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Abstract

The complementary potential of Large Lan-
guage Models (LLM) assumes off-the-shelf
LLMs have heterogeneous expertise in a wide
range of domains and tasks so that an ensem-
ble of LLMs can achieve consistently better
performance. Existing ensemble methods for
LLMs mainly focus on reward model ranking
of outputs, leading to significant computation
overhead. To combat this issue, we revisit the
complementary potential of LLMs and further
elaborate it by mining latent expertise with off-
the-shelf reward models. We propose ZOOTER,
a reward-guided routing method distilling re-
wards on training queries to train a routing func-
tion, which can precisely distribute each query
to the LLM with expertise about it. We also
integrate a tag-based label enhancement to miti-
gate noise from uncertainty when using rewards
as silver supervision. ZOOTER shows compu-
tation efficiency in inference as it only intro-
duces minor computation overhead of a routing
function compared with reward model ranking
methods. We evaluate ZOOTER on a compre-
hensive benchmark collection with 26 subsets
on different domains and tasks. ZOOTER out-
performs the best single model on average and
ranks first on 44% of tasks, even surpassing
multiple reward model ranking methods.

1 Introduction

Large Language Models (LLMs) aligned with hu-
man preference rapidly emerge and are almost daily
released (Touvron et al., 2023a,b; Anil et al., 2023;
Bai et al., 2023). These off-the-shelf LLMs are
further finetuned or aligned with human preference
to be generalists (Xu et al., 2023; Touvron et al.,
2023b,a) or specialists (Yuan et al., 2023a; Luo
et al., 2023a,b; Roziere et al., 2023) for solving
versatile tasks. It is worth noticing that LLMs are
pretrained and aligned with various data, leading
to diverse strengths and weaknesses in versatile
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Share ideas for adapting art masterpieces into interactive experiences 
for children. List 5 specific artworks and associated ideas.

Certainly! As a helpful and respectful assistant, I'm happy to 
provide ideas for adapting art masterpieces ... 1. "The Starry 
Night" by Vincent van Gogh:\n\n Interactive Experience Idea: 
Create a digital or ...

1. The Mona Lisa by Leonardo da Vinci: Create a virtual 
reality experience where children can explore the painting 
and interact with it in different ways, such as …… \n\n2. The 
Scream by Edvard Munch: Create a ……

1. The Scream by Edvard Munch: This painting is a perfect 
opportunity to discuss emotions with children. …… Then, you 
can guide them through a process ……

1. "The Starry Night" by Vincent van Gogh:\n Interactive 
Experience: Create a virtual reality (VR) experience ……. They 
can learn about the constellations and stars, and even create 
their own ……

1. "The Starry Night" by Vincent van Gogh - Create a virtual 
reality experience ……. They can learn about the different 
constellations and the techniques van Gogh used to create 
the swirling effects ……

Creating interactive experiences based on art masterpieces 
can be a great way to introduce children to the world of art 
and spark their creativity. ... 1. "The Starry Night" by Vincent 
van Gogh\nIdea: Create a virtual reality (VR) experience …
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Figure 1: An example of the large language model en-
semble. Reward model ranking marked in blue needs
to generate responses from all models while ZOOTER
routers the given query to the best model and only infers
one model. This case is collected from the MT-Bench
benchmark and we also present oracle judgements of
each response.

downstream tasks (Jiang et al., 2023). Therefore,
the ensemble of LLMs harnesses the complemen-
tary potential among them and may achieve better
performance than a single best-on-average model
across diverse tasks.

One of the key challenges in the LLM ensemble
is computation efficiency due to the large parame-
ter size of existing LLMs. Previous research (Jiang
et al., 2023; Shnitzer et al., 2023) provides solid
methods to merge generation outputs of LLMs as
an ensemble. Such methods require tremendous
inference cost that makes it unscalable and thus
not competitive to the best-on-average model un-
der low-resource scenarios. To efficiently assemble
off-the-shelf LLMs, we first dive deeper into the
considerably straightforward but still understudied
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assumption: Off-the-shelf aligned LLMs, even for
those aligned as “generalists”, have heterogeneous
expertise in a wide range of domains and topics.
However, analyzing the expertise of an LLM is also
challenged as the latent expertise of LLMs is highly
related to the pretrained and alignment data, which
is very vague and inaccessible even for popular
open-source LLMs such as LLAMA-2-CHAT (Tou-
vron et al., 2023b) and WIZARDLM (Xu et al.,
2023).

If this assumption strongly holds, off-the-shelf
LLMs can be assembled efficiently by assigning
queries to the model that is proficient in the query
without additional inference costs on each model.
Such an efficient routing strategy only requires in-
ference cost for a single model for each query and
the overhead cost of a much smaller query router.
However, probing the detailed expertise of off-the-
shelf LLMs and generating supervision for train-
ing routers also require annotations. Developing a
data-efficient training method for routing queries
is significantly understudied.

