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Abstract

Evaluating the veracity of everyday claims is
time consuming and in some cases requires do-
main expertise. We empirically demonstrate
that the commonly used fact checking pipeline,
known as the retriever-reader, suffers from per-
formance deterioration when it is trained on
the labeled data from one domain and used in
another domain. Afterwards, we delve into
each component of the pipeline and propose
novel algorithms to address this problem. We
propose an adversarial algorithm to make the
retriever component robust against distribution
shift. Our core idea is to initially train a bi-
encoder on the labeled source data, and then,
to adversarially train two separate document
and claim encoders using unlabeled target data.
We then focus on the reader component and
propose to train it such that it is insensitive
towards the order of claims and evidence docu-
ments. Our empirical evaluations support the
hypothesis that such a reader shows a higher
robustness against distribution shift. To our
knowledge, there is no publicly available multi-
topic fact checking dataset. Thus, we propose
a simple automatic method to re-purpose two
well-known fact checking datasets. We then
construct eight fact checking scenarios from
these datasets, and compare our model to a
set of strong baseline models, including recent
domain adaptation models that use GPT4 for
generating synthetic data.1

1 Introduction

Fact checking is the process of applying a veracity
rating to a particular statement or claim (Thorne
and Vlachos, 2018). Automatic fact checking is
beneficial for curbing misinformation, and also for
supporting professional human fact-checkers (Guo
et al., 2022). Due to the growing size of the Web,
this task is increasingly becoming more challeng-

1Code and data are available at
https://github.com/p-karisani/OODFC

ing. The performance of fact checking systems de-
pends on the availability of evidence resources, and
this makes the large commercial language models,
in many cases, unsuitable for the task. We demon-
strate this by reporting an experiment in Figures 1a
and 1b. We see that two existing large language
models, i.e., ChatGPT and GPT 4, are unable to
verify a simple claim regarding the former pres-
ident of the US. At the time of carrying out this
experiment, the indictment of Donald Trump was
widely being discussed on news outlets, such as the
Associate Press,2 and the social media websites.
Another factor that contributes to the difficulty of
the task is the technological requirements. More
specifically, existing automated fact checking sys-
tems rely on a pipeline of components to retrieve
evidence documents and to infer the final verdict
(Guo et al., 2022). As stated by Das et al. (2023),
coordinating the components within such a pipeline
presents an extra challenge.

Given these challenges, it is desirable to know
how much a trained fact checking pipeline gen-
eralizes across domains. To our knowledge, lit-
tle to no work has been done to investigate this
area. There exist a few studies (Augenstein et al.,
2019; Wadden et al., 2020; Gupta and Srikumar,
2021) that report experiments on the transferability
of the fact checking pipeline across various plat-
forms, e.g., from Wikipedia to scientific reposito-
ries, or from a fact checking website to another
one. While these are valuable observations, these
platforms, e.g., Wikipedia and the scientific reposi-
tories, have shared domains and topics.3 This can
potentially distort certain reported conclusions, par-

2Available at: https://apnews.com/article/trump-indicted-
jan-6-investigation-special-counsel-
debb59bb7a4d9f93f7e2dace01feccdc

3We borrow the word “domain” in a broad sense, and the
word “topic” in a narrow sense from the domain adaptation
literature (Blitzer et al., 2007). In the domain adaptation
literature “domain” (or “topic”) refers to a particular genre (or
sub-genre) of text, such as politics, business, or arts.
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As of my last update in September 2021, Donald Trump, the 45th 
President of the United States, had not been recently indicted. 
However, it's important to note that my information might be outdated, 
and I don't have access to real-time data. Legal situations and 
investigations can evolve over time, and new developments may have 
occurred since my last update.
For the most current information on Donald Trump's legal status or any 
potential indictments, I recommend checking reputable news sources 
or conducting an online search for recent news articles and updates.

Donald Trump was recently indicted. Is that True?

(a) ChatGPT Response

As an AI developed by OpenAI, I don't have the ability to access or 
retrieve real-time news updates. Please check the latest news online for 
the most accurate information.

Donald Trump was recently indicted. Is that True?

(b) GPT 4 Response

Figure 1: On August 2, 2023, the Associated Press (and
other news outlets) reported that Donald Trump was
indicted. The questions were asked from the LLMs on
August 17, 2023. As of December 2023, these models
are still unable to verify this claim.

ticularly, the conclusions on the generalizability
of the pipeline to unseen scenarios. Additionally,
the solution proposed by these studies to enhance
generalization is very limited. They primarily rely
on pretraining the pipeline in one domain, and then,
using it in another domain.

In the next section, we provide a background
on the fact checking pipeline. We then report a
case study to show that a pipeline trained on out-
of-domain data is not as competitive as the one
trained on in-domain data. We continue our study
by focusing on the two primary components of
the pipeline, i.e., the retriever and the reader, and
propose two novel algorithms to enhance their per-
formance. Particularly, we use a bi-encoder dense
retrieval model as the retriever, and propose an ad-
versarial algorithm to enhance its robustness under
distribution shift. We then exploit a previously un-
known weakness of language models in detecting
the reversal relationship between input statements,
and propose an augmentation algorithm to provide
the reader with more cues.

To evaluate our pipeline, we use a public API to
re-purpose the Snopes (Hanselowski et al., 2019)
and the MultiFC (Augenstein et al., 2019) fact
checking datasets. We extract eight fact checking
scenarios out of these two datasets, and compare
our proposed components individually to the state-
of-the-art domain adaptation techniques, including
the ones that exploit GPT 4. We also demonstrate
that our entire fact checking pipeline outperforms
the alternative pipelines that use these techniques.
In summary, our contributions are threefold:

• We propose a method for the claim retriever un-
der domain shift. Our method is novel and un-
precedented. We empirically show that it outper-
forms existing domain adaptation models.

• We exploit the weakness of language models in
detecting the reversal relationship in input data
and propose to train the reader such that it is
insensitive to the order of claim and evidence
documents. This helps the reader to extract more
cues from the data. Our finding about language
models as well as our algorithm to partially re-
solve the issue are novel and unprecedented.

