand-crafted.

4.3 Large Language Models

In our evaluation, we consider four popular LLMs:
the open-source model Llama-2-13b-chat (Touvron
et al., 2023) and the closed-source models PaLM-
bison-chat (Anil et al., 2023), GPT-3.5-turbo, and
GPT-4 (OpenAI, 2023). Each model is employed
using its corresponding API key. For all meth-
ods, we apply greedy decoding (i.e., temperature =
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Table 1: Overview of NLU datasets belong evaluated. WSD stands for word sense disambiguation, NER for
named entity recognition, RE for relation extraction, MLC for multi-label classification, and MCC for multi-class
classification. Acc., µ-F1 and m-F1 represent accuracy, micro-F1 and macro-F1, respectively.

Source Benchmark Dataset Task # Classes Metrics Domain

GLUE QQP Paraphrase 2 (paraphrase or not) acc./F1 Social QA
QNLI QA/NLI 2 (entailment or not) acc. Wikipedia

SuperGLUE BoolQ QA 2 (yes/no) acc. Wikipedia, Google queries
WiC WSD 2 (True/False) acc. WordNet, Wiktionary, etc.

BLUE
BC5CDR-chem NER 3 (BIO tags) µ-F1 Biochemistry

DDI RE 4 (Advice, Effect, etc.) m-F1 Biochemistry
MedNLI NLI 3 (ECN relations) acc. Clinical practice

LexGLUE
EUR-LEX MLC 100 (EuroVoc concepts) µ-F1/m-F1 EU Law
LEDGAR MCC 100 (contract provisions) µ-F1/m-F1 Contracts

UNFAIR-ToS MLC 8 + 1 (unfair terms) µ-F1/m-F1 Contracts

0) for response generation, except when applying
CoT-SC (temperature = 0.7). Furthermore, we uti-
lize zero-shot and 5-shot settings for each model,
with exemplars for the 5-shot setting randomly se-
lected from the training set. Each dataset has its
unique set of exemplars, and the answers for these
exemplars are obtained through human annotation.

5 Results

In our empirical evaluations, we compare perfor-
mance across all datasets and models, considering
the various prompting methods used. We also inves-
tigate the efficacy of different prompting strategies,
analyze errors associated with MP, and examine
the relationship between confidence scores and pre-
dictive performance when MP is applied.

5.1 Overall Performance Comparison
Table 2 presents a comprehensive performance
comparison of our method against established zero-
shot and few-shot methods on four LLMs across
ten varied NLU datasets. Generally, 5-shot learn-
ing outperforms zero-shot learning across models,
except for EUR-LEX and LEDGAR. The latter’s
performance dip may be attributable to their high-
class counts and the limited example demonstra-
tions, which can skew the models toward a narrow
label set. Particularly, zero-shot MP outperforms
M-CoT in some instances, suggesting that reduced
manual effort can still effectively elicit deep un-
derstanding in LLMs, potentially inspiring the de-
velopment of more efficient prompting methods.
Furthermore, GPT-4 stands out, consistently scor-
ing highest on all datasets by a significant margin.
For zero-shot prompting, LLMs exhibit notably im-
proved performance with MP, particularly for legal

NLU tasks like EUR-LEX. Specifically, MP boosts
µ-F1 by 15.0% to 26.9% over CoT and by 9.2% to
16.9% over PS on the EHR-LEX dataset. A similar
trend is seen with 5-shot methods; for instance, on
the same dataset, M-MP enhances µ-F1 by 10.6%
to 19.4% over M-CoT and by 5.9% to 13.0% over
CoT-SC. Overall, integrating MP yields substantial
benefits for domain-specific NLU datasets in the
fields of biomedicine and law across all models. It
also provides a moderate yet consistent improve-
ment in general NLU tasks.

5.2 Prompting Strategy Comparison

We evaluate the performance of different prompt-
ing strategies under zero-shot and 5-shot learning
settings across all models and datasets.

