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Abstract

Large language models (LLMs) are highly
adept at question answering and reasoning
tasks, but when reasoning in a situational con-
text, human expectations vary depending on
the relevant cultural common ground. As lan-
guages are associated with diverse cultures,
LLMs should also be culturally-diverse rea-
soners. In this paper, we study the ability of
a wide range of state-of-the-art multilingual
LLMs (mLLMs) to reason with proverbs and
sayings in a conversational context. Our exper-
iments reveal that: (1) mLLMs “know” lim-
ited proverbs and memorizing proverbs does
not mean understanding them within a con-
versational context; (2) mLLMs struggle to
reason with figurative proverbs and sayings,
and when asked to select the wrong answer
(instead of asking it to select the correct an-
swer); and (3) there is a “culture gap” in
mLLMs when reasoning about proverbs and
sayings translated from other languages. We
construct and release our evaluation dataset
MAPS (MulticulturAl Proverbs and Sayings)
for proverb understanding with conversational
context for six different languages, available at
https://github.com/UKPLab/maps.

1 Introduction

Large language models (LLMs) have achieved im-
pressive results on question answering and reason-
ing tasks (Radford et al., 2019; Brown et al., 2020;
Ouyang et al., 2022, inter alia). However, when
reasoning in situational context, human expecta-
tions may vary cross-culturally (Thomas, 1983,
i.e., pragmatic failure, the inability to understand
‘what is meant by what is said’) and depend on
the knowledge of the relevant cultural common
ground (i.e., the shared knowledge based on which
people within a culture reason and communicate,
including concepts, common sense, etc. Hersh-
covich et al., 2022). Understanding of such com-
mon ground in a cross-lingual setting is specif-
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Half a loaf is 
better than 
none

Rebung tidak 
jauh dari 
rumpunnya

授人以鱼不如
授人以渔

Person 1: I didn't get the 
promotion I wanted, but at 
least I got a raise. Person 2: 
Of course, half a loaf is 
better than none.

A proverb can be used 
in conversations

mLLMs

Figure 1: Proverbs are fixed expressions used by dif-
ferent cultures. We collect proverbs from six lan-
guages (top) and their usage within conversational con-
texts. We evaluate mLLMs with a binary-choice in-
ference task in the conversational context that contains
proverbs (bottom).

ically understudied in NLP (Hershcovich et al.,
2022) and neglected in existing LLM literature.
As languages and cultures are intertwined (Kram-
sch, 2014; Hovy and Yang, 2021), it is crucial for
models that serve all communities to be able to
reason and communicate in a relevant way.

For these reasons, we focus on studying (prag-
matic) reasoning conditioned on the cultural com-
mon ground of multilingual LLMs. Several ques-
tions arise: (1) Do mLLMs embed knowledge of
cultural common ground, and does this knowl-
edge affect their reasoning performance? (2) Can
mLLMs reason in contexts that require an under-
standing of cultural common ground? and (3)
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Can mLLMs reason cross-culturally (i.e., about
another culture’s common ground, after translat-
ing into the same language) and are there gaps in
the cultural knowledge (a “culture gap”)?1

To answer the above questions, we need to as-
sess mLLMs using fixed, culturally-diverse ex-
pressions in multiple languages, that are also used
flexibly in situational contexts. Fixed expressions
are particularly important for evaluating the mem-
orization of cultural common ground knowledge
of LLMs. However, prior work focusing on multi-
cultural concepts such as MaRVL (Liu et al., 2021,
which is in multimodal) or MABL (Kabra et al.,
2023) do not contain fixed expressions.

Proverbs and sayings (such as the ones illus-
trated in Figure 1) are fixed expressions that con-
vey traditional wisdom, sometimes viewed as a
form of folk literature and grounded in living ex-
perience and social-cultural context (White, 1987;
Mieder, 2004; Honeck, 2013). While different
proverbs may emerge for different cultures, the
underlying meaning of proverbs usually expresses
universal human experiences. Yet, their literal ex-
pression and interpretation can vary from culture
to culture (Honeck, 2013).

For example, the English proverb The apple
doesn’t fall far from the tree — means a child
grows up to resemble his/her parents. While a
plain version like father like son exists in many
cultures, this proverb has a similar variant Rebung
tidak jauh dari rumpunnya “Bamboo shoots are
not far from the clump” in Indonesian, and 龙生
龙，凤生凤，老鼠的儿子会打洞 “the dragon
begets the dragon, the phoenix begets the phoenix,
the son of a rat can make a hole” in Chinese. Of
course, not all proverbs have parallels in different
languages, as they are often culturally dependent.

Furthermore, proverbs are used in writing or
conversational settings to offer advice, make ar-
guments, or console others. A proverb’s interpre-
tation depends on the context (Mieder, 2004) it is
used in, and is often figurative, where the inter-
preted meaning does not entail the literal meaning.
This makes them the ideal devices for studying the
ability of LLMs to reason in situational contexts.

Hence, in this paper, we propose to use proverbs
and sayings as one particular proxy for cultural

1Reasoning with cultural common ground may be inde-
pendent of language. For example, communications among
different cultural groups within a multi-cultural country, or
communication between L1/L2 speakers of a language where
the L2 speaker has acquired the grammatical competence but
not the cultural or pragmatic competence.

common ground. In particular, we study: (1)
Do mLLMs recognize proverbs, and how well do
they memorize them? (2) Can mLLMs choose the
correct interpretation of a proverb given a situa-
tional context? and (3) Can mLLMs reason cross-
culturally, and are there culture gaps in the inter-
pretation of proverbs across cultures?

We first present the MAPS (MulticulturAl
Proverbs and Sayings) dataset, which consists of
a collection of proverbs and sayings, an inference
task for interpreting the meaning of proverbs in sit-
uational contexts (i.e., conversations), and binary
labels indicating if the proverb is figurative. The
dataset covers six languages with geographical di-
versity: English, German, Russian, Bengali, Man-
darin Chinese, and Indonesian.

We design a suite of experiments with MAPS
for a wide range of open source state-of-the-art
mLLMs. We find that mLLMs do possess knowl-
edge of proverbs and sayings to varying degrees
(significantly biased toward English and Chinese),
and the amount of knowledge scales with model
size. Through our inference task, we also find
that the memorization of proverbs does not indi-
cate better reasoning ability with proverbs, and
figurative proverbs are more difficult for mLLMs
to reason about in many languages. On the abil-
ity of mLLMs to reason cross-culturally with cul-
tural common ground, we find that significant cul-
ture gaps exist when reasoning with translations.
Our results indicate that despite the apparent mul-
tilingual reasoning abilities of mLLMs, further re-
search to improve the cultural diversity (in terms
of cultural common ground) of mLLMs is needed.

