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Abstract

Relational triple extraction is a fundamental
task in the field of information extraction, and a
promising framework based on table filling has
recently gained attention as a potential base-
line for entity relation extraction. However,
inherent shortcomings such as redundant in-
formation and incomplete triple recognition
remain problematic. To address these chal-
lenges, we propose an Implicit Perspective for
relational triple Extraction based on Diffusion
model (IPED), an innovative approach for ex-
tracting relational triples. Our classifier-free
solution adopts an implicit strategy using block
coverage to complete the tables, avoiding the
limitations of explicit tagging methods. Addi-
tionally, we introduce a generative model struc-
ture, the block-denoising diffusion model, to
collaborate with our implicit perspective and
effectively circumvent redundant information
disruptions. Experimental results on two pop-
ular datasets demonstrate that IPED achieves
state-of-the-art performance while gaining su-
perior inference speed and low computational
complexity. To support future research, we
have made our source code publicly available
online. 1

1 Introduction

The extraction of relational triples has been an im-
portant and fundamental task in knowledge graph
construction (Zamini et al., 2022; Wei et al., 2020a),
aiming to recognize triples in the form of (head en-
tity, relation, tail entity) from unstructured text.
Current research in information extraction can be
categorized into two main approaches: the joint
extraction models, which utilize a simultaneous
style, and the pipeline models, which utilize a two-
encoder methodology to extract entities and rela-
tions. While the pipeline framework is criticized

∗Corresponding author.
1Our source code repository is released at:

https://github.com/girlsuuu/IPED.

for serious error propagation and lack of interac-
tion between its two subtasks (Shen et al., 2021),
leading to performance decline, many recent joint
extraction models have begun to thrive due to their
enhanced capability to deal with complex scenar-
ios such as single entity overlap (SEO), entity pair
overlap (EPO), and subject object overlap (SOO).

Among these popular joint extraction methods,
one baseline, known as the table-filling method,
has gained favor in recent research. Compared to
a multi-task joint structure, this method features a
table of token pair units that are to be filled and
decoded in a single step. In this way, it avoids ex-
posure bias and error propagation, challenges that
most methods cannot fully overcome. Particularly
for recently proposed models (Shang et al., 2022;
Ren et al., 2021; Wang et al., 2021), these can em-
ploy a novel table-filling strategy to simplify the
decoding process and enhance information interac-
tion.

Despite many unique advantages over table-
filling methods, some flaws still remain to be ad-
dressed. (1) The abundance of negative tagging in
a table, which is significantly denser than positive
tagging, leads to imbalanced labeling and redun-
dant information (Wang et al., 2021; Ning et al.,
2023). To the best of our knowledge, this is a uni-
versal issue across all table-filling models. This
imbalance results in a bias towards negative tag-
ging and heightened computational complexity. (2)
Many table-filling strategies fail to extract all sce-
narios of triples, leading to decreased recall (Ning
et al., 2023). Even in the recent significant work
(Shang et al., 2022), entities consisting of a sin-
gle token in a triple cannot be properly extracted
due to conflicts arising from multiple labels in one
element. (3) Once a sentence contains multiple
triples, the separate labels of different triples may
intersect in a single element, causing confusion in
decoding all ground-truth triples. Many models
(Ren et al., 2021; Ning et al., 2023) employ de-
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coding algorithms that match labels based on the
nearest-neighbor principle, which can lead to error
associations within a triple. (4) A line of mod-
els, not limited to table-filling ones, exhibit poor
learning performance on the WebNLG dataset in
contrast to the NYT dataset and they attribute it
to the vast number of predefined relations in the
former dataset (Gao et al., 2023).

After conducting a detailed observation and anal-
ysis of their models, it is observed that all existing
table-filling-based methods are consistently con-
strained by the approach of utilizing a classifier
to tag each table element explicitly. Mainly be-
cause of this, most of them can hardly escape the
challenges mentioned above, despite attempts to in-
troduce innovative labeling strategies and creative
decoding algorithms. This constraint necessitates
traversing each element of the table, consequently
leading to a substantial number of negative sam-
plings. This explicit way of assigning a fixed label
to each element can not cope with scenarios when
one element requires multiple labels, leading to
the inability to recognize all triples and confusion
in the regions where triple labels intersect. Ad-
ditionally, certain decoding strategies, designed in
response to this approach, often result in incorrectly
matched labels for a triple.