In the model-level comparison, Figure 3 presents
an aggregated view of the performance of each
prompting method across all datasets for each
model (top for zero-shot and bottom for 5-shot),
assuming that datasets and evaluation metrics are
equally significant and directly comparable. For the
zero-shot learning setting, MP emerges as superior,
illustrating a relative performance boost ranging
from 4.8% to 6.4% over CoT and 2.8% to 4.1%
over PS. Similarly, M-MP shows an average per-
formance improvement from 4.5% to 6.0% over
M-CoT and 2.2% to 3.5% over CoT-SC in the 5-
shot learning setting. This enhanced performance
can be attributed to the unique introspective strat-
egy of MP, which facilitates a deeper understand-
ing of tasks by prompting the model to critically
evaluate, revisit its initial judgments, and refine
its responses. When we shift focus to a data-level
comparison, considering zero-shot learning results
as an example, Table 3 provides an average per-
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Table 2: Performance comparison of four LLMs across ten NLU datasets. The best results for the 5-shot setting
(5S) are boldfaced, and for the zero-shot setting (0S), underlined. M-CoT and M-MP indicate manually-designed
demonstrations in the 5-shot setting. GPT-4 consistently outperforms other models across all NLU datasets. MP
notably surpasses other prompting baselines in the majority of tasks.

Method
Dataset

QQP QNLI BoolQ WiC BC5CDR-chem DDI MedNLI EUR-LEX LEDGAR UNFAIR-ToS
acc./F1 acc. acc. acc. µ-F1 m-F1 acc. µ-F1/m-F1 µ-F1/m-F1 µ-F1/m-F1

Llama2 (0S, CoT) 84.5/79.5 89.5 81.9 75.2 94.2 70.5 58.3 25.6/14.5 60.8/47.6 43.9/26.7
Llama2 (0S, PS) 85.6/80.8 89.9 83.1 76.0 95.6 72.0 59.1 27.8/16.9 61.4/48.1 46.1/28.4
Llama2 (0S, MP) 86.9/82.1 90.4 86.3 78.8 96.0 74.3 62.8 32.5/21.4 63.8/50.5 50.2/31.6
PaLM2 (0S, CoT) 85.4/80.6 89.9 88.1 76.4 94.5 70.9 61.1 24.8/13.1 63.9/49.1 46.2/29.1
PaLM2 (0S, PS) 85.2/80.3 89.5 89.5 77.1 94.9 72.8 60.9 26.1/14.8 65.0/52.7 47.4/30.8
PaLM2 (0S, MP) 86.2/81.9 90.8 90.5 78.8 96.2 74.0 63.3 29.3/16.5 67.6/54.8 52.5/33.7
GPT-3.5 (0S, CoT) 84.9/79.9 90.3 84.8 76.9 93.9 63.9 70.6 31.9/20.7 68.1/57.6 50.4/33.2
GPT-3.5 (0S, PS) 84.7/80.6 90.8 85.0 76.6 94.2 66.1 72.3 33.6/21.8 68.9/58.3 52.3/34.8
GPT-3.5 (0S, MP) 86.1/81.5 92.3 87.7 78.4 94.8 70.7 76.4 36.7/23.5 70.2/59.8 56.7/38.1
GPT-4 (0S, CoT) 88.9/84.7 95.0 90.4 82.0 97.3 72.1 78.2 37.4/24.8 73.6/59.4 54.7/38.5
GPT-4 (0S, PS) 89.4/85.3 96.2 90.7 82.4 97.6 73.5 79.8 39.6/27.1 75.4/60.7 58.3/41.7
GPT-4 (0S, MP) 89.9/86.2 97.1 91.4 83.6 98.5 74.7 81.1 43.8/29.9 78.1/62.8 64.0/45.3