To combat these issues, we propose ZOOTER, a
reward-guided query routing method for efficiently
assembling off-the-shelf LLMs. ZOOTER obtains
and enhances silver supervision from existing re-
ward models (RM) for query router training and
distributes queries in advance to “experts”. As
shown in Fig. 1, the reward distribution implies
the oracle judgments and reveals a latent exper-
tise between LLMs. And ZOOTER captures the
expertise from reward distributions and provides
query distribution during inference. Specifically,
we first conduct a comprehensive study involving
four groups of benchmarks across more than 26
subsets in various domains and tasks. We investi-
gate six widely used open-source LLMs and show
the complementary potential of such wide-range
downstream tasks by aggregating them via reward
model ranking. We then collect a diverse training
query set and distill rewards of model expertise as
indirect supervision for training an LLM router and
develop tag-based label enhancement to overcome
the shortage of such silver labels from reward mod-
els further. With comprehensive experiments, we
show ZOOTER can benefit from RM silver supervi-
sion to learn the latent expertise among LLMs and
conduct efficient routing for the model ensemble.
Our contributions are mainly three-fold:

• We revisit the complementary potential of open-
source LLMs, which proves the effectiveness of

LLM ensemble, and show rewards from off-the-
shelf RMs can be silver supervision for model
expertise.

• We propose ZOOTER, an efficient reward-guided
routing method, distilling rewards from off-the-
shelf reward models for probing model expertise.
Then, we develop a tag-based label enhancement
to mitigate noise from the uncertainty of reward
models.

• We comprehensively evaluate ensemble meth-
ods, including reward model ranking and
ZOOTER on four groups of benchmarks with 26
subsets on different tasks and domains. Our eval-
uation shows ZOOTER can effectively assemble
LLMs and even outperforms reward model rank-
ing methods with significantly less computation
overhead.

2 Related Works

Instruction Tuning and Alignment. Instruction
tuning (Longpre et al., 2023) helps LLMs to fol-
low versatile instructions, which is widely adopted
to align LLMs with human preference (Chiang
et al., 2023; Xu et al., 2023; Bai et al., 2023).
The quick emergence of aligned LLMs motivates
us to develop routing techniques to maximize the
strengths of ensemble LLMs. In this work, we
focus on assembling aligned LLMs, such as Llama-
2-Chat (Touvron et al., 2023b), WizardLM (Xu
et al., 2023), Vicuna (Chiang et al., 2023), and
so on. And we evaluate them on a wide range of
alignment evaluation tasks.

Large Language Model Ensemble. The ensemble
of LLMs is an emerging topic due to the explosion
of open-source LLMs. LLM ensemble aims to
merge off-the-shelf LLMs to perform better consis-
tently across diverse downstream tasks. Few works
explore the complementary potential assumption
of LLMs and how to assemble LLMs with it. Jiang
et al. (2023) presents an ensembling framework
consisting of a pair ranker and a generation fuser.
Chen et al. (2023) sequentially infers off-the-shelf
LLMs and stops until the response meets a suf-
ficient quality. Wang et al. (2023b) proposes a
fusing-of-experts problem that fuses outputs of ex-
pert models with complementary knowledge of the
data distribution and formulates it as supervised
learning. Shnitzer et al. (2023) show the utility
and limitations of learning model routers from var-
ious benchmark datasets. Although these works
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all focus on reward ranking or routing strategies
to assemble LLMs, ZOOTER distinguishes from
these concurrent works in two aspects. First, our
concurrent works require output generations or
the forward process to get prompt representations
of all candidates, leading to significant computa-
tion overhead. ZOOTER infers model expertise by
distilling rewards on a predefined training query
set to avoid such inference overhead. Then, all
these works are developed and evaluated on a set
of benchmarks. At the same time, ZOOTER can
be developed with only queries without golden re-
sponses, and ZOOTER aims for more diverse align-
ment tasks. Therefore, ZOOTER stands out for its
efficiency in data and computation. We also eval-
uate ZOOTER on more diverse alignment tasks to
comprehensively examine the complementary po-
tential of LLMs.

Reward Model Guided Generation. Reward
models in the context of large language models
are commonly used to improve alignment perfor-
mance by reinforcement learning (Schulman et al.,
2017; Ouyang et al., 2022) or preference learning
(Yuan et al., 2023b; Rafailov et al., 2023; Song
et al., 2023). Reward models can also improve
the performance during the generation phase. The
math reasoning ability of language models can be
improved by using reward models ranking multiple
generated reasoning paths (Cobbe et al., 2021; Ue-
sato et al., 2022; Lightman et al., 2023). Liu et al.
(2023) uses reward models to formulate reward-
guided decoding. Inspired by these successful ap-
plications of reward models in alignment, ZOOTER

also takes advantage of off-the-shelf reward models
to investigate the latent expertise of LLMs.