To address the aforementioned issues at a fun-
damental level, instead of explicitly labeling all
the elements, we formulate a fresh perspective to
implicitly fill the tables using a block-covered ap-
proach. In this method, blocks defined by four
edges (up, down, right, left) and one level are re-
fined within a three-dimensional table (multiple
two-dimensional tables stacked together). In align-
ment with this implicit approach, we introduce a
generative model designed to recover all blocks
within the tables. Specifically, our proposed block-
denoising diffusion model (Blk-DDM) can progres-
sively refine the edges and levels of the initialized
blocks step by step through a reverse process, en-
suring the blocks precisely cover the ground truth
triples horizontally, vertically, and deeply. As a
result, our model naturally disregards redundant
information by leaving the negative spaces alone
rather than classifying them. Furthermore, our ap-
proach allows for the adequate recognition of all
potential triples, as the proposed blocks can over-
lap implicitly. In contrast to previous decoding
algorithms that match explicit labels, our proposed
simple but effective Parallel Boundary Emitting
Strategy (PBES) for decoding has the capability

of extracting all triples accurately, circumventing
error association challenges and significantly ac-
celerating inference. Additionally, our denoising
diffusion process enables the gradual refinement of
specific fine-grained relation types within triples,
enhancing performance in large-relation datasets
such as WebNLG (demonstrated in Section 4.8).
Experimental results on two datasets, NYT and
WebNLG, demonstrate that our model achieves
state-of-the-art performance and exhibits superior
efficiency in inference.

2 Related Works

2.1 Joint Extraction Models

Existing joint extraction models can be roughly
sorted into two frameworks. The first framework,
based on multi-task learning, utilizes a shared en-
coder but employs distinct decoders to sequentially
predict entities and relations. (Miwa and Bansal,
2016) proposes an integrated model that extracts
entities and relations separately, leveraging shared
parameters and mutual interaction. (Luan et al.,
2018) adopts a model employing shared data rep-
resentations to mitigate error propagation between
tasks. CasRel (Wei et al., 2020b) treats relations
as functions mapping subjects to objects to make
extraction. The other framework is structured pre-
diction which integrates the two subtasks into a
unified structure and performs decoding in one step.
(Katiyar and Cardie, 2017) proposes a model using
sequence tagging-based approaches and forbidding
dependency trees. (Sun et al., 2019) employs graph
convolutional networks for joint inference. (Wang
and Lu, 2020) implements a table-filling strategy
using a table encoder and a sequence encoder.

2.2 Diffusion Model

Diffusion model is a type of deep latent generative
model primarily utilized for generating continuous
data structures, such as images and audio. DDPM
(Ho et al., 2020) is a pioneer work that makes diffu-
sion model practical to applications, thus inviting
excellent works (Kong et al., 2021; Zhao et al.,
2023) in various fields. Recently, there has been
an emergence of works in NLP utilizing diffusion
models, such as (Li et al., 2022a; He et al., 2023)
in language model and (Bi et al., 2023; Gong et al.,
2023) in sequence-to-sequence tasks, despite the
perceived challenges in applying diffusion models
to discrete text sequences. Notably, DiffusionNER
(Shen et al., 2023) also applies the diffusion model
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to named entity recognition. However, there are
significant differences with our IPED, particularly
in (1) task definition: IPED concentrates on extract-
ing relational triples rather than mere entities. (2)
core design: our model operates by diffusing in
a three-dimensional space for each triple, in con-
trast to DiffusionNER, which diffuses within a one-
dimensional matrix for each entity and incorporates
an additional classifier.

3 Methodology

This section firstly introduces our implicit table-
filling strategy and its corresponding decoding al-
gorithm. Secondly, the formulation of the Block-
Denoising Diffusion Model is presented. Finally,
the network architecture of our model is detailed.

