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Abstract

Current logical reasoning evaluations of Large
Language Models (LLMs) primarily focus
on single-turn and static environments, such
as arithmetic problems. The crucial prob-
lem of multi-turn, strategic reasoning is
under-explored. In this work, we analyze
the multi-turn strategic reasoning of LLMs
through text-driven complete- and incomplete-
information gaming, e.g., board games (Tic-
Tac-Toe, Connect-4) and poker games (Texas
Hold’em Poker). Specifically, we consider two
distinct scenarios: 1) Online Racing, featur-
ing multiple LLMs/agents to facilitate direct
competition and comparison; 2) Offline Prob-
ing, constructing targeted questions with ver-
ified ground truth to evaluate LLMs’ strate-
gic behaviors. Experimental results demon-
strate that existing state-of-the-art LLMs and
reasoning schemes are largely ineffective for
strategic reasoning tasks. To mitigate these
limitations, we propose a simple yet effec-
tive Recursively Thinking-Ahead (ReTA) agent,
incorporating a recursive prompting mecha-
nism that automatically analyzes the oppo-
nents’ future moves/actions and assigns re-
ward signals for these situations, to strengthen
the strategic reasoning of LLMs. We hope
our work could spur further research and ex-
ploration in the multi-turn strategic reasoning
of LLMs. The code is available at https:
//github.com/jinhaoduan/ReTA.

1 Introduction

Large Language Models (LLMs) have witnessed re-
markable advancements in logical reasoning. Mod-
els such as ChatGPT are proven to be effective in
solving math problems (Cobbe et al., 2021), long-
term task planning (Huang et al., 2022a), etc. How-
ever, these evaluations are predominantly single-
turn and static. Although there are environments
such as ALFWorld (Shridhar et al., 2020) that pro-
vide interactive environments to evaluate the plan-
ning and reasoning capabilities of LLMs, these

evaluations still focus on the linguistic capabili-
ties of LLMs, e.g., reading understanding, with-
out much strategic thinking. Therefore, beneath
the impressive linguistic capabilities of LLMs, a
critical question that has piqued the curiosity of re-
searchers and practitioners alike: “what lies beyond
static logical reasoning for LLMs?”

Strategic multi-turn reasoning tasks, such as
board and card games, are more reflective of real-
world complexities and widely utilized in reinforce-
ment learning (Silver et al., 2016, 2017), present-
ing an innovative approach to assessing the logical
reasoning of LLMs. These environments simu-
late interactive and competitive scenarios, furnish-
ing mathematically well-structured rules and con-
trollable complexity, with explicit success crite-
ria. Each participant is prompted to strategically
choose actions when facing well-defined states to
defend against moves from opponents. In these
environments, each competition can extend over
dozens of hands, depending on the intricacy of the
task, which effectively examines LLMs’ abilities
in maintaining multi-turn contexts and exhibiting
strategic thinking. The presence of opponents in the
game environment introduces additional dynamics
and complexity, posing a significant challenge to
the reasoning abilities of LLMs (Ji et al., 2023).

To spur further research and exploration, we first
analyze the behavior of LLMs under the multi-turn
strategic reasoning scenarios. Specifically, we en-
compass complete information gaming, such as
Tic-Tac-Toe1 and Connect-42, as well as incomplete
information games, such as Texas Hold’em Poker3

as the environments. These games have simple
rules, clear criteria, limited action/state space, and
controllable difficulties, making them suitable for
current LLM evaluations. We analyze the behavior

1https://en.wikipedia.org/wiki/Tic-tac-toe
2https://en.wikipedia.org/wiki/Connect_Four
3https://en.wikipedia.org/wiki/Texas_hold_

%27em
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of LLMs under two scenarios: Online Racing and
Offline Probing. For online racing, we apply di-
rect competitions among multiple LLMs, allowing
for a straightforward comparison of their reason-
ing skills by pitting them against each other in a
competition. For offline probing, we provide de-
mographic analysis by constructing error-driven
questions and verified ground truth, for a detailed
analysis of LLMs’ strategic behaviors.

In terms of LLM agents, we consider advanced
reasoning methods, such as Chain-of-Thought
(CoT) (Wei et al., 2022b), Self-Consistent Chain-
of-Thought (CoT-SC) (Wang et al., 2022b), Tree-
of-Thought (ToT) (Yao et al., 2023), ReAct (Yao
et al., 2022b). However, our experimental results
indicate that most of these reasoning agents are
largely ineffective in our strategic gaming scenar-
ios. With detailed demographic analysis, we con-
clude the main reasons behind this failure model
as two-fold: ➊ Autonomous agents lack gaming
intent, i.e., they cannot think ahead to defend the
future moves from their opponents; ➋ LLMs suffer
from severe hallucinations (Duan et al., 2023; Man-
akul et al., 2023) and factual errors (Bian et al.,
2023; Karpinska and Iyyer, 2023; Gekhman et al.,
2023), e.g., LLMs cannot recognize immediate win
situations (whether two/three symbols are in a row
for Tic-Tac-Toe).

To overcome these limitations, we propose a
simple yet effective Recursively Thinking-Ahead
Agent (ReTA). ReTA uses a recursive prompting
mechanism that automatically analyzes the oppo-
nents’ potential future moves/actions and assigns
reward signals for these situations. Then, the re-
ward signal is backtracked to the current action
and eventually dictates the action selection of ReTA.
Under comprehensive gaming settings, ReTA sig-
nificantly outperforms state-of-the-art reasoning
methods. Our key contributions are summarized as
follows:

• We analyze the behavior of LLMs under multi-
turn strategic reasoning scenarios through
a set of complete-/incomplete-information
games, including online racing and offline
probing.

• We conduct online competitions among multi-
ple LLMs and reasoning agents, allowing for a
straightforward comparison of their reasoning
skills. We conduct offline probing, providing
targeted questions with verified ground truth

regarding the common errors during reason-
ing, for detailed demographic analysis of the
strategic reasoning capabilities of LLMs.

