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Abstract

Vision-language models (VLMs) can effec-
tively act as visual assistants, interpreting ques-
tions about images and producing human-like
responses. This work explores their abilities to
demonstrate human-like reasoning. To address
concerns about the consistency of VLMs’ rea-
soning, we introduce a chain-of-thought (CoT)
consistency measure. We tackle the challenge
of extensive human annotations by proposing
an LLM-Human-in-the-Loop pipeline. Based
on this pipeline, we build the CURE bench-
mark to measure both the zero-shot reason-
ing performance and consistency of VLMs.
We evaluate state-of-the-art VLMs and find
that even the best-performing model is unable
to demonstrate strong visual reasoning capa-
bilities and consistency, indicating that sub-
stantial efforts are required to enable VLMs
to perform visual reasoning as systematically
and consistently as humans. As an early step,
we propose a two-stage training framework
aimed at improving both the reasoning per-
formance and consistency of VLMs without
human annotations. The framework consists
of two primary stages: supervised fine-tuning
and learning from feedback, to guide VLMs in
generating reasoning chains that exhibit both
consistency and groundedness. Our frame-
work exhibits a 4% relative improvement in
reasoning performance and consistency. We
release the dataset at https://github.com/
Yangyi-Chen/CoTConsistency.

1 Introduction

Vision-language models (VLMs) exhibit compe-
tence at generating human-like responses by lever-
aging multimodal instructional data and large lan-
guage models (LLMs) (Li et al., 2023a; Liu et al.,
2023c,a; Chen et al., 2023). A key direction in
improving such VLMs is to enable grounded and
consistent visual reasoning. We thus take a critical

∗Work done during internship at SRI International.

look at the reasoning capability of existing VLMs,
measuring and improving both their performance
and consistency in reasoning. For reasoning per-
formance, we aim to measure whether VLMs can
derive high-level inference that extends beyond the
immediately perceived information correctly. For
reasoning consistency, we seek to determine the ex-
tent to which VLMs can identify the underlying rea-
soning chains that lead to the high-level inference.

Previous work simplifies the evaluation of rea-
soning consistency by only considering coarse-
grained rationales (Zellers et al., 2019) and rely-
ing on human evaluation (Lu et al., 2022a) and
similarity measure (Wei et al., 2023), which lacks
scalability and preciseness. Thus, we motivate to
establish a new benchmark dataset that provides
annotation of the fine-grained reasoning steps to au-
tomatically measure reasoning consistency. How-
ever, collecting such a dataset is challenging due to
high-cost underlying human effort and may contain
inconsistencies among annotators for the reasoning
chains (González et al., 2021; Larson et al., 2020).

To address this challenge, we propose an
LLM-Human-in-the-Loop pipeline for dataset con-
struction. Several recent efforts have shown that
LLMs can effectively follow human instructions to
generate high-quality datasets (Brown et al., 2020;
Meng et al., 2022; Ubani et al., 2023; Wang et al.,
2022e). This pipeline functions by incorporating
limited human assistance for providing instructions
and filtering rules, enabling LLMs to efficiently
generate high-quality datasets in a semi-automatic
manner, substantially reducing annotation cost.
Based on an existing coarse-grained visual
inference dataset Sherlock (Hessel et al., 2022),
we establish a benchmark CURE for Chain-of-
Thought VisUAl Reasoning Evaluation. It contains
1,622 human-verified samples of high-level visual
inference and corresponding CoT reasoning chains,
intended for zero-shot evaluation. Two examples
are presented in Figure 1. Particularly, the CoT rea-
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Figure 1: Besides the high-level inference about the images (e.g., The girl is turning two years old today.), CURE
also contains CoT reasoning chains to evaluate VLMs’ reasoning performance and consistency. We only show 2 (of
6) candidate options for presentation. We highlight the ground truth answers. More examples are shown in Figure 9.

soning chains consist of progressive subquestions,
ranging from recognition (e.g., What is on the
cake?) to cognition (e.g., What does each candle
represent?), with the purpose of measuring the rea-
soning consistency of VLMs. Due to the notorious
difficulty of natural language generation evalua-
tion (Sai et al., 2023; Hendrycks et al., 2021), we
formulate CURE as a multiple-choice task for the
ease of automatic evaluation. Particularly, for each
visual input, we assess the reasoning in VLMs by
evaluating their overall inference capabilities for a
designated area (the bounding box in Figure 1) and
their ability to correctly address the intermediate
reasoning chain leading to the final inference.

We evaluate the state-of-the-art (SOTA) VLMs
on CURE . The key conclusions from these eval-
uations are: (1) The model’s success in complex
visual inference depends on LLMs components,
visual inputs, and instruction finetuning; (2) Even
the SOTA VLM (BLIP-2) falls short in comparison
to human performance regarding overall visual
reasoning performance. In addition, our findings
indicate a lack of reasoning consistency. Specifi-
cally, the reliability of intermediate reasoning steps
cannot be assured, irrespective of the accuracy of
the final inference (and vice versa). This suggests
VLMs are not always consistent in their reasoning.

To enhance VLMs’ reasoning performance and
consistency, we propose a two-stage training frame-
work for training rationale-augmented VLMs. In
the first stage, VLMs are trained on reasoning sam-
ples that encompass step-by-step reasoning chains,
which are automatically generated by LLMs. How-
ever, VLMs may produce inaccurate high-level in-
ferences due to inconsistencies or hallucination in
the rationales after this stage. Thus, we introduce
a subsequent stage that integrates feedback from
LLMs to examine the reasoning process. This ap-
proach avoids the complex task of directly scru-
tinizing the high-level inferences of VLMs. The
results demonstrate the relative improvement in

both reasoning performance and consistency is ap-
proximately 4% compared to the SOTA.