3.1 Implicit Block-Covered Table Filling

For a sentence S = {x1, x2, ..., xL} composed of
L words, K relations R = {r1, r2, ..., rK} are pre-
defined in a dataset. The objective of relational
triple extraction is to identify all triples (head, re-
lation, tail) in each sentence, where the head and
tail represent the subject and object entities, respec-
tively, along with their connected relation. Within
a sentence, for all triples τ = {(hi, ri, ti)}Mi=1, M
denotes the total number of triples, and hi, ti rep-
resent the entity spans, each composed of one or
more consecutive tokens.

Unlike previous classifier-based tagging meth-
ods, our model does not allocate a label to each unit
of the L*L*K three-dimensional matrix. Instead, it
refines M blocks (B ∈ RM×5) to cover the K tables
horizontally, vertically, and deeply, which is, our
implicit way to fill the tables. As illustrated in Fig-
ure 1, each block consists of five elements: the up
and down edges indicate vertical positioning, the
left and right edges denote horizontal positioning,
and the level represents depth positioning within
the K stacked tables, with each table corresponding
to a specific relation. Via our proposed Blk-DDM
(described in Section 3.2), these M blocks are pro-
gressively refined to reveal the recognized triples.

The proposed decoding scheme, named Parallel
Boundary Emitting Strategy (PBES), is introduced
to extract triples from the blocks. PBES follows
the four edges and one level of each block, emit-
ting them in parallel to the corresponding entities
and relation. Specifically, for each block, the up
and down edges are extended to the left side of the
table, indicating the boundaries of the head entity.

Similarly, the left and right edges are extended cor-
respondingly to identify the boundaries of the tail
entity. Meanwhile, the depth level where the block
is located signifies a specific table, thereby indicat-
ing a particular relation. By repeating this process
M times as described, all blocks are converted into
relational triples.

Our table-filling method enables the precise ex-
traction of all existing triples by circumventing the
conflicts typically associated with explicit tagging.
Thanks to the lack of inner constraints between the
M blocks, this approach not only naturally tackles
complex scenarios such as SEO, EPO, and SOO,
but also overcomes issues like the failure of single-
token entity extraction in (Shang et al., 2022) and
error association in (Ren et al., 2021; Ning et al.,
2023).

3.2 Block-Denoising Diffusion Model
In this section, we present the formulation of block
generation as a denoising diffusion process and in-
troduce our block-denoising diffusion model (Blk-
DDM).2 As depicted in Figure 1, the diffusion
model comprises a forward process that incremen-
tally introduces noise to data samples and a reverse
process that recovers the ground truth through step-
by-step denoising. These two processes are syn-
chronized to facilitate the learning of a network
endowed with the denoising capability. During the
inference phase, the diffusion model incrementally
refines data samples through a multistep denois-
ing process from a standard Gaussian distribution.
Consequently, we convert our M blocks, composed
of five elements (up, down, left, right, level), into
index format B = {(ui, di, li, ri, vi)}Mi=0 to sup-
port the denoising operations. Following (Ho et al.,
2020), the forward denoising process is simplified
by computing {ᾱ1, ..., ᾱT } from a predefined vari-
ance schedule {βt}Tt=0 ∈ (0, 1), and thus noise
injection in multiple steps can be integrated into
one step as follows:

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt) I

)
(1)

where q represents the forward process from
z0 to zt. z0 and zt denote the original data and
the noised data at timestep t, respectively. I is
the standard Gaussian distribution. Note that the
fixed forward process depicted in Figure 1 can be
considered as a Markov chain.

2Readers may need prerequisite knowledge of diffusion
models to better understand this section.
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Figure 1: Figure (a) depicts our table-filling strategy along with triple demonstration. For the convenience of
illustration, we simplify our three-dimensional tables (as in Figure (b)) into the form of a two-dimensional table
in Figure (a), containing nine blocks in total that represent nine triples. Here, dashed rectangles denote the four
edges of the blocks, and different colors indicate the levels of the blocks. Figure (b) illustrates the overall diffusion
process.