• We compare our pipeline to a set of pipelines that
consist of strong domain adaptation methods. We
demonstrate that ours is state of the art.

2 Preliminaries

Background. Existing fact checking systems (Guo
et al., 2022; Das et al., 2023) primarily rely on
two components: 1) a document retrieval model,
called “retriever”, and 2) a veracity prediction
model, called “reader”. See Figure 2a for an il-
lustration. The retriever views the input claim as
a query and returns the top evidence documents
that are deemed relevant to the claim—the search
is usually performed over a pre-indexed corpus. As
the reader, existing studies usually train a classifier
over the concatenation of the retrieved documents
and the given claim (Das et al., 2023).5 As stated
by Wadden et al. (2020) and Guo et al. (2022),
the veracity prediction step resembles the natural
language inference task (NLI). The output of the
veracity prediction component can be the word
“Support” or the word “Refute”—depending on the
system design, a third candidate output can be also
added as “Neutral”.

As it can be seen, developing, scaling up, and
maintaining a fact checking system involves a lot
of expertise, time, and budget. On the other hand,
when such a system is deployed, even a small dete-
rioration or improvement in performance can have
profound impacts. Detecting an unsupported claim
early enough, and then, taking timely actions on
the media can be invaluable. Therefore, it is crucial
to know if such a system is generalizable. In other
words, if a model trained on the labeled data from

4The icons used in the figure have been downloaded from
www.flaticon.com.

5Depending on the architecture, practitioners may add
pre-processing steps, such as rationale extraction, or post-
processing steps, such as justification production. We focus
on the essential components.

2248



Claim Retriever

Reader
Verdict

1

2

3

4

Top K 
Docs

(a) FC Pipeline4

0.6

0.62

0.64

0.66

Misc Politics

F1

Target Domain

Misc (Source)
Politics (Source)

(b) F1 of the Pipeline

0.68

0.73

0.78

0.83

Misc Politics

N
D

C
G

@
1

0

Target Domain

Misc (Source)
Politics (Source)

(c) F1 of the Retriever

0.62

0.64

0.66

0.68

Misc Politics

F1

Target Domain

Misc (Source)
Politics (Source)

(d) F1 of the Reader

Figure 2: 2a) Commonly used fact checking (FC) pipeline consists of a retrieval model (called the retriever), and a
veracity prediction model (called the reader). 2b) The performance (Macro F1) of the pipeline across two domains
(Misc vs Politics) in two scenarios (in-domain vs out-of-domain). 2c) The performance (NDCG@10) of the retriever
across the two mentioned domains. 2d) The performance (Macro F1) of the reader across the two domains.

one domain (i.e., source domain), demonstrates the
same efficacy if it is used to verify the claims in
another domain (i.e., target domain). In order to
answer this question, below, we report a case study.

Setup. We compare the performance of in-
domain fact checking compared to out-of-domain
fact checking across two domains of “Miscellany”
and “Politics”. Each domain in this experiment
has 7,900 claims, and each claim has two evidence
documents. In each domain, 60% of data was used
for training and 40% for testing. The claims are
labeled either as Support or Refute.

In this experiment, the retriever is a bi-encoder
(Karpukhin et al., 2020) pretrained using the al-
gorithm proposed by Izacard et al. (2022). The
reader is a RoBERTa-based model (Liu et al., 2019)
pretrained on the SNLI and MultiNLI datasets
(Williams et al., 2018). Apart from these pretrain-
ing steps, all the models are finetuned in the source
domains (using the labeled data), and then, evalu-
ated on the target domain. We assume the target
domain has no labeled data during the training.
The target labels are used only for evaluation. We
report Macro F1 for the classification tasks and
NDCG@10 for the ranking tasks.

Observations. Figure 2b reports the perfor-
mance of the pipeline in the in-domain scenarios
compared to the out-of-domain scenarios. We see
that the performance in both of the out-of-domain
scenarios (i.e., Politics→Misc and Misc→Politics)
is worse than their in-domain counterparts. This
raises the question about the root of this perfor-
mance deterioration. To reveal the cause, we report
the performance of each underlying component in
isolation. To evaluate the performance of the reader
in isolation, we assume that the retriever perfectly
returns all the relevant evidence documents. Fig-
ures 2c and 2d report the results. We see the same

trend in both experiments. Both components suf-
fer from distribution shift between the in-domain
and out-of-domain training. In the next section, we
formally describe the problem statement, and then,
we propose solutions to enhance the performance
of the pipeline.

3 Proposed Model

3.1 Problem Statement
In the source domain S, we are given a set of la-
beled claims and their evidence documents denoted
by {(Cs

i , y
s
i , V

s
i )}ns

i=1, where ns is the number of
claims in this domain, Cs

i is the i-th labeled claim,
ysi is the veracity of the claim—i.e., Support, Re-
fute, or optionally Neutral—and V s

i is the set of
evidence documents for supporting the assigned
label. We denote the set of all the source claims
by Cs={Cs

i}ns

i=1, and the set of all the evidence
documents by Ds={Ds

j}ms

j=1
, where Ds

j is j-th evi-
dence document, and ms is the number of evidence
documents in the set. Note that V s

• ⊂Ds. In the
target domain T , we are given a set of unlabeled
claims Ct={Ct

i}
nt

i=1, and a corpus of evidence doc-
uments Dt={Dt

j}
mt

j=1
.

We opt to minimize the prediction error of the
fact checking pipeline in the target domain, using
the labeled data from the source domain and the
unlabeled data from the target domain. Note that
there is a distribution shift between the claims in
the domains S and T. That is, the claims in these
two domains involve distinct topics, discuss distinct
entities, and refer to distinct events.