• We propose ReTA, a recursively thinking
ahead agent, to strengthen the strategic reason-
ing of LLMs. Experimental results over mul-
tiple gaming scenarios demonstrate that ReTA
achieves better performances when against ex-
isting reasoning methods.

2 Related Work

Benchmarks for LLMs Reasoning . Recently,
there has been a substantial amount of re-
search focused on evaluating the reasoning ca-
pabilities of LLMs and LLMs-powered agents.
ALFWorld (Shridhar et al., 2020) and Virtual-
Home (Puig et al., 2018) are popular text-driven
scenarios that simulate interactive house-holding
environments, which have been widely utilized in
evaluating the planning and reasoning (Huang et al.,
2022a) of LLMs. HotpotQA (Yang et al., 2018)
is a challenging QA dataset, necessitating multi-
hop reasoning skills such as retrieval and search
from LLMs. There have been a lot of benchmarks
aiming to evaluate tool utilization capabilities (e.g.,
web browsing), including Mind2Web (Deng et al.,
2023), WebArena (Zhou et al., 2023), and Web-
shop (Yao et al., 2022a). AgentBench (Liu et al.,
2023c) and MINT (Wang et al., 2023) present com-
prehensive evaluations for LLMs-as-agents, from
the perspective of code, web, and game. Recently,
GTBench (Duan et al., 2024) has been proposed
as a general framework for game-theoretic evalua-
tions of LLMs. Differently, this work focuses more
on the advanced reasoning agent, i.e., ReTA, while
GTbench aims at the evaluation of existing LLMs
and reasoning agents.

Reasoning and Planning with LLMs. LLMs
have demonstrated reasoning and planning abilities
by breaking down intricate questions into sequen-
tial intermediate steps, known as Chain-of-Thought
(CoT) (Wei et al., 2022b), prior to generating the
final response. Building upon this concept, Self-
Consistency (Wang et al., 2022a) samples multiple
chains and selects the best answer via majority vot-
ing, ToT (Yao et al., 2023) models the LLM reason-
ing process as a tree structure. In addition, LLMs
have achieved successful results in planning and
action generation (Wu et al., 2023; Huang et al.,
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Tree of Thought (ToT)
Chain of Thought (CoT)

Self-Consistent CoT
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Tic-Tac-Toe

Tree of Thought (ToT)
Chain of Thought (CoT)

Self-Consistent CoT
Direct Prompt

ReAct

LLMs-Driven
Reasoning Agent

Player 2Player 1

Observation Prompt: You are the first to go. The legal
moves are C1R1, C1R2, ......
Step Prompt: Please first think about your situation, then
choose one move from legal moves to set up an advantage.

Thought:
As the first player, I need to set up an advantage for myself.
The best move would be to choose the center position
(C2R2) as it allows for more possibilities for winning in the
future.
Move:
C2R2

C2R3

Observation Prompt: Your opponent has finished moves
C2R2. The legal moves are C1R1, C1R2, ......
Step Prompt: Please choose one move from legal moves to
set up an advantage.

Environment System Prompt: You are a powerful gaming agent that who
can make proper decisions to beat the user in gaming
tasks. You are playing Tic-Tac-Toe with me 

CoT Agent

Prompt Agent

Observation Prompt: Currently, your opponent has finished
moves C2R3. The legal moves are C1R1, C1R2, ......
Step Prompt: Please first think about your situation, then
choose one move from legal moves to set up an advantage.

CoT Agent

Thought:
My opponent has placed their symbol in C2R3 and I have
placed mine in the middle row (C2R2). This means that I
have a potential advantage in the game. I will choose to
place my symbol in the top-right position to set up a potential
winning move in the next turn.
Move:
C3R1

Observation Prompt: Your opponent has finished moves
C2R2, C3R1. You have finished moves C2R3. The legal
moves are C1R1, C1R2, ......
Step Prompt: Please choose one move from legal moves to
set up an advantage.

CoT Agent wins!

. . . . . . 

Connect-4

Observation Prompt: You are the first to go. The legal
moves are C1R6, C2R6, C3R6, C4R6, C5R6, C6R6, C7R6.
Step Prompt: Please first think about your situation, then
choose one move from legal moves to set up an advantage.

Thought:
By starting in the center, I should create opportunities to build
sequences in multiple directions (vertically, horizontally, and
diagonally). This central position gives me more flexibility in
future moves and can potentially limit your options
Move:
C4R6

C3R6

Observation Prompt: Your opponent has finished moves
C4R6. The legal moves are: C1R6, C2R6, C3R6, C4R5,
C5R6, C6R6, C7R6.
Step Prompt: Please choose one move from legal moves to
set up an advantage.

System Prompt: You are a powerful gaming agent who can
make proper decisions to beat the user in gaming tasks. You
are playing Connect-4 with me 

CoT Agent

Prompt Agent

Observation Prompt: Currently, your opponent has finished
moves C3R6. The legal moves are C1R6, C2R6, C3R5, ......
Step Prompt: Please first think about your situation, then
choose one move from legal moves to set up an advantage.

CoT Agent

Thought:
I'll place my disc in C5R6. This positions my disc to the right
of my initial disc in the center column, creating a potential
line horizontally and keeping options open for vertical and
diagonal connections as well.
Move:
C5R6

Observation Prompt: Your opponent has finished moves
C4R6, C5R6. You have finished moves C3R6. The legal
moves are C1R6, C2R6, ......
Step Prompt: Please choose one move from legal moves to
set up an advantage.

CoT Agent wins!
. . . . . . 

Texas Hold'em Poker

System Prompt: You are playing Texas Holdem Poker with
the other 1 players. The aim of each player in Texas Hold'em
poker is to win chips or money from other players by either
having the best hand at showdown or by convincing other
players to fold their hands. The small blind bet of this game is
1 and the big blind bet of this game is 2.