Training Process The training process of the
diffusion model involves a one-step noise addi-
tion and a one-step prediction towards the ground
truth, aimed at training a network for inference pur-
poses. As for a sentence, blocks B ∈ RM×5 are
initially derived from M ground truth triples. Sub-
sequently, B is expanded by some blocks randomly
sampled from a Gaussian distribution, resulting in
z0 = B ∈ RN×5 (N > M). Following Equation
(1), we then have

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (2)

where t (≤ predefined total timestep T ) is a ran-
domly chosen timestep and ϵ ∼ N (0, I) donates
the pure noise from the Gaussian distribution, thus
getting noised blocks B. Feeding zt into our net-
work fθ, one can get the predicted z0 (Section 3.3)
and compute the objective function (Section 3.3.3).
By optimizing the loss function, the weights of our
network fθ will be updated accordingly.

Inference Process Following DDIM (Song et al.,
2021), the reverse diffusion process is defined as
a non-Markovian chain to achieve inference accel-
eration. An arithmetic sequence τ of length σ is
predefined as [1, ..., T ] and D purely noised blocks
xT ∈ RD×5 are sampled from the Gaussian distri-
bution. Modified from DDIM, we have progressive

denoising as follows:

zτi−1 =
√
ᾱτi−1 ẑ0 +

√
1− ᾱτi−1

zτi −
√
ᾱτi ẑ0√

1− ᾱτi

(3)

where ẑ0 is predicted by fθ, with the index i
traversing from σ to 1. After σ iterations, z0 ∈
RD×5 is recovered from the noise distribution.
Note that D is a hyperparameter supposedly larger
than the ground truth block number, and thus the
filtration of predicted D blocks aims to minimize
their divergence from the ground truth. Hence,
blocks with the sum predicted probability below
the threshold φ are discarded. 3

3.3 Model Structure
As shown in Figure 2, our model architecture con-
sists of three parts: Representation Encoder, Edge
Predictor, and Level Predictor. Accepting one sen-
tence, noised blocks (with timestep t) as inputs, the
model network fθ generates the predicted blocks
ẑ0 appropriately.

3.3.1 Representation Encoder
Given an input sentence S = {x1, x2, ..., xL} com-
posed of L words or indexes, here our sentence en-

3The probabilities, including Pη and Pv, will be explained
in Section 3.3.2.
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Figure 2: The overview model structure of IPED. To enhance the illustration of the workflow, we utilize three
different colors to denote various feature representations: Pink for level information, Yellow for sentence information,
and Red for edge information. E⃝ represents the encoding of RE. ⊗ denotes the maxpooling operation. To simplify
the illustration, the four Biaffine modules are integrated into one in this overview. To better display the reverse
process as in Figure 1, a reverse-flow arrow is used to symbolize progressive denoising.

coder consists of a pre-trained BERT (Devlin et al.,
2019) and a bi-directional LSTM (Lample et al.,
2016). Utilizing our encoder, token embeddings
along with positional embeddings as the input are
transformed into contextualized sentence represen-
tation RH ∈ RL×d. Then the inner span tokens
are extracted from the word indexes indicated by
the edges of our blocks, yielding the edge repre-
sentation RE ∈ RN×d following mean-pooling.
Differently, the level representation RV ∈ RN×d is
derived directly from an embedding relation matrix
R ∈ RK×d, where each row represents a distinct
relation type and K denotes the total number of
predefined relation types. This matrix is regarded
as a trainable parameter set in our model.

To better fuse both edge representation and level
representation with contextualized information, we
utilize the hierarchical Co-Attention mechanism
in our model, which is proven to be effective with
multimodal data (Chen et al., 2021). Among the
two Parallel Co-Attention modules in our model,
we illustrate one of them as an example, which
attends to the sentence representation RH and the
edge representation RE simultaneously. An affin-
ity matrix C ∈ RL×N that transforms sentence
attention space into edge attention space, and the
attention score vector ae ∈ RN that optimizes the
affinity, are calculated as follows:

C = tanh
(
RT

HWbRE
)

(4)

He = tanh (WeRE + (WhRE)C) (5)

ae = softmax
(
wT

heH
e) (6)

where Wb ∈ Rd×d, We ∈ Rk×d, Wh ∈ Rk×d,
whe ∈ Rk are learnable parameters, He is the
middle state. Finally, the edge attention vector
R̂E ∈ RN×d is calculated as the weighted sum
of the edge features plus an additional sinusoidal
embedding (Vaswani et al., 2017):

R̂E = aeRE +Et (7)

where Et is the embedding of timestep t. Equally,
the same operation is implemented to obtain the
fused level representation R̂V ∈ RN×d.