2 Related Work

The CoT reasoning approach is first proposed for
LLMs (Wei et al., 2022). We discuss related
work regarding LLMs CoT reasoning and vision-
language pretraining in Appendix B and focus on
vision-language reasoning in this section. There
exists a paucity of comprehensive diagnostic stud-
ies concerning VLMs with the aim of quantify-
ing their reasoning consistency, although efforts
have been spent on measuring the visual reason-
ing performance (e.g., Sherlock) (Hessel et al.,
2022) and coarse-grained rationale evaluation, in-
cluding multiple-choice question answering (e.g.,
VCR) (Zellers et al., 2019), human evaluation of
generated rationales (Lu et al., 2022a), and similar-
ity measure between the generated and the ground-
truth rationales (Wei et al., 2023). Some work has
identified the failure of VLMs to accurately an-
swer subquestions that are components of the main
problems (Ray et al., 2019; Jing et al., 2022; Sel-
varaju et al., 2020; Wang et al., 2022f; Lu et al.,
2022a; Wei et al., 2023). For instance, VLMs
may correctly determine the significant size of a
mountain in an image but erroneously classify it
as small when responding to a query such as "Are
the mountains small?" (Ray et al., 2019). In con-
trast to the aforementioned studies that focus on
coarse-grained rationale evaluation and individual
subquestions, we create reasoning chains that con-
sist of coherent subquestions capable of supporting
high-level inference. This approach allows us to
precisely measure the extent to which reasoning in
VLMs is consistent and grounded.

3 CURE Benchmark

We present the CURE dataset for measuring vi-
sual reasoning performance and consistency in
VLMs and the LLM-Human-in-the-Loop pipeline
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Figure 2: The LLM-Human-in-the-Loop dataset construction pipeline consists of the generation and filtering stages.
We use this procedure to create CURE in a semi-automatic manner.

adopted to construct it semi-automatically. Our
dataset builds on the Sherlock dataset (Hessel et al.,
2022), which measures abductive reasoning by
annotating visual clues (text and bounding boxes
for perceptual elements) and high-level inference.
However, our aim is not only to measure the ca-
pacity of VLMs to accurately perform high-level
visual inference but also to subsequently ascertain
the extent to which the resulting inference is thor-
oughly substantiated. We thus add two new an-
notations to enable this: (1) Reasoning Chains:
We provide fine-grained and precise CoT reason-
ing containing coherent subquestions that can be
chained together to derive the high-level inference
provided by Sherlock. (2) Candidate Answers: To
avoid the long-standing issues in the evaluation of
natural language generation (Sai et al., 2023), we
transform the generation task of high-level infer-
ence and CoT subquestions into a multiple-choice
question answering task by generating plausible
but incorrect alternative candidates for each ground
truth, as shown in Figure 1.

In this section, we outline the procedure to
semi-automatically create CURE with LLMs
and then describe the evaluation metrics adopted to
measure reasoning performance and consistency.

3.1 LLM-Human-in-the-Loop Data
Generation Pipeline

Our dataset construction pipeline consists of two
stages, as illustrated in Figure 2. The first stage
aims to generate a preliminary dataset that poten-
tially contains instances of failure, while the sec-
ond stage filters out the error cases, similar to the
crowdsourcing dataset collection approaches (Lin
et al., 2014). In both stages, LLMs carry out the
majority of tasks, while human practitioners (the
researchers in this case) iteratively correct errors
made by LLMs (Bubeck et al., 2023).

3.1.1 Stage-1: Preliminary Generation

We randomly select 10,000 examples from the
Sherlock evaluation set to serve as the raw coarse-
grained examples. In this stage, the practitioner
engineers an initial prompt that basically describes
the data LLMs should generate based on each raw
example. The dataset description is then fed along
with necessary context – the visual clues describ-
ing the image and the high-level inference from
Sherlock – to generate a small initial dataset of
reasoning chains (e.g., for 50 examples). These
examples are usually inadequate and look differ-
ent than intended. Next, the practitioner should
carefully examine the generated examples and re-
vise the dataset description accordingly. Through
multiple iterations, a curated instruction that con-
tains dataset descriptions and specific requirements
can be produced to guide LLMs to generate the
full-sized preliminary dataset.

Reasoning Chains. We use GPT-4 (OpenAI,
2023) in all dataset generation steps. Our stage-
1 prompt for generating reasoning steps is shown in
Appendix F. This prompt starts by describing the
overall goal, inputs, and outputs we expect from
LLMs. It then outlines five principles to ensure
LLMs generate meaningful and reasonable sub-
questions. We also find that the inclusion of an
in-context example for a step-by-step demonstra-
tion of sample generation significantly enhances
the ability of LLMs to generate samples that con-
form to the specified principles. The resulting pre-
liminary dataset contains fairly uniform reasoning
chains for 1.6k examples. Typically the generated
subquestions support the high-level inference when
chained together, following a progression from per-
ception problems to more complex visual inference,
thus adhering to the "from recognition to cognition"
practice (Zellers et al., 2019).
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Iteration Common Failure Modes

1 The CoT reasoning chains lack consistent subquestions that are capable of deriving the high-level inference.
2 The candidate inference about the image exhibits similarity in meaning with the ground truth inference.
3 The ground truth answers for the subquestions are incorrect due to the occurrence of hallucination in LLMs.
4 The candidate answers for the subquestions are also correct.
5 The problems can be solved directly without relying on visual inputs.
6 The subquestions can contain some words that are irrelevant to the visual inputs.

Table 1: The identified common failure modes at each iteration.

Candidate Answers. We can potentially evaluate
whether the outputs from VLMs match or closely
resemble ground truth inference or reasoning steps,
similar to the practice in previous work (Lu et al.,
2022a; Wei et al., 2023). However, this approach
has two notable shortcomings: (1) The evaluation
of natural language generation has been a persis-
tent challenge, lacking a universally accepted ap-
proach (Sai et al., 2023); (2) Although we provide
ground truth answers for each image, some alterna-
tive predictions may also be correct, regarding the
nature of abductive reasoning (Walton, 2014). To
address the above issues, we formulate CURE as
a multiple-choice question answering task, requir-
ing VLMs to select the most likely inference/an-
swer from the six candidates provided. We prompt
LLMs using the same stage-1 procedure to gener-
ate potential candidate inference/answers. These
candidate answers maintain relevance to the pro-
vided image while incorporating factual inaccu-
racies when compared to the ground truth. The
prompts adopted are shown in Appendix F.