Observation Prompt: Here are the situations you are
facing: You are in the PREFLOP stage. You are in the
SMALL BLIND position. The current round pot is 3 and the
community pot is 0. Your card is 4H and AC. Your remaining
chip is 199. Currently, your legal actions are FOLD, CHECK,
RAISE_3BB, ......
Step Prompt: It is your turn to take your action. Given the
current situation, first make a plan about how to make your
decision regarding the current situation, then select one
action from the action space to beat opponents

Thought:
I would select RAISE_3BB. This move can help to take control
of the pot early and gives a chance to gauge the reactions of
the opponents.
Move:
RAISE_3BB

CoT Agent

CALL

Prompt Agent

Observation Prompt: Here are the situations you are
facing: You are in the PREFLOP stage. You are in the BIG
BLIND position. The current round pot is 11 and the
community pot is 0. Your card is KD and AS. Your remaining
chip is 198. Currently, your legal actions are FOLD, CHECK,
RAISE_3BB, ......
In this round, prior players have made the following actions:
Player 1 (small blind): RAISE_3BB
Step Prompt: Please select one action from the action
space to beat opponents.

. . . . . . 

Prompt Agent wins!

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Environment

Figure 1: LLMs online racing in multi-turn strategic scenarios.

2022b). (Driess et al., 2023) proposes a multi-
modal language model for embodied reasoning
tasks, visual-language tasks, and language tasks.
Beyond that, (Liu et al., 2023a) translates such
intermediate steps into executable programming
languages to conduct classical planning algorithms.
Also, Autonomous Agents have driven zero/few-
shot LLMs to achieve complex reasoning and plan-
ning tasks through prompt engineering (Liu et al.,
2023b; Xi et al., 2023; Xiang et al., 2023). (Yao
et al., 2022b; Shinn et al., 2023) endow agents with
the capability to engage in introspection regarding
the feedback provided by LLMs.

3 Preliminary Analysis

We first investigate the strategic reasoning capabili-
ties of LLMs through online competitions. Figure 1
presents the procedures of online LLMs racing and
the demonstration of each environment.

3.1 Preliminary

We present competitions among two strategic
games and seven agents in this section:

Tic-Tac-Toe: We utilize the version of 3×3 grid
with the winning length as 3. There are two agents
in each match and each agent is prompted to select
actions when giving the current board state (e.g.,
legal moves and the opponent’s moves). We uti-
lize the symbol <CxRy> to represent each move
on the Tic-Tac-Toe board where x and y represent
the column index and row index respectively. Sym-
bolic representations have been widely adopted by
other board games, e.g., FEN (Wikipedia, 2023b)
and Algebraic notation (Wikipedia, 2023a). All the
prompt templates can be found in Appendix A.1.
Since the first-go player obtains significant advan-
tages in this game, we execute 200 matches with
each agent going first for 100 matches. We use the
average win ratio, i.e., win match

total match and loss ratio, i.e.,
loss match
total match , to evaluate performance.
Texas Hold’em Poker4: Each agent is assigned
$200 chips initially. The agent is prompted to se-
lect an action from the action set: FOLD, CHECK,
CALL, RAISE_3BB, RAISE_HALF_POT, RAISE_POT,
RAISE_2POT, ALL_IN, SMALL_BLIND, BIG_BLIND.

4https://github.com/dickreuter/neuron_poker

2234

https://github.com/dickreuter/neuron_poker


Agent v.s. Agent Random MinMax Prompt CoT CoT-SC ToT ReAct Avg. Win Ratio (↑)

Random - 4.50% 40.00% 36.50% 37.50% 33.50% 37.50% 31.58%

MinMax 86.00% - 92.00% 83.50% 85.00% 81.50% 76.00% 84.00%

Prompt 54.50% 5.00% - 24.00% 20.00% 24.00% 24.50% 25.33%

CoT 54.00% 4.50% 43.50% - 36.00% 42.50% 39.00% 36.58%

CoT-SC 52.50% 7.00% 38.00% 36.00% - 31.50% 36.00% 33.50%

ToT 55.00% 8.00% 52.00% 30.00% 29.00% - 48.00% 37.00%

ReAct 54.00% 6.00% 38.50% 39.00% 33.50% 38.50% - 34.92%

Avg. Loss Ratio (↓) 59.33% 5.83% 50.67% 41.50% 40.17% 41.92% 43.50% -

Table 1: Benchmarking reasoning agents in the Tic-Tac-Toe environment. Each cell (Row, Col) means the win
ratio of the Row agent when against the Col agent. Note that the game result can be a draw, so the sum of the win
ratios of a pair of two agents is not 100%. It is shown that only ToT and CoT outperform the Random agent with
moderate margins and all other agents are just slightly better or even worse than Random.

Figure 2: Remaining chips of reasoning agents at each hand in the Texas Hold’em Poker environment. Standard
deviations over 20 trials are shown as the shadowed areas. Agents with more remaining chips at last mean better
performance. Among these agents, the naive Prompt agent works better than other methods.

The utilized prompts can be found in Appendix A.2.
Detailed explanations of these actions can be found
in Appendix B. There are dozens of hands within
each match. We utilize the hand win ratio, e.g.,
win hands
total hands to evaluate performance.

Reasong Agents: We consider 7 agents (5 LLMs-
powered agents and 2 baseline agents): ➊ Random:
the agent that randomly selects action at each step;
➋ MinMax: the agent that selects action based on
conventional min-max gaming strategy (only com-
patible with Tic-Tac-Toe); ➌ Prompt: the agent
that directly prompts LLMs to return answers; ➍

Chain-of-Thought (CoT): the agent that reasons
through thinking step by step; ➎ Self-Consistent
CoT (CoT-SC): the agent that utilizes multiple step-
by-step-thinking trajectories during reasoning; ➏

Tree-of-Thought (ToT): the agent that augmented
with exploration and deliberate decision-making,

i.e., self-evaluation. ➐ ReAct: the agent that fol-
lows reasoning-before-acting policy. All the agents
are driven by ChatGPT (GPT-3.5-turbo-0613).

It is worth noting that some agents are not orig-
inally designed for strategic gaming tasks. In Ap-
pendix C, we provide details on how we make them
applicable.