To summarize, our contributions are: (1) we
provide an analysis of the ability of a wide range
of state-of-the-art open-source mLLMs to rea-
son with cultural common ground, through the
lens of proverbs and sayings; (2) We disentan-
gle the effects of memorization versus reasoning
with proverbs and sayings, and reveal culture gaps
in mLLMs; and (3) We construct a multicultural
dataset of proverbs and sayings for six different
languages with multiple levels of annotations.

2 Related Work

Prior work has evaluated the ability of LLMs to
reasoning abstractly (Ghosh and Srivastava, 2022,
recognize proverbs from short stories) or inference
based on cultural norms (Huang and Yang, 2023)
in English and assessed the models’ ability for
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matching proverbs across three languages (BIG-
bench authors, 2023, with a small evaluation set).
To the best of our knowledge, MAPS is the largest
multilingual dataset that focuses on proverbs and
sayings, with conversational contexts and an infer-
ence task.

MABL (Kabra et al., 2023) is a task similar to
ours but focuses on the multicultural understand-
ing of novel metaphors and cross-lingual trans-
fer. It is less suitable for studying memoriza-
tion versus reasoning and does not study reason-
ing within a conversational context. Ruis et al.
(2023) and Hu et al. (2023) use conversational
context to study pragmatic reasoning in English
LLMs and the identification of parallels between
humans and models, respectively. Concurrently,
Huang and Yang (2023) proposed a culturally-
aware natural language inference task based on
cultural norms. However, they provide limited in-
sights beyond English. While we also use con-
versational context, we focus on cultural common
ground and multilingual aspects of mLLMs (with
a larger dataset). Other work on understanding the
memory-retrieval mechanism in LLMs with En-
glish idioms (Haviv et al., 2023), cultural knowl-
edge (Wang et al., 2023; Koto et al., 2023; Li et al.,
2023b) or cultural value and bias (Arora et al.,
2023; Haemmerl et al., 2023; Cao et al., 2023, in-
ter alia). Furthermore, we acknowledge existing
work intended to study the formal and other types
of reasoning in LLMs (such as the ones mentioned
in Huang and Chang, 2023), which are different in
their goals from ours.

3 MAPS — MulticulturAl Proverbs and
Sayings

To help investigate our proposed research ques-
tions, we first present MAPS — a dataset of
proverbs across six geographically and topolog-
ically diverse languages. MAPS consists of: (1)
proverbs and sayings; (2) conversational usages as
context; (3) interpretations of proverbs (one cor-
rect, one wrong); and (4) labelling of whether
the usage of the proverb is figurative or not (see
Table 2 for data examples, and Figure 6 in Ap-
pendix A.6 for an illustration of the annotation
process).

3.1 Dataset Creation

Language Choices. We chose six languages for
this dataset: English, German, Russian, Ben-

gali, Mandarin Chinese, and Indonesian. Several
factors were considered when choosing the lan-
guages, including geographical diversity such as
Eastern vs. Western (to increase the potential con-
cept diversity), topological diversity, and resource
availability (high-resource vs. lower-resource).

Proverbs and Sayings. We collect all proverbs
and sayings (along with explanations) from Wik-
iquote2 and Wiktionary.3 Bengali has a signif-
icantly higher volume of proverbs compared to
other languages, and thus we perform random sub-
sampling of the proverbs for annotation to keep the
final data roughly balanced between languages.

Conversational Context. While proverbs and
sayings are self-contained, they are typically used
in conversations and writing. To investigate the
ability of mLLMs to reason with proverbs, next,
we created short conversations that use proverbs
(i.e., the conversational context for the inference
task).

To aid the data creation process, we use a
model-in-the-loop approach, inspired by recent
work (Chakrabarty et al., 2022; Liu et al., 2023).
We first use GPT3.5 (gpt-3.5-turbo-0301; a sib-
ling model of Ouyang et al., 2022) by prompting it
with fixed templates to generate the seed conversa-
tional context (see Appendix B for the model tem-
plates).4 Next, we ask two or more native speak-
ers (experts or crowd, with at least one expert per
language) to either accept the model-created con-
versation or write a new conversation if the usage
of the proverb is flawed.

In the final dataset, the conversational contexts
for English, Chinese, Russian, and Bengali were
completely rewritten,5 whereas for Indonesian and
German, 22% and 20.5% of the original model-
generated contexts were retained (the difference is
probably due to variations in individual annotator
preferences).

Interpretation of Proverbs in Context. We for-
mulate this part as an inference task (following Liu

2https://en.wikiquote.org/
3https://www.wiktionary.org/
4The conversational contexts are in each perspective lan-

guage, except for Russian and Bengali where the contexts are
in English due to quality issues. For Russian and Bengali, the
contexts are written in English first, then machine-translated
and fixed by native speakers for two rounds.

5The model has significant trouble in creating relevant
context when the proverb is figurative. Anecdotally, human
annotators found that the machine-generated context is help-
ful as a ‘prompt’, which helped to speed up the rewrites.

2018

https://en.wikiquote.org/
https://www.wiktionary.org/


Language Code #Data (Test Size) Class

English En 424 (394) 5
Chinese Zh 364 (334) 5
German De 364 (334) 5
Russian Ru 420 (390) 4
Bengali Bn 370 (340) 3
Indonesian Id 371 (341) 3

Table 1: Dataset statistics. “Class” = language class
according to Joshi et al. (2020), where 5 means the lan-
guage is resource-rich.

et al., 2022). We ask annotators to create one cor-
rect answer and one wrong answer to the following
question based on the conversational context:

What does the person mean by {proverb}?
Additionally, we also label the proverb if the

interpretation is figurative (i.e., the interpreted
meaning of the proverb is different from the ex-
pressed literal meaning).6

Quality Control. Finally, we sampled 100 con-
versational contexts with their answers from each
language. Then, we asked a separate set of native
speakers to assess the data quality for: (1) correct
usage of the proverb (i.e., the context is correct);
and (2) correct answers for interpreting the mean-
ing. Sometimes, it is possible to have more than
one interpretation of a proverb given the context.
We asked the native speakers to score the answers
as correct as long as the answers aligned with one
possible interpretation and revise the options.

The final dataset consists of 2313 proverbs with
conversational context. The statistics for each lan-
guage are in Table 1 (with additional data statistics
in Table 6 in Appendix A). We further split the
data for each language into a test set and a few-
shot train-dev set (30 randomly selected examples
each). Table 2 shows examples from our dataset.

