
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 2262–2278

June 16-21, 2024 ©2024 Association for Computational Linguistics

Program-Aided Reasoners (Better) Know What They Know

Anonymous ACL submission

Abstract

Prior work shows that program-aided reason-001
ing, in which large language models (LLMs)002
are combined with programs written in pro-003
gramming languages such as Python, can sig-004
nificantly improve accuracy on various reason-005
ing tasks. However, while accuracy is essen-006
tial, it is also important for such reasoners to007
“know what they know”, which can be quan-008
tified through the calibration of the model.009
In this paper, we compare the calibration of010
Program Aided Language Models (PAL) and011
text-based Chain-of-thought (COT) prompting012
techniques over 5 datasets and 2 model types013
- LLaMA models and OpenAI models. Our014
results indicate that PAL leads to improved cal-015
ibration in 75% of the instances. Our analysis016
uncovers that prompting styles that produce017
lesser diversity in generations also have more018
calibrated results, and thus we also experiment019
with inducing lower generation diversity using020
temperature scaling and find that for certain021
temperatures, PAL is not only more accurate022
but is also more calibrated than COT. Overall,023
we demonstrate that, in the majority of cases,024
program-aided reasoners better know what they025
know than text-based counterparts.1026

1 Introduction027

As language models (LMs) grow in size and ca-028

pabilities, several works examine methods to im-029

proving their reasoning skills with different styles030

of prompting (Wei et al., 2022; Wang et al., 2022;031

Suzgun et al., 2022b; Zhou et al., 2022; Yao et al.,032

2023). One representative method, chain of thought033

(COT) reasoning (Wei et al., 2022), takes inspira-034

tion from how humans approach problem-solving035

– by breaking down the problem into a sequence036

of natural language explanations before arriving037

at a final answer. Furthermore, prompts that en-038

able problem-solving are not limited to natural039

1Anonymized code and data are available at https://
anonymous.4open.science/r/code-calibrates-A61D/.

Q : 4 people share a room. Each month the electricity bill is $100.
How much will each roommate pay per year for electricity, if they

divide the share equally?

Since the electricity bill is $100 each
month, we multiply this amount by 12
(months in a year) to find the total cost
per year:
$100/month * 12 months/year = $1200

We divide the total cost by the number
of roommates to find how much each
roommate will pay:
$1200/4 roommates = $1200

The answer is $1200
Interpreter

300

Chain of Thought (CoT) Program Aided LM (PaL)

1200

Figure 1: Comparisons of COT and PAL outputs. COT
can sometimes generate the correct reasoning chain but
fail to derive the correct answer as a final step. PAL
fixes this issue by executing generated code to arrive at
a deterministic answer.

language; program-aided language models (PAL); 040

Gao et al. (2022) have demonstrated the efficacy of 041

using code (such as Python programs) as a means 042

of improving the model’s reasoning, surpassing the 043

accuracy of conventional chain-of-thought style 044

prompts in some tasks (Madaan et al., 2022; Lyu 045

et al., 2023; Zhang et al., 2023a,b). Both methods 046

are illustrated in Figure 1. 047

Currently, most works proposing such methods 048

have been primarily focused on improving accu- 049

racy. However, for real-world applications, another 050

highly desirable feature of ML systems is that they 051

should be able to provide reliable confidence esti- 052

mates. Accurate estimates of model confidence 053

are helpful for many applications, including al- 054

lowing the model to refrain from providing an 055

answer when uncertain, asking for human inter- 056

vention in uncertain cases, or providing confidence 057

estimates to a downstream model that consumes 058

the outputs. The reliability is measured through 059

calibration, how a model’s confidence in its predic- 060

tions aligns accurately with actual outcomes (Guo 061

et al., 2017a; Jiang et al., 2020; Zhao et al., 2021). 062

1
2262

https://anonymous.4open.science/r/code-calibrates-A61D/
https://anonymous.4open.science/r/code-calibrates-A61D/

A1

A2

An

Arithmetic Reasoning

Symbolic Reasoning

Algorithmic Reasoning

GSM8K

Date Understanding

Object Counting

Breaking down problem into a
sequence of natural language
steps before arriving at answer.

Breaking down problem into
Python code before executing
it to arrive at the final
answer.

PaL

CoT

In
te

rp
re

te
r

A1

A2

An

 5/10

 2/10

 1/10

 2/10

 4/10

 2/10

0.5

0.2

0.1

0.2

C
on

fid
en

ce
 S

co
re

0.4

0.2

D
at

as
et

s

Figure 2: Illustration of eliciting model confidence through self-consistency

In sum, the previous research has shown, as elo-063

quently stated by Kadavath et al. (2022) “language064

models (mostly) know what they know” — LLMs065

are reasonably well calibrated, although some im-066

perfections remain.067

In this work, we examine the effect of program-068

aided reasoning on calibration. We consider five069

datasets that cover different reasoning tasks and070

evaluate the performance of both PAL and COT071

style prompting for OpenAI models (OpenAI,072

2023) and LLaMA models (Touvron et al., 2023)073

with respect to accuracy and calibration. We pri-074

marily explore three main research questions :075

• RQ 1: Does program-aided reasoning result076

in significantly different calibration than text-077

based COT?078

• RQ 2: Are the observed trends different across079

OpenAI models and LLaMA models?080

• RQ 3: Does the consistency of LLM genera-081

tions affect calibration? We examine this by082

measuring generation diversity and answer083

space entropy.084

Our results show that program-aided reasoners085

know what they know even better than standard086

text-based reasoners with COT. In particular, on087

OpenAI models, PAL exhibits not only superior088

accuracy but also a consistent enhancement in cal-089

ibration of about 50%, over COT. Interestingly,090

the consistent improvement of calibration is not091

observed in LLaMA models. Still, we find that092

adjusting the temperature of sampling (similar to093

a widely used method of Platt scaling (Platt et al.,094

1999), PAL improves with respect to accuracy and095

calibration. We also conduct a detailed analysis of096

these observations and find a correlation between097

the similarity of the generated chains-of-thoughts 098

or programs and calibration, which might help ex- 099

plain these trends. Code and data available here 100

under the Apache 2.0 license. 101

2 Preliminaries and Mathematical 102

Formulation 103

2.1 Measuring Calibration 104

Calibration refers to the alignment between the pre- 105

dicted probability estimates of a model and their 106

actual correctness or accuracy (Guo et al., 2017b). 107

Formally, a perfectly calibrated model can be ex- 108

pressed using the following equation, where X is 109

the given input, Y is the true output, the model’s 110

output is Ŷ and PN (Ŷ | X) = p is the probability, 111

or “confidence”, over the model’s output. 112

P
(
Ŷ = Y | PN (Ŷ | X) = p

)
= p,∀p ∈ [0, 1]