Following existing studies (Guo et al., 2022; Das
et al., 2023), our model adopts the pipeline illus-
trated in Figure 2a. We individually train each
component using the labeled data from the source
domain and the unlabeled data from the target do-
main. During testing, we plug the trained compo-
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Figure 3: 3a) The source retriever is a bi-encoder, and uses dot product as the loss function. 3b) We fix the
parameters of the source claim encoder, and adversarially train the target claim encoder to mimic the source model.
This step is done using unlabeled data in the two domains. 3c) Next, we fix the parameters of the source document
encoder, and adversarially train the target document encoder. Similarly, this step does not need labeled data. 3d)
The two trained target encoders can be used for the retrieval task in the target domain. The components that have
gray outline show the inputs, outputs, and objective terms. The rest are neural networks. The parameters of the
components that have gray background are fixed during training.

nents into the pipeline to predict the veracity of the
claims in the target domain. In the next section,
we discuss our algorithm for training the retriever.
We then propose our method for training the reader.
We conclude the section by providing a summary
of the entire training and testing procedures.

3.2 Adversarial Training for Evidence
Retrieval

We use a bi-encoder model (Karpukhin et al., 2020)
as the retriever. This model consists of two en-
coders fc(•) and fd(•) to project the claims and
evidence documents into low dimensional dense
vectors respectively. Figure 3a illustrates the archi-
tecture of this model. To obtain a similarity score
between a claim and evidence documents, a dot
product operator is applied to the outputs of the
encoders, i.e., for a given claim C and an evidence
document D we have sim(C, D)=fc(C)⊺ · fd(D).

To train this model in the source domain S,
where labeled data is available, we can use the
relevant evidence documents as positive examples,
and the irrelevant evidence documents as negative
examples. Then, we can minimize the negative
log-likelihood loss term as follows:

Lfs=

ns∑

i=1

−log

exp(sim(Cs
i ,D

s
i+))

exp(sim(Cs
i ,D

s
i+
)) +

∑r
j=1exp(sim(Cs

i ,D
s
j,i−))

,

(1)
where, ns is the number of claims in the source do-
main, exp (•) is the exponential function, Cs

i is the
i-th source claim, Ds

i+ is a relevant evidence docu-
ment (randomly selected from the set of relevant
documents V s

i ), and r is the number of randomly
selected irrelevant documents—denoted by Ds

•,i− .

If we use stochastic gradient descent for training,
we can use the irrelevant in-batch evidence docu-
ments as negative examples. The objective term
is minimized with respect to the parameters of the
two encoders fc and fd. To test the model, we can
use the similarity between a given claim and all
the evidence documents, and then, can return the
documents that have the highest similarity score to
the claim.

Due to the lack of labeled data, the training al-
gorithm above is not applicable in the target do-
main. Thus, we propose an approach to exploit
unlabeled data to train the claim and document en-
coders for the target domain. We begin by training
a bi-encoder model in the source domain, as ex-
plained earlier and shown in Figure 3a. Then, we
freeze the parameters of the source claim encoder,
and adversarially (Goodfellow et al., 2014; Tzeng
et al., 2017) train an encoder in the target domain
to mimic the outputs of the source claim encoder,
as shown in Figure 3b. We, then, repeat the same
procedure to train a target document encoder by
freezing the parameters of the source document
encoder—Figure 3c. Finally, the two adversarially
trained target encoders can be used to calculate the
similarity between the target claims and the target
evidence documents, as illustrated in Figure 3d.

The objective terms for adversarially training the
target claim encoder are:

Lgc=−ECs∼Cs[log gc(f
s
c (Cs))]−

ECt∼Ct

[
log (1−gc(f

t
c(Ct)))

]
,

(2)

and
Lft

c
=ECt∼Ct

[
log gc(f

t
c(Ct))

]
, (3)

where gc is the discriminator classifier for the
claims, and fs

c and f t
c are the source and target

claim encoders respectively. The rest of the terms
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were defined earlier. The two objective terms are
minimized with respect to the parameters of gc and
f t
c respectively. Thus, intuitively, the discrimina-

tor learns to distinguish between the claims in the
source and target domains, while the target claim
encoder gradually learns to produce vectors that
are similar to the source vectors. Similarly, we
adversarially train the target document encoder as
follows:

Lgd=−EDs∼Ds[log gd(f
s
d(Ds))]−

EDt∼Dt

[
log (1−gd(f

t
d(Dt)))

]
,

(4)

and
Lft

d
=EDt∼Dt

[
log gd(f

t
d(Dt))

]
, (5)

where gd is the discriminator classifier for the evi-
dence documents, and fs

d and f t
d are the source and

target document encoders respectively. Note that
before training the target encoders, we initialize
them with the parameters of the source encoders.
During the experiments we observed that this can
significantly facilitate their training.

Pretraining encoders has become an integral part
of dense retrieval algorithms (Karpukhin et al.,
2020; Wang et al., 2022; Dai et al., 2023). Our
approach for training the target claim and docu-
ment encoders does not impose any restriction on
the initialization of the encoders. Therefore, be-
fore training the source encoders (Figure 3a), we
use the T5 model (Raffel et al., 2020) to generate
a set of pseudo claims for the unlabeled evidence
documents in the target domain. We then use this
automatically generated dataset to pretrain a bi-
encoder model, to be used in the training algorithm
described in this section. See Section 4 for the im-
plementation details of the pretraining step. In the
next section, we discuss our algorithm for training
the reader.

3.3 Representation Alignment for Veracity
Prediction

To predict the veracity of a given claim, following
existing studies (Wadden et al., 2020; Wright et al.,
2022; Das et al., 2023), we can train a classifier on
the concatenation of the corresponding evidence
document and the claim—resembling the natural
language inference task. If multiple evidence docu-
ments exist, we can take the average of the classifier
outputs to make the final prediction. In the source
domain S, where labeled data is available, we can
employ this method. However, it is difficult to train
such a classifier for the target domain because there
is no labeled data in this domain. Thus, we use the
retriever that we trained in the previous step, the
labeled and unlabeled data in the source domain,

and the unlabeled data in the target domain to train
such a classifier for the target domain.