3.2 Analysis of MAPS

Proverbs and sayings are cultural artifacts and re-
flect embodied experiences, which contain diverse
concepts often grounded in the real world. For in-
stance, dairy product concepts (milk, cheese, yo-
gurt, etc.) exist in different languages but not in
Chinese proverbs, whereas concepts that are sym-

6“An apple a day keeps the doctor away” is a literal
proverb that advocates for apple consumption. “The apple
doesn’t fall far from the tree” is a figurative proverb where
the literal meaning is about apples and a natural phenomenon,
whereas the actual meaning of the proverb is about a child
growing up to resemble his/her parents.

Figure 2: Visualizing proverb embeddings using kernel
density estimation (KDE).

bolically meaningful in Chinese culture like drag-
ons or phoenixes exist in the dataset. To illus-
trate this, we select interesting food items and an-
imals from the final dataset (details in Table 4,
Appendix A.2). Furthermore, we categorized the
concepts in 100 sampled figurative proverbs in En-
glish, Chinese, and Indonesian (for details, see
Appendix A.3, Figure 7). We observe that Indone-
sian has a lot more proverbs that use animals and
are about nature than English.

We further encode the proverbs (without
contexts) using multilingual sentence embed-
dings (Feng et al., 2022, LaBSE) and plot the em-
beddings with Kernel Density Estimate (KDE) (af-
ter dimensionality reduction to two components
using tSNE; van der Maaten and Hinton, 2012) to
show the distinctiveness and connections between
proverbs across different languages and cultures
in Figure 2, which further illustrates that proverbs
and sayings are inherently culturally-diverse. To
verify this is not due to language difference, we
provide additional analysis and discussion in Ap-
pendix A.5 to isolate the language effect.

In Figure 2, the embedding distributions are in-
terestingly ordered from the West to the East. In-
donesian proverbs partially overlap with English,
probably due to the use of the Latin script and
influences of foreign languages due to historical
context. Chinese and Bengali proverbs are rela-
tively distinct from the Western languages.

4 Experimental Setup

We perform zero-shot evaluations and keep all
prompt templates in English (on the test set), as
previous studies show better performance with En-
glish prompts on mLLMs (Lin et al., 2022; Big-
Science Workshop et al., 2022; Muennighoff et al.,
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Lang Proverb Context Choices & Answer

Zh
授人以鱼不
如授人以渔
(figurative)

A:你可以帮我做这个项目吗？B:当然可以，但是
我觉得“授人以鱼不如授人以渔”。
(A: Can you help me with this project? B: Of
course, but I think "it is better to teach a
man fishing than to give him fish".)

A: B想帮A做项目而不是教A做项目。
(B wants to help A with the project instead
of teaching A to do the project.)
B: B想教A做项目而不是帮A做项目。
(B wants to teach A to do the project
instead of helping A to do the project.)
Answer: B

Id

Nasi sudah
menjadi
bubur
(figurative)

Orang 1: Bagaimana reaksi bos-mu setelah kamu men-
gakui kesalahanmu? Orang 2: Kurang baik. Saya sudah
mencoba menjelaskan alasan saya berbuat begitu, tetapi
saya tetap diberi sangsi. Nasi sudah menjadi bubur.
(Person 1: How did your boss react after you
admitted your mistake? Person 2: Not well.
I’ve tried to explain why I did this, but I’m
still being penalized. The rice has become
porridge.)

A: Orang 2 tidak dapat melakukan apapun untuk
mengubah reaksi bos.
(Person 2 can do nothing to change the
boss’s reaction.)
B: Orang 2 masih bisa mengubah reaksi atasan.
(Person 2 can still change the boss’s
reaction.)
Answer: A

Table 2: Examples from selected languages (see Table 7, Appendix A.6 for examples in all languages).

2023).7

Models. We experiment with the following open
source state-of-the-art multilingual models: (1)
masked LMs (MLM): XLM-R (355m, 3.5B, Con-
neau et al., 2020); (2) encoder–decoder LMs:
mT0 (580M, 3.7B, 13B, multitask and instruction
tuned, Muennighoff et al., 2023); and (3) Causal
LMs: BLOOMZ (560M, 3B, 7.1B, Muennighoff
et al., 2023), and XGLM (564M, 2.9B, 7.5B, Lin
et al., 2022). Most of the models cover all 6 lan-
guages in MAPS except BLOOMZ, which is de-
rived from BLOOM (BigScience Workshop et al.,
2022) and does not cover Russian or German.
In addition, despite being primarily an English
model, LLaMA-2 (Touvron et al., 2023, Causal
LM) has some multilingual capabilities. As a re-
sult, we incorporate three LLaMA-2 models (7B,
13B, 70B) in our study.8

Memorization Evaluation. Since proverbs are
fixed expressions, successfully completing a
proverb with greedy decoding likely means that
the model has seen the proverb during pretrain-
ing, similar to prior work on detecting memoriza-
tion or data contamination in LLMs (Magar and
Schwartz, 2022; Haviv et al., 2023; Carlini et al.,
2023, 2021).9 Hence, following a similar setup to
previous work (Magar and Schwartz, 2022; Haviv

7For completeness, we also provide additional baselines
using MAPS for cross-lingual transfer and few-shot evaluation
in Appendix C and Appendix D.7.

8While larger models exist, we chose these models due to
computational constraints. We can already see differences
in performance at these model sizes and we include addi-
tional results for Vicuna-v1.5 (Zheng et al., 2023) and Aya-
101 (Üstün et al., 2024) in the Appendix D.3.2.

9See Appendix D.1.1 for more discussion.

et al., 2023; Carlini et al., 2023, 2021), we mask
out the last word of each proverb and prompt the
mLLMs to complete the proverb with templates in
Table 8, Appendix B.

For the memorization task, let ti ∈ T be a
prompt template, and let qj be a proverb with
n words where qj ≜ {w1, w2 · · ·wn}. We re-
move the last word wn for non-MLM models, if
the LM generates (greedily) a string that starts
with the missing token, or the entire proverb is a
sub-string of the generated string, then we count
the model as having memorized the proverb. For
the MLM model, we mask out the last word
with ‘<mask>’ and do predictions (i.e., w =
argmaxwn∈V P (wn|Ti; q̂j), where q̂j is a proverb
with mask token, and V is the vocabulary).

As the zero-shot prompting results are highly
sensitive to the input patterns, we create 5 differ-
ent prompt patterns (Table 8, Appendix B), and
take the union of memorized examples among 5
patterns as the memorization accuracy.