(1)

113

In essence, Equation 1 conveys that if a perfectly 114

calibrated model makes 100 predictions, and the 115

confidence of each prediction is 0.6, then we ex- 116

pect the accuracy to be also 0.6. Nevertheless, the 117

model may exhibit varying confidence levels for 118

each sample. Therefore, it is imperative to calcu- 119

late calibration across all confidence scores. We 120

estimate this probability by dividing the predictions 121

into M separate and equally sized interval buckets 122

based on their confidence levels. 123

We use the expected calibration error (ECE), 124

a common measure of (lack of) calibration, a 125

weighted average of the discrepancy between each 126

bucket’s accuracy and confidence. It is given in 127

Equation 2 128

Here Bm is the m-th bucket that contains sam- 129

ples whose probabilities of predictions fall in the 130

2
2263

https://anonymous.4open.science/r/code-calibrates-A61D

interval
(
m−1
M , m

M

]
, where |Bm|

n is Bm’s size rel-131

ative to all the samples. acc (Bm) is the average132

accuracy of the samples in the m-th bucket, and133

conf (Bm) is the corresponding average confidence134

of the samples falling in the m-th bucket.135

M∑

m=1

|Bm|
n

|acc (Bm)− conf (Bm)| (2)136

Consider a setup where we have buckets with a137

width of 0.1. All instances where a model assigns138

probabilities between 0.4 and 0.5 will be allocated139

to the bucket B5 or the bucket encompassing prob-140

abilities between 0.4 and 0.5. Subsequently, the141

average accuracy for the instances in these buck-142

ets and the average probability/confidence is com-143

puted. The absolute difference of the accuracy and144

confidence is multiplied by the proportion of total145

instances in a bucket. This process is repeated for146

every bucket, and the individual scores are summed147

up to calculate ECE.148

2.2 Self-consistency as a measure of149

confidence150

Self-consistency (Wang et al., 2022) is a natural151

language reasoning technique that uses chain-of-152

thought prompting to generate multiple paths for153

reasoning. This process aims to select the most154

consistent answer by sampling and marginalizing.155

Here, we use a latent variable Z to represent the156

reasoning chain/programs. Y is the answer that is157

either extracted in case of COT or obtained after158

execution in case of PAL. We marginalize over Z159

by taking a majority vote over answers. Thus, we160

rely on majority voting over the answers to obtain161

confidence estimates for each sample.162

K is a hyperparameter that controls the num-163

ber of generations (referenced in equation 3). The164

higher the value of K, the better our approximation165

of the probability of each sample. Figure 2 shows166

an overview of this process.167

P (Ŷ0|Z0) =
1

K

K∑

i=0

I
{
Ŷi = Ŷ0

}
(3)168

Wang et al. (2022) and Xiong et al. (2023a) sug-169

gest that self-consistency can be an effective way170

to elicit confidence from models. Hence, given the171

lack of per-token log probabilities in closed LMs172

like gpt-3.5-turbo and text-davinci-003, we173

adopt self-consistency as a proxy measure for cali-174

bration.175

2.3 Similarity and Answer Entropy 176

In addition to empirically evaluating the impact on 177

accuracy and calibration, we conduct a qualitative 178

analysis of the reasoning chains (the latent vari- 179

able Z described previously). Here, we observe a 180

consistent pattern, i.e. the correct answers corre- 181

sponding to a question are often associated with 182

similar generations. 183

We find that this observation aligns with the find- 184

ing made by Li et al. (2022a), that there are nu- 185

merous ways in which solutions can be incorrect. 186

In contrast, correct solutions tend to exhibit more 187

uniform behaviour. 188

To empirically validate this observation, we em- 189

ployed sentence embeddings generated from the 190

all-MiniLM-v6 model to compute the average sim- 191

ilarity among the generations/reasoning chains, 192

equivalent to calculating similarity over latent vari- 193

ables Z. 194

Furthermore, to gain deeper insights into the re- 195

lationship between similarity in generations and 196

corresponding answers, we compute the entropy 197

H(A) of the answer space where P (ai) refers to 198

the probability of the ith answer in K answers ob- 199

tained by extraction or program execution for a 200

given sample. 201

H(A) = −
K∑

i=1

P (ai) · log2 P (ai) (4) 202

This allowed us to investigate whether the ob- 203

served similarity in the latent variable space Z 204

leads to a lower entropy within the answer space. 205

3 Experimental Design 206

3.1 Models 207

We compare the calibration and accuracy of two 208

different prompting strategies - CoT and PaL on 209

an equal number of closed-source and open-source 210

models. The open source models used in exper- 211

imentation are LLaMA2-13B, LLaMA2-70B (Tou- 212

vron et al., 2023). and the closed-source models 213

are gpt-3.5-turbo, text-davinci-003 (Brown 214

et al., 2020). It should be noted that all models 215

have received some form of supervision from code 216

during pre-training (OpenAI, 2023; Touvron et al., 217

2023), in addition to being primarily trained on text. 218

For LLaMA models, we leveraged vLLM (Kwon 219

et al., 2023) for distributed inference using A6000 220

GPU(s). 221

3
2264

Dataset Category # Samples Example

GSM8K (Cobbe et al., 2021) Arithmetic 1319 Q: A robe takes 2 bolts of blue fiber and half that much white fiber.
How many bolts in total does it take? A: 3

GSM8K Hard (Gao et al., 2022) Arithmetic 1319 Q: A robe takes 2287720 bolts of blue fiber and half that much white fiber.
How many bolts in total does it take? A: 3431580

Date Understanding (Suzgun et al., 2022a) Symbolic 360 Q: Yesterday was April 30, 2021.
What is the date today in MM/DD/YYYY? A: 05/01/2021

Object Counting (Suzgun et al., 2022a) Algorithmic 250 Q: I have three couches, a lamp, a stove, a table, a fridge,
and a microwave. How many objects do I have? A: 8

Repeat Copy (Suzgun et al., 2022a) Algorithmic 32 Q: say python twice and data once, and then repeat all of this three times.
A: python python data python python data python python data

Table 1: Datasets with their examples and categories.