3.3.2 Edge Predictor and Level Predictor
For the Edge Predictor, we employ Biaffine to
acquire fine-grained fused representations, which
is proposed for dependency parsing (Dozat and
Manning, 2016) at the outset. Here we have
four Biaffine for Rη

EH representations where η ∈
{u, d, l, r} symbolizes four edges, respectively.
Rη

EH is obtained as follows:

Rη
EH = Biaf fη

(
RH, R̂E

)

= RT
HU

η
1R̂E +Uη

2

(
RH ⊕ R̂E

)
+ bη (8)

where Uη
1 and Uη

2 donate two parameter matri-
ces, bη is the bias vector, ⊕ means concatenation.
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Method
NYT* WebNLG* NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GraphRel (Fu et al., 2019) 63.9 60.0 61.9 44.7 44.1 42.9 - - - - - -

RSAN (Yuan et al., 2020) - - - - - - 85.7 83.6 84.6 80.5 83.8 82.1

TPLinker (Wang et al., 2020) 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7

GRTE (Ren et al., 2021) 92.9 93.1 93.0 93.7 94.2 93.9 93.4 93.5 93.4 92.3 87.9 90.0

PRGC (Zheng et al., 2021) 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5

EmRel (Xu et al., 2022) 91.7 92.5 92.1 92.7 93.0 92.9 92.6 92.7 92.6 90.2 87.4 88.7

RelU-Net (Zhang et al., 2022) 93.3 92.9 93.1 94.9 93.7 94.3 - - - - - -

BiRTE (Ren et al., 2022) 92.2 93.8 93.0 93.2 94.0 93.6 91.9 93.7 92.8 89.0 89.5 89.3

OneRel (Shang et al., 2022) 92.8 92.9 92.8 94.1 94.4 94.3 93.2 92.6 92.9 91.8 90.3 91.0

RFBFN (Li et al., 2022b) 93.4 93.2 93.3 93.9 94.1 94.0 93.7 93.6 93.6 91.5 89.4 90.4

ODRTE (Ning et al., 2023) 93.5 93.9 93.7 94.6 95.1 94.9 94.2 93.6 93.9 92.8 92.1 92.5

IPED 94.2 93.5 93.9 95.3 95.7 95.5 94.7 93.4 94.1 93.0 93.6 93.3

Table 1: Main results of IPED and other baselines.

Then Rη
EH are put through four simple multiple-

layer perceptrons with softmax layers to get the
probabilities Pη ∈ RN×L for four edges in blocks.

For the Level Predictor, a cross-attention layer
is utilized to obtain the deep latent representa-
tion REVH, incorporating edge-sentence embed-
ding Rη

EH to level representation R̂V. Specifi-
cally, Rη

EH undergoes a max-pooling operation to
serve as the key and value tensors, while R̂V acts
as the query tensor. Then the level probability
Pv ∈ RN×K is determined using a multilayer per-
ceptron, followed by a softmax layer.

3.3.3 Loss Function
In conjunction with the predicted probabilities
above, the Log-Likelihood Function is maximized
to train our model parameters. As N blocks are
generated during training, yet only M ground truth
blocks exist, we solve the optimal match via the
Hopcroft-Krap algorithm (Carraresi and Sodini,
1986). Our objective function is defined as follows:

L =−
N∑

i=1

[
β1

∑

η∈{u,d}
logPη

i

(
ξη(i)

)

+ β2
∑

η∈{l,r}
logPη

i

(
ξη(i)

)

+ β3 logP
v
i

(
ξv(i)

)]

(9)

where ξ (i) represents the ground truth edges
and level of the i-th block, β1, β2, β3 are the hy-
perparameters for the weights of each prediction
part.