Mixture-of-Experts. Traditionally, Mixture-of-
Experts (MoE) models encompass neural networks
that include gating and expert modules (Xu et al.,
1994). Yet, in large language models (LLMs), MoE
LLMs are primarily developed to tackle computa-
tional scalability challenges by adopting parameter-
efficient routing and expert structures (Rajbhandari
et al., 2022; He et al., 2021a; Jiang et al., 2024).
With this understanding, we assert that Zooter and
MoE models differ markedly. Though we share
the terminology "router" and "expert.”, we tried to
deal with significantly different problems on differ-
ent motivations. Zooter and other LLM Ensemble
methods, as well as recent developments (Yu et al.,
2024; Wan et al., 2024), focus on integrating off-
the-shelf LLMs. By off-the-shelf, we mean these

are pre-trained (or aligned) models, which we do
not further train during the ensemble process. This
approach stems naturally from the rapid prolifer-
ation of LLMs, which we discuss at the outset of
our paper. Conversely, MoE models, which com-
bine routing and expert neural network modules,
typically require the training of the experts and are
driven by the pursuit of parameter efficiency. Fur-
thermore, Zooter, along with most other LLM en-
semble methods mentioned in the related works, is
a sequence-level ensemble of frozen LLM models
as a whole. In other words, we consider the aggre-
gation of the sequence outputs of each candidate
LLM. However, MoEs mainly conduct token-level
routing and aggregating with expert modules.

3 Methods

We first revisit the complementary potential of
LLMs (§3.1) and then introduce ZOOTER as an
efficient LLM ensemble method (§3.2).

3.1 Complementary Potential of LLMs

In this section, we present the preliminaries about
the assumption: Off-the-shelf aligned LLMs have
heterogeneous expertise across a wide range of
domains and topics. We also briefly introduce two
LLM ensemble strategies, reward model ranking,
and query routing.

Complementary Potential Assumption. Consid-
ering a set of LLMs denoted as M = {mi|i ∈
Z+} and a set of downstream queries denoted
as Q = {qi|i ∈ Z+}, we assume that for each
LLM mi in M, there exists a non-empty query
subset Qmi such that the LLM can achieve uni-
formly better performance than other LLMs in
M for any query qj ∈ Qmi , which is mi =
argmaxm∈M P (qj ,m(qj)). P can be any prefer-
ence or metric for performance assessment. Under
this assumption, LLMs have their own expertise
across different domains and tasks, further indi-
cating the potential complementary among LLMs
through model ensemble.

Reward Model Ranking. Integrating LLMs with
such potential complementary can be achieved with
the reward model. Reward model ranking (RMR)
uses a reward function P̂ estimating the oracle pref-
erence P to find the best LLM response for each
query through ranking (Jiang et al., 2023). How-
ever, RMR, as a post-generation ranking strategy,
requires inference of all candidate LLMs to score
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Figure 2: Overview of ZOOTER. ZOOTER aims to assemble a set of off-the-shelf LLMs by first conducting a reward
model ranking on a diverse training set to obtain supervision of model expertise, highlighted in blue in the figure.
Instruction tags are then used to mitigate the uncertainty in reward estimation. ZOOTER uses the normalized rewards
as supervision to train a routing function by knowledge distillation. The training circle is marked in green, and the
inference is marked in orange. ZOOTER is much lighter in computation as it routes the query to the corresponding
expert LLM during inference time, while reward model ranking has to generate outputs for all candidates.

the responses. Therefore, RMR is hindered by in-
efficient large computation overhead.

Query Routing. Efficiency defect can be miti-
gated by pre-generation query routing. In gen-
eral, query routing tries to find a routing function
Z(q,mi) with respect to qj ∈ Q exists, so that
mi = argmaxm∈MZ (qj ,m). The routing func-
tion distributes queries to the expert LLM without
generating outputs in advance. If the complemen-
tary potential of LLMs holds, the routing function
predicts the probability that a query q belongs to
the expertise of an LLM Qm. In this work, we
bridge reward model ranking and query routing to
achieve an efficient and effective LLM ensemble
method.