3.2 Hyperparameters222

For our experiments, we set temperature (T) as 1.0223

and the probability (p) for nucleus sampling (Holtz-224

man et al., 2020) as 1.0. Selecting a temperature of225

1.0 enables direct sampling from the model as no226

scaling of probabilities is involved, as seen from227

Equation 5. Here, zi refers to the logit for the ith228

token generated, and N is the vocabulary size.229

σ (zi) =
e

zi
T

∑N
j=0 e

zj
T

(5)230

For use K = 10 generations per sample for all231

datasets. We set the maximum number of tokens232

(input + output) for each generation to 1024.233

3.3 Tasks234

We examined reasoning tasks encompassing sev-235

eral challenges, including arithmetic, algorithmic,236

and symbolic reasoning. We use five datasets237

that cover these different kinds of reasoning tasks.238

The arithmetic reasoning datasets include GSM8K239

(Cobbe et al., 2021) and GSM8K Hard (Gao et al.,240

2022). The algorithmic reasoning tasks include241

Object-Counting (Suzgun et al., 2022a) and Repeat-242

Copy (Suzgun et al., 2022a). We used Date-243

Understanding as a Symbolic Reasoning Dataset244

(Suzgun et al., 2022a). Specific information about245

the datasets used can be found in Table 1.246

3.4 Prompt Design247

We provide all models with natural language248

chain-of-thought (CoT) prompts and code-based249

Program-Aided Language Model (PaL) prompts.250

For datasets where CoT prompts are available in251

their original form, we use them as presented in252

the original paper (Wei et al., 2022). We modify253

these prompts for other datasets to suit the specific254

task while maintaining their original format. For255

PaL prompts, we use and adapt the code prompts256

provided in (Gao et al., 2022). The prompts are257

included in Appendix A. 258

4 Results 259

We investigate two model types: OpenAI models 260

and LLaMA models along with the two different 261

prompting strategies - PAL and COT. 262

4.1 Effect of prompting style on Calibration 263

In this section, we look at the first two RQs: 264

RQ 1: Does one prompting style result in signifi- 265

cantly better calibration than the other? 266

RQ 2: Are the observed calibration trends different 267

across OpenAI models and LLaMA models? 268

Table 2 shows results for OpenAI models, we 269

observe that PAL prompting improves both cali- 270

bration and accuracy across all datasets. We see 271

approximately 50% relative reduction in calibra- 272

tion error and an average improvement of 18.42% 273

in accuracy. 274

In Figure 3, we show reliability plots which il- 275

lustrate improved calibration, with the reliability 276

curves for PAL prompting consistently aligning 277

closer to the ideal reliability curve as compared 278

to COT across datasets. While PAL shows a no- 279

table gain of 14.83% in accuracy across all datasets 280

for LLaMA models, it shows better calibration in 281

only half of our settings. Overall, for both OpenAI 282

models and LLaMA models, we observe that PAL 283

leads to better calibration than COT for 75% of the 284

settings. The reliability plots for all datasets for 285

the models gpt-3.5-turbo and LLaMA2-70B can 286

be seen in Appendix Section E, D. 287

Effect of PAL on calibration controlling for ac- 288

curacy One reasonable hypothesis is that PAL is 289

improving calibration because it achieves higher 290

accuracy, and more accurate models can be better 291

calibrated. To examine this hypothesis, we con- 292

duct statistical analysis using mixed linear models 293

(McLean et al., 1991), which allows us to consider 294

4
2265

Name Score Model GSM8K Object-Counting Repeat-Copy Date-Understanding GSM8K Hard
CoT PaL CoT PaL CoT PaL CoT PaL CoT PaL

LLaMA2-70B
ECE (↓) LLaMA 0.19 0.07 0.17 0.14 0.18 0.23 0.09 0.18 0.07 0.03
ACC (↑) LLaMA 59.28 63.91 76.00 92.40 40.62 71.88 66.66 70.18 21.45 40.62
SIM (↑) LLaMA 72.20 92.40 94.43 94.72 87.10 90.58 86.87 82.15 92.28 74.32
ENT (↓) LLaMA 2.24 1.92 1.00 0.76 1.93 2.00 1.44 1.54 2.85 2.17

LLaMA2-13B
ECE (↓) LLaMA 0.06 0.08 0.08 0.06 0.11 0.17 0.06 0.05 0.12 0.14
ACC (↑) LLaMA 27.0 34.34 56.4 81.6 34.37 53.12 48.24 50.41 6.67 25.55
SIM (↑) LLaMA 76.6 93.3 93.2 95.3 89.8 88.6 79.5 84.2 74.0 92.32
ENT (↓) LLaMA 2.83 2.49 1.52 0.85 2.43 2.47 2.23 2.06 2.42 3.06

text-davinci-003
ECE (↓) OpenAI 0.04 0.03 0.29 0.02 0.20 0.06 0.19 0.11 0.15 0.07
ACC (↑) OpenAI 65.65 76.49 59.21 98.00 67.23 93.75 60.70 72.35 23.95 71.27
SIM (↑) OpenAI 90.5 97.8 99.1 99.8 96.2 98.2 92.4 97.4 89.8 97.9
ENT (↓) OpenAI 1.27 0.79 0.36 0.02 1.38 0.44 0.71 0.64 2.31 0.81

gpt-3.5-turbo
ECE (↓) OpenAI 0.05 0.03 0.38 0.03 0.18 0.16 0.17 0.13 0.13 0.05
ACC (↑) OpenAI 84.00 82.40 82.40 97.20 56.25 68.75 61.51 77.23 55.21 62.91
SIM (↑) OpenAI 94.40 97.80 99.10 98.60 97.70 97.90 95.3 97.6 90.60 95.40
ENT (↓) OpenAI 0.57 0.49 0.59 0.048 1.15 0.35 0.50 0.36 1.65 2.43