3.2 Evaluation Results

In Table 1, we report the average win ratios and
loss ratios in the Tic-Tac-Toe environment. The
optimization-based MinMax agent significantly out-
performs all other methods, which is expected
as we just use it as a reference baseline. Sur-
prisingly, we found that most advanced reasoning
agents work only slightly better than the Random
agent. The Prompt agent works even worse than
the Random agent. Among these methods, ToT
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the opponent’s move at this step

GPT-3.5-turbo thought:
“Your 'O' placements 
don't immediately 
threaten a win on the 
next move”, which is 
incorrect.

the opponent’s move

Strategic Reasoning: Endgame Chain-of-Thought GPT-3.5-turbo’s move

(a) strategic reasoning: LLMs fail in endgame, i.e., recognize
immediate win/lose situations.
Hallucination Prompt: Currently, the opponent has finished move Column 2, Row 

1, and you have finished moves Column 1, Row 1 and Column 2, 
Row 2. Assume the opponent will take Column 2, Row 3 as the next 
move, what’s the advantage for this move?

current situation

GPT-3.5-turbo: The opponent’s next move completes a vertical line of 
O’s in the second column. This means the opponent will have three 
O’s in a row vertically, which is a winning combination.

Miss Identified Ownership

(b) hallucination: LLMs failed to recognize the identity of
pieces.

Figure 3: Some representative error patterns of CoT
GPT-3.5-turbo in Tic-Tac-Toe.

achieves the highest average win ratio (37%) and
CoT-SC achieves the lowest loss ratio (40.17%).
In Figure 2, we present the performance of reason-
ing agents when playing Texas Hold’em Poker. We
found that the Prompt agent works better than other
agents. Advanced reasoning agents work slightly
better than the Random agent.

3.3 Analytical Insights
We summarize the following insights according to
the experimental results:

Serious Hallucination and Reasoning Errors.
We found that LLMs suffer from serious halluci-
nations and reasoning errors. Figure 3 provides
demonstrations of how LLMs failed in perceiving
board states and endgames.

Advanced Reasoning Not Always Help. Al-
though advanced reasoning agents (e.g., CoT,
CoT-SC, ReAct, ToT) all work better than directly
prompt LLMs in Tic-Tac-Toe, this trend reverses
in Texas Hold’em Poker, where directly prompted
LLMs actually perform better than all the advanced
reasoning agents. One potential reason is the na-
ture of incomplete games, where only partial infor-
mation is available, hindering effective reasoning
by LLMs. Additionally, Texas Hold’em Poker de-
mands strong Theory-of-Mind (ToM) skills like
bluffing, which are challenging for LLMs (Stepput-
tis et al., 2023).

4 In-Depth Strategic Reasoning Analysis

The limited success of state-of-the-art LLMs when
against random agents as opponents raises a critical

Overall Statistics Number

Number of questions 2,700
- Yes/No questions 2,400 (89%)
- Other questions 300 (11%)

Maximum question length 18
Average question length 11.19

Number of hallucination error types 5
- Spatial, Pattern, Memory, Legality, Counting -
Number of strategic reasoning error types 4
- Priority, Endgame, Fork, Blocking -
Number of questions for each error type 300

Maximum number of turns in questions 19
Minimal number of turns in questions 2
Average number of turns in questions 6.6

Table 2: Statistics of the offline configurations.

question: What specific vulnerabilities and limita-
tions are being exposed?

4.1 Preliminary

To answer this question, we provide targeted ques-
tions and verified answers for detailed offline demo-
graphic analysis. As a demonstration, we charac-
terize LLMs’ strategic behaviors over board games
(e.g., Tic-Tac-Toe and Connect-4). We first exam-
ine LLMs’ behaviors from online competitions ob-
tained in Section 3 and summarize two main error
categories: hallucination and strategic reasoning,
that result in loss.

Hallucination. We probe hallucinations by ex-
amining whether LLMs are capable of ➊ Spatial
Understanding, i.e., spatial relationship given any
two pieces; ➋ Pattern Recognition, i.e., discovering
consecutively connected pieces; ➌ Counting, i.e.,
counting finished pieces; ➍ Memory, i.e., identify-
ing the ownership of each piece; ➎ Legality, i.e.,
recognizing legal and illegal moves.

Strategic Reasoning. We probe four common
abilities in general board games: ➊ Action Prior-
ity, i.e., winning moves should be prioritized; ➋

Endgame, i.e., recognizing immediate win/loss sit-
uations; ➌ Blocking, i.e., blocking the winning of
the opponent; ➍ Fork, i.e., constructing moves that
lead to two potential winning moves.

We provide demonstrations for each type of er-
ror in Figure 4. It is worth noting that these errors,
e.g., fork, blocking, endgame, are also prevalent in
general board games (Dixit and Nalebuff, 2010).
Although we only provide demonstrations over Tic-
Tac-Toe and Connect-4, this can be easily general-
ized to other board games such as Chess and Go.
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VS
LLMs Races

VS
LLMs Races

VS

LLMs Competition

Examine Multi-Turn LLM
Strategic Reasoning

Typical Strategic Reasoning Error Profiles

Hallucination (Perception) Strategic Reasoning

Spatial
Understanding

Pattern
Recognition Counting

Memory

Legality BlockingFork

EndgamePriority

Spatial Understanding

Legality

Fork

Pattern Recognition Memory

Counting Priority

Endgame Blocking

Context: You have finished moves
Col2Row3, Col2Row1. Your opponent
finished moves Col1Row2, Col2Row2
Q: Is move Col2Row2 horizontally
connected with move Col1Row2? 
GT: Yes

Context: You have finished moves
Col3Row3, Col2Row1, Col1Row2. Your
opponent finished moves Col1Row3,
Col3Row2, Col1Row1
Q: Does the opponent have 2 moves
connected in horizontal, vertical, or
diagonal?
GT: No

Context: You have finished moves
Col2Row2, Col3Row3. Your opponent
finished moves Col1Row1, Col2Row3
Q: Is the move Col3Row3 your move?
GT: Yes