We use a distance-based discrepancy reduction
loss function to train our model (Long et al., 2015).
Thus, we have:

L= 1

ns

ns∑

i=1

J(θ(fr(Xs
i)),y

s
i ) + λD(fr(X

s),fr(X
t)), (6)

where J is the cross entropy loss, fr(•) is the data
encoder, θ(•) is the classifier applied to the output
of the encoder, Xs

i is i-th labeled source example,
and Xs and Xt are the sets of unlabeled source and
target examples respectively. λ > 0 is a penalty
term. The term D is the alignment loss, and reduces
the discrepancy between the distributions of source
and target examples after the encoder layer. We
use correlation alignment (Sun and Saenko, 2016),
which measures the distance between the second-
order statistics of the source and target data. It is
defined as follows:

D =
1

4×d2
∣∣Ms−M t

∣∣2
F
, (7)

where d is the dimension of the input vectors, and
|•|2F is the square of Frobeniuns norm. M s and M t

are the covariance matrices of fr(Xs) and fr(X
t)

respectively. We see that by reducing the distance
between the two covariance matrices the discrep-
ancy between the projected representations of the
source and target vectors are reduced.

In order to use Equation 6 for training our model,
we need to formulate the vectors Xs

•, Xs, and Xt.
We obtain Xs

• and Xs in the source domain by
concatenating the evidence documents and their
corresponding claims. Because there are no asso-
ciations between the documents and the claims in
the target domain, we propose to use the model
trained in the previous section to retrieve the top p
target documents for each target claim, and then, to
consider them as the evidence documents. These
documents along their associated claims can be
used to construct the vectors Xt.

To give the reader more cues and also provide
it with more training data, we propose to augment
the input data with the reverse order of itself. For
instance, in the case of Xs

i , if Xs
i=Cs

i ∥ Ds
i+ , where

the symbol ∥ is the concatenation operator, we then
propose to also use the vector Xs

i=Ds
i+∥Cs

i for train-
ing the reader. The augmentation can be performed
on all the vectors in Xs and Xt as well. Note that
in the general natural language inference task, it
is not always logically true to reverse the order of
the premise and the hypothesis, however, in the
fact checking task this is the case. See Table 6 in
the results section for an anecdotal experiment that
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Figure 4: 4a) The reader model. Dashed line indicates shared parameters. S/D, S/C, T/D, and T/C stand for source
documents, source claims, target documents, and target claims respectively. The symbol ∥ is the concatenation
operator. 4b-4c) The 2D projection of the claims in the MultiFC and Snopes datasets (using t-SNE). The vectors are
the outputs of a BERT classifier, after being trained to predict the domains. Figure best viewed in color.

shows a language model fails to infer B→A from
A→B, which justifies our augmentation method.6

Note that after the augmentation step, Equation 6
will have two discrepancy alignment terms. We use
λ1 and λ2 as coefficients for the direct and reverse
alignment terms.

Figure 4a shows our reader. We see that the input
data is augmented with the reverse vectors. The
entire model is trained using the supervised cross
entropy loss and the unsupervised alignment loss
terms.

3.4 Training and Testing Procedures
To train our fact checking pipeline, we use the
labeled source data and the unlabeled target data
in the algorithm presented in Section 3.2 to train
our retriever. Then we use the trained retriever
to generate pseudo-labels for the target claims–as
mentioned in Section 3.2, our target retriever has
two encoders adversarially trained for the task. We,
then, use the labeled source data along the pseudo-
labeled target data to train our reader, as stated in
Section 3.3.

Improving a pipeline by improving each compo-
nent individually, rather than proposing end-to-end
solutions, has a downside. When our pipeline is
used for testing, the improvement achieved by each
component may not be fully carried over to the
next step. For instance, the retriever may return
better results in a particular scenario, but the reader
may fail to exploit the informative evidence docu-
ments in this scenario. Another example is when
the reader can potentially perform better, but the
retriever fails to return informative evidence docu-
ments. In general, as stated by Domingos (2012),
learning is a complex phenomenon. In order to

6Parallel to our paper, another paper by Berglund et al.
(2023) reports the same finding.

Dataset Domain Count Neutral Refute Support

MultiFC

Arts 3788 - 3434 354
Business 1943 - 1007 936
Misc 7968 - 5351 2617
Politics 9350 - 6301 3049
Sensitive 2180 - 1555 625

Snopes General 4190 755 2643 792
News 1620 348 1041 231

Table 1: The list of domains, the number of claims
in each domain, and the distribution of labels in each
domain for the MultiFC and Snopes datasets.

potentially dampen the undesired effect of such
cases, we add an additional step during the testing.
During the testing, given an unseen target claim,
the retriever is used to return the top k evidence
documents, and they are carried over to the reader.
At this stage, instead of treating these documents as
a set, we use the ranking of the documents to assign
a higher weight to the top documents in making
the final prediction. Therefore, instead of taking
the average of the classifier to derive the prediction,
we begin from the top of the list and iterate over
the ranking list to generate k subsets. The final
prediction is made by taking the average of the pre-
dictions obtained from each subset. More formally,
the final prediction is made as follows:

O=
1

k

k∑

i=1

(

∑i
j=1θ(fr(Ct∥Dt

j+))

i
), (8)

where, as before, fr and θ are the reader encoder
and the reader classifier, Ct is the target claim at
hand, and Dt

j+ is the j-th relevant document re-
turned by the retriever. We see that the top evi-
dence documents are present in a higher number
of subsets, and therefore, have a higher weight. In
the next section, we provide an overview of the
experimental setup for evaluating our pipeline.
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F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S Ave G→N N→G Ave
cont-gpl-ft/nli-ft 0.580.02 0.593.01 0.638.01 0.579.02 0.595.01 0.629.01 0.602 0.435.02 0.403.02 0.419

cont-gpl-ft/nli-mlm-ft 0.581.03 0.593.02 0.635.02 0.600.02 0.590.01 0.620.01 0.603 0.422.04 0.416.01 0.419
cont-promp-ft/nli-ft 0.583.01 0.594.01 0.642.01 0.586.02 0.604.00 0.623.01 0.605 0.434.01 0.406.01 0.420

cont-promp-ft/nli-mlm-ft 0.589.03 0.594.02 0.638.02 0.603.02 0.589.02 0.619.02 0.605 0.423.04 0.417.01 0.420
ours 0.595.01 0.605.01 0.648.01 0.615.02 0.603.01 0.643.01 0.618 0.440.02 0.435.01 0.437