Table 2: Comparison of Expected Calibration Error (ECE (↓)) , Accuracy (ACC (↑)) , Cosine Similarity (SIM (↑))
and Answer Entropy (ENT (↓)) across datasets. The darker blue shade highlights better performing prompting
technique.

the significance of varying the prompting strategy295

while controlling for accuracy as a confounding296

factor.297

Upon analyzing the results in Table 3, we ob-298

serve that, when treating the prompting style as299

a fixed effect, PAL exhibits a negative coefficient300

of -0.103 (p=0.0) for OpenAI models, which is301

statistically significant with a threshold of p=0.05.302

This implies that PAL contributes to the reduction303

in ECE and has a positive impact on calibration.304

On the contrary, for LLaMA models, we did not305

find that PAL had a statistically significant effect on306

ECE after controlling for accuracy. Across LLaMA307

models and OpenAI models, PAL has a statistically308

significant (p=0.02) correlation of -0.067 with ECE,309

indicating that PAL helps increase calibration on310

the whole even when controlling for accuracy.311

To summarize, we see that PAL prompting has312

better calibration than COT prompting (–RQ1) .313

While PAL has improved calibration in all settings314

for OpenAI models, this trend is less consistent for315

LLaMA models (–RQ2).316

Model Type LLaMA models OpenAI models Both
Fixed Effect

(ECE vs Prompting Style)
PAL : -0.010 PAL : -0.103 PAL : -0.067

p-value 0.961 0.000 0.002

Table 3: Statistical analysis using mixed linear models,
keeping ECE vs Prompting Style as a fixed effect and
accuracy as a random effect.

4.2 Effect of generation diversity on317

calibration318

In this section, we look at the third research ques-319

tion: RQ 3: Does the consistency of LLM genera-320

tions affect calibration?321

Qualitative analysis of the generations reveals322

that PAL generations adhere to a consistent struc- 323

ture that divides the problem-solving process into 324

three distinct parts. This is depicted in Figure 4. In 325

the first part, the model initializes the variables and 326

sets up their initial values required for the calcu- 327

lation. This part is straightforward due to syntac- 328

tic constraints and remains largely similar across 329

generations. In the second part, the model gener- 330

ates the required logic by applying formulas and 331

utilizing various operations to derive the desired 332

result. Finally, in the third part, the model gener- 333

ates the answer by assigning the calculated result 334

to a variable and returning it, which, again, doesn’t 335

vary much across generations. Hence, the diversity 336

of the generation is mainly limited to the second 337

part, making code more constrained in its genera- 338

tion space compared to text. Therefore, there is a 339

standardized structure in the code generated by 340

language models with PaL prompts. 341

Lower generation diversity and answer entropy 342

observed in prompting strategy with better cali- 343

bration To quantitatively analyze if code-based 344

generations have lower generation diversity and 345

lead to a narrower answer space, we computed 346

aggregated cosine similarity scores for all the gen- 347

erations and entropy over the answer space. For 348

OpenAI models, we note that the cosine similarity 349

scores with PAL are higher than the correspond- 350

ing scores for COT. This observation suggests that 351

code-based generations display a higher degree of 352

similarity from a semantic perspective. Moreover, 353

the answer entropy for PAL is lower than COT. 354

This implies that similar generations that cluster to- 355

gether in the semantic space (Li et al., 2022a) also 356

converge to the equivalent solution space. This 357

5
2266

Figure 3: Reliability Plots for various structured reasoning tasks for the model gpt-3.5-turbo. The x-axis
represents confidence, and the y-axis represents accuracy.

def solution () :
Part 1: Initialize
num_glasses = 16
first_glass_price = 5
second_glass_discount = 0.6

Part 2: Calculate
second_glass_price = first_glass_price *

second_glass_discount
pair_price = first_glass_price +

second_glass_price
num_pairs = num_glasses // 2
total_cost = num_pairs * pair_price

Part 3: Result Generation
result = total_cost
return result

Figure 4: Typical output structure with PaL

leads to lower uncertainty in the probability dis-358

tribution of the answer space and, hence, lower359

entropy. From Table 2, we thus can see that PAL360

helps produce similar generations that converge to361

the same answer space, which is also consistently362

correct. Hence, it achieves better performance and363

provides more confidence in its predictions.364

For LLaMA models, we don’t see this trend of365

PAL having higher generation similarity and lower366

answer entropy for all datasets. However, for al-367

most all settings for LLaMA models and OpenAI368

models, the prompting strategy that produces more369

similar generations and lower answer entropy is370

also more calibrated. 371

To summarize, it is evident that lower generation 372

diversity and lower answer entropy are correlated 373

with higher calibration. (–RQ3) 374

Better calibration observed for PAL when induc- 375

ing similarity in generations for LLaMA models 376

We observe that for OpenAI models, PAL is not 377

only more accurate but also more calibrated than 378

COT. Consequently, we explore whether the re- 379

duction in generation diversity, achievable through 380

lower temperatures, can contribute to improved cal- 381

ibration for LLaMA models. 382

We perform a parameter sweep across tempera- 383

ture values between 0.1 and 0.7 with a step size of 384

0.2. We show the variation of accuracy, calibration, 385

generation similarity, and answer entropy for two 386

datasets in Figure 5. The plots for the remaining 387

datasets are available in Appendix B, Figure 6. We 388

can see that we obtain better calibration for both 389

the LLaMA models in both PAL and COT for tem- 390

peratures below 1.0. From Tables 4 and 5, we note 391

that in the majority of runs with T < 1.0, PAL is 392

better calibrated than COT. Considering accuracy 393

and calibration, optimal performance is achieved 394

at different temperatures for each dataset. For most 395

T values, the similarity scores are higher while cor- 396

responding answer entropy values are lower for 397

PAL compared to COT. This mirrors the pattern 398

6
2267

Temp GSM8K Object-Counting Repeat-Copy Date-Understanding GSM8K Hard
CoT PaL CoT PaL CoT PaL CoT PaL CoT PaL