Context: You have finished moves
Col3Row3, Col2Row2, Col3Row2.
Your opponent finished moves
Col3Row1, Col2Row3, Col1Row1.
Q: Is move Col1Row3 a legal move as
the next move? 
GT: Yes

Context: You have finished moves
Col3Row3, Col2Row3, Col1Row2,
Col2Row1'. Your opponent finished
moves Col3Row2, Col2Row2,
Col1Row1, Col3Row1.
Q: How many moves are finished in
total so far?
GT: 8

Context: You have finished moves
Col1Row1, Col2Row1. Your opponent
finished moves Col1Row2, Col2Row2
Q: Should the move Col3Row2 be
prioritized as your next selection to
secure a win in the game?
GT: No

Context: You have finished moves
Col1Row1, Col1Row3. Your opponent
finished moves Col2Row1, Col1Row2
Q: Will the move Col2Row2 create a
fork (two potential winning moves) for
you?
GT: Yes

Context: You have finished moves
Col3Row1, Col1Row3. Your opponent
finished moves Col1Row1, Col2Row2.
Q: Is there a legal move that will make
the opponent immediately win?
GT: Yes

Context: You have finished moves
Col1Row2, Col2Row3. Your opponent
finished moves Col1Row2, Col2Row2.
Q: Will the move Col3Row2 prevent
the opponent from creating a row of 3
consecutive pieces?
GT: Yes

Figure 4: Error profiles in the offline dataset.

4.2 Offline Dataset Generation

Utilizing structured symbols for each move, such as
<CxRy>, we generate unlimited legal board states
with adjustable complexities. For dataset creation,
we crafted prompt templates for each error type
and traversed all occupied/legal moves to popu-
late these templates. We also implement verifiers
for each error type to establish ground truth. We
then sampled balanced questions based on com-
plexity and labels, e.g., Yes and No. The statistics
of the offline probing dataset for Tic-Tac-Toe and
Connect-4 are detailed in Table 2.

4.3 Evaluation and Error Analysis

We evaluate strategic reasoning for both commer-
cial LLMs, e.g., GPT-3.5-turbo and GPT-4, and
open-source LLMs, e.g., Llama-2-chat (Touvron
et al., 2023), Mistral-Instruct (Jiang et al., 2023).
Results are summarized in Table 3.

For hallucinations, we show that GPT-4 with CoT
reasoning achieves significant accuracy (90.7%),
suggesting that LLMs are capable of effectively
perceiving board states through symbolic represen-

tations. However, other LLMs demonstrated signif-
icant hallucination issues, indicating challenges in
understanding board states. For strategic reasoning,
we show that even the most state-of-the-art GPT-
4 can only achieve 54.6% accuracy on average,
which is only slightly better than random guessing.
It suggests the vulnerabilities and limitations in
strategic reasoning for LLMs. The CoT reasoning
only marginally improves performance (+0.8%) in
this scenario.

4.4 States Complexity Effects

As competitions progress and the complexity of the
board state increases significantly, we quantify the
correlation between this complexity and model per-
formance. In Figure 5, we demonstrate how model
performances are impacted in scenarios where com-
plexity is directly influenced by the number of com-
pleted turns, including Counting, Pattern, Priority,
Endgame, Blocking, and Fork. We normalize the
complexity derived from the number of turns to a
range of (0,1) and calculate the accuracy at each
specific number of turns. It is shown that as the
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Hallucination (Perception) Strategic Reasoning

Model and Reasoning All Avg. spatial pattern counting memory legality avg. priority endgame blocking fork avg.

Random 0.444 0.500 0.500 0.000 0.500 0.500 0.400 0.500 0.500 0.500 0.500 0.500

GPT-4 0.665 0.843 0.597 0.746 0.777 0.837 0.760 0.567 0.560 0.523 0.533 0.546
GPT-4 w/ CoT 0.750 0.947 0.817 0.997 0.940 0.833 0.907 0.540 0.597 0.560 0.518 0.554

GPT-3.5-turbo 0.554 0.503 0.537 0.707 0.643 0.627 0.603 0.503 0.475 0.498 0.497 0.493
GPT-3.5-turbo w/ CoT 0.641 0.763 0.577 0.903 0.766 0.669 0.736 0.505 0.519 0.557 0.505 0.522

Mistral-7B-Instruct-v0.1 0.494 0.545 0.520 0.225 0.515 0.524 0.466 0.545 0.551 0.543 0.476 0.529
Mistral-7B-Instruct-v0.1 w/ CoT 0.486 0.523 0.527 0.263 0.604 0.477 0.479 0.482 0.461 0.530 0.505 0.495

Llama-2-70b-chat 0.476 0.483 0.493 0.120 0.590 0.553 0.448 0.517 0.503 0.520 0.500 0.510
Llama-2-70b-chat w/ CoT 0.568 0.537 0.530 0.763 0.573 0.613 0.603 0.513 0.530 0.533 0.520 0.524

CodeLlama-34b-Instruct 0.477 0.547 0.560 0.070 0.550 0.540 0.453 0.550 0.482 0.513 0.477 0.505
CodeLlama-34b-Instruct w/ CoT 0.559 0.667 0.535 0.593 0.638 0.577 0.602 0.512 0.530 0.490 0.493 0.506

Table 3: Evaluation results on the offline datasets. State-of-the-art LLMs (e.g., GPT-4) with CoT reasoning are
capable of perceiving board states (90.7% accuracy in hallucination scenarios). However, it only works slightly
better than random guesses in strategic thinking scenarios, even with the help of CoT reasoning.
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Figure 5: Correlations between board complexities and
model performances. It indicates that complex board
situations result in a significant performance drop for
state-of-the-art LLMs.

board becomes more complex, there is a significant
drop in the strategic reasoning performances, e.g.,
the accuracy of GPT-4 drops from 68.8% to 46.1%.