4 Experiments

4.1 Datasets

Following previous works (Shang et al., 2022; Ning
et al., 2023), we evaluate our model on two well-
known datasets NYT (Riedel et al., 2010) and
WebNLG (Gardent et al., 2017). The NYT dataset
is extracted using the distantly supervised method
from New York Times news articles, while the
WebNLG dataset was originally designed for Nat-
ural Language Generation. Each dataset exists in
two versions: one is annotated with the whole entity
span, and the other is annotated with the last word
of entities. For clarity, we mark the fully annotated
version as NYT and WebNLG, and the simpler
annotated version as NYT* and WebNLG*, respec-
tively. Following prior works, we split the test set
of each dataset based on the number of triples and
the overlapping pattern in each sentence.

4.2 Evaluation Metrics

For a fair comparison with prior works mentioned
above, we report standard micro Precision (Prec.),
Recall (Rec.), and F1-score (F1.) as our three eval-
uation metrics. Meanwhile, we implement distinct
matching rules for each version of the datasets. In
the case of NYT and WebNLG datasets, an ex-
tracted relational triple is regarded correct only if
all words of both entities and the relation type pre-
cisely align with the ground truth. For NYT* and
WebNLG* datasets, only the last words of two en-
tities and the relation are required to be correct.
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Model
NYT* WebNLG*

Normal SEO EPO Q=1 Q=2 Q=3 Q=4 Q≥5 Normal SEO EPO Q=1 Q=2 Q=3 Q=4 Q≥5

GRTE 91.1 94.4 95.0 90.8 93.7 94.4 96.2 93.4 90.6 94.5 96.0 90.6 92.5 96.5 95.5 94.4

PRGC 91.0 94.0 94.5 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 89.9 91.6 95.0 94.8 92.8

RFBFN 91.2 95.2 95.6 91.4 93.8 94.8 96.4 93.9 91.0 94.6 96.5 90.8 92.6 96.6 94.7 94.5

ODRTE 91.3 95.7 95.9 91.3 93.4 94.6 96.9 95.3 92.1 95.4 95.9 91.1 93.5 95.9 96.1 95.1

IPED 91.0 95.7 96.0 91.5 93.2 94.9 97.3 95.4 92.1 95.6 96.9 91.8 94.2 96.8 96.7 96.0

Table 2: F1 score on sentences with different overlapping patterns and different triple numbers. Q stands for the
number of triples in a sentence.

4.3 Implementation Details

To make a fair comparison, we utilize the cased
base version of BERT (Devlin et al., 2019) as
our pretrained model. The AdamW optimizer
(Loshchilov and Hutter, 2019) is employed with
a learning rate of 3e-5. The hidden size of our
cross-attention and biaffine modules is configured
to 1024. A warm-up learning rate scheduler, with
a 0.1 ratio and a maximum gradient normalization
of 1.5, is configured for the training process. Re-
garding the diffusion setting, the total timestep T
is set to 1000, the sampling timestep σ to 10, and
the number of denoising blocks D to 30. The sum
threshold φ for the edges and level probabilities is
established at 4.

4.4 Main Results

Table 1 presents the performance comparison be-
tween our IPED and various baselines across four
benchmarks. It can be seen that our model, IPED,
outperforms all the baselines and achieves state-
of-the-art performance, even when compared to
the strongest explicit table-filling baseline ODRTE
(Ning et al., 2023) and the leading multi-task joint
framework RFBFN (Li et al., 2022b). This proves
the dramatic efficacy of our implicit perspective
and denoising diffusion strategy.

Compared with the best baseline ODRTE, our
IPED achieves a 0.2 absolute improvement in F1-
score on both NYT and NYT*. It is worth noticing
that, a significant improvement, 0.8 and 0.6 gains in
F1-score, is achieved on WebNLG and WebNLG*
respectively, whereas many models (Wang et al.,
2020; Gao et al., 2023) blame their poor perfor-
mance on the complexity arising from hundreds
of predefined relation types. We attribute our ad-
vancement on large-relation datasets to block-level
progressive refinement; specifically, our block-
denoising diffusion model allows fine-tuned block

denoising across various levels of the tables.
The results on NYT and WebNLG reveal that

our IPED outperforms OneRel (Shang et al., 2022)
by 1.2% and 2.3%, and GRTE (Ren et al., 2021)
by 0.7% and 3.3% in terms of F1-score, respec-
tively. This demonstrates that the implicit table-
filling scheme can immensely avoid interruptions
caused by redundant negative tagging, which oth-
erwise leads to negative bias. This improvement
highlights two key advantages of our approach: the
capability to recognize all potential triples and the
proficiency in avoiding error association during
decoding.