3.2 Zooter
In this section, we propose ZOOTER, a reward-
guided query routing method for efficiently assem-
bling large language models. ZOOTER learns from
the reward model ranking to interpret the latent
expertise of each model. So, as shown in Fig. 2,
ZOOTER first infers all candidate LLMs on a train-
ing set containing diverse queries to generate re-

sponses. Then, all responses will be rewarded by
an off-the-shelf reward model providing scalar re-
wards, marked in blue dash lines in Fig. 2. The
rewards are first enhanced by a tag-based prior
for smoothing and denoising. The normalized re-
ward distribution is then used as supervision in the
knowledge distillation training of the routing func-
tion, shown in the green dash lines in Fig. 2. During
inference, the routing function categorizes the in-
put query to an LLM with the strongest expertise
potential in this query, and the LLM will gener-
ate an expert response. By training such a routing
function, ZOOTER achieves a much more efficient
ensemble as it only needs to infer one expert LLM,
plus a small computation overhead of the routing
function. In this section, we introduce the two key
components, reward distillation and tag-based label
enhancement, along with the design motivations.

Reward Distillation. According to the idea of
query routing in §3.1, we define our routing func-
tion Zθ(q) which represents how likely a query q
falls into the expertise of each LLM by producing
categorical distribution over |M| LLMs. We learn
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such a routing function by distilling the RMR re-
sults on a set of training queries Qtrain. Concretely,
in RMR, we can acquire the reward model score for
each LLM response P̂ (q,mi(q)), where q ∈ Qtrain
and mi ∈ M. The score can be interpreted as
the relative advantage of an LLM mi over all other
candidates on the query q. Higher advantages inher-
ently present the expertise of the LLM. By normal-
izing the reward scores to categorical distributions,
there present silver labels s(q) of estimating how
likely the LLMs expertise the query q. We can then
train the router function Zθ(q) by distillation using
a Kullback-Leibler divergence (KLD) according
to the solver labels. With a straightforward nor-
malization approach of softmax, our loss function
is

L(θ) = 1

|Qtrain|
∑

q∈Qtrain

KLD(Zθ(q), s(q)),

where

s(q)i =
exp(P̂ (q,mi(q)))∑

mi∈M exp(P̂ (q,mi(q)))
.

However, queries in the training set are expected
to be as diverse as possible to maximize the gen-
eralization abilities of the routing function. The
distillation process helps ZOOTER to learn the la-
tent expertise of each model. So, we can mitigate
the computation cost by only judging whether a
query belongs to the expertise set with our routing
function during inference.

Tag-based Label Enhancement. Although reward
distillation provides a feasible way for routing func-
tions to leverage silver supervision from reward
model ranking, the language reward model pro-
vides rewards with uncertainty, introducing certain
noises (Gleave and Irving, 2022). Through our pre-
liminary experiment, the naive softmax-normalized
silver labels are prone to noise from the reward
model score, because the off-the-shelf reward mod-
els are not necessarily accurate for preference as-
sessment as shown in Fig. 3.. The analysis of this
uncertainty can be found in §4.3. Therefore, we
leverage instruction tagging (Lu et al., 2023) to
enhance rewards on the training queries further.
The tag-based label enhancement we proposed is
similar to the widely used label smoothing tech-
niques and proven effective in knowledge distil-
lation (Yuan et al., 2020). Specifically, we first
tag each query q̂i ∈ Q̂ with a local tagger T (·)
to obtain a set of tags T (qi). Then, we aggregate

all rewards on queries with the same tags for the
tag-wise rewards as follows:

Qt = {qi|t ∈ T (qi), i = 1, . . . , |Q̂|}

st(q) =
1

|Qt|
∑

i∈Qt

s(qi)

Then, we enhance rewards for each query with tag-
wise rewards by a linear combination:

s(q)∗ = βs(q) + (1− β)
1

|T (q)|
∑

t∈T (q)

st(q),

where β is a hyper-parameter for the trade-off be-
tween coarse-grained tag-wise rewards and fine-
grained sample-level rewards. Then, we replace
original rewards in the KL divergence loss train-
ing with tag-based enhanced rewards s(q)∗ during
routing function training.

4 Experiments

In this section, we report experimental
setup (§4.1), main results (§4.2), and analy-
sis about ZOOTER (§4.3).

4.1 Experimental Setup

We verify the effectiveness of ZOOTER by rout-
ing queries in multiple benchmarks to a group of
candidate LLMs. We compare the performance
of ZOOTER with the single candidate model and
various reward model ranking baselines.