Reasoning Evaluation. For the inference task,
we compute the correct answer by comparing the
logits of the two answer candidates (‘A’ or ‘B’)
as in Lin et al. (2022). In particular, we use
the prompt template tr for this task (as in Ta-
ble 9, Appendix B) and compute P (tr; qi; ‘A’) and
P (tr; qi; ‘B’) and pick the larger one as the correct
answer. For the MLM model, we compare the pre-
diction logits of the answer candidates.

Translations for Cross-culture Gap Evaluation.
To study gaps in cross-cultural communication,
we use English and Chinese as the basis for a case
study, with two types of translation data. Ma-
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chine Translation (MT). We translate every Chi-
nese proverb, context and answer into English us-
ing Google Translate (Zh–En). Human-Adapted
Translation (HT). We perform adaptations to the
machine-translated context: (1) manually correct
any mistakes in the literal translation of proverbs,
fixing the grammatical errors in the contexts and
answers; and (2) conduct a light adaptation of the
translated data inspired by Majewska et al. (2023),
by replacing names and locations in the dataset to
align with the culture (e.g., XiaoMing to Michael
etc.) in case LLMs are confused about whether an
entity is a person or a place. This represents our
best-effort adaptation to reduce the language gap.

5 Results and Discussion

5.1 Knowledge of Proverbs

— A little knowledge is a dangerous thing.
While it is possible that the proverbs in the

training data appear alone without any contextual
usage or explanation, we consider such an occur-
rence to be unlikely.10 Hence, we make the as-
sumption that memorization of the fixed expres-
sion also correlates with LLMs having embedded
knowledge of the usage or meaning.

Figure 3a shows the results of proverb mem-
orization, which (unsurprisingly) improves with
model size. While XLM-R, XLGM, and mT0
cover all of the languages in our dataset, they
don’t score particularly well in memorization of
proverbs in a single language. All models exhibit
disparities in memorization across all languages,
and these disparities are particularly pronounced
in the case of Indonesian, Bengali, and Russian,
which are lower-resource languages.11 These dis-
parities are potentially due to data exposure, as we
don’t find any significant attribution, such as well-
known versus less well-known, long versus short,
or figurative versus non-figurative proverbs, by an-
alyzing the memorized proverbs.

5.2 Reasoning of Proverbs with
Conversational Context

— All that glitters is not gold.
While many models embed knowledge about

proverbs, it is unclear if memorization translates
to better reasoning with proverbs given the con-

10Webpages such as this https://en.wiktionary.org/
wiki/no_pain,_no_gain exist in the training data for
LLMs.

11See Appendix D.1.2 for more results.

text. Next, we assess the models using our infer-
ence task.

Memorization does not indicate the ability to
reason with proverbs. We prompt models with
the pattern in Table 9 (Appendix B) and plot the
accuracy across languages in Figure 3b. In gen-
eral, the bigger the model is, the better it performs
on the inference task (i.e., the ability emerges with
scale).

Overall, comparing the memorization curve and
reasoning curve of mT0, XGLM and XLM-R,
we observe that memorization does not indicate
the ability to reason with proverbs in our exper-
iments. In fact, model architecture has little ef-
fect (as BLOOMZ and LLaMA-2 are Causal LMs,
and mT0 is an encoder–decoder model). We
provide additional results using different prompts
in Appendix D.3.1 and few-shot results in Ap-
pendix D.7.

Since we know which proverbs are memorized
from the previous experiments, we further break
down the results into memorized vs. not memo-
rized proverbs for the 3 best-performing models
excluding LLaMA-2 70B (as it already achieved
good results in Figure 3, which offers limited in-
sights) in English and Chinese in Table 12, Ap-
pendix D.2. The benefit of memorization is ev-
ident in English and shows inconsistency in Chi-
nese (which aligns with observations for other lan-
guages in Figure 3b).

One possible explanation for the task not being
heavily dependent on memorization is that con-
textual information aids inference, and the model
may also implicitly learn other culturally-relevant
information from the training data during pretrain-
ing. Consequently, this suggests that LLMs may
prioritize contextual information over memory re-
trieval when both are available. However, such
a hypothesis requires further research, which we
leave to future work.

Figurative proverbs are difficult to understand
in general. Many proverbs are figurative, hence,
we further divide the results of the model based
on this property (described in §3). Looking at
Table 3, we can see that, across English, Ger-
man, and Russian, all models perform worse on
the inference task when the interpretation is figu-
rative. Interestingly, the opposite pattern is consis-
tently observed for Chinese. Larger models appear
to understand Indonesian and Bengali figurative
proverbs better. One conjecture is that while ab-
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(b) Zero-shot results of proverbs understanding with context.

Figure 3: Performance of mLLMs on the proposed MAPS dataset. The number of parameters is in billions for
LLaMA-2 and in millions for all other models.

stract reasoning (the kind required for understand-
ing figurative proverbs) can rely on memorization,
less memorization may lead to better abstract rea-
soning in LLMs.

Bias towards the correct answer amplifies per-
formance gaps across languages. If the model
genuinely understands a proverb’s meaning in a
situational context, it should be able to select the
correct answer as well as the wrong answer when
requested, especially for a task with only two
choices. Prior work has shown that negation in the
natural language inference task weakens model
performance (Truong et al., 2023; She et al., 2023;
Kassner and Schütze, 2020). While not the pri-
mary focus of our work, this is a fundamental as-
pect of reasoning (Blanco and Moldovan, 2011)
and we conducted experiments to verify. Here,
we aim to ask a ‘negative’ question rather than
provide negative answers. Hence, we change the
question in the prompt template to What does the
person not mean by the proverb?, while keeping
everything else the same.

The results are in Figure 4. By simply asking
the model to pick the wrong answer, all previ-
ously well-performing models are now performing
badly, except mT0 (which may be due to the model
being instruction-tuned). The ‘negative’ question
enlarged performance gaps across languages as the
model size increased. Additional results on asking
the model to pick the wrong answer without us-

ing the word not are in Appendix D.4, where we
observe consistent trends of model failures and in-
verse scaling in many cases. While we focus on
the cultural aspect of mLLMs, these results show
fundamental work is needed to improve the ability
of current mLLMs to handle ‘negative’ questions.

5.3 Culture Gaps in mLLMs - A Case Study
— When in Rome, do as the Romans do.

An ideal mLLM should perform on texts from
all languages and translations in all directions
equally well. However, in our experiments, the
performance on English data is still stronger than
in other languages for most of the models we stud-
ied. Recently, several works have shown that good
performance can be achieved by translating non-
English text data in languages into English (Con-
neau and Lample, 2019; Yang et al., 2019, inter
alia). Here, we demonstrate that when a task relies
on cultural context, there are two distinct perfor-
mance gaps to achieving true multilingual ability:
one is the language gap (due to mistakes by the
translation system, which may be fixed by a per-
fect translation system), and the other is the cul-
ture gap.12 To demonstrate this, we use English
and Chinese as the focus of a case study.