4.5 Emergent Abilities in Strategic Reasoning

Following emergent abilities of LLMs (Wei et al.,
2022a), we study how LLM parameter sizes affect
strategic reasoning. In Figure 6, we compare the
popular Llama models at 7b, 13b, 34b (CodeL-
lama), and 70b parameter sizes. For hallucination,
increasing parameter sizes significantly improves
accuracy from 43.4% to 60.3%, suggesting emer-
gent abilities in strategic linguistic understanding.

However, there is no such trend in that strategic
thinking evaluation. We show that Llama-2-7b-
chat has similar performances as Llama-2-70b-chat
model, i.e. 50.6% to 52.4%. This raises new chal-
lenges regarding how to equip LLMs with the capa-
bility for effective strategic reasoning when simply
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Figure 6: The emergent abilities in strategic reasoning.
Increasing model parameter sizes effectively mitigates
hallucination and perception errors, while it does not
yield similar improvements in strategy.

increasing parameter size proves ineffective.

5 ReTA: Recursively Thinking Ahead

In this section, we propose ReTA, a new LLM agent
for improved strategic reasoning.

5.1 Preliminary
We formulate the gaming process as a discrete
decision-making process among actors, under the
interaction with the gaming environment. We de-
fine actors as LLMs-powered agents that take nat-
ural language (or prompts) as inputs and generate
corresponding actions as outputs. Without loss of
generality, we assume two actors are participating
in this gaming process. Considering the t-th step
of this process, we denote by st ∈ S the state that
the two actors observed, and at, ât ∈ A the actions
sampled by the two actors, where S is the infinite
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Figure 7: The overall architecture of ReTA.

state space and A is the infinite action space. The
state transition from st to st+1 can be formulated
as st+1 = T (st, at) where at ∼ p(at|st, x), p(at)
refers to the generative distribution of the backbone
LLMs, and x is the instruction (or prompt). Then,
the two-agent gaming process can be represented
as the sequence (s0, a0, s1, â1, s2, · · · , sN), where
s0 is the initial state and sN is a terminal state, e.g.,
a win/draw/loss situation. In this process, the two
actors will alternatively sample actions to achieve
new states, aiming to maximize their winning rates.

5.2 Recursively Thinking Ahead
Foresight is one of the significant differentiating
factors between top-tier players and average play-
ers, especially in strategy games like board and
card games. It requires the players to calculate
moves ahead, visualize the board’s possible states,
and evaluate the consequences of various move se-
quences. To simulate this process, we formulate
ReTA as the ensemble of modules, utilizing multiple
individual actors:

• Main Actor M : interacting with the envi-
ronment and generating the next action, i.e.,
at ∼ PM(at|st, x) where st is the current state
and x is the prompt.

• Reward Actor MR: working as a reward func-
tion to calculate the reward regarding different
states, i.e., r ∼ PR(r|st, x).

• Anticipation Actor MO: an imaginary oppo-
nent, predicting action ao,t to beat M at state

st, i.e., âo,t ∼ PO(âo,t|st, x).

Here PM, PR and PO are the generative distribu-
tions of the backbone LLMs: M,MR and MO.

It is worth noting that some search-based gam-
ing frameworks, such as the conventional minimax
gaming (Lan et al., 2020), are standard think-ahead
frameworks. In these frameworks, both actors will
try to minimize the possible loss for a worst-case
scenario (maximum loss) when making a move.
Our recursively thinking-ahead mechanism follows
this simple and classic protocol. Specifically, at
the beginning of each gaming step t, we first sam-
ple n desired actions At = {ã1t , ã2t , · · · , ãnt } ∼
PM (ãt|st, x) from M as the candidacy actions,
given current state st. Then, we formulate the think-
ahead process as the pseudo-gaming with MO, as
the following sequence:

(st, ãt, st+1, âo,t+1, st+2, ãt+2, · · · , sT), (1)

where ãt ∈ At is a candidacy action at pseudo-
gaming step t, âo,t+1 ∼ PO(âo,t|st+1, x) is the
sampled action from imaginary opponent MO, and
sT is a terminal state, e.g. achieves win/draw/lose
situation or achieves state st+k where k is the max-
imum allowed number of think-ahead steps. Once
the terminal state is achieved in pseudo-gaming,
the reward agent MR will perform situation assess-
ment by answering an advantage score, rT, to de-
scribe how many advantages the actor M has at
state sT : rsT ∼ Po(rT|sT, T, x), (0 ≤ r ≤ 1).
Theoretically, if we traverse all the possible com-
binations of candidacy actions and always take k
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Setting ReTA Win Ratio Others Win Ratio

ReTA Agent vs. ToT Agent

ReTA (k = 2, n = 2) 37% 59%
ReTA (k = 2, n = 4) 48% 37%
+ majority vote (kmv = 3) 62% 35%
+ P-UQ (kpert = 2) 60% 34%
+ majority vote + P-UQ 61% 31%

GPT-3.5-turbo as LLMs: ReTA Agent vs. Other Agents

ReTA v.s. ToT 61% (+30%) 31%
ReTA v.s. CoT-SC 52% (+17%) 35%
ReTA v.s. ReAct 50% (+10%) 40%
ReTA v.s. Prompt 60% (+26%) 34%
ReTA v.s. CoT 59% (+29%) 30%

Llama-2-13b-chat as LLMs: ReTA Agent vs. Other Agents

ReTA v.s. ToT 51% (+11%) 40%
ReTA v.s. CoT 55% (+11%) 44%
ReTA v.s. ReAct 56% (+13%) 43%
ReTA v.s. Prompt 62% (+26%) 36%

Table 4: Ablation study and evaluations of ReTA in the
Tic-Tac-Toe environment.

steps to achieve terminal states, there will be a
k-layer decision-making tree constructed with nk

leave nodes, which indicates there will be at most
nk terminal states and advantage scores in total.