0.7

ECE 0.101 0.07 0.076 0.03 0.14 0.12 0.12 0.09 0.18 0.03
ACC 66.03 67.9 77.6 93.2 53.1 75.0 74.5 76.42 27.14 52.91
SIM 85.07 97.47 98.53 99.42 93.78 94.81 89.62 96.16 83.28 97.29
ENT 1.60 1.48 0.55 0.21 1.46 1.35 0.88 0.80 2.43 1.72

0.5

ECE 0.049 0.036 0.103 0.059 0.112 0.075 0.114 0.063 0.139 0.104
ACC 66.94 67.24 77.23 92.4 59.3 68.75 73.44 77.2 27.7 51.63
SIM 88.69 98.25 99.17 99.85 97.09 96.81 92.49 97.97 87.65 98.2
ENT 1.35 1.19 0.39 0.12 1.09 0.99 0.60 0.52 2.18 1.39

0.3

ECE 0.057 0.097 0.140 0.064 0.194 0.113 0.153 0.139 0.230 0.206
ACC 64.89 63.38 78.8 91.2 53.12 71.87 72.62 76.42 26.16 49.28
SIM 91.91 98.75 99.51 99.94 97.73 98.27 95.18 99.02 91.14 98.75
ENT 1.087 0.960 0.238 0.056 0.780 0.504 0.420 0.317 1.866 1.076

0.1

ECE 0.219 0.257 0.188 0.07 0.278 0.156 0.233 0.176 0.418 0.380
ACC 58.6 58.37 77.2 90.4 53.12 68.75 69.91 78.32 23.5 45.87
SIM 95.79 99.37 99.82 99.98 99.28 99.64 98.21 99.68 95.31 99.35
ENT 0.661 0.526 0.085 0.026 0.288 0.173 0.195 0.137 1.179 0.540

Table 4: Results of temperature scaling for LLaMA2-70B. The darker blue shade highlights better performing
prompting technique.

observed for OpenAI models. For LLaMA-2 13b,399

PAL displays better calibration than COT at lower400

temperatures. However, the optimal temperature401

for obtaining the best performance for calibration402

and accuracy is still T=1.0.403

For LLaMA-2 70b, optimal temperature values in404

our runs for calibration are either 0.5 or 0.7, while405

extreme values (0.1, 1.0) yield lower calibration406

and accuracy performance. We can, therefore see407

that scaling temperatures in the LLaMA models408

can help us to obtain better calibration for PAL,409

specifically for the LLaMA-2 70b, which already410

performs better than COT on these reasoning tasks.411

Thus, we do see that lower generation diversity and412

lower answer entropy lead to higher calibration up413

to a certain point, after which it negatively affects414

the calibration. (–RQ3)415

5 Related Work416

5.1 Prompting Strategies for Reasoning417

Recent developments in language models have in-418

troduced various methods to enhance their reason-419

ing abilities. One such method is CoT (Wei et al.,420

2022), which helps models generate a series of421

intermediate steps to solve problems. CoT has422

demonstrated improved performance in arithmetic,423

common sense, and symbolic reasoning tasks.424

There are approaches such as PaL (Gao et al., 2022)425

and Program-of-thoughts (PoT) (Chen et al., 2022),426

which go a step further by generating programs427

as intermediate steps and using an interpreter to428

process them. Code as a medium of reasoning has429

shown considerable promise, evidenced by better430

performance over chain-of-thought style prompting431

strategies in several recent studies (Madaan et al., 432

2022; Gao et al., 2022; Lyu et al., 2023; Zhang 433

et al., 2023a,b). Unlike these works, our primary 434

goal in this paper is to understand the effect of code 435

prompts on calibration. 436

5.2 Calibration in Language Models 437

Calibration has been extensively studied in struc- 438

tured prediction problems, such as named entity 439

recognition and part of speech tagging (Jagannatha 440

and Yu, 2020), as well as in natural language un- 441

derstanding tasks, like question answering and text 442

classification (Kamath et al., 2020; Kong et al., 443

2020; Desai and Durrett, 2020). More recently, 444

studies have focused on calibrating language mod- 445

els when used as generators (Jiang et al., 2021; 446

Zhao et al., 2021). Additionally, the study by Ka- 447

davath et al. (2022) explored the likelihood of a 448

model knowing the answer before proposing a re- 449

sponse. However, these approaches typically rely 450

on access to the model’s logits. 451

In contrast, the work by (Tian et al., 2023) inves- 452

tigates verbalized probability estimates to assess 453

the calibration of large language models without 454

needing access to logits. This involves querying 455

the model about its confidence in the answers it 456

generates. Furthermore, (Xiong et al., 2023b) in- 457

troduced self-consistency-based methods for cali- 458

bration, demonstrating their superior performance 459

compared to verbalized methods. In our research, 460

we adopt self-consistency as the method of choice 461

for measuring calibration. 462

7
2268

Figure 5: Trends seen in temperature scaling for the model LLaMA2-70B. Across datasets, the accuracy and
calibration improve upon lowering the temperature to a certain extent. This is in line with having lower generation
similarity and lower answer entropy. The optimal temperatures seen are 0.5 and 0.7 across datasets. For other
datasets, refer Appendix, Figure 6.