We translate the data based on the descrip-
tions in Section 4. Next, we perform the zero-
shot evaluation with the best-performing multilin-
gual models (mT0-XXL, 13B) and English model

12This can relate to cross-cultural pragmatic failure.
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Model Non-Figurative / Figurative
En Zh Id De Ru Bn

BLOOMZ 3B 58.76/57.60 53.12/61.97 53.33/60.52 51.66/47.54 52.43/45.13 55.88/49.26
BLOOMZ 7.1B 79.66/68.20 66.66/68.30 72.00/75.18 54.30/53.55 52.43/49.55 67.64/53.30
mT0-XL (3.7B) 75.14/62.21 62.50/64.08 74.67/69.54 74.17/61.74 73.78/61.94 69.12/52.94
mT0-XXL (13B) 87.01/82.95 81.77/83.09 84.00/84.96 88.74/83.61 87.80/76.99 63.23/69.85
LLaMA-2 13B 81.36/76.50 53.12/54.23 54.66/58.27 72.19/65.03 67.07/59.73 47.05/49.63

Table 3: Zero-shot accuracy of non-figurative and figurative proverbs (Non-Fig./Fig.). The gray colour results
indicate that the language is not officially supported by the model.
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Figure 4: Performance of mLLMs on the proposed MAPS - Inference task when asking the ‘negative’ question. The
number of parameters is in billions for LLaMA-2 and in millions for all other models.

(LLaMA-2 13B) for Zh–En (in Figure 5). In fact,
both models show a performance gap in the trans-
lated data compared to the target language. Inter-
estingly, mT0 also shows a performance degrada-
tion compared to the inference results in the orig-
inal language (as LLaMA-2 is near chance level
for Zh, the improvement is not surprising). In
all cases, HT improves over MT, where the gain
can be considered as the language gap. More in-
terestingly, we define the gap between HT and
the max of source and target language is the cul-
ture gap in mLLMs, i.e., culture gap = |AccHT −
max(AccSrc, AccTgt)|. The culture gap for Zh–
En is 5.73 for mT0 and 19.40 for LLaMA-2.13 In
an ideal situation, these gaps should be 0, indicat-
ing that the model is culturally aware and capable
of understanding a language when speakers come
from diverse cultural backgrounds. By closely ex-
amining the machine-translated data, it is evident
that current machine translation (MT) systems do
not handle cultural context well, producing incom-
plete or incorrect translations of proverbs. For ex-
ample, a polysemous phrase 大三was translated
to “junior” (third-year university student), but in
a specific proverbial context, it means someone
is “three years older”. Similarly, a phrase like

13We also perform the same experiment in the reverse
direction En–Zh with mT0 (Appendix D.5), similar re-
sults were observed. Other evaluation results on machine-
translated data for other languages with LLaMA-2 are in Ap-
pendix D.5.
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Figure 5: Performance gap between machine-
translated, human-translated data and results in the
original source language (Zh), and target language
(En).

不如 is translated to “not as good as” instead of
“it’d be better”. Our results suggest that additional
research is needed to improve cultural awareness
and the inclusion of cultural priors in MT models
and mLLMs (Yao et al., 2023; Shaikh et al., 2023).

6 Conclusion

In this work, we use proverbs and sayings from
different languages as an investigative tool to as-
sess the ability of mLLMs to reason with cul-
tural common ground. Specifically, we study var-
ious mLLMs to evaluate their ability to memorize
proverbs, reason with proverbs and sayings in dif-
ferent situational contexts and understand cross-
cultural communications using proverbs.
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To aid the investigation, we developed a mul-
ticultural proverbs and sayings dataset MAPS. Our
analysis shows that many models possess knowl-
edge of proverbs and sayings, however, recogniz-
ing proverbs does not mean the model is able to
reason with proverbs in contextual settings. In-
deed, we found that mT0 shows some culturally-
diverse reasoning ability, but only to a very limited
extent. We also found that the ability to reason in
a zero-shot manner emerges with model scale, but
the ability to understand a ‘negative’ question in-
versely correlates with the model scale. The dis-
parities in culturally-diverse reasoning ability be-
tween languages grow with the model size, which
raises concerns in terms of multilingual availabil-
ity and points to the need for more robust mLLMs.
Finally, we defined and observed several culture
gaps in cross-lingual communications. We hope
to explore different aspects of cultural common
ground in the future and to inspire novel work
that facilitates inclusive cross-cultural understand-
ing and communication with mLLMs.

7 Limitations

Our work uses proverbs and sayings as a proxy for
cultural common ground, and we explore mLLMs’
ability to understand cultural common grounds in
a limited setting. One potential limitation is we
only collect one conversation per proverb or say-
ing, and one pair of correct–wrong interpretations.
Another limitation is the evaluation data is rela-
tively small compared to many automatically gen-
erated benchmarks and may introduce lexical bi-
ases. However, these are not major concerns as:
(1) we want to focus on cultural common ground,
which automatically limits us to a subset of lexical
items (lexical biases is an intended feature); and
(2) to the best of our knowledge, this is the largest
proverb dataset for reasoning in context, and there
is enough signal to distinguish between the tested
models and uncover insights on current mLLMs
ability and limitations in understanding proverbs
and sayings. We hope to explore aspects of culture
beyond proverbs and sayings, and with a more di-
verse set of languages (such as African languages
or American indigenous languages) in the future.

In this work, we evaluate general-purpose open-
source mLLMs. However, a full evaluation of
larger models or task-specific models may be nec-
essary, especially when asking ‘negative’ ques-
tions and assessing culture gaps. We focus on

studying open-source LLMs in this paper for sci-
entific reproducibility, and closed-source LLM
evaluations are beyond our scope. As our dataset
is publicly available, it can be used to evaluate
closed-source LLMs in the future, and we encour-
age others to do so.
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A Dataset

A.1 Annotations
We recruit crowd annotators through Prolific14

with the requirement of the corresponding lan-
guage as their first language, and being fluent in
English. Expert annotators are Master’s, PhD and
Post-doc researchers, including the authors of this
paper. The annotation process is illustrated in Fig-
ure 6.

Instructions to create the conversational con-
text:

Step 1: Check if the proverb is used cor-
rectly in the conversation.

Note: Sometimes, the proverb is figurative,
meaning that the underlying meaning and the
literal meaning of the proverb are different!
The conversation should fit the figurative us-
age/meaning of the proverb.
Example:

Person 1: "I’m scared of my boss." Person
2: "Well, barking dogs seldom bite."