3.1.2 Stage-2: Filtering

Although samples in the preliminary dataset gener-
ally adhere to the desired criteria, failures still arise
due to inherent limitations in LLMs (Borji, 2023).
However, by drawing explicit attention to common
failure modes, we can instruct LLMs to correctly
filter out bad example groups. In each round, the
practitioner selects a small number of samples
and conducts a thorough inspection to extract pre-
dominant failure modes. A distinct prompt is then
created for each failure mode that requires LLMs
to determine whether reasoning chains or sets of
candidate answers meet that failure case. This
prompt is applied to all remaining preliminary data,
removing all examples that LLMs identify as lying
in the failure modes. The practitioner then repeats
this procedure through multiple iterations until the
randomly selected sample of examples no longer
exhibits any instances of error. We conduct a total
of six iterations to systematically remove groups

of samples that displayed common failure modes.
The identified failure modes are listed in Table 1,
and the prompts are described in Appendix F.

Human Verification. While the filtering stage
yields a substantial labor reduction when compared
to the initial unfiltered dataset (50% reduction es-
timated), there still exist some failure cases. For
example, our analysis finds that a certain amount
of examples in the Sherlock dataset share the same
reasoning problem that relies on simplistic visual
cues such as sky and lighting conditions to infer
weather patterns and differentiate between day and
night. This kind of shortcut annotation is doc-
umented in previous studies (Gururangan et al.,
2018; Geva et al., 2019; Yuan et al., 2023). We mo-
tivate to address these concerns since CURE is
for evaluation purposes. We hire human annotators
to meticulously review the entire created dataset to
ensure two primary objectives: (1) Each sample’s
validity for measuring reasoning performance and
consistency; (2) The inclusion of diverse samples
in the evaluation dataset. The details of human
verification are described in Appendix D.

3.2 Human Evaluation

CURE contains 1,622 evaluative instances. We
employ human annotators to conduct human eval-
uation with emphasis on two aspects: (1) What
is the level of human performance observed on
CURE ? (2) Do the samples within CURE
hold validity and can be effectively used for eval-
uation? We select a sample of 200 instances from
CURE . The annotation details are described in
Appendix D. We engage three human annotators
to conduct the task of answering multiple-choice
questions and provide annotations indicating the
presence of any failure mode mentioned in Table 1
or any other unidentified failure modes. The hu-
man performance is listed in Table 2. The detailed
discussion of the human performance compared
with the model performance is in Sec. 5. In the as-
sessment of sample validity, merely 3% of the eval-
uation samples within the benchmark are found to
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demonstrate specific issues. Of this subset, 2% of
the samples exhibit inconsistent reasoning chains,
while 1% of the samples provide incorrect answers
for the subquestions. It is worth noting that apart
from the issues outlined in Table 1, no other prob-
lems have been reported. These findings serve as
a validation of the high quality of CURE , and
also demonstrate the effectiveness of our pipeline
at identifying unqualified samples. The detailed
statistics of CURE are described in Appendix A.

3.3 Evaluation Metrics
As described in the previous section, we frame
CURE as a multiple-choice problem with six
potential inference per image and six plausible
candidates for every subquestion (reasoning step).
Specifically, each image Ii is paired with a high
level question Qi

h associated with six candidate
inferences Oi

h = {oih1, oih2, ..., oih6}. Additionally,
reasoning chains are made up of several questions
Qi

c. Each question q ∈ Qi
c is associated with a set

of six candidate answers Oi
q = {oiq1, oiq2, ..., oiq6}.

We propose a series of metrics that evaluate not
only the reasoning ability of the VLMs but also
the consistency in their reasoning.

3.3.1 Metrics for Reasoning Performance
Performance in High-Level Reasoning. The met-
ric Rh is designed to measure the VLMs’ ability
in accurately choosing the most probable inference
from the candidate pool for each image:

Rh =
1

N

N∑

i=1

I(âih = aih),

âih ∈ {oih1, oih2, ..., oih6},
(1)

where N signifies the total number of images, I(x)
is the indication function that returns 1 if x is true
and 0 otherwise, âih and aih are model’s chosen
answer and ground truth answer respectively.

Performance in CoT Reasoning. The metric
Rcot is used to evaluate the VLMs’ ability to cor-
rectly answer all subquestions contained in the rea-
soning chain for each image:

Rcot =
1

N

N∑

i=1

I




M∑

j=1

I(âij = aij) = M


 ,

âij ∈ {oij1, oij2, . . . , oij6},

(2)

where M is the number of subquestions within the
CoT reasoning chain per image, âij is the model’s
prediction, and aij is the ground truth answer.

Overall Performance in Reasoning. We pro-
pose Ro to measure if VLMs can successfully per-
form both high-level reasoning and CoT reasoning
for every image:

Ro =
1

N

N∑

i=1

I(âih = aih)∗I(
M∑

j=1

I(âij = aij) = M)

(3)
where the notations adhere to previous definitions.

3.3.2 Metrics for Reasoning Consistency
Consistency in Forward Reasoning. We define
Cf to evaluate the VLMs’ capacity to correctly
answer the high-level inference question once all
subquestions have been correctly addressed:

Cf =
1

∑N
i=1 si

N∑

i=1

si · I(âih = aih),

âih ∈ {oiq1, oiq2, ..., oiq6},
(4)

where si equals 1 if all subquestions for the ith
image have been correctly answered by the VLM,
and 0 otherwise, and other notations adhere to their
previous definitions.