5.3 Utilizing Language for Code Generation463

The exploration of using natural language for code464

generation has taken diverse approaches in research.465

Initial efforts involved rule-based, predictive and466

deep-learning variations (Gulwani and Marron,467

2014; Woods, 1973; Zelle and Mooney, 1996; Lin468

et al., 2017; Rabinovich et al., 2017). However,469

performance enhancements were observed using470

pre-trained models trained on code-based datasets471

(Chen et al., 2021; Nijkamp et al., 2022; Gao et al.,472

2022; Li et al., 2023). Employing pre-trained lan-473

guage models (LMs) for code generation as a way474

to solve tasks that require step-by-step structuring475

and various forms of reasoning has proven to be476

particularly effective (Ni et al., 2023a; Gao et al.,477

2022; Ni et al., 2023b).478

Intermediate execution results from code have479

been used for training (Chen et al., 2018) and in-480

ference (Wang et al., 2018). Majority-based voting481

on the results of code executions (which is the self-482

consistency-based methodology we employ) has483

also been shown to be an effective technique for se-484

lecting the right candidate (Li et al., 2022b; Cobbe485

et al., 2021; Shi et al., 2022).486

6 Conclusion487

In this study, we explore the impact of two distinct488

prompting styles, namely PAL and COT, on the489

calibration of OpenAI models and LLaMA mod-490

els. Our investigation spans 5 reasoning datasets,491

employing self-consistency as the methodology for492

eliciting calibration. We analyze four different met-493

rics - calibration (ECE) , accuracy (ACC) , average494

similarity in generations (SIM) , and answer en- 495

tropy (ENT) . Our findings are as follows: 496

• RQ 1: Does one prompting style result in 497

significantly better calibration than the other? 498

Empirical results show that PAL generally has 499

higher calibration and accuracy for 82.5% of 500

the cases across OpenAI and LLaMA models 501

for a varied range of temperatures. 502

• RQ 2: Are the observed calibration trends 503

different across OpenAI models and LLaMA 504

models? We observed that OpenAI models are 505

in general better calibrated for the reasoning 506

tasks with up to 19% improvement in ECE. 507

• RQ 3: Does the consistency of LLM genera- 508

tions affect performance? PAL prompting 509

shows a general trend of having greater simi- 510

larity in the generation over COT, which we 511

hypothesize could be due to the inherent struc- 512

ture present in the code. We see that greater 513

generation similarity is accompanied by lower 514

answer entropy and lower ECE. 515

We hope that this study will catalyze additional 516

research aimed at holistically evaluating and gain- 517

ing deeper insights into the role of prompts in vari- 518

ous tasks and domains. 519

7 Limitations 520

Access to OpenAI models is only available through 521

an API which limits the ability to exactly con- 522

trol the hyperparameters influencing the genera- 523

8
2269

tions. Moreover, OpenAI models are not transpar-524

ent, which limits the ability to study these models.525

Because of this lack of transparency it is also hard526

to draw conclusive insights about any comparisons527

between OpenAI models and LLaMA models In528

our study, we report the results from a single run529

but due to combination of utilizing temperature530

value of 1.0 and hardware induced stochasticity, it531

is possible to get varying results for a given model.532

References533

Tom Brown, Benjamin Mann, Nick Ryder, Melanie534
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind535
Neelakantan, Pranav Shyam, Girish Sastry, Amanda536
Askell, et al. 2020. Language models are few-shot537
learners. Advances in neural information processing538
systems, 33:1877–1901.539

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming540
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-541
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,542
Greg Brockman, et al. 2021. Evaluating large543
language models trained on code. arXiv preprint544
arXiv:2107.03374.545

Wenhu Chen, Xueguang Ma, Xinyi Wang, and546
William W. Cohen. 2022. Program of thoughts547
prompting: Disentangling computation from rea-548
soning for numerical reasoning tasks. ArXiv,549
abs/2211.12588.550

Xinyun Chen, Chang Liu, and Dawn Xiaodong Song.551
2018. Execution-guided neural program synthesis.552
In International Conference on Learning Representa-553
tions.554

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,555
Jacob Hilton, Reiichiro Nakano, Christopher Hesse,556
and John Schulman. 2021. Training verifiers to solve557
math word problems. ArXiv, abs/2110.14168.558

Shrey Desai and Greg Durrett. 2020. Calibra-559
tion of pre-trained transformers. arXiv preprint560
arXiv:2003.07892.561

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,562
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-563
ham Neubig. 2022. Pal: Program-aided language564
models. ArXiv, abs/2211.10435.565

Sumit Gulwani and Mark Marron. 2014. Nlyze: Inter-566
active programming by natural language for spread-567
sheet data analysis and manipulation. In Proceedings568
of the 2014 ACM SIGMOD international conference569
on Management of data, pages 803–814.570

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-571
berger. 2017a. On calibration of modern neural net-572
works. In International conference on machine learn-573
ing, pages 1321–1330. PMLR.574

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 575
berger. 2017b. On calibration of modern neural 576
networks. In International Conference on Machine 577
Learning. 578

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 579
Yejin Choi. 2020. The curious case of neural text 580
degeneration. 581

Abhyuday Jagannatha and Hong Yu. 2020. Calibrat- 582
ing structured output predictors for natural language 583
processing. In Proceedings of the conference. As- 584
sociation for Computational Linguistics. Meeting, 585
volume 2020, page 2078. NIH Public Access. 586

Zhengbao Jiang, J. Araki, Haibo Ding, and Graham 587
Neubig. 2020. How can we know when language 588
models know? on the calibration of language models 589
for question answering. Transactions of the Associa- 590
tion for Computational Linguistics, 9:962–977. 591

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham 592
Neubig. 2021. How can we know when language 593
models know? on the calibration of language models 594
for question answering. Transactions of the Associa- 595
tion for Computational Linguistics, 9:962–977. 596

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom 597
Henighan, Dawn Drain, Ethan Perez, Nicholas 598
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli 599
Tran-Johnson, et al. 2022. Language models 600
(mostly) know what they know. arXiv preprint 601
arXiv:2207.05221. 602

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se- 603
lective question answering under domain shift. arXiv 604
preprint arXiv:2006.09462. 605

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie 606
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali- 607
brated language model fine-tuning for in-and out-of- 608
distribution data. arXiv preprint arXiv:2010.11506. 609

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 610
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon- 611
zalez, Haotong Zhang, and Ion Stoica. 2023. Effi- 612
cient memory management for large language model 613
serving with pagedattention. Proceedings of the 29th 614
Symposium on Operating Systems Principles. 615

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 616
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 617
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 618
2023. Starcoder: may the source be with you! arXiv 619
preprint arXiv:2305.06161. 620

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 621
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 622
James Keeling, Felix Gimeno, Agustin Dal Lago, 623
et al. 2022a. Competition-level code generation with 624
alphacode. Science, 378(6624):1092–1097. 625

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush- 626
man, Julian Schrittwieser, Rémi Leblond, Tom, Ec- 627
cles, James Keeling, Felix Gimeno, Agustin Dal 628
Lago, Thomas Hubert, Peter Choy, Cyprien de, 629

9
2270

https://api.semanticscholar.org/CorpusID:53317540
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361