"Barking dogs seldom bite" -It has a literal
meaning of dogs that bark rarely take action
and bite you, so you don’t need to be afraid
of getting hurt. The proverb metaphorically
describes people that threaten you a lot rarely
take action and harm you. Although this con-
versation may be missing some contexts, it
should be labelled as correct.
Example:

Person 1: "My dog is barking." Person 2:
"Well, barking dogs seldom bite."

The proverb is used in a literal way when
it has a figurative meaning. This should be
labelled as wrong.

Step 2: Re-write the conversation if the
proverb is not used correctly from step 1.

The conversation should be 1-turn (1 round
between 2 people), and maximum 2-turn (2
rounds between 2 people).

14http://prolific.com/

LLMProverbs Seed 
Context

Good 
Context

Yes

No, 
re-write

Correct?

Answers

What does the person 
mean by <proverb>?

Figure 6: The data annotation process of MAPS.

Note: Please do not produce a conversation
where one person is asking about the meaning
of the proverb.

Instructions to create the answers:

What does the person mean?

• Identify the person who used the proverb
in the conversation.

• Write down a short sentence in the OPT1
column, state what the person means by
the proverb in this conversation.

• Write down a negative of OPT1 in the
OPT2 column.

A.2 Animal and Food Terms in the Dataset

Table 4 shows selected animal and food concepts
across different languages. From the data, we can
see that proverbs naturally contain culturally im-
portant concepts. For example, we can see that
“tiger” is a relatively important concept for East-
ern cultures, whereas “lion” is more important for
Western cultures; while bread is enjoyed by many
people around the world, rice is culturally more
important in the East.

A.3 Additional Qualitative Analysis of
Proverbs

We provide a qualitative analysis of how simi-
lar proverbs are expressed differently across lan-
guages and cultures. Similar to the ones in our
introduction, many proverbs have a similar vari-
ant across cultures but are expressed differently.
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Table 4: Selected food and animal concepts from the
proverbs.

These proverbs differ by either using concepts that
are familiar with the culture or using a local place
name or person name (but this is very rare). Ta-
ble 5 shows examples.

Next, when proverbs are figurative, different
languages and cultures tend to use different types
of concepts to draw parallels. We randomly sam-
pled 100 figurative proverbs in English, Indone-
sian and Chinese, and classified contained con-
cepts into one of the 5 categories, namely: An-
imals & Insects, Food, Cultural (including reli-
gious and spiritual entities, historical figures or
names from the local culture), Nature (including
metals, plants and other in-animated objects) and
Others. Most of the time, a proverb only contains
a single type of concept. However, when there are
multiple types of concepts, we pick the dominant
one (such as part of the object of the sentence).
The distributions are in Figure 7. Here, we observe
noticeable differences in distributions across dif-
ferent cultures. There are more concepts related to
Animals & Insects and Nature in Indonesian than
in other languages, which is probably due to In-
donesia’s unique geographical location.

Table 5: Parallel or closely related proverbs across dif-
ferent languages.

Lang Avg Tok in Context Avg Turns

English 28.41 1.18
Chinese 31.30 1.14
German 27.91 1.12
Indonesian 25.35 1.15
Russian 31.25 1.47
Bengali 35.16 1.63

Table 6: Additional dataset statistics: average number
of tokens in the context, and average turns in the con-
text.

A.4 Additional Data Statistics

We include additional dataset statistics in Table 6.
To calculate the average tokens in the context for
Chinese, we take each character as a word.

A.5 Interpreting the KDE Plot

For better comparison, we produce the Ker-
nel Density Estimate (KDE) plot of 400 ran-
domly sampled sentences in each language (2400
sentences in total), from a parallel multilingual
dataset (Li et al., 2023a) in Figure 8. As
the original data is much larger (67k sentences
per language), sub-sampled sentences are likely
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Figure 7: Distributions of concepts categories in figurative proverbs.

Figure 8: Visualizing embeddings with Kernel Density
Estimate (KDE) when the sentences are sampled from
a parallel dataset (topic coherent across languages).

not translations of each other, but rather topic-
coherent.

When sentences are topic-coherent, their em-
beddings overlap on top of each other and are in-
separable (Figure 8). In comparison with the KDE
plot of proverb embeddings (Figure 2), we can see
the difference in proverbs across languages and
cultures.

A.6 Data Examples

We balance the labels in MAPS and we show exam-
ple data for all languages in Table 7.

B Templates

We use Generate a very short 1-turn dialogue ends
with “proverb” in language as the template to
query GPT3.5 (gpt-3.5-turbo-0301) for the seed
conversational data. The model does not strictly
generate seed conversation with 1-turn. We also
experimented with a translated template and did
not observe quality improvements for our task.

Table 8 contains all of the templates used in
our memorization experiments in the main section,
with the proverb no pain, no gain as the exam-
ple. For instance, the last word of no pain, no gain

ProbA

Question: What does the person 
mean by the proverb?
Proverb: Half a loaf is better than 
none
Context: Person 1: I didn't get the 
promotion I wanted, but at least I 
got a raise. Person 2: Of course, 
half a loaf is better than none.
Choices: A: A raise is better than 
nothing. B: A raise is worth 
nothing. 
Answer:A

If ProbA >ProbB       Else ✔ ❌

Question: What does the person 
mean by the proverb?
Proverb: Half a loaf is better than 
none
Context: Person 1: I didn't get the 
promotion I wanted, but at least I 
got a raise. Person 2: Of course, 
half a loaf is better than none.
Choices: A: A raise is better than 
nothing. B: A raise is worth 
nothing. 
Answer:B

mLLM

ProbB
Since the 

correct label 
is A

Figure 9: An example illustrating how the inference is
done with mLLMs (excluding MLMs).

is removed. As the prompting results are highly
variable based on the input patterns, we created
five different prompt patterns. We take the union
of memorized examples among 5 patterns as the
memorization accuracy.

Table 9 is the template we used for our main
inference experiment in the paper. As described
in §4, we perform experiments with the inference
task on mLLMs. Figure 9 illustrates the experi-
ment process for non-MLM models.

C Cross-lingual Transfer Baselines

For completeness, we provide cross-lingual trans-
fer baselines on MAPS. For cross-lingual transfer
baselines, we re-split the English dataset into the
train and test set (274/150 data points each) and
evaluate on the original test set for other languages
(i.e., same as zero-shot). We randomly sampled 20
data points from the training set as validation. We
formulate the task as binary classification and ex-
perimented with XLM-R-Base (125M)/XLM-R-
Large (355M)/XLM-R-XL (3.5B) and mT0-Base
(580M)/mT0-Large (1.2B)/mT0-XL (3.7B).