Llama2 (5S, M-CoT) 85.2/80.2 90.1 82.8 76.5 94.9 73.8 61.2 23.3/12.7 54.7/43.3 52.8/35.6
Llama2 (5S, CoT-SC) 86.1/80.9 90.8 84.2 76.9 95.3 76.2 63.5 24.6/14.7 55.6/44.8 55.6/37.9
Llama2 (5S, M-MP) 88.1/83.2 91.6 87.4 79.5 96.6 77.3 64.7 27.8/15.9 58.2/46.6 59.7/41.2
PaLM2 (5S, M-CoT) 85.8/81.3 90.9 89.2 77.7 95.1 73.1 63.3 22.8/12.0 57.5/45.2 57.4/31.9
PaLM2 (5S, CoT-SC) 86.9/81.7 91.7 90.9 78.2 96.4 75.4 63.8 23.9/13.8 57.9/45.7 60.2/34.6
PaLM2 (5S, M-MP) 87.9/82.5 93.8 90.9 79.6 96.2 75.2 65.1 26.7/15.4 59.3/47.3 65.4/38.8
GPT-3.5 (5S, M-CoT) 85.1/80.2 91.2 86.7 77.4 94.7 67.8 74.3 29.3/19.5 61.7/50.1 62.3/45.1
GPT-3.5 (5S, CoT-SC) 86.1/81.7 91.4 88.3 78.8 95.7 70.1 76.5 30.6/19.8 63.0/51.4 65.7/47.2
GPT-3.5 (5S, M-MP) 86.4/81.9 93.1 89.7 79.1 96.6 71.6 78.1 32.4/20.7 64.9/53.7 69.1/50.1
GPT-4 (5S, M-CoT) 89.5/85.6 95.8 90.8 82.3 97.9 74.6 80.1 35.3/22.6 66.4/57.2 69.2/50.3
GPT-4 (5S, CoT-SC) 90.1/86.7 96.8 91.6 83.4 98.9 76.9 80.5 37.6/24.4 68.2/58.4 72.8/54.1
GPT-4 (5S, M-MP) 91.3/88.2 98.9 92.0 84.3 99.4 80.8 82.4 40.1/28.8 70.3/59.9 75.6/55.8

formance over four LLMs for each dataset. The
critical reassessment capabilities of MP particularly
stand out in datasets like MedNLI, UNFAIR-ToS,
and EUR-LEX, leading to marked improvements
of 4.3%, 9.6%, and 12.4% over PS (enhanced ver-
sion of zero-shot CoT), respectively. The consistent
outstanding performance of MP underscores its po-
tential in tasks demanding precision, discernment,
and a comprehensive semantic grasp. Meanwhile,
the self-assessment and iterative refinement embed-
ded in MP give it an advantage in tasks requiring
nuanced understanding and contextual depth.

5.3 Error Analysis

MP has consistently demonstrated proficiency
across a range of NLU tasks. However, upon
manual inspection of its incorrect predictions, we
identify two primary error types across all tasks
(10 datasets) specifically associated with MP. First,
‘Overthinking errors’ (68.3%) are notably evident
in straightforward datasets like QQP and BoolQ.
In these situations, MP tends to over-complicate
the task, diverging from the correct solution. Con-

Table 3: Comparison of average performance for zero-
shot prompting methods across datasets. Performance
metrics are averaged over all models. MP consistently
achieves superior performance across all NLU tasks.

Dataset CoT PS MP

QQP (acc./F1) 85.9/81.2 86.2/81.7 87.3/82.9
QNLI (acc.) 91.2 91.6 92.6
BoolQ (acc.) 86.3 87.1 89.0
WiC (acc.) 77.6 78.0 79.9
BC5CDR-chem (µ-F1) 95.0 95.6 96.4
DDI (m-F1) 69.4 71.1 73.4
MedNLI (acc.) 67.1 68.0 70.9
EUR-LEX (µ-F1/m-F1) 29.9/18.3 31.8/20.2 35.6/22.8
LEDGAR (µ-F1/m-F1) 66.6/53.4 67.7/54.9 69.9/57.0
UNFAIR-ToS (µ-F1/m-F1) 48.8/31.9 51.0/33.9 55.8/37.2

versely, ‘Overcorrection errors’ (31.7%) predom-
inantly appear in tasks demanding nuanced inter-
pretation, such as WiC and DDI. This type of er-
ror appears obvious in the critical reassessment
stage of MP, which strays excessively from an ini-
tially accurate interpretation. Figure 4 shows ex-
amples of both error types from the WiC dataset.
In addition, we observe distinct error patterns in
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Figure 3: Comparison of average performance for all
prompting methods in both zero-shot and 5-shot learn-
ing scenarios across four LLMs. Performance metrics
are averaged over all datasets, treating each dataset and
metric with equal significance and assuming direct com-
parability. MP consistently surpasses other methods.

domain-specific tasks. In biomedical NLU tasks
(3 datasets), MP predominantly encounters errors
including ‘Terminological misalignments’ (48.6%),
where the model inaccurately interprets specialized
medical terms, and ‘Clinical inference discrepan-
cies’ (51.4%), where the depth and interconnec-
tions of clinical data are not fully comprehended or
are misapplied. In legal NLU tasks (3 datasets), the
errors are often characterized as ‘Statutory inter-
pretation errors’ (52.2%), reflecting challenges in
deciphering the complex language and context of
legal documents, and ‘Jurisprudential analysis de-
viations’ (47.8%), where the model diverges from
accepted legal reasoning or misinterprets legal prin-
ciples and precedents. Numbers in parentheses
represent the approximate distributions of major
error types within the subgroup. These error types,
unique to the specific demands of biomedicine and
law, highlight the need for tailored adjustments in
MP’s further application to these fields.