Once we finish traversing this decision tree and
obtain advance scores for each terminal state, we
will perform reward signal backtracking from state
sT to st and select action at, in a minimax manner:

max
at∈A

min
ât+1∈A

(rstPO(ât+1|st+1)PM(at|st)). (2)

With this minimax reward backtracking, we assume
that the opponent will always choose the “worst
case" during the gaming, which makes our agent
more robust to the opponents. Once the traceback
happens to the root of the tree, there will be a re-
ward signal for each candidacy action in At. Then,
we simply select the action with the highest rewards
as the next action.

5.3 Hallucination and Factual Errors
As we mentioned in Section 3.3, LLMs suffer from
serious hallucinations and factual errors. Even
in the simplest 3×3 Tic-Tac-Toe situation, LLMs
struggle to read the correct spatial information and
recognize immediate win positions. To mitigate
this issue, we adopt two strategies during the gam-
ing process: majority vote (Wang et al., 2022a)
and perturbation-based uncertainty estimation (P-
UE) (Manakul et al., 2023).

For the majority vote, we simply sample kmv

generations as options and let LLMs select the
high-frequency option or the mean value if it is a
numerical result. For P-UE, we first prompt LLMs

Setting ReTA Hand Win Ratio Others Hand Win Ratio

ReTA v.s. Prompt 53.8% (+7.6%) 46.2%
ReTA v.s. CoT-SC 63.2% (+26.4%) 36.8%
ReTA v.s. ToT 72.1% (+44.2%) 27.9%
ReTA v.s. ReAct 78.0% (+56.0%) 22.0%

Table 5: Evaluations of ReTA in Texas Hold’em Poker.

Setting ReTA Win Ratio Others Win Ratio

ReTA v.s. ReAct 55% (+10%) 45%
ReTA v.s. ToT 60% (+20%) 40%

Table 6: Evaluation of ReTA in Connect-4.

to perturb the target questions in kpert times while
keeping the semantics unchanged, then we sample
generations based on both original question and
perturbed questions and apply a majority vote over
these generations to select the next action.

To control the cost of tokens, we only apply
majority vote and P-UQ to the situation assessment
procedures, i.e., generating advantage scores with
reward actor MR.

5.4 Expirical Results

We utilize the same settings as in Section 3. For
Tic-Tac-Toe, we execute 100 matches with each
agent going first for 50 matches. For Connect-4
and Texas Hold’em Poker, we execute 20 matches.

In Table 4, we conduct comprehensive ablation
studies and evaluations of ReTA over Tic-Tac-Toe.
We take ToT as the opponent of ReTA because ToT
achieves the best performance among all reasoning
agents in Section 3. It is shown that the proposed
ReTA agent significantly boosts the strategic rea-
soning of LLMs. Further experiments carried out
on the open-source Llama-2-13b-chat also show
distinct advantages for ReTA, suggesting the strong
transferability regarding different LLM backbones.
In Tables 5 and 6, the empirical results obtained
over Texas Hold’em Poker and Connect-4 present
that ReTA could be generalized to other gaming
scenarios.

6 Conclusion

In this paper, we propose to evaluate the multi-
turn strategic reasoning capabilities of LLMs. We
provide online agent competition and offline rea-
soning probing, offering an in-depth examination
of strategic behaviors. Our work introduces a new
dimension to LLMs evaluation, and we hope it will
inspire further research into the multi-turn strategic
reasoning of LLMs.
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7 Ethical Considerations

Prompting and Evaluating LLMs to be strategic
reasoning agents increases real-world autonomy
for LLMs and brings a lot of potential applications
in the real world. As a result, AI-driven decision-
making may potentially reduce the role of human
skill and creativity. It also raises the question of
who should be responsible for the decisions of
LLMs. Besides, ensuring fairness and avoiding
biases in the model’s strategy is essential, as biases
can influence game outcomes and player experi-
ences. It is also important to consider the impact
of advanced strategic reasoning on the integrity
of games, particularly in competitive settings, to
maintain a level playing field for all players.

8 Limitations

Although we consider both complete- and
incomplete-gaming tasks, there are still other game
forms not covered. We will take expanding more
strategic games as the future work. Also, even
though the proposed ReTA outperforms existing
reasoning agents, it is still significantly worse than
optimization-based solvers, such as MinMax agents.
Strategic reasoning requires strong instruction fol-
lowing capabilities. Currently, only commercial
LLMs (e.g., ChatGPT and GPT-4) are capable of
following complex instructions, while other open-
source LLMs (e.g., Llama-2-chat) are still unde-
sirable to be the backbone of strategic reasoning
agents.
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A Prompt Templates

In this section, we provide all the prompt templates
used in this work. There are three types of prompts
for each <game, agent> pair: system prompt, head
prompt, observation prompt, and step prompt.

System Prompt. A system prompt in Large Lan-
guage Models (LLMs) is a predefined instruction
or command embedded within the model’s inter-
face, guiding its responses or actions according to
specific user needs or operational protocols.

We utilize the following sentence as the system
prompt for all the environments:

System Prompt: You are a helpful assistant
who strictly follows the userś instructions.

Head Prompt. Head Prompts provide high-level
descriptions of games, including game rules and
symbol representation formats.

Observation Prompt. An observation prompt
provides necessary information and observations
to the reasoning agent, such as currently available
actions, opponent moves, etc.

Step Prompt. Step prompts define how agents
reason given prompts. Different agents may con-
tain more than 1 step prompt. All the variables are
denoted as <variable_name>.

A.1 Environment Prompt Templates for
Tic-Tac-Toe

Head Prompt: Tic Tac Toe is a two-player
game played on a grid. Players take turns
marking a space with their respective symbols.
The goal is to get multiple of oneś own sym-
bols in a row, either horizontally, vertically,
or diagonally, before the opponent does. If
all nine squares are filled and no player has
three in a row, the game is a draw. The Tic
Tac Toe game is played on a 3 by 3 grid, with
the winning length as 3. Each move is rep-
resented by a string consisting of two parts:
the column (C) and the row (R), in that order.
For instance, C1R2 means the movement at
the position of the first column and the second
row of the grid. You are playing this game
with the user (opponent).