Candidate LLMs. We select six LLAMA-based
LLMs of the same 13B size as the candidate LLMs
for query routing. (a) WizardLM (Xu et al., 2023)
is aligned with queries and responses augmented
by EVOLINSTRUCT, (b) WizardCoder (Luo et al.,
2023b) is a coding expert LLM using the same
techniques as WizardLM, (c) WizardMath (Luo
et al., 2023a) is a math expert LLM aligned
with query augmentation, ChatGPT rewards and
PPO optimization, (d) Vicuna (Chiang et al.,
2023) is aligned on tremendous conversations be-
tween users and proprietary chatbots, (e) Open-
Chat (Wang et al., 2023a) is aligned with a selected
set of ShareGPT with additional training strate-
gies, (f) Llama-2-Chat (Touvron et al., 2023b)
is first aligned by supervised fine-tuning and then
multi-turn rejection sampling. Both baselines and
ZOOTER are experimented with and evaluated
based on these six candidates.
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Model #Param AlpacaEval (5) FLASK (10) MT-Bench (8) Benchmarks (3) All (26)
Ranker Infer Avg. MTR Avg. MTR Avg. MTR Avg. MTR MTR % Uplift

Routing Candidates

WIZARDCODER −− 13B 0.42 5.6 3.12 5.2 4.44 5.38 30.9 4.33 5.3 0.06
WIZARDLM −− 13B 0.89 2.0 3.89 1.8 7.15 2.0 44.2 2.0 1.83 0.25
WIZARDMATH −− 13B 0.47 5.0 3.28 5.0 5.73 4.38 34.8 4.0 4.6 0.03
LLAMA-2-CHAT −− 13B 0.91 1.6 3.88 1.5 6.72 2.88 32.3 3.67 2.23 0.31
OPENCHAT −− 13B 0.89 2.2 3.79 3.1 7.12 2.0 31.2 3.33 2.67 0.19
VICUNA −− 13B 0.8 3.8 3.7 3.5 6.58 3.25 33.6 2.67 3.4 0.06

BMA −− 13B 0.91 1.6 3.88 1.5 6.72 2.88 32.3 3.67 2.23 0.31

ZOOTER

Ours 86M 13B 0.93 1.17 3.89 1.82 7.11 2.33 34.2 3.0 1.94 0.44

Reward Model Ranking (RMR)

W/ OASSISTRM 300M 6×13B 0.79 4.0 3.75 3.73 6.59 3.22 35.1 3.25 3.42 0.19
W/ LLM-BLENDER 300M 6×13B 0.83 3.67 3.77 3.36 6.21 4.0 36.4 2.75 3.39 0.17
W/ AUTO-J 13B 6×13B 0.89 2.67 3.92 1.64 7.03 2.22 32.2 3.5 2.25 0.42
W/ ULTRARM 13B 6×13B 0.92 1.17 4.06 1.0 7.18 1.89 40.1 3.25 1.53 0.72
W/ QWENRM 7B 6×13B 0.92 1.33 4.04 1.0 7.26 2.11 38.6 3.0 1.58 0.67
W/ ORACLE −− 6×13B 0.98 1.0 4.56 1.0 8.25 1.0 75.3 1.0 1.0 1.0

Proprietary Models

GPT-3.5-turbo −− −− 0.89 2.67 4.06 1.91 7.94 1.78 73.0 1.0 1.78 0.61
GPT-4 −− −− 0.94 1.0 4.37 1.0 8.99 1.0 88.3 1.0 1.0 1.0

Table 1: Main results of both ZOOTER and reward model ranking. We report performance across four groups of
benchmarks and report the number of subsets beside the name of benchmarks. We also report the parameters of
ranker and total inference models for both candidates and ensemble methods. MTR denotes the mean task rate, and
%Uplift denotes the rate of uplift. The average scores and uplift rate are as higher as better while MTR is as lower
as better. We mark better scores in darker blue for better visualization and easier interpretation.

Training Datasets. We create a diverse mix in-
struction dataset from the open-source data to max-
imize the generalization abilities of ZOOTER. We
first collect and tag open-source data from 13
datasets with a local tagger developed by Lu et al.
(2023). Each query is assigned a group of tags
that describe its intentions and semantics. For trust-
worthy evaluation results, we decontaminate all
samples containing queries with a 6-gram overlap
with any samples in our benchmarks described be-
low to avoid data leakage. Then, we randomly
select ten samples for each unique tag to form a
diverse mix instruction dataset DIVINSTRUCT with
47,986 instructions and samples across 6,270 dif-
ferent tags. Detailed statistics of DIVINSTRUCT is
in Appx. §A.

Evaluations. We involve four sets of benchmarks
to evaluate ZOOTER on various downstream tasks
comprehensively. We first include three widely-
used alignment benchmarks with GPT-4 judge:

• AlpacaEval (Li et al., 2023b) consists of 5 sub-
sets from the koala, vicuna, and others evaluation
sets. It contains 805 samples in total. AlpacaE-
val reports the win rate between evaluated mod-

els and text-davinci-003, measured by GPT-4.

• FLASK (Ye et al., 2023) is a fine-grained evalu-
ation for alignment. We evaluate methods on all
ten domains in FLASK and report the average
score across all domains as a final score. Each
score is provided by GPT-4, ranging from 0 to 5.