The data input format is: Context: {context}
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Table 7: Examples for all six languages from MAPS.

Choices: A: {answer 1} B: {answer 2}.

We use AdamW optimizer (Loshchilov and
Hutter, 2019) and conduct a hyperparameter
search of the learning rate of [5e-5, 1e-4, 1e-5] and
batch size of [8, 10, 16], trained for 30 epochs with

bfloat16 precision, on a single A100 GPU.

The zero-shot transfer results are in Table 10
and averaged over 4 random seeds. The final hy-
perparameters for all models are [lr=1e-4, batch
size=10], except for mT0-Large, which is [lr=1e-
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Templates

1. Proverb: no pain, no
2. Complete this proverb: no pain, no
3. Finish the proverb: no pain, no
4. What’s the last word of this proverb: no pain, no
5. What’s missing at the end of this proverb:
no pain, no

Table 8: Memorization templates and the coloured por-
tion is the template.

Question: What does the person mean by the
proverb?
Proverb: <proverb>
Context: <context>
Choices: A: <answer 1> B: <answer 2>
Answer:

Table 9: Zero-shot testing template, where the coloured
portion is the template.

4, batch size=8]. Following previous work, we
also include results for the translate-test base-
lines (Conneau et al., 2018) in Table 10.

Similar to our findings in the main paper, the
model does not perform well on the task with mod-
els under a billion parameters. The performance
gap between English and other languages remains
significant.

D Additional Results

D.1 Further Details on the Memorization
Experiment

D.1.1 Discussions
Following the defined criteria for identifying
memory recall from LLMs in (Haviv et al., 2023),
a generalized prediction by LM always has al-
ternatives based on the context to express sim-
ilar meanings. Specifically, a phrase like no
pain, no __ would elicit multiple possible predic-
tions. Without knowing the proverb, words like
“painkiller", “medication" or “suffrage" are highly
likely to occur at the last position based on the con-
text. Similarly, a phrase such as It is better to teach
a man fishing than to give him __, similar concepts
like “food", “Carps", or even “money" are very
reasonable. Hence, a LLM that predicts the cor-
rect missing word (the single correct prediction)
has likely memorized the data.

Certainly, based on the training method of
LLMs, an alternative setup could be to mask words
at various locations and have the model predict the
missing words. However, such a method is more
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Figure 10: Memorization of proverbs in different lan-
guages when masking out words randomly.

suitable to mT0 and XLM-R, which explicitly in-
corporate masked token predictions in pretraining
with <extra_id_0> (Raffel et al., 2020) tokens or
<mask> tokens.

D.1.2 Additional Results
We include the results with randomly masked to-
kens (1 masked token per proverb) here for com-
pleteness for mT0 and XLM-R models. However,
we use modified prompts in Table 11 due to our
prior prompts were constructed for predicting the
last word of the proverbs, and with <extra_id_0>
or <mask> as the masked token for mT0 and XLM-
R respectively. The results are in Figure 10. Sev-
eral observations still persist, such as the dispar-
ity in memorization between languages, the low
memorization rate of mT0 models, and the pos-
itive correlation between model size and memo-
rization, etc.

D.2 Memorized versus Not Memorized

We break down the results into memorized groups
versus not memorized groups for the three best-
performing models. We only show results when
there are more than 50 proverbs in a group in Ta-
ble 12 (which left us with English and Chinese).
The benefit of memorization only shows for En-
glish, but not for Chinese.

D.3 Additional Results for the Inference Task

D.3.1 Additional Prompt Templates
We experimented with 3 additional prompt tem-
plates in Table 13 to demonstrate the generality of
our findings. Our experiments (Figure 11) show
similar trends as in Figure 3b of the main section
of our paper. We continue to observe that mT0
models perform the best for the inference task, the
results improve as the model size increases, and
memorization of the proverb is not an indication
of performance on the inference task. However,
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Model En De Zh Ru Id Bn Cross-lingual Avg

XLM-R-Base (125M) 52.06 50.00 50.07 50.19 50.37 50.22 50.17
XLM-R-Large (355M) 49.85 50.00 50.07 50.00 49.93 50.00 50.00
XLM-R-XL (3.5B) 58.38 53.67 52.25 53.65 52.79 53.01 53.07

mT0-Base (580M) 60.74 55.01 52.02 50.77 50.29 53.75 52.37
mT0-Large (1.2B) 65.00 56.89 56.59 53.53 50.44 55.59 54.61
mT0-XL (3.7B) 72.65 67.51 60.63 61.54 60.26 53.82 60.75

Translate-Test

XLM-R-Base (125M) - 50.60 50.75 49.23 51.47 49.85 50.38
XLM-R-Large (355M) - 50.00 50.00 50.00 49.85 50.00 49.97
XLM-R-XL (3.5B) - 50.90 51.20 52.31 49.85 51.47 51.15

mT0-Base (580M) - 51.80 51.05 51.15 49.56 54.26 51.56
mT0-Large (1.2B) - 54.04 55.09 54.62 53.67 57.21 54.93
mT0-XL (3.7B) - 67.96 62.72 63.46 57.92 58.68 62.15

Table 10: Zero-shot cross-lingual transfer and translate-test baselines. Cross-lingual averages are calculated over
all languages except English.

Templates

1. Fill the missing token: no <mask>, no gain Answer:
2. What is the missing word in this proverb: no <mask>, no gain Answer:
3. What is the masked word in this proverb: no <mask>, no gain Answer:

Table 11: Additional memorization templates, adjusted
the task description to fit the experiment with random
words removed from the proverb. The coloured portion
is the template. <extra_id_0> is used for mT0 and
<mask> is used for XLM-R.

En Zh
Model ∈Mem. /∈Mem. ∈Mem. /∈Mem.

BLOOMZ 7.1B 77.23 65.07 - -
mT0-XXL (13B) 86.17 84.33 81.48 82.50
LLaMA-2 13B 80.30 75.38 54.65 53.22

Table 12: Result on memorized versus not memorized
proverbs on 3 best performing models for English and
Chinese. Results were omitted due to less than 50
proverbs in the not memorized group.

we’d like to point out that our experiments do not
assess the formal reasoning abilities (Huang and
Chang, 2023, such as mathematical reasoning etc.)
of mLLMs.

D.3.2 Additional Models
We include results of the additional following
models, including Vicuna-V1.5 (Zheng et al.,
2023, 7B, 13B), and Aya-101 (Üstün et al., 2024,
13B).