Observation Prompt: Now, your opponent
has finished moves: <opponent_moves>. You
have finished moves: <agent_moves>. The

legal positions are <legal_moves>.

A.2 Environment Prompt Templates for Texas
Hold’em Poker

Head Prompt: You are playing Texas Hol-
dem Poker with other <num_players> play-
ers. The aim of each player in Texas Hold’em
poker is to win chips or money from other
players by either having the best hand at show-
down or by convincing other players to fold
their hands. The small blind bet of this game
is 1 and the big blind bet of this game is 2.

Observation Prompt: Here are the situations
you are facing:
You are in the <stage> round at present.
<round_prior_player_actions>.
The current round pot is <round_pot> and the
community pot is <community_pot>.
Your card is <card>.
Your remaining stack is <remaining_stack>.
round_prior_player_actions: In this round,
after the small blind and big blind actions, the
prior players have made the following actions:
Player at <player_info> takes action <action>.

A.3 Environment Prompt Templates for
Connect-4

Head Prompt: Connect 4 is a two-player con-
nection board game, where the players choose
a color and then take turns dropping colored
discs into a vertically suspended grid. The
pieces fall straight down, occupying the next
available space within the column. The ob-
jective of the game is to be the first to form a
horizontal, vertical, or diagonal line of four of
one’s own discs. You are a gaming agent that
aims to beat me in Connect 4 games. Each
move is represented by a string consisting of
two parts: the column (C) and the row (R),
in that order. For instance, C1R2 means the
movement at the position of the first column
and the second row of the grid.

Observation Prompt: Now, your opponent
has finished moves: <opponent_moves>. You
have finished moves: <agent_moves>. The
legal positions are <legal_moves>.

A.4 Step Prompt Templates for the Prompt
Agent
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Step Prompt: Choose one move from these
legal positions to set up advantages.
Your output should be of the following format:
Move:
Your move

A.5 Step Prompt Templates for the CoT Agent

Step Prompt: First think about your current
situation, then choose one move from legal
positions to set up advantages.
Your output should be of the following format:
Thought:
Your thought.
Move:
Your move.

B Texas Hold’em Poker Action Space

The explanations of Texas Holdem Poker actions:

1. FOLD: You decide not to play the hand and
discard your cards.

2. CHECK: Declining the opportunity to bet.
It’s like saying ’I’m still in the game, but I
don’t want to bet right now.

3. CALL: Matching the current highest bet to
stay in the hand.

4. RAISE_3BB: Raising the bet to three times
the big blind amount.

5. RAISE_HALF_POT: Raising to an amount
equal to half the current pot size.

6. RAISE_POT: Raising to an amount equal to
the current pot size.

7. RAISE_2POT: Raising to an amount equal
to twice the current pot size.

8. ALL_IN: Betting all your chips.

9. SMALL_BLIND: A forced bet that’s typi-
cally half the size of the big blind. It rotates
around the table.

10. BIG_BLIND: A forced bet that sets the initial
pot amount and action. It’s typically twice the
size of the small blind and rotates around the
table.

C Reasoning Agent Adaptions

As we mentioned before, agents like ReAct and ToT
are not specifically designed for strategic thinking.
Here we provide our adaptions regarding the two
agents.

C.1 Adaptions to the ReAct agent

We follow the prompts from their official codebase
and utilize the first-think-then-action procedures.
One of the major challenges is that we need to
design search spaces for our tasks. For example,
in (Yao et al., 2022b), the action space defined
for the Hotpot QA dataset is SEARCH[entity],
LOOKUP[entity], and FINISH. To do that, we de-
sign the following actions for strategic reasoning:

Defensive Action, which means to block
the potential winning of your opponent (e.g.,
block your opponent from forming sequences
of 3).
Offensive Action, which means to win the
game (e.g., create forks, control the center,
play ahead).

We first prompt LLMs to select which type of ac-
tion is more desirable, defensive or offensive. Then,
based on the selected action, we prompt LLMs to
select the next move. The overall step prompt for
ReAct is as follows:

Step Prompt: Solve this problem with first
Thought then Action final Move steps. The
Thought step reasons about the current situa-
tion to set up advantages. The Action step will
select one of the 2 actions:
(1) Defensive Action, which means to block
the potential winning of your opponent (e.g.,
block your opponent from forming sequences
of 3).
(2) Offensive Action, which means to win the
game (e.g., create forks, control the center,
play ahead).
The Move step will generate your next
<env_name> move.
Your output should be in the following format:
Thought:
Your thought here.
Action:
Your action here.
Move:
Your move.
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C.2 Adaptions to the ToT agent
For the ToT agent, we follow the implementation of
the text generation task as in the official codebase
of ToT5. Specifically, follow the 2-step ToT man-
ner, i.e., 1) generate plans; 2) vote for the plan; 3)
generate action according to the selected plan; 4)
vote for action. The prompts used in this process
are shown as follows:

Step Prompt: First think about your current
situation, then choose one move from legal
positions to set up advantages.
Your output should be of the following format:
Thought:
Your thought.
Move:
Your move.

After executing step prompts in a breath-first search
manner, we utilize the following voting prompt to
select the plan and move:

Vote Prompt: Conclude in the last line "The
best choice is s", where s is the integer id of
the choice.

D Generative Hyperparameters

For all the model queries and generations, we set
the max token number as 1024 and the tempera-
ture as 0.2. For other parameters, we follow the
default settings as in OpenAI API and Langchain
interfaces.

E Step Prompt Templates for ReTA

Selection Prompts: First think about your sit-
uations, then choose <num_k> moves from
legal positions to set up advantages. Your out-
put should be in the following format:
Thought:
Your thought.
Selection:
1. selected move
2. selected move
......

Evaluation Prompts: Assume you will take
<next_move> as the next move. What is the
advantage score for this move? Use a score
on a scale of 0 - 100 to represent this score.

5https://github.com/princeton-nlp/
tree-of-thought-llm/blob/master/src/tot/prompts/
text.py

Conclude in the last line "The advantage score
for me is s", where s is the score.
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