Table 2: Fact checking results. The sequence before “/” indicate the list of steps used in the retriever, and the
sequence after “/” indicate the list of steps used in the reader. The suffix ft indicates finetuning on the source domain.
For examples, cont-promp-ft means that fist Contriever is used, then Promptagator is used, and finally the model is
finetuned on the source domain. For brevity, the initials of the domain names are used in the column titles. All the
baselines use domain adaptation techniques. For a comparison to a pipeline that does not use any domain adaptation
method see Appendix D.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S Ave G→N N→G Ave
nli 0.443.06 0.446.06 0.451.04 0.443.06 0.446.06 0.451.04 0.447 0.194.07 0.201.06 0.198

nli-ft 0.628.02 0.613.00 0.646.02 0.624.01 0.601.00 0.640.01 0.625 0.454.01 0.449.01 0.451
nli-mlm-ft 0.614.00 0.611.01 0.648.02 0.629.03 0.600.02 0.632.02 0.622 0.440.04 0.441.00 0.441

ours 0.637.02 0.625.01 0.662.01 0.639.01 0.611.02 0.651.01 0.637 0.466.01 0.469.01 0.467

Table 3: The performance of the reader compared to the baselines. The suffix ft indicates finetuning on the source
domain.

4 Experimental Setup

We begin this section by providing an overview of
the datasets used in the experiments. Afterwards,
we briefly discuss the baselines that we compare
to, and finally, we present a summary of the setup.
Additional information about the baselines and the
training setup can be found in Appendix.
Datasets. We use two datasets in our experiments,
the MultiFC dataset (Augenstein et al., 2019) and
the Snopes dataset (Hanselowski et al., 2019). The
claims in these datasets are not categorized into
domains, therefore, we automatically extract the
domains. See Appendix A for a description about
the process, a sample set of the claims from each
domain, and the top LDA topics of the domains.
Table 1 reports the list of the domains, and the dis-
tribution of the labels in each domain. We also
report the 2D projections of the claim representa-
tions in Figures 4b and 4c. These illustrations are
the outputs of a BERT encoder trained to project
the claim representations, then further transformed
into 2D vectors using the t-SNE technique (van der
Maaten and Hinton, 2008). We observe that there
is a marked shift between the distributions of each
pair of the domains in both datasets.
Baselines. A detailed description of each baseline
and the setup can be found in Appendix B. We com-
pare our retriever with three baselines Izacard et al.
(2022), Wang et al. (2022), and Dai et al. (2023).

The former of the list is a pretraining technique. To
evaluate our reader, we show that it outperforms a
commonly used domain adaptation method called
DAPT (Gururangan et al., 2020) followed by fine-
tuning in the source domain. In Table 5b we also
compare our augmentation model to the vanilla
distance-based domain adaptation method.

We compare our fact checking pipeline to a set
of pipelines that consist of the best retriever com-
ponents cross connected to the best reader compo-
nents.
Setup. We follow the standard practice in domain
adaptation literature (Ben-David et al., 2010) to
carry out the experiments. We take several domains
as source and the rest as the target domains. During
training we assume we don’t have access to the
target labels, and use them only for testing. In the
MultiFC dataset, we use the domains Misc and
Politics as the source and the rest as target. We
select these two as source domains because they
have the highest A-distance from the rest of the
domains-with 0.09 and 0.07 respectively, compared
to 0.06, 0.05 and 0.04 for Business, Sensitive, and
Arts respectively.7 In Snopes, we use both domains
iteratively as source and target.

7A-distance (Ben-David et al., 2010) is a measure of dis-
crepancy between two domains, and can be approximated by
the error rate of a classifier trained to labels the samples from
the two domains (Rai et al., 2010).
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NDCG@10 in MultiFC NDCG@10 in Snopes

Method M→A M→B M→S P→A P→B P→S Ave G→N N→G Ave
bm25 0.684 0.723 0.725 0.684 0.723 0.725 0.711 0.558 0.638 0.598
cont-ft 0.673.01 0.654.01 0.707.00 0.700.00 0.663.01 0.714.01 0.685 0.577.01 0.737.00 0.657
cont-t5 0.721.00 0.624.00 0.711.00 0.721.00 0.624.00 0.711.00 0.685 0.623.00 0.737.00 0.680

cont-gpl-ft 0.794.00 0.734.01 0.784.00 0.801.00 0.748.00 0.788.00 0.774 0.642.00 0.769.00 0.705
cont-promp-ft 0.785.00 0.723.00 0.773.01 0.796.00 0.735.01 0.776.00 0.764 0.637.00 0.766.00 0.702

ours 0.803.00 0.747.01 0.793.00 0.810.00 0.757.00 0.797.00 0.784 0.647.00 0.773.00 0.710

Table 4: The performance of the retriever compared to the baseline models. The suffix ft indicates finetuning on the
source domain. The suffix t5 indicates finetuning on synthetically generated T5 queries.

Method P→S N→G

Full 0.797 0.773
w/o claim enc 0.778 0.770
w/o doc enc 0.792 0.769

(a) Retriever Ablation Studies

Method P→S N→G

Full 0.651 0.469
w/o align 0.638 0.464
w/o reverse 0.646 0.455

(b) Reader Ablation Studies

Method P→S N→G

Full 0.643 0.435
w/o retriever 0.640 0.432
w/o reader 0.632 0.404
w/o ranking 0.636 0.413

(c) Pipeline Ablation Studies

Table 5: Ablation studies of the proposed methods in the retriever (5a), the reader (5b), and pipeline (5c) for a use
case in the MultiFC dataset (P→S) and in the Snopes dataset (N→G) .