Consistency in Backward Reasoning. We de-
fine Cb to evaluate the VLMs’ proficiency in cor-
rectly answering all subquestions given the success-
ful answering of the high-level inference question:

Cb =
N∑

i=1

I




M∑

j=1

I(âij = aij) = M


 ,

âij ∈ {oij1, oij2, . . . , oij6},

(5)

where hi equals 1 if the VLM correctly answers
the high-level inference question for the ith image,
and 0 otherwise, and other notations adhere to their
previous definitions.

4 Approach

In preliminary experiments, we find that VLMs
can effectively conduct high-level visual inference
when provided with complete reasoning chains.
Thus, we propose to train a model capable of
generating rationales that can potentially enhance
visual reasoning performance and consistency.
To this end, we propose a bifurcated training
framework that is able to train a VLM to efficiently
produce rationales that facilitate high-level visual
inference (see Figure 3). In the first stage, we
aim to train CoTBLIP to generate rationales that
contain enough visual details and reasonable
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Figure 3: The two-stage training framework consisting of SFT and RLAIF. We instruct LLMs to examine the
reasoning process of VLMs to improve the challenging high-level inferences.

inference. To further mitigate certain issues in
generated rationales (e.g., hallucination) for better
high-level inferences, we introduce the second
Reinforcement Learning from LLMs (AI) Feed-
back (RLAIF) stage. We select BLIP-2-T5xl as
our backbone model due to its strong performance
on basic vision-language tasks (Xu et al., 2023;
Fu et al., 2023). Consequently, we refer to our
rationale-generation model as CoTBLIP.

Stage-1: SFT. We utilize the complex reasoning
samples from the LLaVA dataset (Liu et al., 2023c).
The original 77K samples are produced by instruct-
ing GPT-4 to generate visual inference using a care-
fully curated set of five human-annotated captions
and bounding boxes associated with images from
the COCO Dataset (Lin et al., 2014). However, the
generated samples consist of repetitive, dialogic ex-
pressions that might not be entirely grounded in the
images. We thus perform a further post-processing
step that prompts LLMs to generate CoT reasoning
chains based on the original samples, placing an
emphasis on ensuring that these chains are logical,
consistent, and succinct. The detailed prompt is
shown in Appendix F. We train CoTBLIP on these
refined samples using SFT.

Following the SFT stage, CoTBLIP is compe-
tent in generating plausible rationales. However,
the high-level inferences may be inaccurate since
the produced rationales might contain inconsistent
reasoning chains or contents that are not grounded
in the images (hallucination). In addition, the scal-
ability of the SFT training stage is limited due to
its dependence on high-quality human-annotated
dense captions, which makes it difficult for this
stage to leverage image-caption pairs in the wild.
This can lead to lower generalizability on a broad
range of visual concepts. Therefore, we extend the
training into a second stage, optimizing the gen-
eration of rationales using feedback from LLMs.
Specifically, we leverage LLMs to inspect the rea-

soning process, which is more straightforward than
directly scrutinizing the high-level inferences.

Stage-2: RLAIF. In this stage, we use image-
caption pairs sourced from the wild (e.g., SBU
Captions (Ordonez et al., 2011)). For each image,
CoTBLIP is initially prompted to generate three
CoT reasoning chains, leading to high-level
visual inference regarding each image. We also
note that there is a noticeable variation in the
quality of these generated reasoning chains, which
necessitates external feedback. Therefore, we use
LLMs (GPT-3.5-Turbo) to provide feedback on the
reasoning chains based on the provided caption,
considering three aspects:
• Sophistication: The CoT reasoning chains

should derive interesting high-level visual infer-
ence, instead of trivial visual information (e.g.,
The image might be captured during the day.)

• Consistency: The reasoning chains should be
logically consistent to derive the high-level in-
ference without unsupported assertions or gaps.

• Groundedness: The extracted visual details in
the reasoning chains should be fully grounded
in the images, instead of hallucination.

The prompt we use is described in Appendix F.
We adapt the methods proposed by (Ouyang et al.,
2022) to facilitate pairwise comparison between
two reasoning chains and establish a ranking for
the three generated reasoning chains. In addition,
we leverage a consistency check to exclude
instances in which LLMs exhibit conflicting
rankings. We use the SBU Captions to generate
around 27K LLM preference samples considering
the constraints of our available resources. We
also demonstrate that increasing the sample size
during this stage results in consistent performance
improvements in Section 5.3.

Given the LLM preference data, we employ
Conditional Reinforcement Learning to train
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CoTBLIP due to its stability as observed in
previous work (Lu et al., 2022b; Liu et al., 2023b;
Laskin et al., 2022). Specifically, we introduce
two control tokens, namely <Good> and <Bad>.
For each sample containing a set of three ranked
reasoning chains, we add the <Good> control
token to the highest-ranked chain and the <Bad>
control tokens to the remaining two chains. In the
training time, given an appended control token,
we optimize CoTBLIP to maximize the likelihood
of the associated reasoning chain. Through this
approach, CoTBLIP can learn to distinguish
the difference between control tokens and their
respective outputs (Liu et al., 2023b). We note
that there is no requirement to perform training
for a separate reward model, given that the LLM
is capable of fulfilling that role effectively.

Inference. During inference, we initially prompt
CoTBLIP to generate rationales. However, it is
important to acknowledge that when dealing with
CoT subquestions that primarily involve basic vi-
sual perceptual problems and text-only inference
based on provided visual details, the generated ra-
tionales may have limited effectiveness. Thus, the
rationales are used exclusively for high-level vi-
sual inference. Specifically, these rationales are
incorporated before the top-tier question to prompt
the downstream VLMs to generate the prediction.
In our implementation, we opt for utilizing the
original BLIP-2-T5xl model to conduct predictions
based on the rationales generated by CoTBLIP.