Masson d’Autume, Igor Babuschkin, Xinyun Chen,630
Po-Sen Huang, Johannes Welbl, Sven Gowal,631
Alexey, Cherepanov, James Molloy, Daniel Jaymin632
Mankowitz, Esme Sutherland Robson, Pushmeet633
Kohli, Nando de, Freitas, Koray Kavukcuoglu, and634
Oriol Vinyals. 2022b. Competition-level code gener-635
ation with alphacode. Science, 378:1092 – 1097.636

Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin637
Vu, and Michael D Ernst. 2017. Program synthe-638
sis from natural language using recurrent neural net-639
works. University of Washington Department of Com-640
puter Science and Engineering, Seattle, WA, USA,641
Tech. Rep. UW-CSE-17-03-01.642

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,643
Delip Rao, Eric Wong, Marianna Apidianaki, and644
Chris Callison-Burch. 2023. Faithful chain-of-645
thought reasoning. arXiv preprint arXiv:2301.13379.646

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,647
and Graham Neubig. 2022. Language models of648
code are few-shot commonsense learners. ArXiv,649
abs/2210.07128.650

Robert A McLean, William L Sanders, and Walter W651
Stroup. 1991. A unified approach to mixed linear652
models. The American Statistician, 45(1):54–64.653

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-654
anov, Wen-tau Yih, Sida Wang, and Xi Victoria Lin.655
2023a. Lever: Learning to verify language-to-code656
generation with execution. In International Con-657
ference on Machine Learning, pages 26106–26128.658
PMLR.659

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Rid-660
dell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu,661
Semih Yavuz, Caiming Xiong, Shafiq R. Joty, Yingbo662
Zhou, Dragomir R. Radev, and Arman Cohan.663
2023b. L2ceval: Evaluating language-to-code gener-664
ation capabilities of large language models. ArXiv,665
abs/2309.17446.666

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan667
Wang, Yingbo Zhou, Silvio Savarese, and Caiming668
Xiong. 2022. A conversational paradigm for program669
synthesis.670

OpenAI. 2023. Openai documentation.671
https://platform.openai.com/docs/672
model-index-for-researchers.673

John Platt et al. 1999. Probabilistic outputs for support674
vector machines and comparisons to regularized like-675
lihood methods. Advances in large margin classifiers,676
10(3):61–74.677

Maxim Rabinovich, Mitchell Stern, and Dan Klein.678
2017. Abstract syntax networks for code gen-679
eration and semantic parsing. arXiv preprint680
arXiv:1704.07535.681

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke682
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-683
guage to code translation with execution. ArXiv,684
abs/2204.11454.685

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 686
bastian Gehrmann, Yi Tay, Hyung Won Chung, 687
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny 688
Zhou, et al. 2022a. Challenging big-bench tasks 689
and whether chain-of-thought can solve them. arXiv 690
preprint arXiv:2210.09261. 691

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se- 692
bastian Gehrmann, Yi Tay, Hyung Won Chung, 693
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin 694
Chi, Denny Zhou, and Jason Wei. 2022b. Challeng- 695
ing big-bench tasks and whether chain-of-thought 696
can solve them. ArXiv, abs/2210.09261. 697

Katherine Tian, Eric Mitchell, Allan Zhou, Archit 698
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn, 699
and Christopher D Manning. 2023. Just ask for cali- 700
bration: Strategies for eliciting calibrated confidence 701
scores from language models fine-tuned with human 702
feedback. arXiv preprint arXiv:2305.14975. 703

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 704
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 705
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 706
Bhosale, et al. 2023. Llama 2: Open founda- 707
tion and fine-tuned chat models. arXiv preprint 708
arXiv:2307.09288. 709

Chenglong Wang, Kedar Tatwawadi, Marc 710
Brockschmidt, Po-Sen Huang, Yi Mao, Olek- 711
sandr Polozov, and Rishabh Singh. 2018. Robust 712
text-to-sql generation with execution-guided 713
decoding. arXiv: Computation and Language. 714

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 715
Ed Huai hsin Chi, and Denny Zhou. 2022. Self- 716
consistency improves chain of thought reasoning in 717
language models. ArXiv, abs/2203.11171. 718

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 719
Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and 720
Denny Zhou. 2022. Chain of thought prompting 721
elicits reasoning in large language models. ArXiv, 722
abs/2201.11903. 723

William A Woods. 1973. Progress in natural language 724
understanding: an application to lunar geology. In 725
Proceedings of the June 4-8, 1973, national computer 726
conference and exposition, pages 441–450. 727

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie 728
Fu, Junxian He, and Bryan Hooi. 2023a. Can 729
llms express their uncertainty? an empirical eval- 730
uation of confidence elicitation in llms. ArXiv, 731
abs/2306.13063. 732

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie 733
Fu, Junxian He, and Bryan Hooi. 2023b. Can llms 734
express their uncertainty? an empirical evaluation 735
of confidence elicitation in llms. arXiv preprint 736
arXiv:2306.13063. 737

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 738
Thomas L. Griffiths, Yuan Cao, and Karthik 739
Narasimhan. 2023. Tree of thoughts: Deliberate 740
problem solving with large language models. ArXiv, 741
abs/2305.10601. 742

10
2271

https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:246527904
https://api.semanticscholar.org/CorpusID:263310373
https://api.semanticscholar.org/CorpusID:263310373
https://api.semanticscholar.org/CorpusID:263310373
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://platform.openai.com/docs/model-index-for-researchers
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:248377325
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274
https://api.semanticscholar.org/CorpusID:52184274

John M Zelle and Raymond J Mooney. 1996. Learning743
to parse database queries using inductive logic pro-744
gramming. In Proceedings of the national conference745
on artificial intelligence, pages 1050–1055.746

Li Zhang, Liam Dugan, Hai Xu, and Chris Callison-747
Burch. 2023a. Exploring the curious case of code748
prompts. ArXiv, abs/2304.13250.749

Li Zhang, Hai Xu, Yue Yang, Shuyan Zhou, Weiqiu750
You, Manni Arora, and Chris Callison-Burch. 2023b.751
Causal reasoning of entities and events in procedural752
texts. In Findings.753