• MT-Bench (Chiang et al., 2023) is a multi-turn
evaluation across eight aspects, including mathe-
matics and coding. We only train and route with
the first-turn query but evaluate in the multi-turn
manner as the original recipe. We report the
average score over turns, aspects, and samples
ranging from 0 to 10.

• Benchmarks includes a group of bench-
marks consisting of MMLU (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), and Hu-
manEval (Chen et al., 2021). We all conduct
zero-shot inference on each benchmark. We
report accuracy on MMLU and GSM8K, and
Pass@1 on the HumanEval.

As reported by Wang et al. (2023c), GPT-4 judg-
ments may have bias and significant disagreement
with humans. Therefore, we also include a group
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of benchmarks in our evaluation to provide a multi-
faceted conclusion.

Ranking Metrics. Comparing ensemble models
on various benchmarks is challenging as the scale
of scores is different on each benchmark. To com-
bat this issue, we do not only report the scores on
each benchmark but also the mean task rank (MTR).
All benchmarks we evaluate have multiple subsets.
We define MTR as the rank of the evaluated model
among all baselines’ averages on all subsets. MTR
is only about the rank among baselines so it can
be easily adopted across benchmarks with differ-
ent score scales. Similarly, we also propose an
uplift rate, denoting the rate of subsets that the
evaluated model achieves the best performance of
benchmarks. We report these two metrics on 26
evaluation subsets in all benchmarks. Lower MTR
and higher uplift rates show the evaluated model
has consistently higher performance among versa-
tile downstream tasks.

Baselines. A natural baseline for ZOOTER is each
candidate model itself. Furthermore, we report the
best model on average (BMA), which denotes the
best candidate model across all benchmarks. We
also compare ZOOTER with reward model rank-
ing (RMR) based on different reward models. We
set up RMR baselines with the latest rewards mod-
els: (1) OASSISTRM is a DEBERTA-based reward
model trained on OAssist preference annotations,
(2) AUTO-J (Li et al., 2023a) is a text-based large
language model for critique and judgment, (3)
ULTRARM (Cui et al., 2023) is a scalar reward
model trained on the UltraFeedback dataset, (4)
QWENRM (Bai et al., 2023) is a pretrained and
fine-tuned reward model developed for multilin-
gual preference learning and an Oracle ranking for
reference. We also consider the pair ranking in
LLM-Blender (Jiang et al., 2023) as one of the
RMR methods. Besides, we also report the perfor-
mance of proprietary models across our benchmark
collections for reference, including GPT-3.5-turbo
and GPT-4.

Configurations. We train our routing function
from mdeberta-v3-base (He et al., 2021b). We
use QwenRM to generate rewards on training
queries as supervision for our routing function, as
it achieves the best performance in reward model
ranking with considerably smaller model parame-
ters described in §4.2. And we run all training and
inference on 8 A100 GPUs. We infer and evaluate
all benchmarks with corresponding configurations

and GPT-4 settings. We use greedy decoding for
MMLU, GSM8K, and HumanEval. More details
are described in Appx. §B.

4.2 Results

We present the main results in Tab. 1. We report the
performance of six routing candidates across our
benchmarks, and the best model on average (BMA)
is LLAMA-2-CHAT. And we report ZOOTER with
β = 0.3 in tag-based label enhancement. We fur-
ther analyze the results in the following two as-
pects:

Complementary Potential. We evaluate the en-
semble with reward model ranking (RMR) on five
different off-the-shelf reward models. RMR with
UltraRM achieves the best performance in MTR
and uplift rate on the aggregation of all bench-
marks, which ranks at 1.53 and achieves the best
model across 72% subtasks. RMR with QwenRM
achieves the second best and performs similarly to
UltraRM with smaller parameter sizes, followed by
RMR with Auto-J, LLM-Blender, and OAssistRM.
RMR with QwenRM, UltraRM, and Auto-J out-
perform that of BMA, showing the effectiveness
of RMR. Furthermore, we also calculate the score
of RMR with an Oracle ranker, which consistently
outperforms all candidates and even outperforms
GPT-4 on AlpacaEval and FLASK. Such results
provide solid evidence for the complementary po-
tential of off-the-shelf LLMs and also support the
key motivation behind ZOOTER, i.e., using rewards
from off-the-shelf reward models as silver supervi-
sion for the routing function training. However, we
notice RMR fails on benchmarks, such as MMLU,
GSM8K, and HumanEval, showing that precisely
judging knowledge, mathematics, and coding prob-
lems are still challenging for existing RMs.