4.5 Performance on Complex Scenarios
To validate the ability of our model to handle di-
verse overlapping patterns and multiple triples,
we conduct further experiments on NYT* and
WebNLG*. As indicated in Table 2, our proposed
IPED model surpasses nearly all baselines on both
datasets, with the exception of two scenarios on
NYT* when Q equals 2 and when there is no over-
lap. In complex scenarios, such as multiple triples
within a single sentence, the performance of IPED
turns out to be exceptional, surpassing four state-
of-the-art models. The reason behind this is that
our decoding scheme, the Parallel Boundary Emit-
ting Strategy (PBES), has the capacity to accurately
map our blocks into ground truth triples. This con-
trasts with previous decoding algorithms in explicit
table-filling methods (Ren et al., 2021), which often
incorrectly decode triples due to error association.

4.6 Computational Efficiency
To evaluate the computational efficiency of our
IPED, we conduct further experiments with respect
to Training Time, GPU Memory, Inference Time,
and F1-score on NYT and WebNLG. As demon-
strated in Table 3, we selected two robust baselines,
GRTE and OD-RTE, for comparison. To verify the
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Model
NYT WebNLG

Training Time GPU Mem Infer. Time (1/8) F1 Training Time GPU Mem Infer. Time (1/8) F1

GRTE 931† 18771† 44.1 / 9.6 93.4 118† 15345† 62.4 / 15.6 90.0

OD-RTE 798† 8372† 38.3 / 8.4 93.9 70† 7515† 51.0 / 12.8 92.5

IPED[σ=5] 887 5636 22.1 / 4.7 94.0 102 3778 30.1 / 7.7 93.1

IPED[σ=10] 887 5636 26.6 / 5.8 94.1 102 3778 35.5 / 8.7 93.3

IPED[σ=15] 887 5636 33.4 / 7.2 94.2 102 3778 40.6 / 10.2 93.4

Table 3: Comparison of model efficiency. Training Time means the time (seconds) to train one epoch. GPU Mem
stands for memory (MB) occupation during inference with the batch size of 8, and Infer. Time (1/8) donates the time
(ms) to process each sentence with the batch sizes of 1 and 8, respectively. The superscript † indicates the results
reported by OD-RTE. All experiments are conducted on a single GeForce RTX 3090 with default configuration.

impact of the sampling timestep, we execute IPED
with varying τ values. It can be seen that when
σ = 5, the inference speed of IPED is more than
double that of GRTE, and it requires the least GPU
memory compared to both baselines. Due to the
inherent nature of diffusion training, the training
time of our model is not the shortest, falling be-
tween OD-RTE and GRTE. Nevertheless, our IPED
achieves a superior F1-score and greater inference
efficiency. We conjecture the reasons might be our
implicit table-filling strategy, which is exempt from
redundant tagging, and the non-Markovian process
employed during sampling.

 

Figure 3: Performance of IPED with different number
of denoising blocks D in terms of F1-score on NYT.

4.7 Analysis on Sampling Number

In the denoising inference process, the number of
denoising blocks, denoted as D, is a crucial parame-
ter. We conducted additional experiments on it with
different sampling timestep σ to evaluate its impact
on F1-score and inference time. As depicted in
Figure 3, the F1-score decreases sharply when D
is less than 15 and remains stable when D exceeds

 

Figure 4: Performance of IPED with different number
of denoising blocks D in terms of inference time on
WebNLG. Note that the batch size is 8 during inference.

25. It can be observed from Figure 4 that the infer-
ence time increases with larger D values, especially
when σ is relatively small. Regarding the sampling
timestep σ, these two figures indicate that a larger
σ brings about a higher F1-score but also increases
inference time. To balance the F1-score and in-
ference time, we set D at 30 and σ at 10 as our
standard configuration. Consequently, our IPED is
capable of properly covering all potential blocks,
thereby enhancing the recall rate while ensuring
optimal inference time for practical applications.