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and754
Sameer Singh. 2021. Calibrate before use: Improv-755
ing few-shot performance of language models. In In-756
ternational Conference on Machine Learning, pages757
12697–12706. PMLR.758

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,759
Nathan Scales, Xuezhi Wang, Dale Schuurmans,760
Olivier Bousquet, Quoc Le, and Ed Huai hsin761
Chi. 2022. Least-to-most prompting enables com-762
plex reasoning in large language models. ArXiv,763
abs/2205.10625.764

11
2272

A Prompts765

The following sections display one example of766

the few-shot prompts used for each dataset across767

prompting styles.768

A.1 PAL Prompts769

A.1.1 GSM8K/GSM8K-Hard770

def solution () :
"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result

771

A.1.2 Object Counting772

Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a cabbage, two
onions, and three fridges. How many vegetables do I have?↪→

```
def solution () :

# note: I'm not counting the chair, tables, or fridges
vegetables_to_count = {{'potato': 2,'cauliflower': 1,'lettuce head': 1,'cabbage':

1,'onion': 2}}↪→
return sum (vegetables_to_count.values () )

```
773

A.1.3 Date Understanding774

Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
If 2015 is coming in 36 hours, then today is 36 hours before.
today = datetime (2015, 1, 1) - relativedelta (hours=36)
One week from today,
one_week_from_today = today + relativedelta (weeks=1)
The answer formatted with %m/%d/%Y is
one_week_from_today.strftime ('%m/%d/%Y')

775

A.1.4 Repeat Copy776

Q: Repeat the word duck four times, but halfway through also say quack
```
def solution () :

result = []
for i in range (1, 5) :

result.append ("duck")
if i == 2:

result.append ("quack")
return " ".join (result)

```
777

12
2273

A.2 COT Prompts778

A.2.1 GSM8K/GSM8K-Hard779

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be
21 trees. How many trees did the grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were planted. So there must have been 21 -
15 = 6. The answer is 6.

780

A.2.2 Object Counting781

Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a cabbage, two onions, and three fridges. How
many vegetables do I have?
A: Chair, tables and fridges are not vegetables, so we are not counting them. Two potatoes, cauliflower, lettuce head,
cabbage and two onions are vegetables, so they will be counted The total number of vegetables are 2 + 1 + 1 + 1 + 2 The
answer is: 7

782

A.2.3 Date Understanding783

Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
A: If 2015 is coming in 36 hours, then it is coming in 2 days. 2 days before 01/01/2015 is 12/30/2014, so today is
12/30/2014. So one week from today will be 01/05/2015. So the answer is 01/05/2015.

784

A.2.4 Repeat Copy785

Q: Repeat the word duck four times, but halfway through also say quack
A: On repeating the word duck four times we get: duck duck duck duck Halfway through if we say quack, we have to
say quack in between the 2nd word and the 3rd word The answer is: duck duck quack duck duck

786

13
2274

B Temperature Scaling Experiments -787

Line Plots788

Figure 6: Trends seen in temperature scaling for the datasets - GSM8K-Hard, Date-Understanding and Repeat-Copy

14
2275

C Results of temperature scaling for789

LLaMA2-13B790

Temp GSM8K Object-Counting Repeat-Copy Date-Understanding GSM8K Hard
CoT PaL CoT PaL CoT PaL CoT PaL CoT PaL

0.7 ECE 0.052 0.046 0.12 0.108 0.175 0.181 0.108 0.107 0.125 0.087
ACC 36.16 39.27 61.60 80.80 34.37 59.37 50.60 56.63 10.91 30.32
SIM 85.40 97.48 98.65 99.33 95.07 94.02 86.81 96.03 83.48 97.37
ENT 2.405 2.222 0.970 0.303 2.048 1.949 1.505 1.330 2.892 2.332

0.5 ECE 0.099 0.093 0.171 0.135 0.131 0.106 0.134 0.183 0.177 0.1381
ACC 36.08 37.07 60.80 82.00 34.37 59.30 53.92 55.00 10.80 29.87
SIM 88.70 98.10 99.21 99.83 97.12 97.74 89.94 97.63 87.37 98.03
ENT 2.144 1.976 0.722 0.158 1.455 1.311 1.141 0.942 2.694 2.074

0.3 ECE 0.160 0.108 0.231 0.154 0.200 0.206 0.219 0.304 0.246 0.231
ACC 33.81 30.72 62.40 81.20 37.50 65.63 55.28 50.40 10.16 27.97
SIM 91.51 98.54 99.56 99.93 97.62 96.81 93.02 98.41 90.48 98.44
ENT 1.826 1.618 0.475 0.080 0.967 1.19 79.04 63.78 2.389 1.716

0.1 ECE 0.372 0.334 0.311 0.174 0.4969 0.1812 0.341 0.423 0.372 0.334
ACC 30.25 32.14 62.80 81.20 37.50 46.80 54.47 49.32 30.25 32.14
SIM 95.12 99.19 99.80 99.98 97.24 98.68 97.00 99.32 95.12 99.19
ENT 1.145 0.84 0.204 0.014 0.286 0.283 0.373 0.261 1.1458 0.840

Table 5: Results of temperature scaling for LLaMA2-13B. The darker blue shade highlights better performing
prompting technique.

15
2276

D Reliability Plots for LLaMA2-70B791

(a) GSM8k CoT (b) GSM8k PaL

(c) Date Understanding CoT (d) Date Understanding PaL

(e) Object Counting CoT (f) Object Counting PaL

(g) Repeat Copy CoT (h) Repeat Copy PaL

(i) GSM8k Hard CoT (j) GSM8k Hard PaL

Figure 7: Reliability plots for all the datasets using COT and PAL prompting for the model LLaMA2-70B

16
2277

E Reliability Plots for gpt-3.5-turbo792

(a) GSM8k CoT (b) GSM8k PaL

(c) Date Understanding CoT (d) Date Understanding PaL

(e) Object Counting CoT (f) Object Counting PaL

(g) Repeat Copy CoT (h) Repeat Copy PaL

(i) GSM8k Hard CoT (j) GSM8k Hard PaL

Figure 8: Reliability plots for all the datasets using COT and PAL prompting for the model gpt-3.5-turbo

17
2278