Zooter Performance. We then compare the per-
formance of ZOOTER with that of BMA and RMR.
ZOOTER outperforms BMA on AlpacaEval, MT-
Bench, and Benchmarks, and achieves similar per-
formance on FLASK. The most significant im-
provement is witnessed on MT-Bench, where the
performance of ZOOTER is higher than that of
BMA by 0.39. In general, ZOOTER achieves top-
1 on 44% subtasks while BMA is only on 31%.
With the evidence above, ZOOTER successfully uti-
lizes the complementary potential between LLMs
to achieve the best performance more consistently
over our benchmarks, with computation overhead
from only 86M ranker. At the same time, ZOOTER
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Figure 3: Analysis between reward entropy and scores
of reward preference ranking on MT-bench.

outperforms RMR with OAssistRM, LLM-Blender,
and Auto-J, by significantly less computation over-
head. However, though ZOOTER outperforms
RMR with QwenRM on AlpacaEval, there are still
obvious gaps between ZOOTER and RMR with
QwenRM in general.

4.3 Analysis

We provide further analysis on how RM uncertainty
may influence the training of ZOOTER.

RM Uncertainty. As presented in the previous
research, RM may have uncertainty on its scalar
rewards, which may introduce noise in the routing
training since we use RM scores as silver supervi-
sion. In this subsection, we first present the exis-
tence of this uncertainty to explain the motivation
behind tag-based label enhancement, the method
we propose to mitigate such uncertainty in the rout-
ing function training. We calculate the entropy
of rewards from QwenRM among all candidate
LLMs for each query in MT-Bench and draw it
with the MT-Bench scores of each sample by re-
ward preference ranking with QwenRM. As shown
in Fig. 3, samples with lower reward entropy tend
to have high MT-bench scores. We interpret this
observation as higher reward entropy reveals more
uncertainty in the reward. Therefore, we propose
tag-based label enhancement to mitigate the noise
when using rewards as silver labels.

Label Enhancement. The tag-based label en-
hancement proposed in §3.2 contains a hyper-
parameter β, representing the trade-off between
fine-grained sample-level rewards and coarse-
grained tag-level rewards. We conduct experiments
to tune this hyperparameter and analyze how re-
wards in different granularities may influence the

β AlpacaEval FLASK MT-Bench Benchmarks All

Hard Label Training

0 1.4 2.3 3.12 4.00 2.31

Reward Distillation

0 1.4 2.2 2.25 3.67 2.06
0.1 1.2 2.1 2.38 3.67 2.00
0.3 1.2 1.9 2.50 3.67 1.97
0.5 1.2 2.2 3.12 3.67 2.23
0.7 1.2 2.2 3.38 4.00 2.31
0.9 1.2 2.3 3.12 4.00 2.31
1.0 1.2 2.3 3.25 4.00 2.34

Table 2: Mean task rank (MTR) of hard label training
and reward distillation with different β in tag-based
label enhancement across all benchmarks. The best
value of β is marked in blue.

training of our routing function. As shown in Tab. 2,
ZOOTER achieves the best performance when β
equals 0.3, proving a combination of sample-level
and tag-level rewards will benefit the reward dis-
tillation. The ablation also shows the necessity of
tag-based label enhancement. Furthermore, distill-
ing tag-level rewards (β = 0) shows significantly
better performance than distilling sample-level re-
wards (β = 1), supporting the analysis that noises
from the uncertainty of RMs in sample-level re-
wards damage reward distillation.

Hard Label Training. We further ablate the re-
ward distillation by proposing a straightforward
baseline named hard label training. In this setting,
we use the model with the highest reward as the
categorized label to formulate a classification task.
And then, we train our routers with the cross en-
tropy loss on these hard labels. As presented in
Tab. 2, reward distillation under beta = 0 achieves
2.06 MTR, which is significantly lower than the
MTR of hard label training (2.31). This result pro-
vides further evidence of the necessitate of reward
distillation.

5 Conclusion

In this work, we revisit the complementary poten-
tial of open-source LLMs and reward model rank-
ing of multiple off-the-shelf reward models, pro-
viding evidence of LLM ensemble’s effectiveness.
We propose ZOOTER, an efficient reward-guided
routing method for ensemble off-the-shelf LLMs.
Comprehensive evaluation shows ZOOTER can out-
perform the best single model on average and even
ensemble models by reward model ranking with
significantly fewer computation overhead. Valu-
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able future works include diving deep into inter-
preting latent expertise in each LLM.

Limitations

ZOOTER requires an off-the-shelf reward
model (RM) and its performance is highly related
to the abilities of the RM. Though there are
open-source RMs to re-implement ZOOTER, this
requirement still restricts the further application of
this method.

Ethics statement

ZOOTER assembles off-the-shelf open-source large
language models, which may potentially generate
harmful and toxic contents. We use GPT-4 to pro-
vide evaluations on three benchmarks, AplacaEval,
FLASK, and MT-Bench.