5 Experiment

5.1 Model
We evaluate the reasoning performance and con-
sistency of the following models on CURE . We
include GPT-3.5-Turbo-0613 (Turbo), which is a
text-only model without visual inputs. We include
OFA-Large/Huge (Wang et al., 2022b), which
are the leading VLMs without LLMs component.
We include the BLIP-2-OPT6.7b/T5xl (Li et al.,
2023a), which effectively utilizes LLMs for vision-
language modeling. Additionally, we incorporate
InstructBLIP-T5xl (Dai et al., 2023), which per-
forms instruction tuning on a mixture of vision-
language datasets. We include LLaVA13b (Liu
et al., 2023c) and miniGPT-413b (Zhu et al., 2023)
that have undergone extensive training on vision-
language instruction tuning data. Our approach
CoTBLIP appends the generated CoT reason-
ing chain to the frozen BLIP-2-T5xl model and

prompts it to predict the answer. Note that this
pertains exclusively to high-level visual inference.

5.2 Experimental Results

The concrete implementation details of evaluation
are described in Appendix C. We consider the eval-
uation metrics defined in Sec. 3.3. The experimen-
tal results regarding the reasoning performance
and consistency are listed in Table 2. We sum-
marize the findings as follows: (1) The model’s
ability to perform complex visual inference and
produce reasonable outputs relies on three crucial
elements: LLMs, visual inputs, and instruction
fine-tuning. Models solely reliant on text-based
information (Turbo), VLMs lacking LLMs com-
ponents (OFA), and VLMs incorporating LLMs
that have not undergone instructional fine-tuning
(BLIP-2-OPT) exhibit inadequate performance; (2)
The Chat-based VLMs (LLaVA, miniGPT-4) that
have been explicitly supervised fine-tuned on syn-
thetic user-interaction response samples exhibit a
lack of visual reasoning ability and reasoning con-
sistency. The underlying cause can be ascribed to
the informal nature of the chat-style data, which
lacks sufficient supervision to facilitate VLMs in
acquiring the ability to integrate visual elements ef-
fectively for performing high-level visual inference;
(3) The existing best-performing model, BLIP-2-
T5, still falls short in reasoning performance and
consistency, compared to the human evaluation re-
sults. This suggests that significant effort is needed
to facilitate VLMs in achieving a level of visual
reasoning comparable to that of humans in a sys-
tematic and consistent manner; (4) Our framework
improves VLMs’ ability to perform visual reason-
ing and demonstrate better reasoning consistency
to a certain extent. Specifically, we observe a 4%
improvement in both the high-level visual inference
and the forward reasoning consistency. CoTBLIP
offers a distinct advantage by providing CoT ratio-
nales that contain both extracted visual details and
potential inference, thereby improving the visual
reasoning pertaining to a specific image.

5.3 Further Analysis

Ablation Study. We conduct an ablation study to
understand the contribution of the SFT and RLAIF
stages. The results are presented in Table 3. We
observe that both of these stages contribute to the
improvement in reasoning performance and consis-
tency. In particular, we observe further improve-
ments when employing the RLAIF after the SFT
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Figure 4: The influence of the percentage of training samples
in RLAIF stage on performance.

Figure 5: The CoT reasoning performance across
the subquestions.

Metric Performance Consistency

Model Ro Rh Rcot Cb Cf

Random 0.14 16.67 0.82 0.82 16.67
Turbo 15.97 33.42 40.26 47.79 39.66
OFA-Large 0.12 17.63 0.62 0.70 20.0
OFA-Huge 0.06 16.40 0.68 0.38 9.09
BLIP-2-OPT 0.06 14.61 0.62 0.42 10.0
BLIP-2-T5 54.56 76.82 65.66 71.03 83.10
InstructBLIP-T5 54.01 76.14 65.35 70.93 82.64
LLaVA 0.12 14.67 17.82 17.65 14.29
miniGPT-4 2.10 23.12 38.75 41.80 28.81
CoTBLIP (ours) 56.91 80.05 65.66 71.09 86.67
Human 85.0 93.0 89.0 91.40 95.51

Table 2: The results (%) of the reasoning performance
and consistency. The human performance is averaged
among 3 human annotators. See Sec. 3.3 for the metrics.

Metric Performance Consistency

Model Ro Rh Cb Cf

BLIP-2-T5 54.93 77.68 70.71 83.66
CoTBLIP 56.91 80.05 71.09 86.67
- w/o RLAIF 55.06 78.67 69.98 83.85
- w/o SFT 54.75 77.32 70.81 83.38

Table 3: Ablation study of the SFT and RLAIF stages
(%). BLIP-2-T5 refers to prompting BLIP-2 without
training to generate rationales. The Rcot metric
(omitted here) holds the same across all methods
because the generated rationales are only used for
high-level visual inference.

stage. For example, the overall reasoning (Ro)
for the combined stages (CoTBLIP) is 56.91 com-
pared to 54.93 and 55.06 by the baseline and the
SFT stage only, respectively. This can be attributed
to the ability of RLAIF to facilitate enhanced cal-
ibration of the generated rationales, thereby aug-
menting their cohesiveness and substantiated na-

ture. However, using only the RLAIF without the
SFT stage negatively impacts performance when
contrasted with the results of directly prompting
BLIP-2 without training for rationale generation
followed by answer prediction. The presence of the
SFT stage enables VLMs to generate reasonable
rationales. In its absence, CoTBLIP (BLIP-2) is
restricted to producing only image captions or triv-
ial rationales that do not contribute significantly to
high-level inference. Thus, without the SFT stage
for initialization, the training of CoTBLIP with
RLAIF is not feasible.

Training Data of the RLAIF Stage. We investi-
gate the impact of varying the amount of training
data during the RLAIF stage (see Figure 4). We
omit the presentation of Rcot as they are identical.
Our findings reveal that a continuous expansion
of training samples positively impacts the RLAIF
training stage of CoTBLIP, regarding both reason-
ing performance and consistency. These results
demonstrate the potential of utilizing web-scale
image-captions data to further improve the training,
attributing to the scalability of the RLAIF stage.