Similar to what we observe in the main pa-
per, as the model increases in size, the perfor-
mance on MAPS is better when asking the model
to pick the correct answer. Aya-101 model’s per-
formance is on par with mT0 13B in most of the
languages (both when asking positive and nega-
tive questions), but Aya-101 is noticeably better in
Bengali.

D.4 ‘Negative’ Questions
We experimented with 4 additional versions of
‘negative’ questions/instructions (randomly cre-
ated), without the use of the word ‘not’, they are:

• Which answer is contrary to what the person
means by the proverb?

• Which answer is impossible as the inter-
pretation of what the person means by the
proverb?

• Pick the opposite answer to what the person
means by the proverb.

• Pick the wrong answer to what the person
means by the proverb.
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(a) Additional results using Temp1 in Table 13.
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(b) Additional results using Temp2 in Table 13.
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(c) Additional results using Temp3 in Table 13.

Figure 11: Performance of mLLMs on the proposed MAPS dataset with additional templates. The number of
parameters is in billions for LLaMA-2 and in millions for all other models.
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Additional Templates

Temp1:
Proverb: <proverb>
Context: <context>
Choices: A: <answer 1> B: <answer 2>
Question: What does the person mean by the
proverb?
Answer:

Temp2:
Question: What is a probable interpretation of this
proverb?
Proverb: <proverb>
Context: <context>
Choices: A: <answer 1> B: <answer 2>
Please choose between A and B.
Answer:

Temp3:
Question: How would one interpret this proverb
given the context?
Proverb: <proverb>
Context: <context>
Choices: A: <answer 1> B: <answer 2>
Answer:

Table 13: Additional prompt templates. The coloured
portion is the template.
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(a) Performance of mLLMs on the proposed MAPS.
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(b) Performance of mLLMs on the proposed MAPS - Inference task when asking the ‘nega-
tive’ question.

Figure 12: Performance of additional mLLMs on the
proposed MAPS dataset. The number of parameters is in
millions.

We use the same prompt template to evaluate
the models. The results are in Figure 13. While
our work focuses on reasoning with cultural com-
mon grounds, this shows the importance and ur-
gent need to improve the model’s ability to answer
‘negative’ questions.

We speculate this is due to the biases in training
data. Often, users seek the correct solution to solve
problems online (which we refer to as positive bi-
ases) rather than the wrong solution. Hence, when
using web corpora as training data for LLMs, such
positive biases will propagate to the behaviour
of LLMs. To demonstrate this further, we con-
ducted an additional experiment without asking a
question in the prompt on BLOOMZ, mT0 and
LLaMA-2. In an ideal situation, a good model
should score nearly random when no question is
asked (analogously to human confusion when data
is given, but no question is asked). From Fig-
ure 14, all LLMs can score above random for mul-
tiple languages, which indicates all models failed.
This failure mode further hints at the inability of
mLLMs to handle negative questions maybe due
to the nature of the training data.

D.5 Culture Gaps

In addition to the results in §5.3, we follow the
same procedure and perform the experiment with
mT0 for En–Zh translated data. We observe sim-
ilar results in Figure 15, and the culture gap for
En–Zh is 5.33.

D.6 Additional Results on LLaMA-2 with
Translations

Since LLaMA-2 13B is one of the recent state-
of-the-art (English officially) models, we further
conducted a zero-shot experiment by translating
all data from other languages into English. We
used Google Translate for translation and reported
the results in Table 14. From the Table, we can
see significant performance gaps (to English). It is
also interesting to see the gaps increase as the cor-
responding geographical location of the language
moves further away from English. While we con-
sider this gap to be a combination of the language
gap and the defined culture gap, a future interest-
ing direction is to closely examine the culture gap
in cross-cultural communications and how this is
related to the internal representations in LLMs.
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(a) Results using Which answer is contrary to what the person means by the proverb?.
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(b) Results using Which answer is impossible as the interpretation of what the person means by the proverb?.
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(c) Results using Pick the opposite answer to what the person means by the proverb.
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(d) Results using Pick the wrong answer to what the person means by the proverb.

Figure 13: Performance of mLLMs on the proposed MAPS dataset when asking the model a ‘negative’ question.
The number of parameters is in billions for LLaMA-2 and in millions for all other models.
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Figure 14: Performance of mLLMs on the proposed MAPS dataset when only the proverb, context and choices
are provided, but without a question. Ideally, all models should score around random guessing. The number of
parameters is in billions for LLaMA-2 and in millions for all other models.
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Figure 15: Performance gap between machine-
translated, human-translated English data and results in
the source language (En), and target language (Zh).

Lang Ori. Lang MT ∆En

En 78.68 — —
De 68.26 73.35 5.33
Ru 62.82 71.02 7.66
Id 57.47 69.79 8.89
Bn 49.11 61.76 16.92
Zh 53.59 54.19 24.49

Table 14: Results of machine-translated data with
LLaMA-2 13B. ∆En is the resulting gap to the model’s
performance on English data.

D.7 Few-shot (In-context) Evaluation
For completeness, we also provide evaluation re-
sults with few-shot demonstrations. We perform
2-shot and 5-shot experiments by randomly sam-
pling 5 sets of n-shot demonstrations from the few-
shot training set (using the same template as zero-
shot evaluation by concatenation). We evaluate
BLOOMZ 7.1B, mT0-XXL 13B and LLaMA-2
13B models, and Table 15 shows the results.

From Table 15, we do not observe any improve-
ments with few-shot demonstrations compared to
zero-shot. In fact, model performances consis-
tently degrade with more demonstrations. Since
our task has a very long context that may affect
the n-shot performance. Nonetheless, this degra-
dation has been observed recently in other work
such as in Li et al. (2023b); Koto et al. (2023) with
few-shot evaluations.
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Model En De Zh Ru Id Bn Cross-lingual Avg

BLOOMZ 7.1B 2-shot 59.49 61.55 56.59 53.77 51.53 50.00 52.65
BLOOMZ 7.1B 5-shot 51.57 52.39 50.85 50.35 50.25 50.52 50.30

mT0-XXL 13B 2-shot 78.37 72.63 76.95 78.74 74.87 63.82 76.81
mT0-XXL 13B 5-shot 68.48 67.90 70.38 71.50 67.64 60.00 69.57

LLaMA-2 13B 2-shot 74.87 56.52 55.42 60.77 56.76 51.00 58.77
LLaMA-2 13B 5-shot 64.16 52.69 54.89 55.56 52.71 50.17 54.14

Table 15: Few-shot evaluation results from MAPS. Cross-lingual averages are calculated over all languages except
English.
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