References
Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
Frugalgpt: How to use large language models while
reducing cost and improving performance.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion

Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback.

Adam Gleave and Geoffrey Irving. 2022. Uncer-
tainty estimation for language reward models. arXiv
preprint arXiv:2203.07472.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Ji-
dong Zhai, and Jie Tang. 2021a. Fastmoe: A fast
mixture-of-expert training system.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021b.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. 2023.
Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv
preprint arXiv:2306.02561.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan,
Hai Zhao, and Pengfei Liu. 2023a. Generative
judge for evaluating alignment. arXiv preprint
arXiv:2310.05470.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan
Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023b. Al-
pacaeval: An automatic evaluator of instruction-
following models. https://github.com/
tatsu-lab/alpaca_eval.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.

1972

http://arxiv.org/abs/2305.05176
http://arxiv.org/abs/2305.05176
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2103.13262
http://arxiv.org/abs/2103.13262
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval


2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,
Yejin Choi, Hannaneh Hajishirzi, and Asli Celiky-
ilmaz. 2023. Don’t throw away your value model!
making ppo even better via value-guided monte-carlo
tree search decoding.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, and Chang Zhou. 2023. #
instag: Instruction tagging for diversity and complex-
ity analysis. arXiv preprint arXiv:2308.07074.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D. Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ah-
mad Awan, Jeff Rasley, and Yuxiong He. 2022.
Deepspeed-moe: Advancing mixture-of-experts in-
ference and training to power next-generation ai
scale.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Tal Shnitzer, Anthony Ou, Mírian Silva, Kate Soule,
Yuekai Sun, Justin Solomon, Neil Thompson, and
Mikhail Yurochkin. 2023. Large language model
routing with benchmark datasets.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2023. Pref-
erence ranking optimization for human alignment.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2024. Knowledge fusion
of large language models.

Guan Wang, Sijie Cheng, Qiying Yu, and Changling
Liu. 2023a. OpenChat: Advancing Open-source Lan-
guage Models with Imperfect Data.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik
Kundu, Eric Xing, and Mikhail Yurochkin. 2023b.
Fusing models with complementary expertise.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023c. How
far can camels go? exploring the state of instruction
tuning on open resources.

1973

http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2309.15028
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2306.08568
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2201.05596
http://arxiv.org/abs/2201.05596
http://arxiv.org/abs/2201.05596
http://arxiv.org/abs/2309.15789
http://arxiv.org/abs/2309.15789
http://arxiv.org/abs/2306.17492
http://arxiv.org/abs/2306.17492
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2401.10491
http://arxiv.org/abs/2401.10491
https://doi.org/10.5281/zenodo.8105775
https://doi.org/10.5281/zenodo.8105775
http://arxiv.org/abs/2310.01542
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751


Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions.

Lei Xu, Michael I. Jordan, and Geoffrey E. Hinton.
1994. An alternative model for mixtures of experts.
In Neural Information Processing Systems.

Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeon-
bin Hwang, Seungone Kim, Yongrae Jo, James
Thorne, Juho Kim, and Minjoon Seo. 2023. Flask:
Fine-grained language model evaluation based on
alignment skill sets.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.

Li Yuan, Francis EH Tay, Guilin Li, Tao Wang, and
Jiashi Feng. 2020. Revisiting knowledge distillation
via label smoothing regularization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3903–3911.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023a. Scaling relationship on learn-
ing mathematical reasoning with large language mod-
els.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023b. Rrhf: Rank
responses to align language models with human feed-
back without tears.

Dataset Amount

ultrachat 18,588
sharedgpt 10432
wizardlm(sharedgpt) 5325
wizardlm(alpaca) 5145
alpaca 2186
repair 1034
openchat 1033
flan 862
math 849
unnatural 582
dmcc 573
dolly 560
oasst 183
lima 70
mbpp 43

Table 3: Composition of DIVINSTRUCT

A Datasets

DIVINSTRUCT is a diverse mix instruction set from
multiple open-source datasets with careful decon-
tamination on all benchmarks evaluated in this
work. The detailed composition of DIVINSTRUCT

is report in Tab. 3.

B Hyper-parameters

The QwenRM we used for supervision contains
about 7 billion parameters. We infer QwenRM on
8 A100 GPUs for 24 hours to generate annotations
for all samples and all candidate models. And the
routing function mdeberta-v3-base has about 100
million parameters. We train it with 8 A100 GPUs
with 5 epochs for 2 hours. We search the training
hyper-parameters by grid search, and the best learn-
ing rate is 1e − 5 and the weight decay is 5e − 7.
Responses for all candidate models are sampled
with temperature 0.7 and a maximum token num-
ber 2048.
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