Backward Reasoning Consistency. We conduct
a comprehensive study on the CoT reasoning per-
formance (Rcot) of VLMs, evaluating the extent
of performance degradation in answering subques-
tions (see Figure 5). We select examples that con-
tain three subquestions for the presentation purpose.
We observe that existing VLMs often struggle with
the initial visual perceptual problem, which in-
volves basic visual details needed for high-level
visual inference. However, these models can par-
tially derive the high-level inference when provided
with the extracted visual details to some degree, ev-
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idenced by the relatively small performance drop
when answering the second and third questions.
This demonstrates that high-level visual inference
derived by VLMs is not entirely grounded in the
visual details, leading to a low Cb. We also discuss
the forward reasoning consistency in Appendix E.

6 Conclusion

We create CURE using an LLM-Human-in-the-
Loop pipeline and identify the deficiencies in ex-
isting VLMs for reasoning performance and con-
sistency. To tackle these challenges, we introduce
a two-stage training framework consisting of su-
pervised fine-tuning and learning from LLMs feed-
back. Our method demonstrates improvement in
VLMs’ reasoning performance and consistency.

Limitation

As shown in Table 2, our proposed CoTBLIP still
exhibits a significant gap, regarding the reasoning
performance and consistency compared to the hu-
man annotators. This indicates substantial efforts
are necessary to enable existing VLMs to perform
robust visual inference like humans. CoTBLIP
currently can only generate general visual infer-
ence about the given images, without considering
the instructions. Future work is needed to enable
CoTBLIP to perform instruction-guided reasoning
chain generation that can more effectively facilitate
high-level inference.
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Appendix

A Dataset Statistics

CURE contains 1,622 evaluative instances,
wherein each instance encompasses an average of
2.91 reasoning chains, also known as subquestions,
reflecting a profound commitment to providing
rich, complex data for effective analysis. On
average, the lengths of the candidate inference,
subquestions, and candidate answers in the dataset
are 7.05, 9.97, and 2.96, respectively. Note that
these elements are products of LLMs, generated
based on the visual clues provided by human
annotators. We thus present the word cloud of the
visual clues regarding the evaluation samples in
Figure 6. Upon examination, it becomes apparent
that these visual values primarily center around
human-oriented concepts. They incorporate infor-
mation about entities, activities, and occurrences
that are directly associated with individuals. This
observation provides a partial representation of the
data distribution within our dataset, particularly in
relation to the target inference, subquestions, and
their corresponding answers.

In addition, we delineate the distribution of ques-
tion types within CURE as presented in Figure 7.
We find that CURE comprises various kinds of
questions with the "What" type questions dominat-
ing the distribution. This dominance is primarily
due to the extensive use of such questions in Sher-
lock for cultivating a holistic comprehension of any
given context or subject matter. Indeed, these types
of queries are inherently employed to both obtain
a detailed narrative of the scenario, as well as to
facilitate visual inference based on the perceived
information.

B Related Work

Vision-Language Pretraining. VLMs have
demonstrated remarkable performance across var-
ious downstream tasks, primarily due to their ex-
tensive pre-training on large-scale datasets (Gan
et al., 2022; Uppal et al., 2022; Wang et al., 2022c).
Initially, VLMs heavily relied on object detectors
for image comprehension (Li et al., 2019; Tan and
Bansal, 2019; Lu et al., 2019; Li et al., 2020a,b,
2021b, 2020b, 2021b; Zhang et al., 2021). Subse-
quent developments in VLMs research have aimed
to bypass the need for resource-intensive object
detectors (Dou et al., 2022; Huang et al., 2020;
Kim et al., 2021), streamline the inference pro-

cess (Huang et al., 2021; Xu et al., 2021), incorpo-
rate more extensive visual data (Yang et al., 2022;
Yao et al., 2022; Li et al., 2021a; Radford et al.,
2021), and introduce additional tasks for object
grounding during pre-training (Jia et al., 2021; Yao
et al., 2022). As research progresses, efforts are
made to design a unified architecture for VLMs,
enabling them to handle multiple tasks without
requiring task-specific adjustments (Wang et al.,
2021, 2022b; Li et al., 2023a). Leveraging large-
scale multimodal instruction tuning data for ef-
fective alignment of the two modalities, VLMs
can effectively parse the questions and generate
user-friendly responses (Li et al., 2023a; Liu et al.,
2023c; Zhu et al., 2023).

CoT Reasoning Consistency The CoT reason-
ing approach was initially introduced to enhance
the reasoning capabilities of LLMs by prompting
them to generate rationales and then answers (Wei
et al., 2022). This approach is extended to var-
ious domains, models, and more complex prob-
lems (Poesia et al., 2023; Li et al., 2023b; Chen
et al., 2022; Jin and Lu, 2023; Yao et al., 2023b,a;
Saparov et al., 2023; Wang et al., 2024). In addition,
the CoT reasoning consistency is effectively uti-
lized to improve the reasoning performance (Wang
et al., 2022d). However, it is still not clear how con-
sistent LLMs reasoning is, given the mixed results
in previous work (Wang et al., 2022a; Lanham et al.,
2023; Madaan and Yazdanbakhsh, 2022; Saparov
and He, 2023; Sahu et al., 2022).

C Implementation Details of Evaluation

Given that none of the VLMs under consideration
has been trained on grounded data, it is not feasible
to directly incorporate bounding box information
into these models We adopt a compromise solution
that involves preprocessing the evaluation samples
through the automatic incorporation of annotated
bounding boxes into the images. We instruct VLMs
to focus on the specific region delineated by the
bounding boxes in the prompts provided. We de-
scribe the prompts for evaluation in Appendix F.
For each top-tier question or subquestion in the rea-
soning chain, VLMs only need to select one option
from candidate answers. Namely, VLMs choose
an answer based on the highest probability among
six options: "A", "B", "C", "D", "E", and "F".
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Figure 6: The word cloud of the visual clues.

Question Type Percentage

What 86.10
Where 3.74
Why 2.77
How 2.16

Which 1.84
Who 1.54
When 0.91

Yes/No 0.68
Others 0.25

Figure 7: Question distribution.