5 Results and Analysis

Table 2 reports the results of the fact checking
pipeline across the two datasets for our model com-
pared to the baseline methods. We observe that in
all the scenarios our model is either the top perform-
ing approach, or is on a par with the best method.

In Tables 3, we report the performance of the
reader compared to the alternative methods indi-
vidually. To evaluate the reader in isolation, we
assume that the retriever returns all the relevant
evidence documents. The first observation is that
our model is able to offer a lot of improvement
on top of the nli pretraining model–this model is
pretrained on SNLI and MultiNLI datasets. All the
methods (including ours) uses this model as the
starting checkpoint for training. We also observe
that the gap between our model and the baselines
is still present even if we finetune the pretrained
model on the source dataset (nli-ft). This does not
change even if we pretrain the model on the target
domain using the masked language model task (nli-
mlm-ft).

In Table 4, we report the performance of our
retriever compared to the baselines individually.8

Again we see that our retriever outperforms the
basic BM25 model and the pretraining model fine-
tuned on the source data (cont-ft) by a large margin.

8In a separate experiment, we tried to visualize the embed-
ding space of the representations before and after the adap-
tation. However, we found that it is difficult to qualitatively
observe the improvements. Thus, we resort to quantitative
evaluations.

We don’t report the plain Contriever model as it
was unable to solve the task reasonably. However,
all the methods (including ours) use this model as
the starting point for training. A noteworthy ob-
servation from Table 4 is that the performance of
cont-ft and cont-t5 is on a par with each other. One
of them (cont-ft) is only finetuned on the source
data, and the other one (cont-t5) is only finetuned
on synthetically generated target data using T5.

To better understand the properties of our model,
we report a series of ablation studies in both compo-
nents of the pipeline, as well as the entire pipeline
itself. In Table 5a, we report the performance when
we omit the adversarial training of the encoders
individually. We observe that each step is relatively
contributing to the results. In Table 5b, we repeat
the same experiment by omitting the alignment
loss term and the reversal augmentation. We see
that both steps are noticeably enhancing the perfor-
mance. Finally, to evaluate the components within
the pipeline, in Table 5c, we report the performance
when we disable our algorithms in the retriever, in
the reader, and in ranking the top evidence docu-
ments. We see that each component is relatively
boosting the performance, however, as stated by
Das et al. (2023), even though the retriever indi-
vidually shows improvement, when it is within the
pipeline it demonstrates less effectiveness.

In Table 5b, we quantitatively show that it is an
effective strategy to augment the input data with the
reverse order of itself for training the reader. It is
informative to see if this strategy can still be helpful
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Set Prompt

Train
Evidence: “MIT is the alma mater of GHI.”
Claim: “GHI studied at MIT.”
Label: “Is that true or false? True”

Test
Evidence: “ABC studied at University of Illinois.”
Claim: “University of Illinois is the alma mater of ABC.”
Label: “Is that true or false?”

Augmentation
Evidence: “GHI studied at MIT.”
Claim: “MIT is the alma mater of GHI.”
Label: “Is that true or false? True”

Table 6: An example that GPT-3 fails to infer the reversal relationship between the evidence and claim. If only the
train and test rows are used in the prompt, the model fails to output the correct answer—the correct answer is True.
However, if the prompt is augmented with the reverse of the train row, then the model outputs the correct answer.

if used along existing large language models. To
this end, we report an experiment in Table 6, where
we use GPT-3 to validate a claim given an evidence
document. We see that if we only use the direct
association between the claim and the evidence
for in-context learning, the model fails to answer
a similar question. However, if we augment the
input data with the reverse data point, the model
can make the right choice.

6 Conclusions

We studied automatic fact checking under domain
shift. We showed that large language models are
unable to do the task in certain cases. Then we
empirically showed that the common fact checking
pipeline suffers from distribution shift, when it is
trained in one domain and tested in another domain.
We then proposed two novel algorithms to enhance
the performance of the entire pipeline. We evalu-
ated our model in eight scenarios and showed that
in the majority of the cases our model is the top
performing algorithm.
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7 Limitations

First limitation of our study is that it focuses only
on textual data. Fact verification can be also per-
formed on knowledge graphs. We selected textual
data due to the popularity of this type of knowl-
edge source. Second limitation of our study is that
it only reports experiments in English language.
This was imposed on us due to the lack of large-
scale fact checking datasets in other languages. The
third limitation, which is connected to the previous
shortcoming, is the lack of multiple domain bench-
mark for fact checking. We acknowledge that our
work could be improved by manually composing a
large-scale multiple domain fact checking dataset.
One potential solution that we considered was to
run experiments across multiple datasets. However,
as stated by Torralba and Efros (2011), this intro-
duces another technical challenge called label-shift,
which was out of scope of our study.
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Dataset Mapped Domain Google Content Classification Labels

MultiFC

Arts /Arts & Entertainment

Business
/Finance
/Business
/News/Business News

Politics
/Law & Government
/News/Politics

Sensitive /Sensitive Subjects
Misc The Rest Of The Labels

Snopes News

/News/Politics/Other
/News/Politics/Campaigns & Elections
/Law & Government/Government/Executive Branch
/Law & Government/Public Safety/Crime & Justice
/News/Other

General The Rest Of The Labels

Table 7: The chart used for mapping the Google content classification labels to the domain names in each dataset.