5.4 Confidence Analysis

Assessing confidence and uncertainty within the
MP framework is instrumental in gauging the re-
liability of predictions, particularly when models
articulate their confidence levels. In our analysis,
each model operating with MP is evaluated based
on its verbalized confidence for every prediction
across the datasets. Scores above 75% are classified

Error Type 1: Overthinking
Question:

In two sentences, sentence 1: “Excite the neurons.” 

sentence 2: “The fireworks which opened the festivities 

excited anyone present.”, both contain the target word 

“excite”. Determine if the target word is used with the 

same meaning in both sentences. [MP Instructions]

MP Initial Response (Stage 2):

The target word has the same meaning: False.

MP Final Response (Stage 4 & 5):

The target word has the same meaning: True. Upon re-

evaluation, model hypothesized that both contexts hint 

at triggering a reaction, either biological or emotional, 

leading to the conclusion of similarity. Confidence in 

this revised analysis is 90%.

(a) Overthinking error in model response with MP.
Error Type 2: Overcorrection
Question:

In two sentences, sentence 1: “The very easiness of the 

deed held her back.” sentence 2: “There was an easiness 

between them.”, both contain the target word 

“easiness”. Determine if the target word is used with 

the same meaning in both sentences. [MP Instructions]

MP Initial Response (Stage 2):

The target word has the same meaning: False.

MP Final Response (Stage 4 & 5):

The target word has the same meaning: True. Upon re-

evaluation, ‘easiness’ in both sentences pertains to 

emotional states—implying simplicity-induced 

hesitation in the first and emotional harmony in the 

second. Confidence in this revised analysis is 85%.

(b) Overcorrection error in model response with MP.

Figure 4: Two major error types with MP: overthinking
(excessive analysis) and overcorrection (excessive ad-
justment). Example questions are from the WiC dataset.

as high confidence; any value below this threshold
is considered low confidence. To illuminate this
correlation, we employ a tailored confusion ma-
trix uniquely adapted for this study. Within this
matrix, the standard terminologies of ‘True Posi-
tive’, ‘False Positive’, ‘True Negative’, and ‘False
Negative’ are redefined as follows:
True Positive (TP): Represents instances where
the model, using MP, expressed high confidence
and produced a correct answer. These account for
55.6%.
False Positives (FP): Denotes cases where the
model exhibited high confidence but gave an in-
correct prediction. These amount to 32.5%.
True Negatives (TN): Refers to instances where
the model signaled low confidence and its response
was indeed incorrect. These stand at 6.8%.
False Negatives (FN): Highlights cases where the
model indicated low confidence but, surprisingly,
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delivered a correct answer. These tally to 5.1%.

High Confidence Low Confidence

Correct

Incorrect

55.6% 5.1%

32.5% 6.8%

Figure 5: The relationship between correctness and
confidence levels under MP, averaged over all datasets
and models.

These metrics are aggregated across all mod-
els and datasets and then averaged to provide a
holistic overview of the interplay between model
confidence using MP and prediction accuracy. As
depicted in Figure 5, MP typically offers an accu-
rate reflection of its own performance, as evidenced
by the high TP rate. The relatively low TN rate un-
derscores its reliable self-assessment, suggesting
that when MP has low confidence, it is predomi-
nantly correct about its inaccuracy. However, the
considerable FP rate indicates that, while MP is
usually right when confident, it sometimes makes
mistakes despite its high confidence. Moreover, the
FN rate identifies areas where MP might improve
its self-awareness, as there are moments when it
might underestimate its accuracy. In summary, the
high TP rate and low FN values underscore MP’s
self-awareness, but the FP and TN values point to
potential improvements. Addressing these areas
by emphasizing confidence calibration in future it-
erations of MP could better align its introspective
evaluations with its actual performance abilities.