Figure 8: Showing cases where BLIP-2 fails initially but CoTBLIP is able to generate reasonable CoT reasoning
chains that can help with the high-level visual inference and obtain the correct answer. More examples are in
Figure 10.

D Human Annotation

Human Verification. We use the molardata plat-
form1 for human annotation. We hire 3 human
annotators to validate each instance in the dataset
generated by LLM, adhering to two specific crite-
ria. First, the evaluation samples must be capable
of effectively measuring reasoning performance
and consistency. This entails instructing the anno-
tators to examine the failure modes identified in
Table 1 and also to identify any additional reasons
for excluding certain examples from the evalua-
tion; Second, we plan to improve the diversity of
the evaluation dataset by reducing instances that
demonstrate highly similar reasoning paths within
certain groups. To this end, we provide each anno-
tator with 100 dataset samples at the beginning of
the annotation, acquainting them with the dataset’s
distribution as well as some analogous examples.
In the verification process, we request annotators
to label examples belonging to an extensive group
of analogous cases. Note that this is a dynamic
process, as annotators have the capability to con-
tinuously update their understanding of the dataset
distribution while engaging in the annotation task.
After completing the annotation process, we com-

1https://www.molardata.com/

pile the results and subsequently exclude instances
that have been classified as failures by any of the
annotators. We systematically collect examples
labeled as relatively abundant in the dataset and
subject them to a thorough validation process. We
ensure the inclusion of a specific quantity of high-
quality examples in each group, proportionate to
the sample size within each group.

Dataset Evaluation. We hire a different set of
3 human annotators to conduct a cross-validation
of the dataset derived from the human verification
process, following the same verification procedure.
Additionally, these annotators are requested to per-
form the task on CURE , including the high-level
visual inference and CoT reasoning subquestions,
thus capturing the human performance score.

E Forward Reasoning Consistency

We choose the highest-performing models, specifi-
cally BLIP-2 and CoTBLIP, for conducting a qual-
itative analysis of their forward reasoning consis-
tency. We selected these models since they ex-
hibit significant performance improvements com-
pared to text-only models. We select two examples,
shown in Figure 8, to highlight cases where BLIP-2
demonstrates a lack of forward reasoning consis-
tency and where CoTBLIP can potentially offer as-
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sistance. We observe that CoTBLIP demonstrates
the ability to generate coherent rationales, starting
with visual elements that are highly relevant to the
image, and subsequently advancing towards more
sophisticated visual inference that significantly im-
pacts the prediction. For example, the reasoning
chain in the second example in Figure 8 seems to
first identify some motorcyclists that are parked on
a street in some kind of gathering and then provides
the high-level inference indicating that these folks
might be part of a community interested in such
vehicles. Notably, incorporating the rationales ex-
plicitly within the context enhances the reasoning
consistency of VLMs.

F Prompts

We compile the list of prompts utilized in our im-
plementation to instruct LLMs to perform their
designated tasks.

F.1 Candidate Answers Generation for CoT
Subquestions

Imagine a scene: {Human -Annotated Visual
↪→ Clue}

Here is a question and its corresponding
↪→ answer:

Q: {CoT Subquestion}
A: {CoT Answer}
Please generate 5 different answers in

↪→ 1-5 words that are semantically
↪→ similar but contain factual
↪→ errors.

F.2 Filtering

Imagine a scene: {Human -Annotated
↪→ Visual Clue}

We want to make an inference about this
↪→ scene by asking some coherent and
↪→ subsequent questions.

The questions are as follows:
Q1: {CoT Subquestion -1}
A1: {CoT Answer -1}
Q2: {CoT Subquestion -2}
A2: {CoT Answer -2}

So we draw the inference: {Human -
↪→ Annotated High -Level Inference}

Judge whether the reasoning chain is
↪→ coherent and consistent. Directly
↪→ answer yes or no.

F.3 Baseline Evaluation

Pay attention to the designated area
↪→ outlined by the red bounding
↪→ box in the image.

Question: {Subquestion}
Six potential answers are as follows:

A: {Candidate A}
B: {Candidate B}
C: {Candidate C}
D: {Candidate D}
E: {Candidate E}
F: {Candidate F}
Which one is most likely to be correct?

↪→ Directly answer (A/B/C/D/E/F):

What can we infer from the designated
↪→ area outlined by the red bounding
↪→ box in the image?

Here are six potential answers:
A: {Candidate A}
B: {Candidate B}
C: {Candidate C}
D: {Candidate D}
E: {Candidate E}
F: {Candidate F}
Which one is most likely to be correct?

↪→ Directly answer (A/B/C/D/E/F):

What can we infer from the
↪→ designated area outlined by
↪→ the red bounding box in the
↪→ image? Consider the following
↪→ reasoning chain: {Reasoning
↪→ Chain Generated by CoTBLIP}

Here are six potential answers:
A: {Candidate A}
B: {Candidate B}
C: {Candidate C}
D: {Candidate D}
E: {Candidate E}
F: {Candidate F}
Which one is most likely to be correct?

↪→ Directly answer (A/B/C/D/E/F):

F.4 CoT Reasoning Chains Generation

You need to generate some questions
↪→ for evaluating vision -
↪→ language models. You will be
↪→ given a scene description and
↪→ a corresponding high -level
↪→ inference about this scene.
↪→ Please generate step -by-step
↪→ questions and corresponding
↪→ answers that can derive the
↪→ final inference. The
↪→ reasoning chain should
↪→ contain 2-4 questions , and
↪→ the answers should contain
↪→ 1-3 words.

Consider the following principle:
1. The reasoning chain needs to be as

↪→ short as possible.
2. The questions are used to evaluate

↪→ vision -language models that don ’t
↪→ have access to the scene
↪→ description. So the first few
↪→ questions are about visual
↪→ information in the scene
↪→ description , and you should not
↪→ mention "description" in the
↪→ questions.
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3. The reasoning chain should be
↪→ consistent and cohesive. Each
↪→ step should be atomic or based on
↪→ previous steps , and should not
↪→ be duplicated or redundant.