Snopes dataset (Hanselowski et al., 2019). The
claims in these datasets are not categorized into
domains, therefore, we propose a straightforward
method to automatically assign a domain name to
each claim. To do so, we employ a general pur-
pose classifier trained on a large set of categories.
We opt for using the Google Content Classifier,9

which is a multi-class model with 1,091 class la-
bels. The labels assigned by the Google API are
fine-grained, and in some cases, semantically close
to each other. Therefore, we use a manually-crafted
chart to map the Google labels to domain names.
We constructed five domains in MultiFC dataset
and two domains in Snopes dataset. Table 1 reports
a summary of the domains, and the distribution
of the labels in each domain. The claims in the
Snopes dataset are categorized into three veracity
labels, whereas, the claims in the MultiFC dataset
cover a much wider range of 179 labels. Due to
the nature of this dataset, in many cases the labels
are not easily interpretable. To make this dataset
suitable for the regular fact checking task, we as-
sign the label “Support” to those claims that are
labeled as “True”, and consider the rest as “Re-
fute”. Additionally, the evidence documents in the
MultiFC dataset are collected through the Google
search engine. In the majority of the cases that
we inspected, we found that the evidence docu-
ments either all support or all refute their associ-

9Available at: https://cloud.google.com/natural-
language/docs/classify-text-tutorial

ated claims. We conjecture that the Google search
engine internally verifies user claims, and retrieves
consistent evidence documents, rather than retriev-
ing potentially conflicting information. To have a
more realistic evaluation setting, for each claim in
this dataset, we randomly selected two evidence
documents and discarded the rest of them. We
make all the claims, along their domain names, and
their labels publicly available for full reproducibil-
ity.

In Table 7, we report the chart that we used to
map the Google labels to the domain names in Mul-
tiFC and Snopes datasets. In Table 8, we report a
set of randomly selected claims from each domain
of the two datasets. Table 9 reports the top two
topics extracted from the claims of each domain us-
ing the Latent Dirichlet Allocation algorithm (Blei
et al., 2003).

B Complementary Information About the
Training Setup

Baselines. We evaluate our retriever from two as-
pects: first, we show that it is able to offer im-
provement over common pretraining techniques
in dense retrieval for domain adaptation, and sec-
ond, we show that it outperforms state-of-the-art
dense retrieval methods for domain adaptation in
the fact checking task. As the pretraining method,
we use the model proposed by Izacard et al. (2022),
called Contriever. This model is an unsupervised
method based on contrastive learning by cropping
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Dataset Domain Claim Example

MultiFC

Arts Jennifer Lopez, Alex Rodriguez Marrying In The Spring?

Business For the first time in history the North Atlantic is empty of
cargo ships in-transit

Misc Samuel Adams Set to Release New Helium Beer

Politics Hillary Clinton wore a secret earpiece during the first pres-
idential debate of 2016

Sensitive A man died in a meth lab explosion after attempting to
light his own flatulence

Snopes

General The modern image of Santa Claus was created by the Coca-
Cola Company

News Donald Trump personally sent out an airplane to bring
home U.S. military members stranded in Florida

Table 8: Randomly selected claims from each domain of the MultiFc and Snopes datasets.

Dataset Domain Most Probable Topic

MultiFC

Arts
fight, Matthew, Sarah, Jessica, Parker
Perry, Katy, Bloom, Orlando, Smith

Business
tax, home, state, $, trust
pension, fund, work, one, say

Misc
page, prayer, base, Disney, elect
turn, charge, improve, form, 2015

Politics
Meghan, Markle, Prince, Governor, political
public, day, school, record, voting

Sensitive
Shooting, wear, agree, Pat
involve, media, crash, car, send

Snopes
General

announce, plan, California, group, Airline
document, series, Google, movie, mosque

News
Donald, Trump, use, U.S., President
Clinton, Hillary, e-mail, WikiLeaks, Trump

Table 9: Top two LDA topics for each domain of the MultiFc and Snopes datasets.

spans of texts from documents and taking them
as positive samples. Additionally, we compare to
the models proposed by Wang et al. (2022) and
Dai et al. (2023), called GPL and Promptagator.
GPL uses a query generator, pretrained on the MS-
Marco dataset, to generate pseudo-queries for the
target documents. These pseudo-queries are used
to pretrain the dense retrieval model. Prompta-
gator, is a prompt-based model that uses a large
language model to generate pseudo-queries for the
target documents to be used for finetuning. To
have a fair comparison between the models, all
of them employ an identical underlying architec-
ture (a bi-encoder) and pre-training steps (using
Contriever). The encoder in Contriever is a BERT-

sized transformer-based language model, which is
used in all the models. Promptagator uses a large
language model for generating pseudo-labels. We
use GPT 4 to generate this data. We follow the in-
structions stated by Dai et al. (2023) and generate
5,000 pseudo-labels for each domain, to be used
for pretraining in this model. In addition to these
baseline models, we also compare our model to the
traditional BM25 model.

We follow the same protocol for evaluating the
reader. We show that it is able to offer improve-
ment over a relevant general domain pretraining
task. For this purpose, we use the Roberta model
(base variant) (Liu et al., 2019) pretrained on two
NLI datasets, i.e., SNLI and MultiNLI datasets
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(Williams et al., 2018). Then, we also show that it
outperforms a common model proposed by existing
literature, which is pretraining on the masked lan-
guage model task (mlm) in the target domain, and
then, finetuning in the source domain. To evaluate
the entire fact checking pipeline, we compare our
model to the pipelines that are constructed by cross
connecting two top retrievers to two top readers.
Setup. Our model has a few hyper-parameters.
One for the coefficient of the alignment loss,
and another one for the coefficient of the reverse
terms–both subjects were discussed in Section 3.3.
We used the domains Misc and Politics in Mul-
tiFC , and searched for the best values between
{0.1,0.3,0.5,0.7,0.9}. The best values for both
is 0.1. We set the value of K in the reader to
10 across all the experiments–K is the top docu-
ments returned by the retriever. As the alignment
loss term–introduced in Equation 6, we use a met-
ric called correlation alignment (Sun and Saenko,
2016), which measures the distance between the
second-order statistics of the source and target data.
For pretraining our retriever, we use a T5 model
trained on the MS-Marco dataset and generate 3
pseudo claims for each evidence document and
pretrain the retriever for three epochs. We set the
batch size in the retriever to 70, and in the reader
to 50. We set the max sequence size for the claims
to 50, and for the documents to 200. We use Adam
optimizer in all the experiments. We also use gradi-
ent check-pointing for compression. We repeat all
the experiments five times, and report the average
results. We used four NVIDIA Tesla V100 GPUs
with 16G of RAM to run our experiments. The
experiments took less than one month to finish.