6 Limitations

While our proposed MP demonstrates potential
by integrating introspective features reminiscent
of human cognition into LLMs to enhance their
understanding capacities, our study does have its
limitations. First, designing the prompts requires
manual effort to guide the LLMs through metacog-
nitive processes. Second, we evaluate the effec-
tiveness of MP using a selection of datasets and
models, which may limit the broader applicability

of our findings. Furthermore, although the ver-
balized confidence of LLMs offers a window into
their perceived certainty levels, it might not serve
as the definitive method for comprehensively gaug-
ing their true confidence. A hybrid approach, such
as combining verbalization with self-consistency
checks, could offer a more robust method for confi-
dence calibration. Additionally, our study does not
extensively address vital ethical and legal concerns,
such as potential biases, privacy implications, and
fairness challenges. Future research on MP will
address these dimensions to ensure the responsible
and holistic application of LLMs in different areas.

7 Discussion

In this study, we present MP to infuse introspective
features that mirror human cognition into LLMs.
The MP process involves five distinct stages: it
starts by comprehending the input text, then moves
to formulate an initial judgment. Next, it critically
reevaluates this initial impression, settles on a de-
cision while explaining its rationale, and finally
gauges its confidence in the decisions made. We
conduct experiments on a broad range of datasets
from several popular NLU benchmarks and evalu-
ate several prominent LLMs with different prompt-
ing methods. The results underscore the poten-
tial of our method, demonstrating advantages over
existing prompting methods. Through our anal-
ysis, specific error patterns associated with MP
are identified, highlighting nuances in comprehen-
sion and judgment stages that warrant further re-
finement. While MP provides a structured path-
way for models to introspect, it follows predefined
stages, lacking adaptability based on real-time feed-
back. The five-stage design of MP, although foun-
dational, suggests room for more intricate frame-
works that might emulate human-like cognitive
feedback loops more authentically.

Looking forward, several areas warrant further
exploration. First, we plan to apply MP more
broadly, particularly to detail-oriented areas such
as mental health support, as well as to complex
reasoning tasks like arithmetic and commonsense
reasoning. Refining MP could elicit more detailed
introspective responses from LLMs. Moreover, re-
liance on verbalized confidence can be augmented
by integrating other methods for a more compre-
hensive assessment. Additionally, the broader im-
plications of introducing introspective LLMs, par-
ticularly regarding biases and the reliability of out-
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puts, require in-depth examination. In essence, our
initial venture with MP lays a solid foundation,
but significant opportunities remain to draw closer
parallels between introspection in LLMs and nat-
ural human introspection, which can lead to more
explainable and accountable AI systems.

8 Ethnics Statement

There are no ethics-related issues in this paper. The
data and resources utilized in this work are open-
source and widely used in many existing studies.
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A Sample Prompts

This section includes some examples of MP under
zero-shot and few-shot settings.
Example 1: WiC

• Zero-shot MP Template: In two sentences,
sentence 1: “[sentence_1]” and sentence 2:
“[sentence_2]”, both contain the target word
“[word]”. Determine if the target word is used
with the same meaning in both sentences. As
you perform this task, follow these steps:

1. Understand the context and meaning of
the target word in both sentences.

2. Make a preliminary judgment on whether
the target word has the same meaning in
both sentences.

3. Critically assess your preliminary analy-
sis. If you are unsure about your initial
judgment, reassess it.

4. Confirm your final answer and explain
the reasoning behind your decision.

5. Evaluate your confidence (0-100%) in
your analysis and provide an explanation
for this confidence level.

Provide the answer in your final response as
“The target word has the same meaning in both
sentences: {} (True / False)”.

• Few-shot MP Demonstration:
Q: In two sentences, sentence 1: “The
washing machine won’t go unless it’s plugged
in.” and sentence 2: “The day went well
until I got your call.”, both contain the target
word “go”. Determine if the target word is
used with the same meaning in both sentences.

A:

1. In sentence 1, “go” refers to the opera-
tion of the washing machine. In sentence
2, “went” (a form of “go”) refers to the
progression of the day.

2. Initially, “go” in the first sentence seems
to be about mechanical operation, while
in the second, it’s about the passage of
time or events.

3. Reflecting further, the contexts clearly
differentiate the meanings: one deals
with machinery and its function, the
other deals with the experience of a day.
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4. The target word “go” does not have the
same meaning in both sentences. In the
first, it pertains to operation, and in the
second, to the progression of events.

5. I am 83% confident in this analysis. The
term “go” is used in different contexts
in the two sentences, leading to different
meanings.

The target word has the same meaning in both
sentences: False.