4. You should avoid generating questions
↪→ with yes/no as the answers.

5. End your answer with the format ’The
↪→ final reasoning chain is: ’, and
↪→ if you think such a task cannot
↪→ be accomplished , please directly
↪→ return ’No ’.

Scene description: patches of snow
↪→ spread throughout grass on the
↪→ side of freeway.

High -level inference: Cold weather is
↪→ causing hazardous conditions at
↪→ this location.

Let ’s think step by step: We need to
↪→ initially generate some
↪→ perceptual questions based on the
↪→ visual information in the scene
↪→ description. Then we need to
↪→ generate questions about the
↪→ visual reasoning based on the
↪→ previously perceived information.
↪→ For the perceptual question , we
↪→ have the information that
↪→ patches of snow appear on the
↪→ side of freeway in the scene.
↪→ Then for the visual reasoning
↪→ problem , we can infer that cold
↪→ weather causes the appearance of
↪→ snow , and based on the knowledge
↪→ that snow can affect traffic , we
↪→ can infer that cold weather can
↪→ cause hazardous conditions at
↪→ this location.

The final reasoning chain is:
Q1: What is seen on the grass on the

↪→ side of the freeway?
A1: Patches of snow.
Q2: What kind of weather conditions

↪→ could cause patches of snow to
↪→ appear?

A2: Cold weather.
Q3: How can cold weather and patches of

↪→ snow affect the conditions of a
↪→ location?

A3: Hazardous conditions.

Scene description: {Human -Annotated
↪→ Visual Clue}

High -level inference: {Human -Annotated
↪→ High -Level Inference}

Let ’s think step by step:

F.5 Postprocessing of LLaVA Dataset

You need to generate some training
↪→ samples for vision -language
↪→ models. You will be given
↪→ several scene descriptions to

↪→ help you understand the
↪→ image. Then a human -annotated
↪→ question -answering pair will
↪→ be given.

Please generate a step -by-step reasoning
↪→ chain. The reasoning chain
↪→ should be very concise and short ,
↪→ containing less than 15 words
↪→ for each step , and the total
↪→ steps should be less than 4.

For example:
Scene description:
A group of people skiing down a hill;
Several people on skis on a snowy slope;
A group of young men riding down the

↪→ side of a snow covered slope;
Five skiers going through obstacles on a

↪→ ski slope;
people skating on the snow with orange

↪→ flags on the way.

Question: What can you say about the
↪→ skill level of the skiers
↪→ featured in the image?

Answer: In the image , there is a group
↪→ of five people skiing down a
↪→ snowy slope with orange flags
↪→ marking their trail. It appears
↪→ that they are maneuvering through
↪→ those obstacles on the ski slope
↪→ , which suggests that these
↪→ skiers possess a certain level of
↪→ skill and experience. The fact
↪→ that they can ski together in
↪→ close proximity and navigate
↪→ through obstacles demonstrates
↪→ their ability to maintain control
↪→ and balance while skiing. It’s
↪→ reasonable to assume that these
↪→ skiers may have had some training
↪→ or practice to reach this skill
↪→ level , as navigating a snow -
↪→ covered slope with obstacles
↪→ typically requires a level of
↪→ expertise beyond that of a
↪→ beginner skier.

Let ’s think step by step:
The skiers are navigating through

↪→ obstacles. They are skiing in
↪→ close proximity. This implies
↪→ advanced skill and experience.

Now consider this example:
Scene description: {COCO Captions}
Question: {LLaVA Question}
Answer: {LLaVA Answer}
Let ’s think step by step:

F.6 Feedback Generation

You will receive two inferences on
↪→ an image produced by two
↪→ models. Your objective is to
↪→ choose the superior inference
↪→ . Additionally , you will
↪→ receive a description of the
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↪→ scene to aid in your
↪→ understanding.

When making your judgment , please keep
↪→ the following principles in mind:

1. The language used in the inference
↪→ should flow naturally.

2. The inference should be grounded in
↪→ the image ’s content.

3. The inference should be logical ,
↪→ congruent , and concise.

4. The inference should be comprehensive
↪→ and complete , ultimately drawing
↪→ a high -level inference.

Give your answer after the "Answer :"

For example:
Scene description: grass in a rock
Inferences:
A: The small plant growing out of the

↪→ rock in the image is likely to be
↪→ a native species that has been
↪→ transplanted from another area ,
↪→ such as an urban or natural
↪→ environment. Native plants tend
↪→ to have deeper roots and are more
↪→ resistant to environmental
↪→ conditions than their non -native
↪→ counterparts , making them ideal
↪→ for adapting to different
↪→ habitats and environments.

B: The small plants growing out of the
↪→ crack in the rock are likely a
↪→ result of natural processes , such
↪→ as erosion or weathering over
↪→ time. This can be beneficial to
↪→ the plant ’s survival and growth ,
↪→ helping it adapt to its
↪→ environment and thrive.
↪→ Additionally , this type of
↪→ habitat is conducive for
↪→ microorganisms that help maintain
↪→ soil quality and provide
↪→ nutrients necessary for healthy
↪→ plant growth.

Let ’s think step by step: Inference A
↪→ captures the unique phenomenon of
↪→ plants growing out of the rock ,
↪→ emphasizes the natural process
↪→ and potential environmental
↪→ benefits , and provides a more
↪→ comprehensive understanding of
↪→ the scene. On the contrary ,
↪→ Inference B fails to explain the
↪→ mechanism or the specific
↪→ relationship between the plants
↪→ and the rock. The mention of
↪→ adaptation to harsh conditions is
↪→ relevant , but it does not
↪→ encompass the entire context of
↪→ the image.

Answer: A

Now consider this example:
Scene description: {Image Caption}
Inference:
A: {Inference -1}
B: {Inference -2}

Let ’s think step by step:
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Figure 9: More examples included in CURE . We only show 2 candidate options (of 6 in total) for the sake of
presentation

Figure 10: More examples for qualitative analysis of CoTBLIP.
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