4.8 Ablation Study

Ablation experiments are conducted to explore the
contributions of the primary components within the
network architecture and the effectiveness of level
diffusion, as shown in Table 4. Observations reveal
that removing any of the three components leads
to a relative performance drop. Each of these three
components is a critical part for representation con-
struction, with the Co-Attention module having the

2087



Model P R F

IPED 93.0 93.6 93.3
w/o Co-Attention 91.9 92.2 92.1
w/o Biaffine 92.2 93.0 92.6
w/o Cross Attention 92.1 92.5 92.3
w/o Level 90.6 91.6 91.1

Table 4: Ablation study on WebNLG dataset.

most influence. Upon replacing the Co-Attention
module with the simple addition of two input rep-
resentations, a 1.2% F1 decline is observed. The
experiments indicate that all three modules in our
network play a crucial role in recovering blocks
from noise.

It is noteworthy that the performance decreases
by 2.2% when Level is omitted. This implies that
IPED abandons the denoising diffusion process at
the block Level, transitioning the task from three-
dimensional to two-dimensional denoising. Specifi-
cally, noisy blocks are distributed across each level
of the three-dimensional tables, with each block
constrained to denoising at a specific level, thus pre-
cluding the possibility of progressive refinement
with the block level. Thus it can be concluded
that block-level denoising is crucial for the effec-
tiveness of our block-denoising diffusion model
in identifying triple relations, particularly in large-
relation datasets like WebNLG.

5 Conclusion

This paper proposes an implicit approach to re-
lational triple extraction, diverging from the ex-
plicit tagging methods of prior table-filling meth-
ods, thereby addressing several prevailing issues.
Via denoising the edges and levels of noisy blocks,
our introduced block-denoising diffusion model in-
crementally generates ground truth blocks, which
can be swiftly and precisely converted into triples
with our decoding algorithm PBES. Moreover, our
network architecture incorporates beneficial mod-
ules such as Co-Attention and Biaffine, which pro-
mote the fusion of diverse representations. Experi-
mental results on public datasets demonstrate that
our IPED exceeds the performance of state-of-the-
art (SoTA) models, while also achieving signifi-
cantly faster inference speeds.

Limitations

Two limitations of IPED warrant discussion.
Firstly, IPED exhibits a substantial increase in train-
ing time consumption compared to some models,
as detailed in Section 4.6. This can be attributed
to the extensive denoising timestep required for
training, leading to slow and fluctuating conver-
gence, thereby necessitating a greater number of
training epochs. Secondly, the application of our
implicit perspective is currently limited to rela-
tional triple extraction. Such perception holds po-
tential for broader application in information ex-
traction tasks such as document-level relation ex-
traction and event extraction, addressing the issue
of redundant negative tagging inherent in table-
filling. These possibilities could be explored in
future work.
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A Dataset Statistics

The statistical details of the two datasets are dis-
played in Table 5.

B Clarification for D, N and M

In our paper, N is the number of blocks after ex-
pansion for training, M is the number of ground
truth blocks for training, and D is the number of
initialized blocks for inference.

During training, there are M blocks at first,
which are then expanded by adding N-M randomly
sampled blocks, resulting in a total of N blocks.
Specifically, N and D are two similar hyperparame-
ters; N is used for training while D is for inference,
and typically, both are larger than M. To clearly
distinguish between training and inference in our
paper, we have defined N and D separately for the
readers.
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Dataset
Sentences Details of test set

Train Valid Test Normal SEO EPO SOO Q=1 Q=2 Q>2 Relations Triples

NYT 56196 5000 5000 3071 1273 1168 117 3089 1047 864 24 8616

NYT* 56195 4999 5000 3266 1297 978 45 3244 1045 711 24 8110

WebNLG 5019 500 703 239 448 6 85 256 175 272 216 1607

WebNLG* 5019 500 703 245 457 26 84 266 171 266 171 1591

Table 5: Statistics of datasets used in our experiments. Q represents the number of triples in a sentence. Note that a
single sentence can simultaneously contain SEO, EPO and SOO overlapping patterns.
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