C Complementary Related Work

There exist a few studies that investigate the trans-
ferability of the fact checking models across fact
checking websites (Augenstein et al., 2019; Wad-
den et al., 2020; Gupta and Srikumar, 2021). Au-
genstein et al. (2019) compose a data set called
MultiFC. This dataset was collected across multiple
fact checking websites, which the authors call them
“sources/domains”. Their model is the standard
retriever-reader pipeline, and their experiments are
carried out within each website individually. Their
model relies on meta-data collected from webpages.
They propose no algorithm for training a model on
one domain and testing on another domain. Wad-
den et al. (2020) compose a dataset called SciFact,

collected from scientific repositories. Their model
is the standard retriever-reader. To evaluate the tran-
feribility of their pipeline, they pretrain the pipeline
on the claims extracted from wikipedia and then
test it on their dataset. Thus, their solution for do-
main adaptation is to pretrain the pipeline on one re-
source and then test it on another resource; beyond
this, they propose no domain adaptation method.
Their study also has a shortcoming: the wikipedia
claims that they use to pretrain their pipeline, may
share some knowledge with the claims in their
dataset. This can potentially distort their conclu-
sions. Gupta and Srikumar (2021) compose a multi-
lingual fact checking dataset. This dataset consists
of claims, and evidence documents retrieved from
Google. They use the standard pipeline, and similar
to the second study, they evaluate the transferability
of their pipeline by training on the data from one
website and testing it on another website. Beyond
this, they propose no additional solution for do-
main adaptation. As opposed to these studies, we
delve into the two primary components of the fact
checking pipeline, i.e., the retriever and the reader,
and propose algorithms to enhance their robustness.
Furthermore, to evaluate our model, we do not rely
on comparing the results across fact checking web-
sites, instead, we evaluate the transferability across
genres of claims.

Automatic fact checking is a very active research
area, interested reader can see numerous surveys
published in recent years, such as the works by
Oshikawa et al. (2020), Zhou and Zafarani (2021),
Zeng et al. (2021), Guo et al. (2022), Chen and Shu
(2023), and Das et al. (2023). In this study, our goal
is not to present an overview of existing fact check-
ing methods, but to focus on a rather unexplored
aspect of this subject, i.e., the transferability of
common fact checking tools across domains. Previ-
ous studies focus on other aspects of the fact check-
ing pipeline. For instance, Zhou et al. (2019) and
Liu et al. (2020) exploit the unstructured nature of
the evidence documents and propose to use graph
networks for modeling the relationship between
the documents. Jiang et al. (2021) concatenate all
the evidence documents and use a T5 network to
model the final step in the pipeline as a sequence-
to-sequence problem. They report that introducing
noise to the training of T5 enhances the robustness
of the pipeline. Chen et al. (2022) enhance the first
component of the fact checking pipeline—i.e., the
retriever—by proposing a generative model to pro-
duce document titles (instead of retrieving them) to
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F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
W/O DA 0.590 0.583 0.607 0.610 0.573 0.605 0.383 0.391

ours 0.595 0.605 0.648 0.615 0.603 0.643 0.440 0.435

Table 10: Comparison between our model and a pipeline that does not employ domain adaptation techniques.

F1 in MultiFC F1 in Snopes

Method M→A M→B M→S P→A P→B P→S G→N N→G
GPT-3 0.456 0.536 0.530 0.456 0.536 0.530 0.302 0.304
ours 0.595 0.605 0.648 0.615 0.603 0.643 0.440 0.435

Table 11: Comparison between our model and GPT-3. We use in-context learning to obtain the results of GPT-3.
For each label in the datasets, we use two randomly selected claims along with one evidence document for each one
as the in-context examples. This results in four examples in the MultiFc dataset, and six examples in the Snopes
dataset. We instruct the model to return the exact labels. In the cases that the returned string is not interpretable, we
assume the claim is categorized as false.

be used for retrieving evidence sentences.
There are also an overwhelming number of stud-

ies on dense text retrieval published in recent years,
see the surveys by Zhao et al. (2022) and Shen
et al. (2022). The method proposed by Xin et al.
(2021) relies on a model called domain classifier to
push the representations of source and target data
points close to each other. However, as they state,
because the transformation happens concurrently
to the training of the retrieval encoders, it causes
instability in the training. Therefore, they cache the
representations of the vectors in the previous steps,
and include them in their loss function. The most
promising methods for domain adaptation in recent
years have been those based on pseudo-query gen-
eration, such as the methods by Wang et al. (2022)
and Dai et al. (2023). The first method (Wang et al.,
2022) uses a pretrained model to generate pseudo-
queries in the target domain. The second study
(Dai et al., 2023) uses a large language model for
achieving the same goal.

D Complementary Experiments

In this section, we report two complementary ex-
periments. First, we report a comparison between
our method and a fact checking pipeline that does
not use any domain adaptation technique. This
model is finetuned on the source domain, and then,
tested on the target domain. Table 10 reports the
results. We observe that in all the scenarios our
model outperforms the mentioned baseline model,
in some cases such as M→S and G→N by a large
margin.

Second, we report a comparison between our

model and GPT-3. In Section 1, we empirically
showed that large language models are not suitable
for every day fact checking tasks, because their
corpus is not regularly updated. However, it is still
informative to see how these models perform on
our datasets. Please note that a direct comparison
between our model and a large language model
is not fair, because our model requires much less
hardware than these models. On the other hand,
one may argue that our model has access to evi-
dence documents. Nevertheless, given the large
pretraining corpus of these models, it is also very
likely that these models are pretrained directly on
fact checking websites. This means that they may
already have access to the ground-truth labels of
the datasets in their parametric knowledge. Consid-
ering all these caveats, we report the comparison in
Table 11.

2261