Example 2: QNLI

• Zero-shot MP Template: For the question:
“[question]” and statement: “[sentence]”, de-
termine if the statement provides the answer
to the question. If the statement contains the
answer to the question, the status is entailment.
If it does not, the status is not_entailment. As
you perform this task, follow these steps:

1. Clarify your understanding of the ques-
tion and the context sentence.

2. Make a preliminary identification of
whether the context sentence contains the
answer to the question.

3. Critically assess your preliminary analy-
sis. If you feel unsure about your initial
entailment classification, try to reassess
it.

4. Confirm your final answer and explain
the reasoning behind your choice.

5. Evaluate your confidence (0-100%) in
your analysis and provide an explanation
for this confidence level.

Provide the answer in your final response as
“The status is (entailment / not_entailment)”.

• Few-shot MP Demonstration:
Q: For the question: “Who was the first
President to address the NAACP?” and state-
ment: “In front of 10,000 people at the Lin-
coln Memorial, the president left no doubt
where he stood on civil rights.”, determine if
the statement provides the answer to the ques-
tion. If the statement contains the answer to
the question, the status is entailment. If it does
not, the status is not_entailment.
A:

1. The question is asking about the iden-
tity of the first President to address the

NAACP. The statement describes a sce-
nario where a president addressed a large
audience at the Lincoln Memorial and
took a clear stance on civil rights.

2. The initial assessment is that the status is
not_entailment.

3. Upon reassessment, the statement does
not specifically mention the NAACP or
provide information about which presi-
dent is being referred to. While the con-
text does pertain to civil rights, it does
not necessarily correlate with the specific
act of addressing the NAACP.

4. The statement does not provide a clear
answer to the question. The context dis-
cusses a president’s stance on civil rights
in front of a large audience at the Lin-
coln Memorial, but it does not specify
which president this was or confirm that
this president was the first to address the
NAACP.

5. I am 85% confident in this analysis. The
context lacks specifics about which pres-
ident is being discussed and does not di-
rectly address the NAACP aspect of the
question.

The status is not_entailment.

Example 3: DDI

• Zero-shot MP Template: Given the context
sentence “[sentence]”, identify the relation-
ship between the pharmacological substances
“[item_1]” and “[item_2]” within the sentence.
Classify the relationship under one of these
categories: Advice, Effect, Mechanism, or Int.
As you perform this task, follow these steps:

1. Understand the context and the meanings
of the two substances, along with their
potential interactions.

2. Make a preliminary identification of the
relationship between two substances.

3. Critically assess your preliminary analy-
sis. If you feel unsure about your initial
relationship, try to reassess it.

4. Confirm your final answer and explain
the reasoning behind your decision.

5. Evaluate your confidence (0-100%) in
your analysis and provide an explanation
for this confidence level.
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Provide the answer in your final response as
“The relationship between two substances is
(Advice / Effect / Mechanism / Int)”.

• Few-shot MP Demonstration:
Q: Given the context sentence “Impaired re-
nal function has been described in bone mar-
row transplant patients who were conditioned
with high-dose intravenous melphalan and
who subsequently received cyclosporin to pre-
vent graft-versus-host disease.”, identify the
relationship between the pharmacological sub-
stances “melphalan” and “cyclosporin” within
the sentence. Classify the relationship under
one of these categories: Advice, Effect, Mech-
anism, or Int.
A:

1. The sentence involves bone marrow
transplant patients who were treated with
high-dose intravenous melphalan and
subsequently received cyclosporin. Mel-
phalan is a chemotherapy drug, and cy-
closporin is an immunosuppressive agent.
The potential interaction seems related
to the effects these drugs have when used
together.

2. The relationship between melphalan and
cyclosporin appears to be one of a com-
bined effect where their concurrent use
impacts renal function. This suggests the
category “Effect”.

3. Upon reassessment, the relationship still
aligns best with the “Effect” category, as
the sentence directly connects impaired
renal function to the use of both drugs in
a sequential treatment regime.

4. The relationship is classified as “Effect”.
The sentence describes a specific med-
ical consequence (impaired renal func-
tion) resulting from the combined use of
melphalan and cyclosporin in a specific
patient group (bone marrow transplant
patients), indicating a direct effect rela-
tionship between the two substances.

5. I am 90% confident in this analysis. The
context provides a clear connection be-
tween the two drugs and a specific health
outcome, making “Effect” the most suit-
able category.

The relationship between two substances is
Effect.
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